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Abstract— Opacity is a confidentiality property for partially-
observed discrete-event systems relevant to the analysis of
security and privacy in cyber and cyber-physical systems. It
captures the plausible deniability of the system’s “secret” in the
presence of an outside observer that is potentially malicious. In
this paper, we consider the enforcement of opacity on systems
modeled by finite-state automata. We assume that the given
system is not opaque and the objective is to restrict its behavior
by supervisory control in order to enforce opacity of its secret.
We consider the general setting of supervisory control under
partial observations where the controllable events need not all
be observable. Our approach for the synthesis of an opacity
enforcing supervisor is based on the construction of a new
transition system that we call the “All Inclusive Controller
for Opacity” (or AIC-O). The AIC-O is a finite bipartite
transition system that embeds in its transition structure all
valid opacity enforcing supervisors. We present an algorithm
for the construction of the AIC-O and discuss its properties.
We then develop a synthesis algorithm, based on the AIC-
O, that constructs a “maximally permissive” opacity-enforcing
supervisor. Our approach generalizes previous approaches in
the literature for opacity enforcement by supervisory control.

I. INTRODUCTION

Security and privacy are important issues for networked
cyber and cyber-physical systems. In this paper, we in-
vestigate an important security property called opacity that
was originally introduced in the computer science literature
[1] and since then has been investigated extensively in
the framework of Discrete-Event Systems (DES), among
other approaches; see, e.g., [2]–[15]. An opacity problem is
formulated as follows in the context of DES. The system is
modeled as a finite-state automaton; there is a secret that the
system wants to hide from a potentially malicious external
observer, referred to as the intruder. The intruder is modeled
as an observer that knows explicitly the system’s structure
but can only observe part of the system’s behavior. Given a
secret, we say that the system is opaque if the intruder can
never determine unambiguously that the secret has occurred
based on its limited observation capabilities. Specifically, we
need that for any behavior of the system that reveals its secret
(a “secret behavior”), there must exist another behavior that
is observationally equivalent to the secret behavior but does
not reveal the secret (a “non-secret behavior”). The secret
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of the system can take many forms, such as a subset of
states (initial or current), a subset of state pairs (initial-final),
or a subset of strings. Since most of these notions can be
mapped to one another (see [13]), we consider in this paper
the property of current-state opacity, without essential loss
of generality. In current-state opacity, the secret is revealed
if the state estimate of the intruder is entirely contained in
the set of secret states of the system.

Several approaches have been proposed in the literature
for enforcing opacity of a given system that is not opaque
at the outset; see, e.g., [6]–[12], [14]–[16]. One of the most
commonly-used opacity enforcement mechanism is to use
supervisory control to restrict the system behavior; this is
the approach investigated in [6]–[11], [16]. In this context,
the control problem is to synthesize a partial-observation
supervisor that prevents behaviors that reveal the secret from
occurring in the controlled system. In [6], the system is
assumed to be fully controlled and fully observed by the
supervisor and the objective is to hide the system’s secret
in the presence of multiple intruders. In [7]–[9], Ec and Eo
are the sets of events that can be controlled and observed
by the supervisor, respectively; the goal is to design a
least restrictive supervisor such that the controlled system
is opaque with respect to Ea, the set of events that can
be observed by the intruder. In these works, it is assumed
that Ec ⊆ Eo. Besides the supervisory control approach,
other enforcement mechanisms have also been investigated
in the literature. In [15], the authors propose an enforce-
ment mechanism based on insertion of additional observable
events at the system’s output; these events are observationally
equivalent to genuine system’s observable events from the
viewpoint of the intruder, thereby creating confusion on its
part. Another opacity enforcement mechanism is based on
the use of a dynamic observer [12]. Finally, in [14], a runtime
enforcement mechanism by using delay to enforce the notion
of K-step opacity is proposed.

In this paper, we adopt the enforcement mechanism of
supervisory control and solve the following problem: Given
a system that is not current-state opaque for a given set of
secret states, design a supervisory controller that restricts
the behavior of the system such that the controlled system
is opaque for the given set of secret states. The approach
we develop to tackle this problem is significantly different
from that in [7]–[9], which are also concerned with opacity
enforcement by supervisory control. Specifically, our ap-
proach is based on the construction of a finite information
structure called the All Inclusive Controller for Opacity
and abbreviated as AIC-O. The AIC-O is a game structure
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between the supervisor and the environment (aka system).
By construction, the AIC-O embeds in its structure all
supervisors that enforce opacity. Therefore, it can serve
as the basis for the synthesis problem. The AIC-O was
inspired by our recent work in [17], [18], which aims to
solve the standard supervisory control problem for safety and
non-blockingness [19] by using the same type of transition
system capturing the possible moves of the system and the
set of admissible supervisors. However, in contrast to [17],
[18], the property of interest here is opacity. Moreover, we
relax the assumption made in [7]–[9] that all controllable
events should be observable. In this more general setting,
uniqueness of a maximally permissive solution is lost. Hence,
our focus is on the synthesis of solutions that are provably
(locally) maximally permissive.

The contributions of this paper are as follows.
• A novel finite information structure, the All Inclusive

Controller for Opacity, that embeds all valid opacity-
enforcing supervisors, is defined.

• A construction algorithm for the AIC-O is given and its
properties are characterized.

• The supervisory control problem for opacity is solved
using the AIC-O. The synthesis algorithm that is pre-
sented always returns a maximally permissive supervi-
sor, even when Ec 6⊆ Eo.

The remainder of this paper is organized as follows. In
Section II, we describe the model of the system. The problem
we solve in this paper is formally formulated in Section III.
In Section IV, we define a class of bipartite transition
systems that is used for solving the opacity enforcement
problem. In Section V, we define the structure called AIC-
O, the key notion for the approach investigated in this
paper. We then present the synthesis algorithm that returns
a maximally-permissive partial-observation supervisor based
on the AIC-O in Section VI. Finally, we conclude the paper
in Section VII. Due to space constraints, all proofs have been
omitted and they are available in [20].

II. PRELIMINARIES

The DES of interest is modeled as a deterministic finite-
state automaton G = (X,E, f,X0), where X is the finite
set of states, E is the finite set of events, f : X × E → X
is the partial transition function, where f(x, σ) = y means
that there is a transition labelled by event σ from state x to
state y and X0 ⊆ X is the set of initial states. The transition
function f is extended to X ×E∗ in the usual manner (see,
e.g., [21]). Note that the initial state of the system G is not
unique in general, since X0 is a set of states. Given a set
of states S ⊆ X , the language generated by G from S is
defined by L(G,S) := {s ∈ E∗ : ∃x ∈ S s.t. f(x, s)!},
where ! means “is defined”. When S = X0, the prefix-closed
language L(G,X0) describes the entire system’s behavior;
we denote it by L(G) for simplicity.

In the framework of supervisory control [19], the plant
G is controlled by a supervisor that dynamically en-
ables/disables events of the system such that some speci-
fication is provably achieved. The event set E is partitioned

into two disjoint subsets: E = Ec∪̇Euc, where Ec is the set
of controllable events and Euc is the set of uncontrollable
events. We say that a control decision γ ∈ 2E is admissible
if Euc ⊆ γ, namely, uncontrollable events can never be
disabled. We define Γ = {γ ∈ 2E : Euc ⊆ γ} as the set of
admissible control decisions. When the system is partially-
observed [22], [23], E is also partitioned into two disjoint
sets: E = Eo∪̇Euo, where Eo is the set of observable
events and Euo is the set of unobservable events. The natural
projection P : E∗ → E∗o , is defined by

P (ε) = ε and P (sσ) =

{
P (s)σ if σ ∈ Eo
P (s) if σ ∈ Euo

(1)

Since a supervisor can only make decisions based on its
observations, a partial-observation supervisor is a function
SP : P (L(G))→ Γ. We use the notation SP /G to represent
the controlled system and the language generated by SP /G,
denoted by L(SP /G), is defined recursively as follows:

i) ε ∈ L(SP /G); and
ii) [s∈L(SP /G) ∧ sσ∈L(G) ∧ σ∈SP (s)]
⇔ [sσ∈L(SP /G)].

Given a prefix-closed language K, i.e, K = K, we say
that K is controllable (w.r.t. G and Ec) if (∀s ∈ K,σ ∈
Euc)(sσ ∈ L(G)⇒ sσ ∈ K); we say that K is observable
(w.r.t. G, Ec, and Eo) if (∀s, s′ ∈ K,σ ∈ Ec)(P (s) =
P (s′)∧sσ ∈ K∧s′σ ∈ L(G)⇒ s′σ ∈ K). It is well-known
that there exists a supervisor SP such that L(SP /G) = K
if and only if K is controllable and observable [22], [23].

We define several operators that will be used in this paper.
The set of all possible reachable states from a set of states
Q ⊆ X under string s ∈ L(G), is given by

RG(s,Q) := {x ∈ X : ∃q ∈ Q,∃t ∈ L(G)

s.t. P (t) = P (s) ∧ x = f(q, t)} (2)

We denote RG(s,Q) by RG(s) if Q = X0.
The unobservable reach of the subset of states S ⊆ X

under the subset of events γ ⊆ E is given by

URγ(S) := {x∈X : (∃u∈S)

(∃e∈(Euo ∩ γ)∗) s.t. x=f(u, e)}. (3)

The observable transition of the subset of states S ⊆ X
under observable event e ∈ Eo is given by

Nexte(S) := {x∈X : ∃u ∈ S s.t. x=f(u, e)}. (4)

III. OPACITY AND PROBLEM FORMULATION

In this section, we formally state the Maximally Permis-
sive Opacity Enforcement Problem (MPOEP) that we solve
in this paper. First, we recall the definition of opacity.

As was mentioned in the introduction, we consider
current-state opacity in our development. In this setting, the
state space of the system is partitioned into two disjoint
sets: X = XS∪̇XUS , where XS is the set of secret states
and XUS is the set of non-secret states. Hereafter, we set
XUS = X \ XS , for the sake of simplicity. The notion
of current-state opacity says that for any string that leads
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Fig. 1. System G with Ec = {a, b, c}, Eo = {o1, o2}, and XS = {5}

to a secret state, there must exist a string that leads to a
non-secret state and such that the intruder cannot distinguish
between these two strings. The formal definition of current-
state opacity is as follows (cf. [5], [12], [13]).

Definition 1: (Current-State Opacity). A system G =
(X,E, f,X0) is said to be current-state opaque w.r.t. XS ⊆
X and Eo ⊆ E if

(∀u ∈ X0)(∀s ∈ L(G, u) : f(u, s) ∈ XS)(∃v ∈ X0)

(∃t ∈ L(v, t))[P (s) = P (t) ∧ f(v, t) ∈ X \XS ] (5)

Remark 3.1: It was shown in [13] that several other no-
tions of opacity, specifically language-based opacity, initial-
state opacity, and initial-and-final-state opacity, can be trans-
formed to current-state opacity in polynomial time. There-
fore, the enforcement algorithm described in this paper,
which is based on current-state opacity, can also be applied
to these different notions of opacity. This can be done by
first transforming them to current-state opacity, as described
in [13], and then calling our enforcement algorithm. Without
further clarification, our usage of the word “opacity” here-
after means “current-state opacity”.

Example 3.1: Consider the system G in Figure 1, where
the set of controllable events Ec = {a, b, c} and the set
of observable events is Eo = {o1, o2}; these two sets are
incomparable. Clearly, G is not opaque w.r.t. the single secret
state 5, since the intruder can unambiguously know that the
system is in state 5 once it observes event o2.

Now, we formulate the Maximally Permissive Opacity
Enforcement Problem (MPOEP) as follows.

Definition 2: (Maximally Permissive Opacity Enforce-
ment Problem) Given an automaton G = (X,E, f,X0) with
controllable events set Ec, observable events set Eo, and
secret states set XS ⊆ X , synthesize a partial observation
supervisor SP : E∗o → Γ, such that

1) L(SP /G) is opaque w.r.t. XS and Eo; and
2) For any S′P satisfying (1), we have that L(SP /G) 6⊂
L(S′P /G).

Since controllability and observability together provide the
necessary and sufficient conditions for the existence of a
partial observation supervisor, to solve MPOEP, it suffices
to find a maximal controllable, observable and opaque
sublanguage of L(G). The supremal controllable and opaque
sublanguage is studied in [11]. It was shown in [7]–[9] that
under the assumption that Ec ⊆ Eo, there exists a unique
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(a) Solution G1
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(b) Solution G2
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(c) G3: the union of
L(G1) and L(G2)

Fig. 2. An example of two incomparable solutions

supremal solution to MPOEP. However, this is not true in
general, as we show in the following example.

Example 3.2: Let us return to Example 3.1. To enforce
opacity, we need to find a controllable, observable and
opaque sublanguage of L(G). It easy to verify that solutions
L(G1) and L(G2), shown in Figure 2(a) and Figure 2(b),
respectively, are two maximal controllable, observable and
opaque solutions. However, the union of these two solutions,
which is shown in Figure 2(c), is not a valid solution, since
the system needs to enable event a at state 1 and disable
event a at state 3; but states 1 and 3 are indistinguishable in
L(G3). This violates the property of observability.

The lack of a supremal solution to MPOEP is due to
the fact that the property of observability is not preserved
under union. Therefore, in MPOEP, we are looking for a
locally maximal solution, rather than a supremal solution.
This explains condition (2) in the statement of MPOEP.

Remark 3.2: In general, the intruder may have a different
set of observable events than the supervisor. For example,
in [7], [8], the authors assume that Ea ⊆ Eo, where Ea is
the set of events that can be observed by the intruder. In
this paper, we assume that the supervisor and the intruder
observe the same events, i.e., Ea = Eo. Our focus is on
developing a new approach for the synthesis of opacity-
enforcing supervisors that allows to relax the assumption that
Ec ⊆ Eo, which is made in prior works. We leave the case
where Ea 6= Eo for future research.

IV. BIPARTITE TRANSITION SYSTEM

In this section, we define the general notion of bipartite
transition system (BTS), which was originally investigated
in [18] to solve the standard supervisor control problem for
safety and non-blockingness.

Since we are dealing with partially-observed systems, we
define the notion of an information state (abbreviated as IS)
as a subset IS ⊆ X of states and denote by I = 2X the
set of all information states. We will use specific types of
BTS to capture, in a single structure, the “game” between
the controller(s) and the system/environment.

Definition 3: ( [18]) A bipartite transition system T w.r.t.
G is a 7-tuple1

T = (QTY , Q
T
Z , h

T
Y Z , h

T
ZY , E,Γ, y

T
0 ) (6)

1The superscript refers to T and does not mean transposed.
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where
• QTY ⊆ I is the set of Y -states;
• QTZ ⊆ I × Γ is the set of Z-states and I(z) and

Γ(z) denote, respectively, the information state and the
control decision components of a Z-state z, so that
z = (I(z),Γ(z));

• hTY Z : QTY × Γ → QTZ is the partial transition function
from Y -states to Z-states, which satisfies the following
constraint: hTY Z(y, γ) = z only if

– I(z) = URγ(y) and Γ(z) = γ

• hTZY : QTZ ×Eo → QTY is the partial transition function
from Z-states to Y -states, which satisfies the following
constraint: hTZY (z, e) = y only if

– e ∈ Γ(z) ∩ Eo and y = Nexte(I(z))

• E is the set of events of G;
• Γ is the set of admissible control decisions of G;
• yT0 ∈ QTY is the initial Y -state where yT0 = X0.
The purpose of defining the general notion of BTS is

to describe the “game” between the supervisor and the
environment (system G). To capture this game, we need
a bipartite structure, with two types of nodes (states). A
Y -state is an information state, from which the supervisor
issues control decisions. A Z-state is an information state
augmented with control decisions, from which the system
“selects” observable events to occur within the set of enabled
events. A transition from a Z-state to a Y -state represents
the observable transition, i.e, y in the above definition is the
set of states reachable from some state of the information
state component of the preceding Z-state through the single
observable event. A transition from a Y -state to a Z-state
represents the unobservable reach and “remembers” the set of
enabled events from the Y -state that leads to it. This means
that I(z) is the set of states reachable from some state in the
preceding Y -state through some enabled unobservable event
strings, and that Γ(z) is the control decision made in the
preceding Y -state.

Example 4.1: Consider again the system G in Figure 1.
As an example of a BTS, the reader is referred directly to
Figure 3(b), which is a particular type of BTS that we will
discuss later in this paper. For the initial Y -state y0 = {0},
by making control decision γ = {a, c, o1, o2} (the uncon-
trollable events o1 and o2 are omitted in the figure), we will
reach Z-state z = hTY Z(y0, γ) = ({0, 3, 4}, {a, c, o1, o2}).
From z, only one observable event, o1, can happen, and it
leads to the next Y -state y1 = hTZY (z, o1) = {5, 6}.

In general, the control decision defined at a Y -state
may not be unique. Therefore, given a BTS T , we define
CT (y) := {γ ∈ Γ : hTY Z(y, γ)!}, to be the set of control
decisions defined at y ∈ QTY . Since for any two BTS T1
and T2, hT1

Y Z(y, γ) = hT2

Y Z(y, γ) whenever they are defined,
we will drop the superscript in hTY Z(y, γ) and write it as
hY Z(y, γ) if it is defined for some T ; the same holds for
hZY .

Definition 4: ( [18]) Given a supervisor SP , ISYSP
(y, s) is

defined to be the Y -state that results from the occurrence of
string s, when starting in Y -state y. This can be computed

recursively as follows:

ISYSP
(y, ε) := y

ISYSP
(y, sσ) :=


hZY (hY Z(ISYSP

(y, s), SP (s)), σ),
if σ ∈ Eo ∩ SP (s)

ISYSP
(y, s), if σ ∈ Euo ∩ SP (s)

undefined, otherwise

For brevity, we write ISYSP
(y0, s) as ISYSP

(s).
Also, ISZSP

(z, s) is defined analogously, with ISZSP
(s) :=

ISZSP
(z0, s), where z0 = hY Z(y0, SP (ε)).

Now, given a BTS T , it is possible to “decode” supervisors
from it, as explained in the following definition.

Definition 5: A supervisor SP is said to be included in
the BTS T if

(∀s ∈ L(SP /G))[SP (s) ∈ CT (ISYSP
(s))] (7)

S(T ) denotes the set of all supervisors included in T .
By the above definition, if a BTS T includes some super-

visor, then it should satisfy the following two properties:
1) For any y ∈ QYT , we have CT (y) 6= ∅; and
2) For any z ∈ QZT , we have ∀e∈Γ(z)∩Eo : (∃x∈I(z) :

f(x, e)!)⇒ hTZY (z, e)!.
The first property simply says that for any Y -state, we
need to be able to pick at least one control decision. The
second property says that for any Z-state, we cannot block
any enabled and feasible observable event. This is because
we cannot choose which event will occur once we have
made a control decision; the system will decide. These two
properties together are also referred to as the completeness
property of the BTS.

Example 4.2: The BTS shown in Figure 3(b) is a com-
plete BTS. By picking control decision {o1, o2} (shown as {}
in the figure) at the initial Y -state {0}, no future behavior can
occur. This leads to a BTS-included supervisor SP defined
by SP (ε) = {o1, o2}.

Remark 4.1: If a BTS T is complete and for any Y -state
y ∈ QTY , we have that |CT (y)| = 1, then it is clear that the
set of supervisors included in T is a singleton, since for each
information state, the control decision is unique. In this case,
we denote the unique supervisor included in T as ST , i.e.,
S(T ) = {ST }.

The next result states that given a supervisor SP , the Z-
state defined above is, in fact, equivalent to the set of all
possible states the system can be in at that point.

Lemma 4.1: Given a system G and a supervisor SP , for
any string s ∈ L(SP /G), we have I(ISZSP

(s)) = RSP /G(s).

V. ALL INCLUSIVE CONTROLLER FOR OPACITY

In this section, we define the All Inclusive Controller for
Opacity, a specific type of BTS that embeds all supervisors
that enforce opacity in its transition structure.

To begin with, we define the “opacity binary function” that
evaluates the opacity property for each information state. An
information state i ∈ I violates current-state opacity if it is
a subset of the set of secret states XS .
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Definition 6: (Opacity binary function for information
state). The opacity binary function for information states is
the function OP : I → {0, 1} where:

OP (i) =

{
1, if i 6⊆ XS

0, if i ⊆ XS
(8)

Thus, OP (i) = 1 if i does not violate current-state opacity.
The following result says that the opacity binary function
can correctly evaluate the opacity of a system.

Lemma 5.1: A system G is current-state opaque if and
only if (∀s ∈ L(G))[OP (RG(s)) = 1].

Recall that in Lemma 4.1, we have shown that given a
supervisor SP , for any string s ∈ L(G), the Z-state ISZSP

(s)
encountered is set of all possible states the system could be
in after s. Consequently, if we construct a BTS that is “as
large as possible” and in which all reachable Z-states satisfy
the opacity binary function, the resulting structure should
contain all valid opacity-enforcing supervisors. This leads to
the definition of the All Inclusive Controller for Opacity.

Definition 7: (All Inclusive Controller for
Opacity). Given a system G and a set of secret
states XS ⊆ X , the All Inclusive Controller
for Opacity (AIC-O), denoted by AICO(G) =
(QAICY , QAICOZ , hAICOY Z , hAICOZY , E,Γ, yAICO0 ), is defined
as the largest BTS such that
1 For any y ∈ QAICOY , we have |CAICO(G)(y)| ≥ 1; and
2 For any z ∈ QAICOY , we have

2.1 ∀e ∈ Γ(z) ∩ Eo : (∃x ∈ I(z) : f(x, e)!) ⇒
hAICOZY (z, e)!;

2.2 OP (I(z)) = 1.
Note that if T1 and T2 are two BTSs that satisfy the above
conditions, then it is easy to see that the union of them will
still satisfy these conditions. Therefore, the notion of “largest
BTS” in the definition is well defined. This will also be seen
when we present the algorithm for the construction of the
AIC-O later.

Remark 5.1: In the definition of the AIC-O, opacity is
only evaluated at Z-states. This follows from the definition
of current-state opacity, Lemma 4.1, and 5.1. However, if the
intruder can act much faster than the system’s behavior, then
even though the system is opaque, the intruder may still be
able to know that the secret has occurred immediately after
observing some observable events. In this case, instead of
evaluating opacity on Z-states, we need to require that for
any y ∈ QAICOY , we have OP (y) = 1. This will lead to a
stronger notion of opacity than that we consider in this paper;
such an analysis is beyond our scope here, but it can be
performed in a straightforward manner using our approach.

Example 5.1: We return to system G in Figure 1. The
BTS shown in Figure 3(b) is, in fact, its AIC-O. For
example, at initial Y -state {0}, we cannot make con-
trol decision {a, b, c}, which would lead us to Z-state
({0, 1, 2, 3, 4}, {a, b, c}). This is because upon the occur-
rence of event o2, Y -state {5} would be reached, from which
no matter what control decision we take, the secret will be
revealed.

Remark 5.2: In Figure 3(b), we can also take control
decision {a} at the initial Y -state y0 = {0}. However, this
control decision is equivalent to decision {}, since event
a will never be executed within the unobservable reach.
Formally, we say that a control decision γ ∈ Γ is irredundant
at information state i ∈ I if, for any σ ∈ γ, there exists
x ∈ URγ(i) such that f(x, σ) is defined. From now on, we
only consider irredundant control decisions in the AIC-O,
which will clearly not affect its properties.

The following theorem shows that the AIC-O (only)
contains valid solutions to the opacity enforcement problem.

Theorem 1: A supervisor enforces opacity if and only if
it is an AIC-O included supervisor:

SP ∈ S(AICO(G))⇔ SP /G is opaque (9)

A. Construction of the AIC-O

Algorithm 1: FIND-AIC-O
input : G and OP
output: AICO

1 AICO.Y ← {y0}, AICO.Z ← ∅ and AICO.h← ∅;
2 DoDFS(G, y0, AICO);
3 Prune(AICO);
4 AICO ← Accessible(AICO);

procedure DoDFS(G, y,AICO,OP );
5 for γ ∈ Γ do
6 z ← hY Z(y, γ);
7 if OP (I(z)) = 1 then
8 AICO.h← AICO.h ∪ {(y, γ, z)};
9 if z 6∈ AICO.Z then

10 AICO.Z ← AICO.Z ∪ {z};
11 for e ∈ γ ∩ Eo do
12 y′ ← hZY (z, e);
13 AICO.h← AICO.h ∪ {(z, e, y′)};
14 if y′ 6∈ AICO.Y then
15 AICO.Y ← AICO.Y ∪ {y′};
16 DoDFS(G, y′, AICO,OP );

procedure Prune(AICO);
17 while exists Y -state in AICO that has no successor

do
18 Delete all such Y -states in AICO and delete all

their predecessor Z-states;

The construction algorithm for the AIC-O follows directly
from its definition and proceeds in two steps. First, we
construct the BTS that enumerates all possible behaviors by
a depth-first search and remove all Z-states that violate the
opacity binary function, i.e., condition 2.1 in Def. 7. Second,
we prune states that violate conditions 1 or 2.2 in Def. 7 from
the remaining part of the BTS, until convergence is achieved.
In practice, in the depth-first search part, we do not need to
search the whole state space and we can stop the search
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(a) The resulting structure after procedure DoDSF
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(b) The constructed AIC-O

Fig. 3. Example of the construction of the AIC-O. In the diagrams, blue rectangular states correspond to Y -states and yellow oval states correspond to
Z-states. For simplicity, in the diagrams, we omit all uncontrollable events in the control decisions, e.g., decision {} represents {o1, o2}, and so forth.

of a branch once a Z-state that violates the opacity binary
function is encountered.

The above procedure is formally described in Algorithm
FIND-AIC-O whose parameters are as follows: (i) AICO
represents the AIC-O that we want to construct; (ii) AICO.Y
and AICO.Z are its sets of Y and Z-states, respectively; and
(iii) AICO.h is its transition function. Initially, AICO.Y is
set to be y0 = X0. The depth-first search is then started; , it
is implemented by the procedure DoDFS. Line 7 is used to
determine whether the Z-state encountered satisfies opacity.
If not, we terminate the search of this branch. Otherwise, we
compute all possible Y -state successors and make a recursive
call. This recursive procedure allows us to traverse the whole
reachable space of Y and Z-states. The above procedure
may result in Y -states that have no successors. Therefore,
we need to iteratively prune: (i) all Y -states that have no
successor states; and (ii) all Z-states for which one or more
observation is not defined. This step is captured by procedure
Prune. Finally, states that are no longer accessible from the
initial state of the AIC-O need to be removed before the
algorithm returns. Algorithm FIND-AIC-O will terminate in
finite steps, since the number of Y and Z-states is finite.

Example 5.2: We apply Algorithm FIND-AIC-O to con-
struct the AIC-O for the system G shown in Figure 1. The
resulting BTS after running the procedure DoDSF is shown
in Figure 3(a). The depth-first search DoDSF terminates
at Y -state {5}, since no matter what control decision we
take from {5}, a Z-state (marked by red in Figure 3(a))
that reveals the secret will be encountered. After procedure
DoDSF is done, we need to run procedure Prune. This
starts by removing Y -state {5}, since no successor state is
defined from it. Since Y -state {5} has been removed, all its
predecessor Z-states, i.e., ({0, 3}, {c}), ({0, 1, 2}, {a, b}), et
al., should also be removed. Finally, we remove inaccessible
states {2, 5, 6} and {2} and obtain the AIC-O shown in
Figure 3(b).

Theorem 2: Algorithm FIND-AIC-O correctly constructs
the AIC-O.

VI. SYNTHESIS OF MAXIMALLY PERMISSIVE
SUPERVISORS

In this section, we present a synthesis algorithm that
returns a solution to MPOEP.

Theorem 1 provides us with a straightforward procedure
for synthesizing an opacity-enforcing supervisor. We can
simply start from the initial Y -state and pick one control
decision defined in the AIC-O; then we pick all observations
for the successor Z-state, and so forth, until reaching a Z-
state that has no successor state. However, this procedure
may result in a solution with infinite domain, since we may
take different control decisions for different times we visit
the same information state. Therefore, we wish to consider a
particular type of solution, called an information-state-based
(IS-based) solution, that can be realized with finite memory.
Formally, a supervisor SP is IS-based if

(∀s, t ∈ L(SP /G))[ISYSP
(s)=ISYSP

(t)⇒ SP (s)=SP (t)]

Clearly, if a supervisor is IS-based, then we can redefine it
in the form of SP : I → Γ.

Here, we present a synthesis algorithm, called Algorithm
MAX-SYNT, for constructing an IS-based supervisor S∗

that solves MPOEP. This algorithm starts from y0. For each
reachable Y -state y, it picks one control that is locally maxi-
mal and for each reachable Z-state, it picks all observations,
until: (i) a terminal Z-state is reached; or (ii) a Y -state that
has already been visited is reached. In other words, we pick a
locally maximal control decision and fix it for each Y -state.
This will result in a BTS T that includes a unique supervisor
ST , which is our solution.

The follow theorem establishes the correctness of Algo-
rithm MAX-SYNT.

Theorem 3: Let S∗ be a solution returned by Algorithm
MAX-SYNT. Then S∗ solves MPOEP.

By Theorem 1, we know that the AIC-O is non-empty if
MPOEP has a solution. Moreover, when the AIC-O is non-
empty, Algorithm MAX-SYNT always returns a solution to
MPOEP. Therefore, we have the following result.

Corollary 6.1: MPOEP is solvable if and only if the AIC-
O is non-empty.

Since supervisor S∗ is IS-based by its construction, we
also have the following result.
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Algorithm 2: MAX-SYNT
input : AICO(G)
output: S∗

1 T.Y ← {y0}, T.Z ← ∅ and T.h← ∅;
2 Expand(T,AICO(G), y0);
3 S∗ ← ST ;

procedure Expand(T,AICO(G), y);
4 Find a locally maximal control decision

γ ∈ CAICO(G)(y) such that
∀γ′ ∈ CAICO(G)(y) : γ 6⊂ γ′;

5 z ← hY Z(y, γ);
6 T.h← T.h ∪ {(y, γ, z)};
7 if z 6∈ T.Z then
8 T.Z ← T.Z ∪ {z};
9 for e ∈ γ ∩ Eo do

10 y′ ← hZY (z, e);
11 T.h← T.h ∪ {(z, e, y′)};
12 if y′ 6∈ T.Y then
13 T.Y ← T.Y ∪ {y′};
14 Expand(T,AICO(G), y′);

Corollary 6.2: If the AIC-O is non-empty, then there
always exists an IS-based supervisor that solves MPOEP.

Example 6.1: We return to our running example. If we
pick locally maximal control decision {a, c} at the initial Y -
state {y0} and pick the unique control decision ∅ at the reach-
able Y -state, which means disable all controllable events, we
will obtain the maximal solution that was shown earlier in
Figure 2(a). On the other hand, if we pick control decision
{b} at {0}, which is another locally maximal decision, then
no behavior can occur hereafter; this corresponds to the
maximal solution shown in Figure 2(b).

VII. CONCLUSION

We presented a novel approach to the problem of syn-
thesizing a maximally permissive supervisor that enforces
opacity for a partially-observed discrete-event system that
is not originally opaque. To this end, we defined a novel
information structure called the All inclusive Controller for
Opacity that embeds all valid supervisors to this problem.
Based on the AIC-O, a synthesis algorithm was provided
to find a locally maximal solution to this problem, without
making any assumptions about the observability properties of
the controllable events. In this regard, our approach relaxes
the assumption that all controllable events are observable in
the previous works on opacity enforcement by supervisory
control. In addition, we believe that the AIC-O can be used
for solving optimal opacity enforcement control problems
where a cost structure is imposed on this problem. Since
the AIC-O embeds all valid opacity enforcing supervisors,
it provides a suitable solution space over which to solve an
optimal control problem for opacity.

Among the many possible directions for future work that
would build on the AIC-O, we mention two problems of

immediate interest. One is relaxing the assumption made
in this paper that the supervisor and the intruder have the
same set of observable events. Another one is to consider
the synthesis of a maximal solution that provably contains a
given particular solution.
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