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Xiang Yin and Stéphane Lafortune

Abstract— We investigate the problem of dynamic sensor
activation for decentralized fault diagnosis in partially-observed
discrete-event systems, where the system is monitored by a set
of agents. The sensors of each agent can be turned on/off online
dynamically according to a sensor activation policy. The goal
is to find a language-based minimal sensor activation policy
for each agent such that the agents can still diagnose, as a
team, all fault occurrences. A novel approach to solve this
problem is proposed. We adopt a person-by-person approach
to decompose this decentralized minimization problem into
two centralized constrained minimization problems. Each cen-
tralized constrained minimization problem is then reduced to
a fully centralized sensor activation problem that is solved
effectively by an algorithm presented in a related contribution.
The solution obtained is provably person-by-person minimal
with respect to the system language.

I. INTRODUCTION

Fault diagnosis is an important task in complex automated
systems. In this paper, we investigate the problem of de-
centralized fault diagnosis in Discrete Event Systems (DES)
that operate under dynamic observations. In this context,
the system is monitored by a set of agents that act as a
team to diagnose all fault occurrences. Each agent makes
observations online through its sensors; these sensors can be
turned on/off online dynamically during the evolution of the
system according to a sensor activation policy that depends
on the agent’s observations. Due to energy, bandwidth, or
security constraints, sensors activations are “costly”. There-
fore, in order to reduce sensor-related costs, it is of interest
to minimize, in some technical sense, the sensor activations
of each agent while maintaining the desired property of
decentralized diagnosability.

The problem of sensor optimization in DES was initially
studied in [1], [2], [3]; the goal in these works was to find
an optimal set of observable events that is fixed for the
entire execution of the system and enforces a given DES-
theoretic property. This problem is referred to as optimal
sensor selection for static observations. In the context of
dynamic observations, where sensors can be turned on/off
dynamically, the corresponding problem of optimal sensor
activation has also received a lot of attention in the literature;
see, e.g., [4], [5], [6], [7], [8], [9], [10], [11]. For example,
in [4], [5] the problem of centralized dynamic sensor acti-
vation for enforcement of different diagnosability properties
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was solved optimally w.r.t. numerical cost criteria. In [6],
dynamic sensor activation for enforcement of centralized
diagnosability was also studied, but in the context of a logical
optimality criterion.

In many large scale systems, the information structure is
decentralized due to the distributed nature of the sensors.
In the decentralized diagnosis problem considered in [12],
the system is monitored by a set of local agents that work
as a team in order to diagnose every occurrence of fault
events. In [6], the problem of dynamic sensor activation for
decentralized diagnosis is studied. Specifically, a “window-
based partition” approach is proposed in order to obtain a
solution. However, a drawback of this approach is that the
solution obtained is only optimal w.r.t a finite (restricted)
solution space and may not be language-based optimal in
general. In other words, by enlarging the solution space
by refining the state space of the system model, better
solutions could be obtained in principle. In [7], the problem
of dynamic sensor activation for decentralized control is also
studied, where the solution obtained is again optimal w.r.t. a
finite solution space. To the best of our knowledge, the prob-
lem of language-based sensor optimization for decentralized
diagnosis has remained an open problem, as is mentioned in
the recent survey [13].

In this paper, we propose a new approach to tackle the
problem of dynamic sensor activation for the purpose of
decentralized diagnosis. Specifically, we adopt a person-by-
person approach (see, e.g., [14] and the references therein)
to decompose the decentralized minimization problem to two
consecutive centralized minimization problems. We consider
the case of two agents, Agents 1 and 2. We first minimize
the sensor activation policy for Agent 1 by keeping the
policy of Agent 2 fixed. Then, we fix Agent 1’s sensor
activation policy to the one obtained and solve the same
minimization problem but for Agent 2. Essentially, we solve
two centralized constrained minimization problems, since we
need to take the other agent’s information into account when
we minimize the decisions of an agent. Each centralized con-
strained minimization problem is then reduced to a problem
that is solved effectively by a new algorithm presented in
recent related work [15].

In general, a person-by-person approach in team decision
problems may not terminate in a finite number of steps,
since we may need to iterate between the two constrained
minimization problems. However, we show that for the
problem under consideration in this paper, such iterations
are not required due to a certain type of monotonicity that
arises. Moreover, we prove that the solution obtained by our
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procedure is minimal w.r.t. the system language (i.e., over
an infinite set in general), in contrast to the works reviewed
above where minimality was with respect to a finite solution
space. In the DES literature, the person-by-person approach
has also been applied to the decentralized control problem
[16] and to the decentralized communication problem [17],
[18], [19]. However, to the best of our knowledge, it has not
been applied so far to decentralized sensor activation.

Due to space constraints, all proofs have been omitted.

II. PRELIMINARIES

1) System Model: We consider a DES modeled as a
deterministic finite-state automaton (DFA) G = (Q,Σ, δ, q0),
where Q is the finite set of states, Σ is the finite set of events,
δ : Q × Σ → Q is the partial transition function and q0 is
the initial state. The function δ is extended to Q × Σ∗ in
the usual way (see, e.g., [20]). For any q ∈ Q, s ∈ Σ∗,
we write δ(q, s) as δ(s) if q = q0. The prefix-closure of
language L ⊆ Σ∗ is L = {s ∈ Σ∗ : ∃w ∈ Σ∗ s.t. sw ∈ L}.
We say that L is prefix-closed if L = L. The behavior
of the system G is described by the prefix-closed language
L(G) = {s ∈ Σ∗ : δ(q0, s)!}, where ! means is defined. We
say that language L is live if ∀s ∈ L,∃σ ∈ Σ : sσ ∈ L.
Hereafter, we assume that L(G) is live, which is a standard
assumption in diagnosability analysis.

2) Information Mapping: We consider a general dynamic
observations setting, where the observability properties of
events can be controlled by a sensor activation policy during
the evolution of the system. Let Σo ⊆ Σ be the set of events
that can become observable by activating some sensors. A
sensor activation policy is defined as a deterministic labeled
automaton Ω = (A,L), where A = (QA,Σo, δA, q0,A) is a
deterministic automaton and L : QA → 2Σo is a labeling
function that specifies the current set of “observable” events
within Σo. Specifically, for any s ∈ Σ∗o, L(δA(s)) denotes
the set of events that are monitored after observing s. While
an event is monitored, any occurrence of it will be observed
by the diagnoser. In other words, after string s, events in
Σo\L(δA(s)) are currently “unobervable” (i.e., their sensors
are turned off). Moreover, the pair (A,L) needs to satisfy the
constraint that ∀q ∈ QA,∀σ ∈ Σo : σ ∈ L(q) ⇔ δA(q, σ)!.
This condition says that the sensor activation policy can
only be updated (by updating the state of A) when a
monitored event occurs. In general, QA could be an infinite
set. However, we will show later that the optimal sensor
activation policies of interest in this paper can always be
constructed with finite state spaces.

We say that the observations are static if the set of
observable events is fixed a priori. We denote by ΩΣo

the corresponding sensor activation policy for the static
observation with the set of observable events Σo. Specifically,
ΩΣo = (A,L) is given by: 1) QA = {q0,A}; 2) ∀σ ∈ Σo :
δA(q0,A, σ) = q0,A; and 3) L(q0,A) = Σo. Given a sensor
activation policy Ω = (A,L), we define the corresponding
information mapping PΩ :L(G)→Σ∗o recursively as follows:

PΩ(ε) = ε, PΩ(sσ) =

{
PΩ(s)σ if σ ∈ L(δA(PΩ(s)))
PΩ(s) if σ 6∈ L(δA(PΩ(s)))
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(b) Augmented system G̃

Fig. 1. System Model.

For any language L ⊆ Σ∗, we define PΩ(L) = {t ∈ Σ∗o :
∃s∈L s.t. PΩ(s)= t}. For any two sensor activation policies
Ω=(A,L) and Ω′=(A′, L′), we write that Ω′ ⊆ Ω if

∀s ∈ L(G) : L′(δA′(PΩ′(s))) ⊆ L(δA(PΩ(s))) (1)

and write that Ω′ ⊂ Ω if

[Ω′⊆Ω]∧[∃s∈L(G) :L′(δA′(PΩ′(s)))⊂L(δA(PΩ(s)))] (2)

3) The Observer: Let G = (Q,Σ, δ, q0) be the system
automaton and Ω = (A,L), A = (QA,Σo, δA, q0,A) be a
sensor activation policy. The observer for G under Ω is
ObsΩ(G) = (X,Σo, f, x0), where X ⊆ 2Q×QA is the state
space and for any state x ∈ X , we write x = (I(x), A(x))
where I(x) ∈ 2Q and A(x) ∈ QA. The partial transition
function of the observer is denoted by f : X×Σo→X and
is defined as follows. For any x=(i, q), x′=(i′, q′)∈X and
σ∈Σo, f(x, σ)=x′ iff{

q′ = δA(q, σ)
i′ = URL(q′)(Nextσ(i))

(3)

where for any i ∈ 2Q, σ ∈ Σo and θ ∈ 2Σo ,

Nextσ(i) = {q1∈Q : ∃q2∈ i s.t. δ(q2, σ)=q1}
URθ(i) = {q1∈Q : ∃q2∈ i,∃s∈(Σ \ θ)∗ s.t. δ(q2, s)=q1}

Intuitively, Nextσ(i) is the set of states that can be reached
from some state in i immediately after observing σ and
URθ(i) is the set of states that can be reached unob-
servably from some state in i under the set of monitored
events θ. Finally, the initial state of ObsΩ(G) is x0 =
(URL(q0,A)({q0}), q0,A). For simplicity, we only consider
the reachable part of ObsΩ(G). By the above definition, we
have that L(ObsΩ(G)) = PΩ(L(G)).

We define the state estimator function (or simply “state
estimator”) under ω, EGω : L(G)→ 2Q, as follows upon the
occurrence of s ∈ L(G):

EGΩ (s) :={q ∈ Q :∃t∈L(G) s.t. PΩ(s)=PΩ(t)∧δ(q0, t)=q}

By a simple induction (see, e.g., [10]), we can show that,
for any s ∈ L(G), I(f(PΩ(s))) = EGΩ (s), i.e., the state
components of the observer state reached upon PΩ(s) is the
state estimator value after s.

Example 2.1: Consider the system G in Fig. 1(a). Let
Σo,1 = {o, a} and Σo,2 = {b} be two sets of observable
events. As shown in Fig. 2(a), Ω1 is a sensor activation policy
with the set of observable events Σo,1. The labeling function
is specified by the set of events associated with each state
in the figure. Initially, event o is monitored by Ω1. Once
o is observed, Ω1 changes to monitor event a. Finally, Ω1

1015



1 𝑏 

*𝑏+ 

2 3 
𝑜 𝑎 

1 
*𝑜+ *𝑎+ ∅ 

( 2,3,4,5,6,8 , 2) 

( 6,7,8 , 3) 

( 6,8 , 1) 

( 8 , 1) 

( 1,2,3,4,5,6,7 , 1) ( 1,3,5,6,8 , 1) 

𝑜 

𝑎 

𝑏 

𝑏 

(a) Ω1

1 𝑏 

*𝑏+ 

2 3 
𝑜 𝑎 

1 
*𝑜+ *𝑎+ ∅ 

( 2,4,7 , 2) 

( 7 , 1) 

𝑜 

𝑎 

𝑏 

𝑏 

( 5 , 1) 

( 6 , 3) 

( 1,2,3,4,6 , 1) ( 1,3,5,7 , 1) 

2 
𝑏 

1 
*𝑏+ ∅ 

(b) ObsΩ1
(G)

1 𝑏 

*𝑏+ 

2 3 
𝑜 𝑎 

1 
*𝑜+ *𝑎+ ∅ 

( 2,3,4,5,6,8 , 2) 

( 6,7,8 , 3) 

( 6,8 , 1) 

( 8 , 1) 

( 1,2,3,4,5,6,7 , 1) ( 1,3,5,6,8 , 1) 

𝑜 

𝑎 

𝑏 

𝑏 

(c) Ω2

1 𝑏 

*𝑏+ 

2 3 
𝑜 𝑎 

1 
*𝑜+ *𝑎+ ∅ 

( 2,4,7 , 2) 

( 7 , 1) 

𝑜 

𝑎 

𝑏 

𝑏 

( 5 , 1) 

( 6 , 3) 

( 1,2,3,4,6 , 1) ( 1,3,5,8 , 1) 

(d) ObsΩ2
(G)

Fig. 2. Examples of sensor activation policies and observers

turns all sensors off when a is observed. The corresponding
observer ObsΩ1

(G) is shown in Fig. 2(b). For example, for
the string oofa ∈ L(G), we have that PΩ1

(oofa) = oa and
I(f(oa)) = {6} = EGΩ (oofa). Similarly, Fig. 2(c) shows a
sensor activation policy Ω2 with the set of observable events
Σo,2. Clearly, Ω2 always monitors all events in Σo,2, i.e.,
Ω2 = ΩΣo,2

. Therefore, the observer ObsΩ2
(G) shown in

Fig. 2(d) is the standard observer (see, e.g, [20]) if we ignore
the second component of each state.

III. DECENTRALIZED FAULT DIAGNOSIS

A. Problem Formulation

In the decentralized fault diagnosis problem, the system is
monitored by a set of agents that work as a team in order
to diagnose all occurrence of fault events. We denote by I
the index set of the agents. In this paper, we consider the
case where two agents are involved, i.e., I = {1, 2}. For
each agent i ∈ {1, 2}, we denote by Ωi its sensor activation
policy and by Σo,i its set of observable events in Ωi. We
define the pair of sensor activation policies as Ω̄ = [Ω1,Ω2].
As defined in [7], [6], the inclusion Ω̄′ ⊆ Ω̄ means that
∀i ∈ {1, 2} : Ω′i ⊆ Ωi and the strict inclusion Ω̄′ ⊂ Ω̄ means
that [Ω̄′ ⊆ Ω̄] ∧ [∃i ∈ {1, 2} : Ω′i ⊂ Ωi].

For the sake of a simpler presentation, we assume hereafter
that there is a single fault event (or class), as in the prior
literature on sensor activation for enforcement of diagnos-
ability. The optimization methodology developed in this
paper depends on testing the property of K-diagnosability;
in the case of multiple fault events, K-diagnosability holds
if it holds for each fault event (or class) individually. Let
ed ∈ Σ \ (∪i=1,2Σo,i) be the fault event that we want to
diagnose. We denote by Ψ(ed) = {sed ∈ L(G) : s ∈
Σ∗} the set of strings that end with ed. We write that
ed ∈ s if {s} ∩ Ψ(ed) 6= ∅. We recall the definition of
K-codiagnosability under dynamic observations from [8],
[9], which requires that all occurrences of ed be detected
unambiguously within K-steps after each occurrence.

Definition 1: (K-Codiagnosability). Let K ∈N. We say
that live language L(G) is K-codiagnosable w.r.t. Ω̄ and ed
if

(∀s ∈ Ψ(ed))(∀t ∈ L(G)/s)[|t| ≥ K ⇒ CD]

where the codiagnosability condition CD is

(∃i ∈ {1, 2})(∀w ∈ L(G))[PΩi(w)=PΩi(st)⇒ ed ∈ w].
We are now ready to formulate the problem of minimal

sensor activation for decentralized diagnosis.
Problem 1: Let G be the system with fault event ed. For

each agent i ∈ {1, 2}, let Σo,i ⊆ Σ be the set of observable
events. Find sensor activation policies Ω̄∗ = [Ω∗1,Ω

∗
2] s.t.:

C1. L(G) is K-codiagnosable w.r.t. Ω̄∗ and ed.
C2. Ω̄∗ is minimal, i.e., there does not exist another Ω̄′ ⊂ Ω̄∗

that satisfies (C1).
To guarantee that Problem 1 has a solution, we assume that
L(G) is K-codiagnosable w.r.t. [ΩΣo,1,ΩΣo,2 ] and ed, i.e., the
fault can be diagnosed when all sensors are continuously on.

Remark 3.1: In [6], a “sub-optimal” solution to Problem
1 is provided, in the sense that the solution found therein is
minimal among all solutions over a given finite partition of
the language L(G). In principle, the solution found in [6]
could be improved by employing a finer partition of L(G)
and repeating the optimization procedure. In this paper, we
are aiming for a language-based minimal solution, in the
sense that the notion of strict inclusion of sensor activation
policies is defined in terms of the strings in L(G). In other
words, we do not impose, a priori, any constraints on the state
space of each Ωi. Hence, no better solution can be obtained
by refining the state space of G and repeating the solution
procedure. To the best of our knowledge, such a language-
based optimal solution to Problem 1 has never been reported
in the literature. We will see that there always exists an Ω̄∗

solving Problem 1 where each Ω∗i has a finite realization.

B. Augmented Automaton

To simplify the ensuing analysis, we provide a state-based
characterization of K-codiagnosability. First, we define the
K-augmented automaton G̃ = (Q̃,Σ, δ̃, q̃0), where Q̃ = Q×
{−1, 0, 1 . . . ,K}, q̃0 = (q0,−1) and the partial transition
function δ̃ : Q̃ × Σ → Q̃ is defined by: for any (q, n) ∈ Q̃
and σ ∈ Σ, we have

δ̃((q, n), σ) =


(δ(q, σ),−1), if n = −1 and σ 6= ed

(δ(q, σ), n+ 1), if
[0 ≤ n < K] or

[n = −1 ∧ σ = ed]
(δ(q, σ),K), if n = K

(4)
Intuitively, G̃ simply unfolds G by “counting” the number
of steps since the fault has occurred. Since L(G̃) = L(G),
hereafter, we will analyze diagosability based on G̃ rather
than on G. For any q ∈ Q̃, [q]Q and [q]n denote its
state component and its integer component, respectively. For
example, if we take K = 1, then the K-augmented G̃ for G
in Fig. 1(a) is shown in Fig. 1(b).

We define an information state to be a subset of states and
denote by I := 2Q̃ the set of information states. We define
the diagnosability function for information state DI : I →
{N,C1, C2, F} as follows. For any x ∈ I , the value DI(x)
is given by:

DI(x) =


N, if ∀q ∈ x : [q]n=−1
F, if ∀q ∈ x : [q]n≥0
C1, if ∃q, q′ ∈ x : [q]n=−1 ∧ 0 ≤ [q′]n<K
C2, if ∃q, q′ ∈ x : [q]n=−1 ∧ [q′]n=K

(5)
Then condition CD in Definition 1 can be reformulated in
terms of information state by

CD ⇔ (∃i ∈ {1, 2})[DI(EG̃Ωi
(st)) = F ] (6)
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C. Solution Overview

Before we formally tackle Problem 1, let us first provide
a brief overview of our solution approach. We adopt the
person-by-person approach that has been widely used in
decentralized optimization problems. Specifically, we de-
compose the decentralized minimization problem to a set of
centralized constrained minimization problems and for each
such problem, we only attempt to minimize one agent’s sen-
sor activation policy while the other one is fixed. However,
the following questions arise. First, by taking the person-by-
person approach, iterations involving minimization for each
agent may be required in general, and such iterations may
not terminate in a finite number of steps. We will show that
in our particular problem such iterations are not required.
This is due of the so-called monotonicity property defined in
[7], [6] that arises in dynamic sensor activation problems.
The second question of interest is how to minimize the
sensor activation policy of one agent when the policy of
the other agent is fixed. This problem is different from the
fully centralized minimization problem, since we should not
only consider the information of the agent whose sensor
activation policy we are minimizing, but we must also take
into account the information available to the other agent,
whose sensor activation policy is fixed. Therefore, the true
information state for this minimization problem is of the
form (i, ı), i ∈ 2Q, ı ∈ 22Q

, where i is the knowledge of
the agent whose sensor activation policy is being minimized
and ı is this agent’s inference of the other agent’s potential
knowledge of the system based on that agent’s own informa-
tion. To resolve this information dependency, we employ the
notion of generalized state-partition automaton, by which we
encode the second agent’s knowledge into the system model.
This is discussed next.

IV. GENERALIZED STATE-PARTITION AUTOMATON

Definition 2: (State-Partition Automaton). Let G be an
automaton, Ω a sensor activation policy and ObsΩ(G) =
(X,Σo, f, x0) the corresponding observer. We say that G is
a state-partition automaton (SPA) w.r.t. Ω, if

∀x, y ∈ X : I(x) = I(y) or I(x) ∩ I(y) = ∅ (7)
The notion of SPA was studied in [21], [22] for static

observations. Clearly, if the observation map is static, i.e.,
there is only one state in the labeled automaton of the sensor
activation policy, then the above definition reduces to the
standard notion of SPA, where it is required that the states
of the observer automaton are pairwise disjoint. Similarly, in
our general definition, it is required that for any two observer
states, their information state components should be disjoint.

Suppose that G is an SPA w.r.t. Ω and ObsΩ(G) =
(X,Σo, f, x0) is the observer. Then for any state q ∈ Q,
there exists a unique information state F(q) ∈ 2Q such that

1) q ∈ F(q); and
2) ∃qA ∈ QA : (F(q), qA) ∈ X .

We call this information state F(q) the inference of state q.
This defines the inference function F : Q→ 2Q w.r.t. Ω such
that ∀s ∈ L(G) : [δ(q0, s)=q]⇒ [F(q)=I(f(PΩ(s)))].

Example 4.1: Consider again the system G in Fig. 1(a)
and the sensor activation policy Ω2 in Fig. 2(d). By looking at
the states in ObsΩ2

(G), we know that G is an SPA w.r.t. Ω2.
For example, for state 4, we know that F(4) = {1, 2, 3, 4, 6},
i.e., (∀s ∈ L(G))[δ(s) = 4 ⇒ EGΩ1

(s) = {1, 2, 3, 4, 6}].
However, G is not an SPA w.r.t. Ω1 in Fig. 2(b), since state 7
exists in the state components of two different observer states
in ObsΩ1(G). For example, we have δ(fbb) = δ(fbbo) = 7,
EGΩ1

(fbb) = {1, 3, 5, 7} but EGΩ1
(fbb) = {2, 4, 7}.

The inference function F is well defined only when G
is an SPA. However, we show that for any automaton G
and sensor activation policy Ω, we can always refine the
state space of G such that the refined automaton is an SPA
w.r.t. Ω. To see this, we first define the notion of extended
observer. Let ObsΩ(G) = (X,Σo, f, x0) be the observer.
Then the extended observer of G w.r.t. Ω is Obs+

Ω(G) =
(X,Σo, f

+, x0), where f+ : X×Σo → X is a total function
such that

f+(x, σ) =

{
f(x, σ) if f(x, σ) is defined
x if f(x, σ) is not defined (8)

The extended observer simply adds unobservable self-loops
at each state in the observer such that its transition function
is total. Clearly, we have that L(Obs+

Ω(G)) = Σ∗o. We use
the notation A‖B to denote the usual parallel composition
operation of automata A and B.

We are now ready to show how to refine the system model
such that the state-partition property holds.

Proposition 4.1: Let G = (Q,Σ, δ, q0) be the system
automaton, Ω = (A,L), A = (QA,Σo, δA, q0,A) a sensor
activation policy and Obs+

Ω(G) = (X,Σo, f
+, x0) the cor-

responding extended observer. Then Obs+
Ω(G)‖G is an SPA

w.r.t. Ω such that L(Obs+
Ω(G)‖G) = L(G).

Based on the above result, since we can always construct
an SPA that is language equivalent to the original automaton,
in the remainder of the paper, we will assume, without loss
of generality, that an automaton is an SPA when such a
property is needed. For instance, in Example 4.1, if we build
Obs+

Ω1
(G)‖G, then state 7 is split into two states and the

refined system is an SPA.

V. CONSTRAINED MINIMIZATION PROBLEM

In this section, we tackle problem of minimizing the
sensor activation policy for one agent when the sensor
activation policy of the other one is fixed. This problem is
also referred to as the centralized constrained minimization
problem herafter. Throughout this section, i ∈ {1, 2} denotes
the agent whose sensor activation policy is being minimized
while j ∈ {1, 2}, j 6= i denotes the other agent whose sensor
activation policy is fixed.

A. Constrained Minimization Problem

Problem 2: (Centralized Constrained Minimization Prob-
lem). Let i, j ∈ {1, 2}, i 6= j be two agents. Suppose that
the sensor activation policy Ωj for Agent j is fixed. Find a
sensor activation policy Ωi for Agent i such that:
C1. L(G̃) is K-codiagnosable w.r.t. [Ω1,Ω2] and

1017



C2. For any Ω′i satisfying (C1), we have Ω′i 6⊂ Ωi.
The above problem is different from both the centralized

and decentralized minimization problems. In the centralized
minimization problem, where only one agent is involved, to
maintain K-diagnosability, we need to require that

∀s ∈ L(G̃) : DI(EG̃Ω (s)) 6= C2 (9)

In other words, the agent should always be able to distinguish
states labeled by −1 and states labeled by K. However, in
the decentralized diagnosis problem, it is possible that there
exists a string s ∈ L(G̃), ed ∈ s such that DI(EG̃Ωi

(s)) =

C2, but DI(EG̃Ωj
(s)) = F . In other words, to solve the

constrained minimization problem for one agent, we must
take the other agent’s sensor activation policy into account.
This issue is handled by the SPA and its inference function,
as described next.

B. Formulation of Information-State-Based Property

First, we recall a general class of fully centralized sensor
activation problems that is studied in [15].

Problem 3: (Centralized Sensor Minimization Problem
for IS-Based Property). Let G = (Q,Σ, δ, q0) be the system
and φ : 2Q → {0, 1} be a function on information states.
Find a sensor activation policy Ω such that
C1. ∀s ∈ L(G) : φ(EGΩ (s)) = 1; and
C2. For any Ω′ satisfying (C1), we have Ω′ 6⊂ Ω.

Problem 3 is a fully centralized sensor activation problem,
since only one agent is involved. This problem is studied
in more detail in [15], where an algorithm is provided that
solves this problem effectively by returning a finite sensor
activation policy satisfying the requirements. Therefore, if
we can reduce Problem 2 to Problem 3, then it means that
Problem 2 can also be solved effectively and the solution will
be finitely realizable. We now show that such a reduction is
possible by using the notion of SPA.

Suppose that G̃ = (Q̃,Σ, δ̃, q̃0) is an SPA w.r.t. Ωj and
Fj : Q̃→ 2Q̃ is the corresponding inference function w.r.t.
Ωj . We define the codiagnosability function CDi : 2Q̃ →
{0, 1} for Agent i as follows. For any x ∈ 2Q̃, the value
CDi(x) is assigned as follows:

CDi(x)=

 0, if
DI(x)=C2 and

(∃q∈x) [[q]n = K ∧DI(Fj(q)) 6=F ]
1, otherwise

(10)
Let s ∈ L(G̃), ed ∈ s be a faulty string and let q = EG̃Ωi

(s)

be Agent i’s state estimator value for s. Since G̃ is an
SPA w.r.t. Ωj , we know that Fj(q) = I(f(PΩj

(s))) =

EG̃Ωj
(s). In other words, Fj(q) is Agent j’s state estimator

value for s. Therefore, if CDi(EG̃Ωi
(s)) = 0, then it implies

that DI(EG̃Ωk
(s)) = C2,∀k ∈ {1, 2}, which violates the

K-codiagnosability property. This observation leads to the
following theorem.

Theorem 1: Suppose that G̃ is an SPA w.r.t. Ωj . Then,
L(G̃) is K-codiagnosable w.r.t. [Ω1,Ω2] and ed iff

∀s ∈ L(G̃) : CDi(EG̃Ωi
(s)) = 1 (11)

Algorithm 1: D-MIN-ACT
input : G̃,Σo,1 and Σo,2
output: Ω̄∗

1 Ω∗1 ← ΩΣo,1
and Ω∗2 ← ΩΣo,2

2 for i ∈ {1, 2} do
3 j ∈ {1, 2} \ {i}
4 if G̃ is not an SPA w.r.t. Ωj then
5 Reconstruct G̃ such that it is an SPA w.r.t.

Ωj according to Propostion 4.1.

6 Fix Ω∗j . Obtain minimal Ω′i by solving
Problem 2.

7 Ω∗i ← Ω′i.

8 Ω̄∗ ← [Ω∗1,Ω
∗
2]

In the above development, we assumed that G̃ is an SPA
w.r.t. Ωj . (Recall that this assumption always holds subject to
a pre-processing procedure.) The essence of this assumption
(or of the pre-processing procedure) is that we can encode
Agent j’s information, i.e., Ωj , into the system model in
order to reduce the constrained minimization problem for
Agent i to a fully centralized minimization problem. Finally,
using Theorem 1, we have the following result.

Theorem 2: Problem 2 can be effectively solved.
Since the main purpose of this paper is to show how to

solve the decentralized minimization problem, the reader is
referred to [15] for more details about the solution approach
to Problem 3.

Example 5.1: We return to system G̃ in Fig. 1(b), i.e., the
K-augmented system for G in Fig. 1(a) by taking K = 1.
For the sake of brevity, we write state (q, n) in G̃ in the
form of qn. We want to solve the centralized minimization
problem for Agent 1 subject to the constraint that Agent
2’s sensor activation policy is fixed as Ω2 in Fig. 2(c). By
building the observer, we know that G̃ is an SPA w.r.t. Ω2

and the inference function F2 : Q̃→ 2Q̃ is defined by

F2(q)=

 {1
−1, 2−1, 30, 40, 61}, if q∈{1−1, 2−1, 30, 40, 61}

{51}, if q∈{51}
{71}, if q∈{71}

Let CD1 : 2Q̃→{0, 1} be the codiagnosability function for
Agent 1 defined by Equation (11). By applying the algorithm
in [15], we obtain the sensor activation policy Ω1 in Fig. 2(a).

VI. SYNTHESIS ALGORITHM

We first present an algorithm that solves the decentralized
sensor activation problem by using the results we developed
so far. Then we prove the correctness of the algorithm.

Our synthesis algorithm is formally presented in Algorith-
m D-MIN-ACT. Essentially, Algorithm D-MIN-ACT solves
two centralized constrained minimization problems. First, we
set Agent 2’s sensor activation policy to be ΩΣ2

, i.e., the most
conservative one, and solve the constrained minimization
problem for Agent 1. Then we fix the obtained sensor
activation policy for Agent 1 and solve the constrained
minimization problem for Agent 2. However, the following
question arises: After the above procedure, do we need to
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Fig. 3. Decentralized minimal solutions

fix Agent 2’s new sensor activation policy and go back to
minimize Agent 1’s sensor activation policy again? In other
words, we need to answer whether or not iterations between
two centralized constrained minimization problems are re-
quired in order to obtain a decentralized minimal solution.
Hereafter, we show that such iterations are not necessary
for our problem and Algorithm D-MIN-ACT indeed yields a
decentralized minimal solution in the above two steps. This
is because of the monotonicity property in dynamic sensor
activation problem from [6].

Theorem 3: (Monotonicity Property [6]). Let G be the
system, ed ∈ Σ be the fault event and Ω̄ and Ω̄′ be two
sensor activation policies such that Ω̄′ ⊆ Ω̄. Then L(G)
K-codiagnosable w.r.t. Ω̄′ and ed implies that L(G) is K-
codiagnosable w.r.t. Ω̄ and ed .

The following theorem reveals the correctness of Algo-
rithm D-MIN-ACT.

Theorem 4: Let Ω̄∗ be the output of Algorithm D-MIN-
ACT. Then Ω̄∗ solves Problem 1.

We illustrate Algorithm D-MIN-ACT by an example.
Example 6.1: Again, consider the system G in Fig. 1(a).

Let Σo,1 = {o, a} and Σo,2 = {b}, respectively, be the set
of observable events for Agent 1 and Agent 2. Take K = 1.
Then the K-augmented automaton is G̃ in Fig. 1(b). Initially,
we set Ω2 = ΩΣo,2

and solve the constrained minimization
problem for Agent 1. This is what we have shown in
Example 5.1 where we obtained Ω∗1 shown in Fig. 3(a). Next,
we fix Ω∗1 for Agent 1 and solve the constrained minimization
problem for Agent 2. Then we obtain the sensor activation
policy Ω∗2 as shown in Fig. 3(b). Clearly, we see that Ω∗2
turns all sensors off after b is observed, since once b occurs,
Agent 2 will know for sure that the fault has occurred and
there is no need to monitor any event. Therefore, [Ω∗1,Ω

∗
2]

is a minimal pair of sensor activation policies that ensure
1-codiagnosability.

VII. CONCLUSION

We presented a novel approach for solving the problem
of decentralized sensor activation for the purpose of fault
diagnosis. We adopted a person-by-person approach to de-
compose the decentralized minimization problem to two con-
secutive centralized constrained minimization problems. The
notion of generalized state-partition automaton for dynamic
observations was proposed. With this notion, each centralized
constrained minimization problem was reduced to a fully
centralized sensor activation that is solved effectively by
a new algorithm presented in recent related work. Finally,
we showed that the decentralized solution obtained by our
methodology is language-based minimal.

It was shown in [8], [23], [11] that K-codiagnosability and
coobservability, the key property in the decentralized control
problem, can be mapped to one another. Therefore, even

though we focused on the problem of decentralized sensor
activation for the purpose of diagnosis in this paper, the
approach that we proposed is also applicable to the problem
of decentralized sensor activation for the purpose of control.
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[22] G. Jirásková and T. Masopust, “On properties and state complexity
of deterministic state-partition automata,” in Theoretical Computer
Science. Springer, 2012, pp. 164–178.

[23] X. Yin and S. Lafortune, “On the relationship between codiagnos-
ability and coobservability under dynamic observations,” in American
Control Conference, 2015, pp. 390–395.

1019


