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Abstract— We study the problem of dynamic sensor activa-
tion for centralized partially-observed discrete event systems.
The sensors can be turned on/off online dynamically according
to a sensor activation policy in order to satisfy some observation
property. In this paper, we consider a general class of properties,
called Information-State-based (or IS-based) properties, which
include, but are not limited to, observability, K-diagnosability,
predictability, and opacity. We define a new Most Permissive
Observer (MPO) that generalizes previous versions of this
structure. The MPO that we define embeds all sensor activation
policies for an IS-based property. An optimal sensor activation
policy can then be synthesized based on the MPO. Our results
generalize the previous works on dynamic sensor activation for
enforcing the properties of observability, K-diagnosability, and
opacity. Moreover, our MPO is applicable to solving dynamic
sensor activation problems for a wide class of user-defined
properties that can be formulated as IS-based properties. As
a special case, we show that the problem of minimal sensor
activation for enforcing predictability, which has not been
considered in the literature, is solvable by our new approach.

I. INTRODUCTION

The problem under consideration in this paper is that
of dynamic sensor activation in partially-observed Discrete
Event Systems (DES). The objective in this problem is to
synthesize a sensor activation policy that dynamically turns
sensors on/off online in order to achieve a given objective,
e.g., to control the system or to diagnose faults.

Dynamic sensor activation has been studied extensively
in the DES literature; see, e.g., [1]–[10] for a sample of
this work and the recent survey paper [11] for an extensive
bibliography. In [1], [2], the problem of dynamic sensor
activation for the purpose of fault diagnosis was studied; the
optimal synthesis problems considered therein were solved
according to numerical cost criteria. In [4], [5], both cen-
tralized and decentralized sensor activation problems for the
purposes of control and diagnosis, respectively, were studied.
The features of these works are: (i) the properties of interest
to be enforced are (co)observability or (co)diagnosability; (ii)
the optimality criterion is logical; and (iii) the solutions are
only sub-optimal in the sense that by enlarging the solution
space, better solutions could be obtained in principle.

In [2], a structure called the Most Permissive Observer
(MPO) was proposed for solving the problem of dynamic
sensor activation for the purpose of fault diagnosis. Roughly
speaking, the MPO is a finite structure that embeds all valid
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sensor activation policies, i.e., all policies that enforce the
property of K-diagnosability. Therefore, the MPO can serve
as a basis for finding one optimal solution w.r.t. some cost
criterion. This approach was extended to timed systems in
[12] and to the problem of opacity in [6]. Recently, an
information-state-based characterization of the MPO struc-
ture was proposed in [10]; this work showed that the size
complexity of the MPO could be reduced, as compared with
the original MPO from [2], by appropriately defining the
notion of information state in the context of enforcement of
K-diagnosability.

In this paper, we use the MPO approach to investigate the
sensor activation problem for centralized partially-observed
DES. However, instead of investigating the enforcement of
a particular property, e.g., observability, diagnosability, or
opacity, as was done in previous works, we study a general
class of properties called Information-State-based (IS-based)
properties, that captures all properties previously considered,
and more. Specifically, as will be demonstrated in the paper,
our contributions are as follows.
(1) We formulate the problem of dynamic sensor activation
for any property that can be expressed as an IS-based
property. We show that this problem formulation is more
general than both the state disambiguation problem and the
opacity problem that have been studied previously in the
literature. To solve this problem, we define a generalized
version of the most permissive observer, which embeds all
valid solutions to the enforcement of an IS-based property
in its finite structure. Based on the MPO, we present an
algorithm for the synthesis of optimal sensor activation
policies under a logical performance objective.
(2) Compared with prior works where the MPO was
employed [2], [6], [10], our contributions are twofold. First,
we define the MPO directly from the new notion of bipartite
dynamic observer without using the recursive definition used
in [10]. Second, the MPO defined in this paper is more gen-
eral since we consider a general class of properties and we
show that the most permissive observer for K-diagnosability
studied by [2], [10] and the most permissive dynamic mask
for opacity studied by [6] are essentially special cases of
the generalized MPO. Moreover, the problem of optimal
sensor activation for predictability, which to the best of our
knowledge has not been considered in the literature, can
also be solved by our approach. Similarly, our approach
can be employed to solve sensor activation problems for the
enforcement of a wide class of user-defined properties that
can be expressed as IS-based properties; see, e.g., [13].
(3) Compared with other solution approaches for dynamic
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sensor activation problems, our methodology has the follow-
ing features. First, the optimal solution that we obtain is
language-based. Recall that the solutions obtained by [4],
[5] are optimal only w.r.t. finite (restricted) solution spaces,
based on the state space of the system model. Moreover, the
generalized MPO that we define embeds all solutions in its
single finite structure. Therefore, it can serve as a basis for
optimization w.r.t. a numerical cost criterion, which cannot
be done by the online approaches described in [3], [8].

Due to space constraints, all proofs have been omitted.

II. PRELIMINARY AND PROBLEM FORMULATION

A. System Model

The system under consideration is modeled by a determin-
istic finite state automaton G = (Q,Σ, δ, q0), where Q is the
finite set of states, Σ is the finite set of events, δ : Q×Σ→ Q
is the partial transition function and q0 is the initial state.
The transition function δ is extended to Q×Σ∗ in the usual
manner (see, e.g., [14]). The language generated by G from
state q is defined by L(G, q) = {s ∈ Σ∗ : δ(q, s)!}, where !
means “is defined”. We write L(G, q) as L(G) if q = q0. We
denote by L the prefix-closure of a language L. We denote
by L/s the post-language of L after s. We say a language
L is live if ∀s ∈ L,∃σ ∈ Σ : sσ ∈ L.

In dynamic sensor activation problems, the sensors are
turned on/off dynamically based on the observation history.
When the sensor corresponding to an event σ ∈ Σ is turned
“on”, we say that the event is being monitored. While an
event is monitored, any occurrence of it will be observed
by the supervisor, diagnoser, predictor, or external observer,
according to the problem under consideration (e.g., control,
diagnosis, prediction, or opacification). At any point in the
execution of the system, the set of events θ ∈ 2Σ that we
decide to monitor, is called a sensing decision.

We assume that Σ is partitioned into three disjoint sets,
Σ = Σo∪̇Σs∪̇Σuo, where: (i) Σo is the set of events whose
occurrences are always observed (ii) Σs is the set of events
that we can choose to monitor or not and (iii) Σuo is the set
of events that are always unobservable We say that a sensing
decision θ ∈ 2Σ is admissible if Σo ⊆ θ ⊆ Σo ∪ Σs and we
let Θ denote the set of all admissible sensing decisions.

Under dynamic sensing decisions, the observations of the
system behavior are specified by an information mapping
ω : L(G) → Θ, where for any s ∈ L(G), ω(s) is the
set of events that are monitored after the occurrence of s.
Given an information mapping ω, we define the projection
Pω : L(G) → Σ∗ in the usual manner (see, e.g., [14]). We
also define the state estimator function (or simply “state
estimator”) EGω : L(G) → 2Q by: for any s ∈ L(G),
EGω (s) :={q∈Q :∃t∈L(G) s.t. Pω(s)=Pω(t)∧ δ(q0, t)=q}.

For the purpose of implementation, we require that the
information mapping ω satisfy ∀s, t ∈ L(G) : Pω(s) =
Pω(t) ⇒ ω(s) = ω(t). This condition is referred to as the
feasibility condition in [4], [5]. We say that ω is a sensor
activation policy if it is feasible and for any s ∈ L(G), ω(s)
is admissible, i.e., ω(s) ∈ Θ. We use notation Ω to denote
the set of all sensor activation policies. Given two sensor
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Fig. 1. System G with Σo = {o}, Σs = {σ1, σ2}, and Σuo = {e, f}

activation policies ω, ω′ ∈ Ω, we say that ω is smaller than
ω′, denoted by ω < ω′, if 1) ∀s ∈ L(G) : ω(s) ⊆ ω′(s); and
2) ∃s ∈ L(G) : ω(s) ⊂ ω′(s).

B. Problem Formulation

As was explained in the introduction, in a given problem
domain (control, diagnosis, and so forth), the sensor activa-
tion policy must satisfy some problem-dependent property
(observability, diagnosability, and so forth). For the sake
of generality, we define a property ϕ as a function ϕ :
Ω → {0, 1} and for any sensor activation policy ω ∈ Ω,
we write ϕ(ω) = 1 to mean that ω satisfies property
ϕ. The properties of interest are typically defined in a
language-based manner. Hereafter, we consider a special
class of properties called information-state-based (IS-based)
properties. These are properties whose verification can be
performed over information states of the system state space.

We define an information state to be a subset of states
in Q and denote by I = 2Q the set of information states.
Roughly speaking, an IS-based property is a property that
only depends on the current knowledge of the system, as
provided by the state estimator function EGω under a given
sensor activation policy ω. In particular, the property should
not depend on information about the future behavior of the
system. We will show later that most of the important prop-
erties in the DES literature can be formulated as IS-based
properties, possibly after suitable state space refinements of
the original model G. First, we present the formal definition
of the IS-based property.

Definition 1: (IS-based Property). Let G = (Q,Σ, δ, q0)
be the system automaton and ω : L(G) → Θ be a sensor
activation policy. An IS-based property w.r.t. G is a function
ϕ : 2Q → {0, 1}. We say that ω satisfies ϕ w.r.t. G, denoted
by ω |=G ϕ, if ∀s ∈ L(G) : ϕ(EGω (s)) = 1.

Example 1: Consider the system G in Fig. 1. Let ϕ :
2Q → {0, 1} be an IS-based property defined as follows:

∀i ∈ 2Q : [ϕ(i) = 1]⇔ [6 ∃q ∈ {1, 4, 5, 6} : {3, q} ⊆ i] (1)

This IS-based property ϕ requires that we should never
confuse state 3 with any state in {1, 4, 5, 6}.

Let us consider the information mapping ω defined by
∀s ∈ L(G) : ω(s) = {o}. By taking eo ∈ L(G), we know
that EGω (eo) = {3, 6}. Therefore, ω 6|=G ϕ.

As was mentioned earlier, the objective of this paper is to
synthesize a sensor activation policy such that some given
property provably holds. Since turning sensors on/off can be
costly, we define the Minimal Sensor Activation Problem for
IS-Based Properties as follows.

Problem 1: (Minimal Sensor Activation Problem for IS-
Based Properties). Let G = (Q,Σ, δ, q0) be the system
automaton and ϕ : 2Q → {0, 1} be an IS-based property
w.r.t. G. Find a sensor activation policy ω∈Ω such that:
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(i) ω |=G ϕ;
(ii) 6 ∃ω′ ∈ Ω such that ω′ |=G ϕ and ω′ < ω.

In some contexts, we may be interested in the dual version of
the Minimal Sensor Activation Problem, the Maximal Sensor
Activation Problem for IS-Based Properties. Its definition is
analogous, with “<” replaced by ”>” in condition (ii).

Remark 1: In [15], the state disambiguation problem is
defined. Formally, Tspec ⊆ Q × Q is the set of state pairs
that need to be distinguished and the goal is to find a minimal
ω ∈ Ω such that (∀s ∈ L(G))(∀q1, q2 ∈ EGω (s))[(q1, q2) /∈
Tspec]. Clearly, this problem is a special case of the minimal
sensor activation problem for IS-based properties, since given
Tspec, we can always define an IS-based property ϕspec :
2Q → {0, 1} by: ∀i ∈ 2Q : [ϕspec(i) = 0] ⇔ [∃q1, q2 ∈ i :
(q1, q2) ∈ Tspec]. Therefore, the problem we consider here
is more general than the state disambiguation problem.

Remark 2: In many cases, the system is not only moni-
tored by its internal controller, but it may also be monitored
by an external observer that is potentially malicious. There-
fore, instead of disambiguating states, the objective is to
confuse the external observer so that it may not infer a given
secret about the system. In such a scenario, the “disablement”
of sensors can be costly, since we need to spend some
additional effort, e.g., adding a dynamic mask, to hide the
occurrences of the corresponding events. In this regard, the
optimal dynamic mask synthesis problem investigated in the
literature (see, e.g., [6]) is essentially the maximal sensor
activation problem defined above.

III. A GENERAL MOST PERMISSIVE OBSERVER

A. Information State Dynamics
A sensor activation policy ω works dynamically as fol-

lows. Initially, a sensing decision θ0 is issued. Then, upon
the occurrence of (monitored) event σ1 ∈ θ0, a new decision
θ1 is made and so forth. We call such a sequence in the form
of θ0σ1θ1σ2 . . . , where θi ∈ Θ, σi+1 ∈ θi,∀i ≥ 0, a run. For
any s ∈ L(G), suppose that s = ξ0σ1ξ1σ2 . . . ξn−1σnξn,
where ξi ∈ (Σ \ w(ξ0σ1 . . . ξi−1σi))

∗,∀i ≥ 0 and σi ∈
w(ξ0σ1 . . . σi−1ξi−1),∀i ≥ 1. Then the information available
to the sensor activation module upon the occurrence of s
is, in fact, the run Rω(s) := θ0σ1θ1 . . . θn−1σnθn, where
θi = ω(ξ0σ1 . . . ξi−1σiξi),∀i ≥ 0.

To capture the alternating nature of sensing decisions and
observations of monitored events, we define two kinds of
states, termed Y -states and Z-states, respectively. A Y -state
y is an information state from which a sensing decision is
made and Y ⊆ I denotes the set of Y -states. A Z-state z is
an information state augmented with a sensing decision from
which observations of monitored events occur. Z ⊆ I × Θ
denotes the set of Z-states and we write z = (I(z),Θ(z))
for any z ∈ Z. Next, we define the transition function from
Y -states to Z-states, hY Z : Y × Θ → Z, and the transition
function from Z-states to Y -states, hZY : Z × Σ→ Y . For
any y ∈ I, z ∈ I ×Θ, σ ∈ Σ and θ ∈ Θ,
• z = hY Z(y, θ) if and only if
I(z) = {q ∈Q : ∃q′ ∈ y,∃s∈ (Σ \ θ)∗ s.t. δ(q′, s) = q}
and Θ(z)=θ

• y = hZY (z, σ) if and only if
σ∈Θ(z) and y={q∈Q : ∃q′∈I(z) s.t. δ(q′, σ)=q}

For simplicity hereafter, we write y θ−→ z if z = hY Z(y, θ)
and z σ−→ y if z = hZY (z, σ).

Now, let s ∈ L(G) be a string and Rω(s) =
θ0σ1θ1 . . . θn−1σnθn be the corresponding run defined earli-
er. Let y0 = {q0} be the initial Y -state. Then occurrence
of the run θ0σ1θ1 . . . θn−1σnθn will reach an alternating
sequence of Y - and Z-states

y0
θ0−→ z0

σ1−→ y1
θ1−→ . . .

θn−1−−−→ zn−1
σn−−→ yn

θn−→ zn (2)

We denote by IYω (s) and IZω (s), the last Y -state and Z-state
in y0z0y1z2 . . . zn−1ynzn, respectively, i.e., IYω (s) = yn and
IZω (s) = zn. By induction on the length of Pω(s), we have
I(IZω (s)) = EGω (s), which says that the information state
component of IZω (s) is the state estimator of s.

Example 2: Let us return to the system G in Fig. 1.
Consider the sensor activation policy ω defined by:

ω(s) =

{
{o, σ1}, if s ∈ {ε, e}
{o}, otherwise (3)

Let us consider the string s = σ1σ2. The corresponding run
of s is Rω(σ1σ2) = {o, σ1}σ1{o} and the corresponding

sequence of Y - and Z-states is {1}{o,σ1}−−−→({1, 2}, {o, σ1})
σ1−→

{4} {o}−−→ ({4, 5}, {o}). So we have that IYω (σ1σ2) = {4},
IZω (σ1σ2) = ({4, 5}, {o}) and EGω (σ1σ2) = {4, 5}.

B. Bipartite Dynamic Observer

Recall that the sensor activation policy ω is a function de-
fined over a language domain. For implementation purposes,
we need to build a finite representation of the function ω.
To this end, we define the bipartite dynamic observer (BDO)
that realizes a (set of) sensor activation policy(ies).

Definition 2: A bipartite dynamic observer O is a 7-tuple

O = (QOY , Q
O
Z , h

O
Y Z , h

O
ZY ,Σ,Θ, y0) (4)

where, QOY ⊆ I is a set of Y -states, QOZ ⊆ I ×Θ is a set of
Z-states, hOY Z : QOY ×Θ→ QOZ and hOZY : QOZ × E → QOY
are partial transition functions such that for any z ∈ QOZ , y ∈
QOY , θ ∈ Θ and σ ∈ Σ, the following conditions hold
C1. hOZY (z, σ) = y ⇔ hZY (z, σ) = y;
C2. hOY Z(y, θ) = z ⇒ hY Z(y, θ) = z;
C3. ∀y ∈ QOY ,∃θ ∈ Θ : hOY Z(y, θ)!.
Σ is the set of events of G, Θ is the set of admissible sensing
decisions, and y0 = {q0} is the initial Y -state. For brevity,
we only consider the accessible part of a BDO.

Condition C1 says that the transition function hOZY in O
is identical to hZY . Therefore, for any z ∈ QOZ , hOZY (z, σ)
is defined for any possible observation σ ∈ Θ(z) by the
definition of hZY . This is due to the fact that we cannot
decide which monitored event will occur once we make a
sensing decision. Conditions C2 says that for the transition
function hOY Z , we have either hOY Z(y, θ) = hY Z(y, θ) or it
is undefined. Condition C3 requires that for any Y -state y ∈
QOY , there exists at least one θ ∈ Θ such that hOY Z(y, θ) is
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Fig. 2. Examples of BDOs that represent two incomparable minimal
solutions; [blue] rectangular states and [yellow] oval states represent,
respectively, Y -states and Z-states.
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Fig. 3. Example of MPO

defined. This is because a sensor activation policy is defined
for all strings in L(G).

Definition 3: Given a BDO O, we say that a sensor
activation policy ω is allowed by O if ∀s ∈ L(G) :
hOY Z(IYω (s), ω(s))!. With a slight abuse of notation, we write
that ω ∈ O whenever ω is allowed by O.

We say that a BDO O is deterministic if, for any y∈QOY ,
there exists only one θ∈Θ such that hOY Z(y, θ)!. It is clear
that a deterministic BDO O allows a unique sensor activation
policy; we denote it by ωO. In this case, the deterministic
BDO O is essentially a finite representation of ωO.

Example 3: Consider again the system G in Fig. 1.
Fig. 2(a) provides an example of a deterministic BDO. For
the initial Y -state y0 = {1}, by making sensing decision
θ = {o, σ1}, we will reach Z-state z = ({1, 2}, {o, σ1}).
From z, only monitored events o and σ1 can be observed.
If σ1 is observed, then the next Y -state is y1 ={4}. We can
verify that the sensor activation policy ω defined in Eqn. (3)
is allowed by O1; moreover, it is the only one allowed by
O1 since this BDO is deterministic. Similarly, the BDO O2

shown in Fig. 2(b) is also deterministic. However, the BDO
shown in Fig. 3 is not a deterministic BDO, since there are
two sensing decisions defined at Y -state {1}.

C. Generalized MPO and its Properties

We return to the sensor activation problem for IS-based
properties, Problem 1, formulation in Section II-B. By con-
dition (i) in Problem 1, we must find an ω such that ∀s ∈
L(G) : ϕ(EGω (s)) = 1. However, for any BDO, we know
that ∀s ∈ L(G) : I(IZω (s)) = EGω (s) and IZω (s) is indeed
the Z-state reached by the runRω(s) in the BDO. Therefore,
if we construct a BDO O such that ∀z ∈ QOZ : ϕ(I(z)) = 1
and such that O is “as large as possible”, then the resulting
structure will contain all sensor activation policies that satisfy
ϕ. The property of such a BDO being as large as possible

Data: G and ϕ
Result: MPOϕ

1 QMPO
Y ← y0 = {q0} and QMPO

Z ← ∅;
2 DoDFS(y0,MPOϕ, ϕ);
3 while ∃y ∈ QMPO

Y : 6 ∃θ ∈ Θ s.t. hMPO
Y Z (y, θ)! do

4 QMPO
Y ← QMPO

Y \ {y};
5 remove all Z-states z ∈ QMPO

Z such that
hMPO
ZY (z, σ) = y for some σ ∈ Θ(z);

6 take the accessible part of MPOϕ;

procedure DoDFS(y,MPOϕ, ϕ);
7 for θ ∈ Θ do
8 z ← hY Z(y, θ);
9 if ϕ(I(z)) = 1 then

10 add transition y θ−→ z to hMPO
Y Z ;

11 if z 6∈ QMPO
Z then

12 QMPO
Z ← QMPO

Z ∪ {z};
13 for σ ∈ Σ s.t. hZY (z, σ)! do
14 y′ ← hZY (z, σ);
15 add transition z σ−→ y′ to hMPO

ZY ;
16 if y′ 6∈ QMPO

Y then
17 QMPO

Y ← QMPO
Y ∪ {y′};

18 DoDFS(y′,MPOϕ, ϕ);

Algorithm 1: The construction of the MPO

is actually well defined: if O1 and O2 are two BDOs that
both satisfy the above requirement, then their union, in the
sense of graph merger, is a BDO that satisfies the above
requirement. This observation leads to the definition of the
most permissive observer.

Definition 4: (Most Permissive Observer). Let G =
(Q,Σ, δ, q0) be the system and let ϕ : 2Q → {0, 1} be the
IS-based property under consideration. The Most Permissive
Observer for ϕ is the BDO

MPOϕ = (QMPO
Y , QMPO

Z , hMPO
Y Z , hMPO

ZY ,Σ,Θ, y0)

defined as the largest BDO such that ∀z∈QMPO
Z :ϕ(I(z))=1.

The following theorem reveals the correctness of the MPO
defined above, namely, the MPO embeds all sensor activation
policies satisfying ϕ in its structure.

Theorem 1: ω |=G ϕ if and only if ω ∈MPOϕ.
Algorithm 1 provides a procedure for the construction of

the MPO. The steps of Algorithm 1 follow direction from
the definition of the MPO. First, we search through the state
space of Y -states and Z-states until a Z-state that violates
the IS-based property ϕ is encountered. Then we need to
go back to prune such a Y -state and the corresponding Z-
states that lead to this state, until the structure converge. The
worst-case time complexity of the construction of the MPO
is exponential in both |Q| and |Σs|.

Example 4: We return to system G in Fig. 1 and IS-
based property ϕ defined by Equation (1). The corresponding
MPO is shown in Fig. 3. At initial Y -state {1}, if we make
sensing decision {o}, then Y -state {3, 6} will be reached
upon the occurrence of monitored event o (see the dashed
lines). However, at state {3, 6}, no matter what sensing
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decision we make, a Z-state that contains both state 3 and
6 will be reached, which violates the IS-based property ϕ.
Therefore, we need to go back to prune Y -state {3, 6} and
its predecessor Z-state ({1, 2, 4, 5}, {o}). This is why we
cannot make sensing decision {o} at the initial state.

Remark 3: In Fig. 3, we can also make sensing decision
{o, σ1, σ2} at the initial Y -state. However, σ2 cannot be
observed before the next sensing decision is issued, which
will occur when either o or σ1 is observed. Therefore, σ2

is a “redundant” event in the sensing decision, since it has
no effect on future states in the MPO. In this paper, we
adopt the following convention. We remove all redundant
events from sensing decisions in the MPO when solving the
minimal sensor activation problem. Similarly, we include all
redundant events to the sensing decisions in the MPO when
solving the maximal sensor activation problem. Clearly, these
conventions will not affect the properties of the MPO.

IV. SYNTHESIS OF OPTIMAL SENSOR ACTIVATION
POLICIES

In this section, we show how to synthesize from the MPO
an optimal sensor activation policy ω that solves Problem 1.
Specifically, we require that ω satisfy the minimality criterion
(ii) of Problem 1 (or the maximality criterion for the dual
version of Problem 1). Moreover, we shall also require that ω
be defined over a finite domain, so that it can be effectively
implemented. To this end, we define a special class of sensor
activation policies that are represented by subgraphs of the
MPO and thus have finite realizations.

Definition 5: (IS-based Sensor Activation Policy). A sen-
sor activation policy ω is said to be Information-State-based
(or IS-based) if ∀s, t∈L(G) : IYω (s)=IYω (t)⇒ω(s)=ω(t).

Clearly, if ω is IS-based, then ω can always be represented
by a deterministic BDO that is a subgraph of the MPO.

Definition 6: (Greedy Optimal Sensor Activation Policy).
Suppose that ω is a sensor activation policy such that ω |=G

ϕ. We say that ω is greedy minimal if

∀s ∈ L(G),∀θ ∈ Θ : hMPO
Y Z (IYω (s), θ)!⇒ θ 6⊂ ω(s) (5)

The notion of greedy maximality is defined analogously.
The following theorem says that a greedy minimal (re-

spectively, maximal) solution is a minimal (respectively,
maximal) solution.

Theorem 2: Let ω be a sensor activation policy such that
ω |=G ϕ. Then ω is minimal (respectively, maximal) if it is
greedy minimal (respectively, greedy maximal).

By Theorem 2, it is clear that if we synthesize an IS-based
greedy optimal sensor activation policy, then we will have
obtained a solution to Problem 1, which was our objective.
An IS-based greedy optimal sensor activation policy can be
obtained by a depth-first search over the state space of the
MPO that picks one greedy optimal sensing decision at each
Y -state and then picks all observations for each Z-state. The
resulting structure will be a deterministic BDO representing
the solution. We illustrate this procedure by an example.

Example 5: We return to the MPO shown in Fig. 3. To
synthesize a minimal sensor activation policy for ϕ, we can

pick decision {o, σ1}, which is greedy minimal, at the initial
Y -state. Then, upon the occurrence of monitored event σ1,
the new Y -state {4} is reached. At that state, we pick the
unique greedy minimal decision {o}, and so forth. These
choices result in deterministic BDO O1 shown in Fig. 2(a)
that allows the unique sensor activation policy ωO1 , which
is provably minimal. We see that ωO1 is, in fact, the sensor
activation policy ω defined by Equation (3).

Remark 4: In the synthesis step in th previous example,
we could have selected {o, σ2} at the initial Y -state, which
yields the minimal solution shown in Fig. 2(b). Interestingly,
we see that the intersection of the two valid decisions {o, σ1}
and {o, σ2} is not a valid decision, since {o} is not defined
at Y -state {1} in the MPO. This illustrates that Problem 1
may not have an infimal (respectively, supremal) solution in
general, but instead several incomparable minimal (respec-
tively maximal) solutions. (This phenomenon is similar to
the supervisory control problem under partial observation,
in which supremal solutions do not exist in general [16].)

V. APPLICATIONS OF THE GENERALIZED MPO

A. Application to Control and Diagnosis

Observability and diagnosability are two key properties of
interest in control and diagnosis of DES. It is shown in [15]
that the problem of sensor activation for observability can be
formulated as a state-disambiguation problem. Similarly, it is
shown in [10] that the problem of sensor activation for K-
diagnosability can be formulated as a state-disambiguation
problem. Therefore, as was discussed in Remark 1, both
of these sensor activation problems can be solved by the
generalized MPO approach that we have presented. In fact,
the most permissive observer for K-diagnosability [2], [10]
is a special case of the MPO defined in this paper. Another
property of interest in sensor activation is detectability [17].
By using the same approach that is used for the reformulation
of K-diagnosability in [10], we can show that strong K-
detectability can also be formulated as an IS-based property.

B. Application to Fault Prediction

As a specific example of how the methodology presented
in this paper can be used to solve problems that have not yet
been addressed in the literature, we consider the problem
of sensor activation for the enforcement of predictability, a
notion introduced in [18]. Let f ∈ Σ be the fault event to be
predicted. We denote by Ψ(f) := {sf ∈ L(G) : s ∈ Σ∗} the
set of strings that end with f . We write f ∈ s if s∩Ψ(f) 6= ∅.
We recall the definition of predictability from [18].

Definition 7: (Predictability). A live language L(G) is
said to be predictable w.r.t. f ∈ Σ and ω if

(∀s∈Ψ(f))(∃t∈{s} :f /∈ t)(∀u∈L(G) :f /∈u∧Pω(u)=Pω(t))

(∃n ∈ N)(∀v ∈ L(G)/u)[|v| ≥ n⇒ f ∈ v] (6)
The above definition requires that the fault event f should
be predicted unambiguously before its occurrence.

To proceed further, we assume that state space of G is
partitioned into two disjoint sets Q = QY ∪̇QN , such that
∀s∈L(G) : δ(q0, s)∈QY ⇔ f ∈ s. This assumption is also
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w.l.o.g., since we can always refine G by taking the parallel
composition of G with an automaton with two states that
captures the occurrence of f . Next, similarly to the notions
of boundary strings and indicator strings in [19], we define
the two following sets:
• Boundary states, ∂Q = {q ∈ Q : δ(q, f)!}; and
• Non-indicator states, NQ = {q ∈ QN : ∀n ∈ N,∃s ∈
L(G, q) s.t. |s| > n ∧ f 6∈ s}.

With the above notions, we define the IS-based property
ϕpre : 2Q → {0, 1} by:

∀i∈2Q : [ϕpre(i)=0]⇔ [∃q, q′∈ i : q∈∂Q ∧ q′∈NQ] (7)

The following result says that predictability is equivalent
to the IS-based property ϕpre.

Theorem 3: Let ϕpre be the IS-based property defined by
Equation (7). For any sensor activation policy ω ∈ Ω, L(G)
is predictable w.r.t. f and ω if and only if ω |=G ϕpre.

The above theorem implies that to synthesize a minimal
sensor activation policy for the purpose of prediction, it
suffices to solve Problem 1 by taking ϕpre into account.

Example 6: Let us return to the system G in Fig. 1.
Suppose that f is the fault event that we want to predict. G
already satisfies the state partition assumption Q=QY ∪̇QN ,
where QN = {1, 2, 3, 4, 5, 6} and QY = {7}. Also, we have
∂Q={3} and NQ={1, 4, 5, 6}. In fact, we see that the IS-
based property defined by Eqn. (1) is the IS-based property
ϕpre for this example. Therefore, the solutions O1 and O2

shown in Fig. 2 that we obtained previously are two minimal
sensor activation policies that guarantee predictability.

C. Application to Cyber-Security

As was discussed earlier in Remark 2, in some cases,
the system may also be monitored by an external observer
that is potentially malicious. Therefore, for security purposes,
one may want the information mapping not to release some
crucial information to this external observer. We recall an
important security property called opacity.

Definition 8: Secret QS ⊆ Q is current-state opaque w.r.t.
G and ω if ∀s ∈ L(G) : EGω (s) 6⊆ QS .
Current-state opacity is clearly an IS-based property. There-
fore, the most permissive dynamic mask studied in [6] is also
a special case of the generalized MPO and the problem of
synthesizing a maximal sensor activation policy can also be
solved by the approach presented in this paper.

Moreover, the same approach can be applied to other
user-defined properties. For example, consider the IS-based
property ϕ : 2Q → {0, 1} defined by ∀i ∈ 2Q : ϕ(i) = 0⇔
|i| = 1. This property is related to 1-anonymity studied in the
computer security literature [20]. Intuitively, it requires that
the observer should never determine the current-state of the
system precisely. We can also synthesize a sensor activation
policy for it by applying the generalized MPO approach.

VI. CONCLUSION

We presented a new approach to the problem of synthe-
sizing an optimal sensor activation policy that guarantees
some observation property in problems of control, diagnosis,

prediction, or other types in the context of partially-observed
discrete event systems. To this end, we defined a novel
information structure called the generalized Most Permissive
Observer that is applicable to a wide class of properties
called information-state-based properties. We presented an
algorithm for the construction of the MPO and a procedure
for synthesizing an optimal sensor activation policy based on
the MPO. Our approach generalizes the previous works on
the MPO, which pertain to specific properties such as opacity
or K-diagnosability. Our approach is applicable to a wide
class of user-defined properties. In particular, we showed how
the problem of optimal sensor activation for the purpose of
fault prediction, not previously considered in the literature,
can be solved by the generalized MPO.
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