
1598 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 46, NO. 11, NOVEMBER 2016

Reliable Decentralized Fault Prognosis of Discrete-Event Systems
Xiang Yin and Zhaojian Li

Abstract—We investigate the problem of reliable decentralized fault
prognosis of partially-observed discrete-event systems. In this problem, n
local prognosers are deployed to send their local prognostic decisions to
a coordinator that calculates the final prognostic decision. However, only
k (1 ≤ k ≤ n) local prognostic decisions are guaranteed to be available
to the coordinator due to possible failures or communication losses of at
most n − k local prognosers. We propose the notion of k-reliable decen-
tralized prognoser in order to address this reliability issue. A necessary
and sufficient condition for the existence of a k-reliable decentralized
prognoser, which predicts faults prior to their occurrences, is presented.
This condition is termed as k-reliable coprognosability. A polynomial-time
algorithm for the verification of k-reliable coprognosability is presented.
We also demonstrate how to compute the k-reliable reactive bound prior
to any occurrence of faults.

Index Terms—Decentralized fault prognosis, discrete-event
systems, reliable coprognosability, reliable prognosers.

I. INTRODUCTION

Fault prognosis is an important task for safety critical systems.
In many complex large-scale systems, the information structure is
decentralized. In this correspondence paper, we consider the decen-
tralized fault prognosis problem of discrete event systems (DESs). In
this problem, the plant is monitored by a set of local agents (or local
prognosers) that make local prognostic decisions based on their own
observations. The local prognostic decisions are sent to the fusion site
(or the coordinator) in order to calculate a global prognostic decision.
The goal is to predict any fault of the system prior to its occurrence
with no missed alarm and no false alarm.

The problem of fault prognosis has recently
attracted considerable attention in the DES literature
(see [4]–[6], [8]–[13], [18], [23]–[25], [29]). Fault prognosis of
DESs was initialed in [8], where the notion of uniformly bounded
prognosability, which is termed as predictability in [8], was proposed.
Roughly speaking, a DES is prognosable if: 1) any fault can be
alarmed prior to its occurrence, i.e., no missed alarm and 2) once an
alarm is issued, a fault will occur for sure within a finite number of
steps, i.e., no false alarm. In [12], the problem of fault prognosis was
extended to the decentralized setting and the notions of coprognos-
ability and uniformly bounded coprognosability were introduced. It
was shown that these two notions are equivalent when the languages
under consideration are regular. In [10], [11], and [24], decentral-
ized fault prognosis under different architectures was studied. More
recently, the problem of fault progosis of DES was further investi-
gated for distributed systems [25], [29], timed systems [4], stochastic
systems [5], [6], [18], and systems modeled by Petri-nets [13].

Previous studies on decentralized fault prognosis rely on the
implicit assumption that the system is reliable in the sense that

Manuscript received June 28, 2015; accepted September 26, 2015. Date of
publication November 26, 2015; date of current version October 13, 2016.
This paper was recommended by Associate Editor I. Makki.

X. Yin is with the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
xiangyin@umich.edu).

Z. Li is with the Department of Aerospace Engineering, University of
Michigan, Ann Arbor, MI 48109 USA (e-mail: zhaojli@umich.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2015.2499178

the coordinator always has access to all local prognostic decisions.
However, this assumption may not hold in many systems due to the
following reasons. First, as depicted in Fig. 1, in many distributed
system, the local decisions are sent to the coordinator via a communi-
cation network in which communication delays or signal losses may
occur [14], [22]. Therefore, one must take these issues into account.
Second, each local prognoser itself may not be reliable due to local
hardware or software errors. In order to evaluate the robustness or
the reliability of the system, many different approaches were pro-
posed in [1], [2], [14]–[17], [19]–[22], and [26]–[28]. In particular,
in [16] and [26], the problem of reliable decentralized supervisory
control was studied by assuming that certain amount of local con-
trol decisions may be lost. This approach was also extended to the
decentralized fault diagnosis problem in [1], [17], and [28].

Motivated by the reliable control and diagnosis techniques men-
tioned above, in this paper, we consider the problem of reliable
decentralized fault prognosis. More specifically, we assume that there
are n local prognosers sending their local prognostic decisions to the
coordinator, but the coordinator is only guaranteed to receive k local
decisions, where k ≤ n is a non-negative integer. In other words,
we consider the scenario in which at most n − k local prognostic
decisions may be lost. The contributions of this paper are as follows.
First, we provide the necessary and sufficient condition, termed as
k-reliable coprognosability, for the existence of a k-reliable decentral-
ized prognoser. Second, we develop a polynomial-time algorithm for
the verification of k-reliable coprognosability. We show that, when
using the approach proposed, the verification of k-reliable coprog-
nosability is not more computationally difficult than the verification
of coprognosability under reliable decisions. Furthermore, when the
system is k-reliably coprognosable, a method for the computation of
k-reliable reactive bound is presented. The k-reliable reactive bound
quantitatively specifies the amount of time the prognoser can react
prior to the occurrence of a fault.

In [23], the problem of robust fault prognosis was studied. Our
paper is clearly different from the above mentioned work due to
the following reasons. First, we study the decentralized prognosis
problem while [23] considers the centralized setting. Second, the
robustness in [23] is defined in the sense that there are a set of
possible models of the system, which is also clearly different from
the notion of reliability investigated in this paper.

The remainder of this paper is organized as follows. In Section II,
we describe some preliminaries and notations used in this paper. In
Section III, the problem of reliable decentralized prognosis is for-
mulated and the notion of k-reliable coprognosability is presented.
Section IV provides a polynomial-time algorithm for the verification
of k-reliable coprognosability. The computation of k-reliable reactive
bound is studied in Section V. Finally, we conclude the paper in
Section VI.

II. PRELIMINARIES

A. System Model

We first review some common notations of DES; the reader is
referred to [3] for more details. Let �∗ be the set of all finite strings
over a finite set of events �, including the empty string ε. A language

2168-2216 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:xiangyin@umich.edu
mailto:zhaojli@umich.edu
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 46, NO. 11, NOVEMBER 2016 1599

Fig. 1. Decentralized fault prognosis architecture.

L ⊆ �∗ is a subset of �∗ and L is the prefix-closure of language
L defined by L = {t ∈ �∗ : ∃u ∈ �∗ s.t. tu ∈ L}. Given a language
L and a string s ∈ L, we denote by L/s the post-language of s, i.e.,
L/s := {t ∈ �∗ : st ∈ L}.

A DES is modeled by a deterministic finite-state automaton G =
(Q, �, δ, q0, Qm), where Q is the finite set of states, � is the finite
set of events, δ : Q×� → Q is the partial transition function, q0 ∈ Q
is the initial state and Qm is the set of marked states. We denote by
G = (Q, �, δ, q0) an automaton if marking is not considered. The
transition function δ is extended to Q × �∗ in the usual manner
(see [3]). For brevity, we write δ(q0, s) as δ(s), i.e., δ(s) is the state
reached via s from the initial state. The language generated by G
from state q is defined by L(G, q) = {s ∈ �∗ : f (q, s)!}, where !
means “is defined.” We write L(G, q) as L(G) when q = q0, i.e.,
L(G) is the language generated by G. The language marked by G is
Lm(G) = {s ∈ �∗ : δ(q0, s) ∈ Qm}. The system G is said to be live
if ∀q ∈ Q, ∃σ ∈ � : δ(q, σ)!. Hereafter, we assume that G is live.
This assumption is without loss of generality (w.l.o.g.), since we can
add self-loop at each state in G from which no transition is defined.

Given two automata G = (Q, �, δ, q0) and H =
(QH, �, δH, q0,H), we say that H is a sub-automaton of G,
denoted by H
 G, if: 1) q0,H = q0; 2) QH ⊆ Q; and 3) for any
q ∈ QH, σ ∈ �, we have that δH(q, σ) = δ(q, σ) if δH(q, σ)!.
We say that H is a strict sub-automaton of G, denoted by H � G,
if: 1) H
 G and 2) ∀s ∈ L(G) \ L(H) : δ(q0, s) �∈ QH . In other
words, strict sub-automaton requires that once a string leaves the
state space of H, it should never go back. It was shown in [7]
that if L(H) ⊆ L(G), then we can always construct two new
automata G′ and H′ such that 1) H′ � G′ and 2) L(H) = L(H′)
and L(G) = L(G′). Therefore, we can always assume w.l.o.g. that
H � G when L(H) ⊆ L(G).

B. Decentralized Fault Prognosis

Let G be the system automaton and H be the specification automa-
ton, i.e., L(H) is a nonempty prefix-closed specification language
that represents the normal behavior of the system. Then strings in
L(G) \ L(H) are considered as fault behaviors and we want to pre-
dict the occurrence of any string in L(G) \ L(H). As we mentioned
earlier, hereafter, we assume w.l.o.g. that the specification automa-
ton H = (QH, �, δH, q0,H) is a strict sub-automaton of the system
automaton G = (Q, �, δ, q0), i.e., H � G. Therefore, under this
assumption, we know that string s ∈ L(G) is a nonfault string if and

only δ(s) ∈ QH and string s ∈ L(G) is a fault string if and only
δ(s) ∈ Q \ QH .

In the decentralized fault prognosis framework [12], the system is
monitored by a set of agents (or local prognosers). We assume that
there are n local prognosers and we denote by I = {1, . . . , n} the
index set. For each prognoser i ∈ I, �o,i is the set of events it can
observe. Also, for any i ∈ I, Pi : �∗ → �∗

o,i is the natural projection
defined by

Pi(ε) = ε Pi(sσ) =
{

Pi(s)σ if σ ∈ �o,i
Pi(s) if σ �∈ �o,i.

(1)

Each local prognoser i ∈ I is defined as a function Di : Pi(L(H)) →
{0, 1}, where “1” means a fault will occur in a finite number of steps,
i.e., a fault is inevitable, and “0” means a fault is not guaranteed to
occur within a finite number of steps. Each local prognoser sends
its local prognostic decision to a coordinator in order to calculate a
global prognostic decision. In this paper, we consider the disjunctive
architecture, i.e., the global decision is “1” if one local prognoser
says “1.” Therefore, under this architecture, the decentralized prog-
noser is the function {Di}i∈I : L(H) → {0, 1} defined as follows.
For any s ∈ L(H)

{Di}i∈I (s) = 1 ⇔ ∃i ∈ I : Di(Pi(s)) = 1. (2)

In [12], two criteria, no missed alarm and no false alarm, were
proposed in order to evaluate the validation of a decentralized
prognoser.

Definition 1: A decentralized prognoser {Di}i∈I is said to be valid
if the following two properties hold.

1) No missed alarm, that is

(∀s ∈ L(G) \ L(H))
(∃t ∈ {s} ∩ L(H)

)[{Di}i∈I (t) = 1
]
. (3)

2) No false alarm, that is

∀s ∈ L(H) :
[{Di}i∈I (s) = 1

] ⇒
(∃m ∈ N)(∀t ∈ L(G)/s)

[|t| ≥ m ⇒ st ∈ L(G) \ L(H)
]
. (4)

It was shown in [12] that the notion of coprognosability, whose
definition is recalled next, provides the necessary and sufficient condi-
tion for the existence of a valid decentralized prognoser that predicts
faults with no error.

Definition 2 (Coprognosability): A specification L(H) is said to
be coprognosable with respect to L(G) and �o,i, i ∈ I if

(∃m ∈ N)(∀s ∈ L(G) \ L(H))
(∃t ∈ {s} ∩ L(H)

)
(∃i ∈ I)

(
∀u ∈ P−1

i Pi(t) ∩ L(H)
)
(∀v ∈ L(G)/u)[|v| ≥ m ⇒ uv ∈ L(G) \ L(H)

]
. (5)

III. RELIABLE DECENTRALIZED FAULT PROGNOSIS

In this section, we first introduce the notion of k-reliable prognoser.
Then we present the necessary and sufficient condition, under which
there exists a k-reliable prognoser.

First, we note that, in the standard decentralized fault prognosis
framework, it is assumed that the decentralized system is reliable in
the sense that the coordinator can always receive all the local prog-
nostic decisions. However, as we discussed earlier, this assumption
may not hold due to communication losses or errors at the local sites.
Therefore, in order to take this reliability issue into account, hereafter,
we assume that there are only k local prognostic decisions available
to the coordinator at each step, where 1 ≤ k ≤ n. In other words, at
most n − k local prognostic decisions may be lost. We first propose
the notion of k-reliable prognoser that can predict the occurrences of
faults even if only k local prognostic decisions are available to the
coordinator at each time.

1600 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 46, NO. 11, NOVEMBER 2016

Definition 3 (k-Reliable Prognoser): A valid decentralized prog-
noser {Di}i∈I is said to be k-reliable if

(∀s ∈ L(G)\ L(H))(∃t ∈ {s} ∩ L(H))

[|{i ∈ I : Di(Pi(s)) = 1}| ≥ n − k + 1]. (6)

Before we present the necessary and sufficient condition for the
existence of a k-reliable decentralized prognoser, we first introduce
some necessary notions. In [12], the notions of boundary strings,
indicator strings and nonindicator strings were introduced. Since we
have assumed w.l.o.g. that H is a strict sub-automaton of G, we define
three similar notions, in terms of states rather than strings, as follows.

Definition 4: Let H be the specification automaton and G be the
system automaton with H � G.

1) A boundary state is a state in H, from which an event that
violates the specification can occur. We denote by ∂(H, G)

the set of boundary states, i.e., ∂(H, G) = {q ∈ QH : ∃σ ∈
� s.t. δ(q, σ)! ∧ δH(q, σ)� !}.

2) An indicator state is a state in H, from which a string that
violates the specification will occur for sure within a finite num-
ber of steps. We denote by �(H, G) the set of indicator states,
i.e., �(H, G) = {q ∈ QH : ∃m ∈ N,∀t ∈ L(G, q) s.t. |t| ≥
m ∧ δ(q, t) ∈ Q \ QH}.

3) A nonindicator state is a state in H, from which an arbitrar-
ily long nonfault behavior can occur, i.e., ϒ(H, G) = QH \
�(H, G) = {q ∈ QH : ∀m ∈ N, ∃t ∈ �∗ s.t. |t| ≥ m∧δH(q, t)!}.

For each local prognoser i ∈ I, we also denote by EH
i (s) agent i’s

state estimate of s under �o,i with respect to the state space of H,
that is

EH
i (s) := {q ∈ QH : ∃t ∈ L(H) s.t. Pi(s) = Pi(t) ∧ δH(t) = q}. (7)

Then for any string s ∈ L(H), we denote by ID(s) the set of agents
whose state estimates only consist of indicator states, that is

ID(s) :=
{

i ∈ I : EH
i (s) ⊆ �(H, G)

}
. (8)

With the notions introduced above, we define the notion of k-reliable
coprognosability as follows.

Definition 5 (k-Reliable Coprognosability): A specification L(H)

is said to be k-reliably coprognosable with respect to L(G) and
�o,i, i ∈ I if

(∀s ∈ L(G) \ L(H))
(∃t ∈ {s} ∩ L(H)

)
[|ID(t)| ≥ n − k + 1]. (9)

The following result reveals that k-reliable coprognosability pro-
vides the necessary and sufficient condition for the existence of a
valid k-reliable decentralized prognoser.

Theorem 1 (Existence Condition): There exists a valid k-reliable
decentralized prognoser {Di}i∈I , if and only if, L(H) is k-reliably
coprognosable with respect to L(G) and �o,i, i ∈ I.

Proof: (⇐) By construction. Let us consider a decentralized prog-
noser {Di}i∈I defined as follows. For each local prognoser i ∈ I, for
any string s ∈ L(H), we have

Di(Pi(s)) = 1 ⇔ EH
i (s) ⊆ �(H, G). (10)

Under the above prognostic strategy, we know that |ID(s)| =
|{i ∈ I : Di(Pi(s)) = 1}|. Therefore, the condition that L(H) is
k-reliably coprognosable, i.e., (9) holds, implies that (3) and (6)
hold for {Di}i∈I . Next, we show by contradiction that (4) holds.
Assume that (4) does not hold, we know that (∃s ∈ L(H))(∃i ∈
I : Di(Pi(s)) = 1)(∀m ∈ N)(∃t ∈ L(G)/s)[|t| ≥ m ∧ st ∈ L(H)].
First, we know that δH(s) ∈ ϒ(H, G), since (∀m ∈ N)(∃t ∈
L(G)/s)[|t| ≥ m ∧ st ∈ L(H)]. Second, by Di(Pi(s)) = 1, we know
that δH(s) ∈ EH

i (s) ⊆ �(H, G). However, this is a contradiction since

(a) (b)

Fig. 2. Specification is coprognosable but not one-reliably coprognosable.
(a) G. (b) H.

sets ϒ(H, G) and �(H, G) are disjoint. Therefore, (4) holds. Overall,
we know that {Di}i∈I is a valid k-reliable decentralized prognoser.

(⇒) Consider a string s ∈ L(G)\L(H). By (6), we know that there
exists t ∈ {s} ∩L(H) such that |{i ∈ I : Di(Pi(s)) = 1}| ≥ n − k + 1.
Let P = {i1, . . . , i|P |}, |P| ≥ n − k + 1 be the set of agents whose
decisions are “1.” By (4), we know that ∀s ∈ L(H) : {Di}i∈I (s) =
1 ⇒ δH(s) ∈ �(H, G). Then, for any agent i ∈ P , since ∀t ∈
P−1

i (Pi(s)) : Di(Pi(t)) = Di(Pi(s)) = 1, which means {Di}i∈I (t) =
1, we know that δH(t) ∈ �(H, G). Therefore, we know that for any
i ∈ P , EH

i (s) ⊆ �(H, G), i.e., |ID(s)| ≥ |P| ≥ n − k + 1. Hence,
L(H) is k-reliably coprognosable.

Remark 1: It is easy to verify that, by using the notions of
boundary state and indicator state, (5) can be rewritten as (∀s ∈
L(G)\L(H))(∃t ∈ {s}∩L(H))[|ID(t)| ≥ 1]. Hence, by taking n = k,
k-reliable coprognosability reduces to coprognosability. Therefore,
Theorem 1 generalizes the results in [12] to the case where n − k
local prognostic decisions are not unreliable.

Clearly, we see that L(H) k-reliably coprognosable implies that
L(H) is coprognosable. However, the converse relation needs not
hold, which is illustrated by the following example.

Example 1: Consider the system automaton G and the specifica-
tion automaton H in Fig. 2. We have that ∂(H, G) = {4},� =
{2, 3, 4}, and ϒ = {1}. Suppose that there are two local prog-
nosers with observable events �o,1 = {a, b, o} and �o,2 = {a, o},
respectively. Clearly, we see that L(H) is coprognosable and a valid
decentralized prognoser {Di}i∈{1,2} is defined as follows:

D1(s) =
{

1 if s ∈ {
o∗a, o∗ab, o∗b, o∗bo

}
0 otherwise

(11)

D2(s) =
{

1 if s ∈ {
o∗a

}
0 otherwise.

(12)

However, {Di}i∈{1,2} is not a one-reliable prognoser. For example,
for string bo, if the agent 1s decision, i.e., D1(P1(bo)) = 1, is lost,
then the global decision is “0,” since D2(P2(bo)) = 0. Therefore, no
alarm is provided before the occurrence of fault string bof.

IV. VERIFICATION OF RELIABLE COPROGNOSABILITY

In this section, we present a polynomial-time algorithm for the
verification of k-reliable coprognosability by constructing a new
automaton called the k-verifier.

Let G = (Q, �, δ, q0) be the system automaton, H =
(QH, �, δH, δ0,H) be the specification automaton, where H � G,
�o,i, and i ∈ I be the set of locally observable events. The k-verifier
V is defined as the deterministic finite state automaton

V = (
XV , �V , fV , x0,V , Xm,V

)
(13)

where
1) XV = (QH × · · · × QH︸ ︷︷ ︸

(n+1) times

) ∪ {Dead} is the set of states;

2) �V = (� ∪ {ε}) × · · · × (� ∪ {ε})︸ ︷︷ ︸
(n+1) times

is the set of events;

3) x0,V = (q0, . . . , q0︸ ︷︷ ︸
n+1 times

) is the initial state;

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 46, NO. 11, NOVEMBER 2016 1601

4) fV : XV × �V → XV is the partial (deterministic) transition
function defined below. For any σ ∈ �, we have the following
two types of transitions as follows.

a) The single transition

fV ((q, q1, . . . , qn), (σ, e1, . . . , en))

= (δH(q, σ), δH(q1, e1), . . . , δH(qn, en)) (14)

where ∀i ∈ I, ei =
{

σ, if Pi(σ) �= ε

ε, if Pi(σ) = ε
.

b) The following transition for each i ∈ I s.t. Pi(σ) = ε:

fV

(
(q, q1, . . . , qn),

(
ε, ε, . . . , ε, σ

(i+1)th
, ε, . . . , ε

))

= (
q, q1, , . . . , qi−1, δH(qi, σ), qi+1 . . . , qn

)
. (15)

5) Xm,V is the set of marked states defined by

Xm,V := {(q, q1, . . . , qn) ∈ XV :

q∈∂(H, G) ∧ |{i∈I : qi ∈�(H, G)}| < n − k + 1}.
(16)

This completes the definition of the k-verifier.
Remark 2: Let s = (s0, s1, . . . , sn) ∈ L(V) be a string in V .

Intuitively, the k-verifier tracks one string s0 representing the sys-
tem’s execution and n strings s1, . . . , sn that look identical for
agents 1, . . . , n under their own observations. Formally, for any string
s = (s0, s1, . . . , sn) ∈ L(V), we have that Pi(s0) = Pi(si), ∀i ∈ I.
Conversely, for strings s0, s1, . . . , sn ∈ L(H), if Pi(s0) = Pi(si),

∀i ∈ I, then string (s0, s1, . . . , sn) is defined in V from the initial
state, i.e., state (δH(s0), δH(s1), . . . , δH(sn)) is reachable in V .

The following result states that the specification is not k-reliably
coprognosable if and only if a marked state is reached from the initial
state in V .

Theorem 2: A specification language L(H) is k-reliably coprog-
nosable [with respect to L(G) and �o,i, i ∈ I], if and only if,
Lm(V) = ∅.

Proof: (⇒) By contraposition. Suppose that Lm(V) �= ∅. We
know that there exists a string s = (s0, s1, . . . , sn) ∈ L(V) such
that fV (x0,V , s) = (q, q1, . . . , qn) ∈ Xm,V , where q = δH(s0) and
qi = δH(si), ∀i ∈ I. We define P := {i ∈ I : qi ∈ ϒ(H, G)}. By the
definition of Xm,V , we know that q ∈ ∂(H, G) and |P| ≥ k. By the
construction of V , we know that ∀i ∈ I : Pi(s0) = Pi(si). Therefore,
we know that {q, qi} ⊆ EH

i (s0). Since ∀i ∈ P : qi �∈ �(H, G), we
know that |ID(s0)| ≤ n − |P| < n − k + 1.

Next, we show by contradiction that ∀t ∈ {s0} ∩L(H) : |ID(t)| <

n − k + 1. Let us assume that ∃t ∈ {s0} ∩L(H) : |ID(t)| ≥ n − k + 1,
i.e., there exists a set Q ⊆ I such that ∀i ∈ Q : EH

i (t) ⊆ �(H, G) and
|Q| ≥ n−k+1. By the definition of �(H, G), we know that any state
reached from an indicator state is an indicator state. Therefore, we
know that ∀i ∈ Q : EH

i (s0) ⊆ �(H, G), which implies that |ID(s0)| ≥
|Q| ≥ n − k + 1. This is a contradiction. Hence, we know that ∀t ∈
{s0} ∩ L(H) : |ID(t)| < n − k + 1.

Finally, since q is a boundary state, we know that there exists
an event σ ∈ � such that string s0σ ∈ L(G) \ L(H) violates the
specification. Note that {s0σ } ∩ L(H) = {s0} ∩ L(H). Therefore,
we have that

(∃s0σ ∈L(G)\L(H))
(∀t∈{s0σ } ∩ L(H)

)
[|ID(t)| < n − k + 1]

i.e., L(H) is not k-reliably coprognosable.
(⇐) By contrapositive. Suppose that L(H) is not k-reliably coprog-

nosable. We know that there exists a string s ∈ L(G) \ L(H) such
that ∀t ∈ {s}∩L(H) : |ID(t)| < n−k+1. Let us consider the longest

Fig. 3. Part of the k-verifier for H and G in Fig. 2 with k = 1, �o,1 =
{a, b, o}, and �o,2 = {a, o}.

t in {s} ∩L(H), i.e., δH(t) ∈ ∂(H, G). Since |ID(t)| < n − k + 1, we
know that there exists a set of agents P ⊆ I such that:

1) ∀i ∈ P : EH
i (t) �⊆ �(H, G);

2) |P| ≥ k.

By condition 1), we know that

(∀i ∈ P)(∃ti ∈ L(H))[Pi(t) = Pi(ti) ∧ δH(ti) ∈ ϒ(H, G)].

Let us consider string w = (t, w1, . . . , wn), where wi = ti if i ∈ P and
wi = t if i ∈ I\P . Such a string is defined in V , since ∀i ∈ I : Pi(t) =
Pi(wi), and we denote by xw = (q, w1, . . . , wn) = fV (x0,V , w) the
state reached upon w in V . Since ∀i ∈ P : δH(ti) ∈ ϒ(H, G), by
condition 2), we know that

|{i∈I : qi ∈�(H, G)}| ≤ n − |P| < n − k + 1.

Moreover, since q = δH(t) ∈ ∂(H, G), we know that xw ∈ Xm,V ,
i.e., Lm(V) �= ∅.

Example 2: Let us return to Example 1 and consider automata
G and H shown in Fig. 2. First, we still suppose that there are
two local prognosers whose observations are �o,1 = {a, b, o}, and
�o,2 = {a, o}, respectively. Let k = 1. Then part of the corre-
sponding k-verifier constructed from H and G is shown in Fig. 3.
For example, at the initial state (1, 1, 1), event (b, b, ε) is defined
according to (14) and state (3, 3, 1) is reached via this event.
From state (3, 3, 1), state (4, 4, 1) is reached via event (o, o, o).
However, state {4, 4, 1} is a marked state, since 4 ∈ ∂(H, G) and
|{4, 1} ∩ �(H, G)| = |{4}| = 1 < 2 − 1 + 1 = 2. Therefore, we
know that L(H) is not one-reliably coprognosable with respect to
L(G),�o,1, and �o,2.

One way to resolve this unreliability issue is to add more local
prognosers in order to increase the reliability of the entire system.
Suppose that there is still only one unreliable local prognostic deci-
sion at each step, but we add a new local prognoser with observable
events set �o,3 = {b, o}. Therefore, we are interested in verifying
whether or not the new system with three local prognosers is two-
reliably coprognosable. In order to do so, we construct the complete
k-verifier for G, H, �o,i, i ∈ {1, 2, 3}, and k = 2, which is shown
in Fig. 4. We see that there is no marked state in V , since for each
state whose first component is 4, i.e., the unique boundary state, there
are at least two state components that are indicator states. Therefore,
we know that L(H) is two-reliably coprognosable with respect to
L(G),�o,1, �o,2, and �o,3.

Remark 3: In the k-verifier V , there are at most |Q|n+1 states and
(1 + n)|�||Q|n+1 transitions. Moreover, the complexity of checking
whether or not Lm(V) is linear in the number of states and the number
of transitions in V . Therefore, we know that the total worst-case
complexity of verifying k-reliable coprognosability is O(n|�||Q|n+1),
which is the same as the complexity of the algorithm in [12] for
checking coprognosability. In other words, by using the k-verifier
proposed, we can verify k-reliability in addition to the verification of
coprognosability without spending additional cost.

V. COMPUTATION OF REACTIVE BOUND

So far, we have studied the notion of k-reliable coprognosabil-
ity and its verification. Note that, k-reliable coprognosability only
guarantees that faults can be predicted prior to their occurrences.

1602 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 46, NO. 11, NOVEMBER 2016

Fig. 4. Complete k-verifier for H and G in Fig. 2 with k = 2,

�o,1 = {a, b, o}, �o,2 = {a, o}, and �o,3 = {b, o}.

However, in many applications, this condition may not be enough,
since we need to predict faults “as early as possible” such that some
actions can be taken in order to protect the system or to prevent faults
from happening. Therefore, if the system is k-reliably coprognosable,
one may also be interested in knowing how early the prognoser can
react to the occurrences of faults. In order to address this issue, we
introduce the notion of k-reliable reactive bound.

For any string s ∈ L(H) such that δH(s) ∈ ∂(H, G), we denote by
ρ(s) the number of steps between the time when the first fault alarm
is reliably issued and the time when the first fault occurs, that is

ρ(s) = max
t∈{s} : |ID(t)|≥n−k+1

|s \ t| (17)

where s \ t denotes the string in s after t, i.e., t(s \ t) = s. We
call ρ(s) the k-reliable reactive bound of string s. We note that, if
|ID(t)| ≥ n − k + 1, then for any of its extensions tv ∈ {s}, v ∈ �∗,
we have that |ID(tv)| ≥ n−k+1. Then, the k-reliable reactive bound
for H and G, denoted by ρ(H, G), is defined as the worst (minimal)
k-reliable reactive bound of strings in L(H), that is

ρ(H, G) := min
s∈L(H) : δH(s)∈∂(H,G)

ρ(s). (18)

Next, we show that how to compute the k-reliable reactive bound.
First, we introduce some necessary notions.

Let q ∈ QH be a state in H. We say that q is an unprognosable
state if there exists a state (q, q1, . . . , qn) ∈ XV in V , such that
|{i ∈ I : qi ∈ ϒ(H, G)}| ≥ k. We denote by 	(H, G) ⊆ QH the
set of unprognosable states in H. We say that q is a prognosable
state if it is not an unprognosable state. The notion of unprognosable
state is a generalization of the notion of unprognosable state defined
in [12]. Clearly, we know that, if q ∈ 	(H, G), then there exists a
string s ∈ L(H) : δH(s) = q such that |ID(s)| < n − k + 1. Then, for
any unprognosable state q ∈ 	(H, G), we denote by η(q), the set of
strings from q to a boundary state without visiting any unprognosable

state expect q. Formally, we have that

η(q) = {
s ∈ L(H, q) :δH(q, s) ∈ ∂(H, G) ∧

∀t ∈ {s} s.t. δH(q, t) �∈ 	(H, G)
}
. (19)

Note that η(q) may be empty for some q ∈ 	(H, G). Now, we
are ready to present the key theorem that reveals how the k-reliable
reactive bound can be computed.

Theorem 3: Let H be the specification automaton and G be the
system automaton. We have that

ρ(H, G) = min
q∈	(H,G),s∈η(q)

{|s| − 1}. (20)

Proof: We prove this theorem by the following two parts.
LHS≥RHS: Suppose that (18), i.e., the LHS of (20), attains mini-

mum by string ŝ ∈ L(H) and t̂ is the corresponding string such that
|ŝ \ t̂| = maxt∈{ŝ} : |ID(t)|≥n−k+1 |ŝ \ t|.

We claim that any prefix of ŝ containing t̂ reaches a prognosable
state, i.e., (∀t̂v ∈ {ŝ} : v ∈ �∗)[δH(t̂v) �∈ 	(H, G)]. To see this, we
assume that δH(t̂v) is an unprognsable state. Then, we know that(∃u ∈ L(H) :δH(u) = δH(t̂v)

)
[|ID(u)| < n − k + 1 ∧ δH(u(ŝ \ (t̂v))) ∈ ∂(H, G).

This implies that the k-realiable reactive bound for string u(ŝ\(t̂v)) is
at most |ŝ\ t̂|−1, which is strictly smaller than |ŝ\ t̂|. This contradicts
the fact that (18) attains minimum at ŝ ∈ L(H). Therefore, we know
that (∀t̂v ∈ {s} : v ∈ �∗)[δH(t̂v) �∈ 	(H, G)].

Moreover, we write string t̂ in the form of t̂ = t′σ, σ ∈ �, i.e., σ

is the last event in t̂. Then we know that |ID(t′)| < n− k +1, since t̂
is the shortest prefix of s such that |ID(t̂)| ≥ n − k + 1. This implies
that δH(t′) is an unprognosable state. Since ∀t̂v ∈ {ŝ}, v ∈ �∗, δH(t̂v)
is a prognsable state, by considering q = δH(t′), s = ŝ \ t′ for the
RHS of (20), we know that

min
q∈	(H,G),s∈η(q)

{|s| − 1} ≤ |ŝ \ t′| − 1 = |ŝ \ t̂| = ρ(H, G).

LHS≤RHS: Suppose that the RHS of (20) attains minimum at q̂ ∈
	(H, G), ŝ ∈ η(q̂). Since q̂ is an unprognosable state, we know that
there exists a string w ∈ L(H) such that δH(w) = q̂ and |ID(w)| <

n − k + 1. We write ŝ in the form of σ s′, σ ∈ �, i.e., σ is the first
event of string ŝ. Clearly, we know that ∀v ∈ �∗ : wσv ∈ {s} ⇒
|ID(wσv)| ≥ n − k + 1. For otherwise, if ∃wσv ∈ {s} : |ID(wσv)| <

n − k + 1, then it contradicts the fact that ID(wσv) is a prognosable
state. Moreover, since ŝ ∈ η(q̂), we know that δH(wŝ) ∈ ∂(H, G).
Therefore, by considering s = wŝ and t = wσ for the LHS of (20),
i.e., (18), we know that

ρ(H, G) ≤ |wŝ \ wσ | = |ŝ| − 1 = min
q∈	(H,G),s∈η(q)

{|s| − 1}.

Since LHS≤RHS and RHS≤LHS, we know that (20) holds.
Remark 4: The above theorem says that, in order to compute the

k-reliable reactive bound, it suffices to find the shortest path from an
unprognosable state to a boundary state via some prognosable states.
Note that determining set 	(H, G) can be done in O(|�||Q|n+1) by
searching the state space of the k-verifier V . The complexity of the
shortest path search problem is linear in the size of H. Therefore, the
k-reliable reactive bound ρ(H, G) can be computed in O(|�||Q|n+1).

The following example illustrates how the k-reliable reactive bound
ρ(H, G) is computed.

Example 3: Let us revisit automata G and H shown in Fig. 2 and
assume that there are three local prognosers whose observations are
�o,1 = {a, b, o}, �o,2 = {a, o}, and �o,3 = {b, o}, respectively.
Let k = 2. We have shown in Example 2 that L(H) is two-reliably
coprognosable with respect to G and �o,i, i ∈ {1, 2, 3} and the com-
plete k-verifier has been shown in Fig. 4. By searching states in V ,

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 46, NO. 11, NOVEMBER 2016 1603

we know that 	(H, G) = {1}, since for state q = (1, q1, q2, q3) =
(1, 1, 1, 2), we have that |{i ∈ I : qi ∈ ϒ(H, G)}| = 2 ≥ k. And we
know that states 2 − 4 in H are all prognosable state. Therefore, the
shortest path from the unique unprognosable state 1 to the unique
boundary state 4 via prognosable states is ab or bo whose lengths
are both 2. Therefore, we know that ρ(H, G) = 2 − 1 = 1, i.e., all
faults are guaranteed to be reliably predicted one step before their
occurrences.

VI. CONCLUSION

In this correspondence paper, we studied the problem of reliable
decentralized fault prognosis of discrete-event systems. The notion of
k-reliable coprognosability was introduced as the necessary and suf-
ficient condition for the existence of a decentralized prognoser under
the presence of unreliable local prognostic decisions. Both the verifi-
cation of k-reliable coprognosability and the computation of k-reliable
reactive bound were investigated. These results extend previous stud-
ies on decentralized fault prognosis, in which all local prognostic
decisions are assumed to be reliable.

In this paper, reliability was defined in the sense of decision losses.
However, in some applications, it is possible that a local prognos-
tic decision may arrive at the coordinator after some finite delay.
Therefore, investigating the effect of decision delays is an important
issue in the future. Also, in this paper, we adopted the disjunctive
architecture for the decentralized prognosis problem. Investigating the
reliability issue under other decentralized architectures, e.g., conjunc-
tive architecture [11] or inference-based architecture [24], is also an
interesting future direction.

REFERENCES

[1] J. C. Basilio and S. Lafortune, “Robust codiagnosability of discrete event
systems,” in Proc. Amer. Control Conf., St. Louis, MO, USA, 2009,
pp. 2202–2209.

[2] L. K. Carvalho, J. C. Basilio, and M. V. Moreira, “Robust diagno-
sis of discrete event systems against intermittent loss of observations,”
Automatica, vol. 48, no. 9, pp. 2068–2078, 2012.

[3] C. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
2nd ed. New York, NY, USA: Springer, 2008.

[4] F. Cassez and A. Grastien, “Predictability of event occurrences in timed
systems,” in Formal Modeling and Analysis of Timed Systems. Berlin,
Germany: Springer, 2013, pp. 62–76.

[5] M. Chang, W. Dong, Y. Ji, and L. Tong, “On fault predictability in
stochastic discrete event systems,” Asian J. Control, vol. 15, no. 5,
pp. 1458–1467, 2013.

[6] J. Chen and R. Kumar, “Stochastic failure prognosability of dis-
crete event systems,” IEEE Trans. Autom. Control, vol. 60, no. 6,
pp. 1570–1581, Jun. 2015.

[7] H. Cho and S. I. Marcus, “On supremal languages of classes of
sublanguages that arise in supervisor synthesis problems with partial
observation,” Math. Control Signal Syst., vol. 2, no. 1, pp. 47–69, 1989.

[8] S. Genc and S. Lafortune, “Predictability of event occurrences in
partially-observed discrete-event systems,” Automatica, vol. 45, no. 2,
pp. 301–311, 2009.

[9] T. Jéron, H. Marchand, S. Genc, and S. Lafortune, “Predictability of
sequence patterns in discrete event systems,” in Proc. 17th IFAC World
Congr., Seoul, Korea, 2008, pp. 537–543.

[10] A. Khoumsi and H. Chakib, “Multi-decision decentralized prognosis
of failures in discrete event systems,” in Proc. Amer. Control Conf.,
St. Louis, MO, USA, 2009, pp. 4974–4981.

[11] A. Khoumsi and H. Chakib, “Conjunctive and disjunctive architectures
for decentralized prognosis of failures in discrete-event systems,” IEEE
Trans. Autom. Sci. Eng., vol. 9, no. 2, pp. 412–417, Apr. 2012.

[12] R. Kumar and S. Takai, “Decentralized prognosis of failures in discrete
event systems,” IEEE Trans. Autom. Control, vol. 55, no. 1, pp. 48–59,
Jan. 2010.

[13] D. Lefebvre, “Fault diagnosis and prognosis with partially observed
Petri nets,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 44, no. 10,
pp. 1413–1424, Oct. 2014.

[14] F. Lin, “Control of networked discrete event systems: Dealing with com-
munication delays and losses,” SIAM J. Control Optim., vol. 52, no. 2,
pp. 1276–1298, 2014.

[15] F. Liu and Z. Dziong, “Reliable decentralized control of fuzzy discrete-
event systems and a test algorithm,” IEEE Trans. Cybern., vol. 43, no. 1,
pp. 321–331, Feb. 2013.

[16] F. Liu and H. Lin, “Reliable supervisory control for general architecture
of decentralized discrete event systems,” Automatica, vol. 46, no. 9,
pp. 1510–1516, 2010.

[17] S. Nakata and S. Takai, “Reliable decentralized failure diagnosis of dis-
crete event systems,” SICE J. Control Meas. Syst. Integr., vol. 6, no. 5,
pp. 353–359, 2013.

[18] F. Nouioua, P. Dague, and L. Ye, “Probabilistic analysis of predictability
in discrete event systems,” in Proc. 25th Int. Workshop Principle Diagn.,
Graz, Austria, 2014.

[19] S.-J. Park, “Robust and nonblocking supervisory control of nondeter-
ministic discrete event systems with communication delay and partial
observation,” Int. J. Control, vol. 85, no. 1, pp. 58–68, 2012.

[20] S.-J. Park and K.-H. Cho, “Supervisory control of discrete event systems
with communication delays and partial observations,” Syst. Control Lett.,
vol. 56, no. 2, pp. 106–112, 2007.

[21] A. Saboori and S. H. Zad, “Robust nonblocking supervisory control
of discrete-event systems under partial observation,” Syst. Control Lett.,
vol. 55, no. 10, pp. 839–848, 2006.

[22] S. Shu and F. Lin, “Decentralized control of networked discrete event
systems with communication delays,” Automatica, vol. 50, no. 8,
pp. 2108–2112, 2014.

[23] S. Takai, “Robust prognosability for a set of partially observed discrete
event systems,” Automatica, vol. 51, pp. 123–130, Jan. 2015.

[24] S. Takai and R. Kumar, “Inference-based decentralized prognosis in
discrete event systems,” IEEE Trans. Autom. Control, vol. 56, no. 1,
pp. 165–171, Jan. 2011.

[25] S. Takai and R. Kumar, “Distributed failure prognosis of discrete event
systems with bounded-delay communications,” IEEE Trans. Autom.
Control, vol. 57, no. 5, pp. 1259–1265, May 2012.

[26] S. Takai and T. Ushio, “Reliable decentralized supervisory control of
discrete event systems,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 30, no. 5, pp. 661–667, Oct. 2000.

[27] S. Takai and T. Ushio, “Reliable decentralized supervisory control
for marked language specifications,” Asian J. Control, vol. 5, no. 1,
pp. 160–167, 2003.

[28] T. Yamamoto and S. Takai, “Reliable decentralized diagnosis of discrete
event systems using the conjunctive architecture,” IEICE Trans. Fund.
Electron. Commun. Comput. Sci., vol. 97, no. 7, pp. 1605–1614, 2014.

[29] L. Ye, P. Dague, and F. Nouioua, “Predictability analysis of distributed
discrete event systems,” in Proc. 52nd Conf. Decis. Control, Firenze,
Italy, 2013, pp. 5009–5015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

