
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 5, MAY 2016 1239

Synthesis of Maximally Permissive Supervisors for
Partially-Observed Discrete-Event Systems

Xiang Yin, Student Member, IEEE, and Stéphane Lafortune, Fellow, IEEE

Abstract—We present new results on the synthesis of safe,
non-blocking, and maximally permissive supervisors for partially
observed discrete event systems. We consider the case where the
legal language is a non-prefix-closed sublanguage of the system
language, i.e., non-blockingness must be ensured in addition to
safety. To solve this problem, we define a new bipartite tran-
sition system, called the Non-blocking All Inclusive Controller
(NB-AIC), that embeds all safe and non-blocking supervisors.
We present an algorithm for the construction of the NB-AIC
and discuss its properties. We obtain the necessary and sufficient
conditions for the solvability of the maximally permissive control
problem. We then provide a synthesis algorithm, based on the
NB-AIC, that constructs a supervisor that is safe, non-blocking
and maximally permissive, if one exists. This is the first algorithm
with such properties.

Index Terms—Discrete-event systems (DES), maximal permis-
siveness, partial observation, supervisory control, synthesis.

I. INTRODUCTION

THE problem under consideration in this paper is that
of control of partially observed Discrete Event Systems

(DES) in the framework of the supervisory control theory
initiated by Ramadge and Wonham [1]. This control problem
for DES arises in the study of automated systems where the
behavior is inherently event-driven, as well as in the study
of discrete abstractions of continuous, hybrid, and/or cyber-
physical systems. Due to the limited actuating and sensing
capabilities in the plant, the DES is partially controlled and
partially observed. Formally, using standard notation [2], the
problem addressed in this paper is the following: Given a plant
modeled by automaton G, whose event set includes uncon-
trollable events and unobservable events, and given a non-
prefix-closed specification language Lm(H) ⊆ Lm(G) where
H is a trim automaton, synthesize a supervisor SP for G
such that Lm(SP /G) ⊆ Lm(H) (the safety specification) and
L(SP /G) = Lm(SP /G) (the non-blocking specification).

Supervisory control of centralized and partially observed
DES was initially studied in [3], [4], in which the necessary
and sufficient conditions for exactly achieving a specification

Manuscript received July 27, 2014; revised November 13, 2014, April 4,
2015, June 5, 2015, and June 29, 2015; accepted July 21, 2015. Date of
publication July 23, 2015; date of current version April 22, 2016. This work
was supported in part by NSF grants CCF-1138860 (Expeditions in Computing
project ExCAPE: Expeditions in Computer Augmented Program Engineering)
and CNS-1446298. Recommended by Associate Editor S. Takai.

The authors are with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
xiangyin@umich.edu; stephane@umich.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2015.2460391

language were given. These are the well-known controllability,
observability, and Lm(G)-closure conditions. When the given
specification language cannot be exactly achieved, one is in-
terested in synthesizing solutions that are not only safe and
non-blocking, but also maximally permissive in the sense that
there does not exist another solution that is strictly larger and
is still safe and non-blocking; in other words, such solutions
are locally maximal. Since observability may not be preserved
under union, no supremal solution exists in general (unless
additional assumptions are made).

Many approaches have been considered in the literature for
synthesizing safe and non-blocking supervisors for partially
observed DES; see, e.g., [5]–[12]. One approach is to find the
supremal controllable normal and Lm(G)-closed sublanguage
of Lm(H), as initially defined in [3], [4]; see also, e.g., [5], [6],
[13] for computational algorithms. However, since normality
is stronger than observability, such a solution may be too
restrictive (even empty). In [7], [8], solutions that are provably
larger than the supremal controllable normal sublanguage are
provided. In [7], the authors identified a class of observable sub-
languages that is invariant under the specifically defined “strict
subautomaton union” operation. In [8], the authors identified
a new language property, called relative observability, that is
stronger than observability, weaker than normality, and pre-
served under the standard union of languages. The authors also
provided an algorithm to compute the supremal controllable
and relative observable sublanguage. The solutions obtained by
the techniques of [7] and [8] are incomparable and neither of
them is maximal in general. Moreover, both techniques may
return empty solutions even when non-empty solutions exist.
The decidability of the problem of synthesizing a non-empty
solution, i.e., a solution that is both safe and non-blocking, was
established in [9]. If the decidability condition holds, in [14],
the authors provided an algorithm that always returns a non-
empty solution; however, the solution obtained is not maximal
in general.

On-line and off-line approaches have been developed to com-
pute maximal controllable and observable solutions when the
non-blockingness requirement is relaxed, i.e., when the spec-
ification is given by a prefix-closed language; see, e.g., [15]–
[17]. However, these approaches cannot be applied to the case
where the specification is described by a non-prefix-closed lan-
guage, since the resulting solutions may be blocking. Besides
these, some other approaches have also been considered in the
literature. In [9], [10], the use of nondeterministic supervisors
was advocated. In [11], [12], game-theoretic approaches were
considered for the synthesis of supervisors. But the frameworks
adopted in these works are different from what we consider in

0018-9286 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1240 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 5, MAY 2016

this paper. To the best of our knowledge, the synthesis of non-
blocking and safe deterministic supervisors that are maximally
permissive for partially observed DES has remained an open
problem, that we solve in this paper.

We present a new algorithm for synthesizing supervisors
for partially observed DES. Our approach is based on the
construction of new finite-state bipartite transition structures,
using suitably defined information states. We start from the
safety specification, by defining a finite bipartite transition
system, called the “All Inclusive Controller” (or AIC hereafter),
which embeds in its structure all safe control decisions. Then
we consider non-blockingness in addition to safety, and define
another finite bipartite transition system that we call the “Non-
Blocking All Inclusive Controller” (or NB-AIC hereafter). The
NB-AIC contains in its transition structure all supervisors that
are safe and deadlock-free. Based on the NB-AIC, we present
a synthesis algorithm that results in a safe, non-blocking and
maximally permissive supervisor. Recall that a supervisor is
non-blocking if it is both deadlock-free and livelock-free.

The reminder of this paper is organized as follows. In
Section II, we revisit some basic terminologies in supervi-
sory control theory and formulate the problem we want to
solve. The main contributions of this paper are presented in
Sections III–VII, and include the following:

• The definition of a new class of bipartite transition sys-
tems that are formulated as game structures between the
supervisor and the system (Section III).

• The characterization of transition structures that represent
all desired supervisors for prefix-closed and non-prefix-
closed specification languages, namely the AIC and NB-
AIC, respectively (Sections IV and V).

• The construction algorithms for the AIC and NB-AIC
(Sections IV and V).

• The necessary and sufficient conditions for the solvability
of the problem of synthesizing safe, non-blocking, and
maximally permissive supervisors under the partial obser-
vation assumption (Section VI).

• An algorithm based on the NB-AIC that returns a solution
to the above problem (if one exists) and the correctness
proof of the proposed algorithm (Section VI).

• An illustrative example of our synthesis algorithm,
for which previous approaches return empty solutions
(Section VII).

Finally, we conclude the paper in Section VIII. In addition,
Appendix A discusses in more detail implementation issues that
arise in the synthesis algorithm of Section VI. The computa-
tional complexity of the synthesis algorithm of Section VI is
analyzed in Appendix B. Preliminary and partial versions of
some of the results in this paper are presented in [18], [19].

II. PROBLEM FORMULATION

A. System Model

We assume basic knowledge of DES and common notations
(see, e.g., [2]). We model a DES as a deterministic finite-state
automaton G = (X,E, f, x0, Xm), where X is the finite set
of states, E is the finite set of events, f : X × E → X is the

partial transition function where f(x, e) = y means that there
is a transition labelled by event e from state x to state y, x0

is the initial state, and Xm is the set of marked states. f is
extended to X × E∗ in the usual way. The behavior generated
by G is described by L(G) = {s ∈ E∗ : f(x0, s)!}, where !
means “is defined”; the marked behavior is Lm(G) = {s ∈
E∗ : f(x0, s) ∈ Xm}. The prefix-closure of a language L is
L = {s ∈ E∗ : (∃t ∈ E∗)[st ∈ L]}; we say that L is prefix-
closed if L = L.

In the supervisory control framework initiated in [1], a super-
visor is imposed on G to achieve some specification by dynam-
ically enabling/disabling events. The event set E is partitioned
into two disjoint subsets: Ec, the subset of controllable events,
and Euc, the subset of uncontrollable events. Since some of the
events may not be observed [3], E is also partitioned into the
subset of observable events, Eo, and the subset of unobservable
events, Euo. The natural projection, P : E∗ → E∗

o is defined by

P (ε) = ε, P (sσ) =

{
P (s)σ if σ ∈ Eo

P (s) if σ ∈ Euo.

We say that a control decision γ ∈ 2E is admissible if Euc ⊆ γ
and define Γ = {γ ∈ 2E : Euc ⊆ γ} as the set of admissible
control decisions. A partial observation supervisor is a func-
tion SP : L(G) → Γ such that ∀s, t ∈ L(G) : P (s) = P (t) ⇒
SP (s) = SP (t). We use the notation SP /G to represent the
controlled system and the language generated by SP /G, de-
noted by L(SP /G), is defined recursively as follows:

i) ε ∈ L(SP /G); and
ii) [s ∈ L(SP /G) ∧ sσ ∈ L(G) ∧ σ ∈ SP (s)]⇔ [sσ ∈

L(SP /G)].
We also define Lm(SP /G) = L(SP /G) ∩ Lm(G).

B. Supervisory Control Under Partial Observation

First, we revisit some common terminology in the DES
literature. Let language K ⊆ Lm(G) be a non-prefix-closed
language that represents the desired (safe and non-blocking)
behavior to be achieved under control. K is said to be: (i)
controllable (w.r.t. G and Euc) if KEuc ∩ L(G) ⊆ K; (ii)
observable (w.r.t. G, Ec and Eo) if for all s ∈ K and σ ∈ Ec

such that sσ ∈ K, P−1P (s)σ ∩ L(G) ⊆ K, where P−1(s) :=
{t ∈ E∗ : P (t) = s}; and (iii) Lm(G)-closed if K ∩ Lm(G) =
K. It has been shown in [3] that these three conditions together
provide the necessary and sufficient conditions for the existence
of a supervisor that exactly achieves the given language K, as
formally stated in the following theorem.

Theorem II.1. (Controllability and Observability Theorem,
[3]): Consider DES G, with Ec and Eo. Consider also K ⊆
Lm(G). There exists a supervisor SP : L(G) → Γ such that
Lm(SP /G) = K and L(SP /G) = K iff

1) K is controllable w.r.t. L(G) and Euc;
2) K is observable w.r.t. L(G), Eo and Ec;
3) K is Lm(G)-closed.
If a given specification language cannot be exactly achieved,

then the synthesis problem asks whether we can find a con-
trollable, observable and Lm(G)-closed sublanguage of the
specification language, and one that is “as large as possible.”



YIN AND LAFORTUNE: SYNTHESIS OF MAXIMALLY PERMISSIVE SUPERVISORS FOR PARTIALLY-OBSERVED DES 1241

Formally, we formulate the Basic Supervisory Control and
Observation Problem: Non-blocking and Maximally Permissive
Case (BSCOP-NBmax) addressed in this paper as follows.

Definition II.1. (BSCOP-NBmax): Given DES G and speci-
fication K ⊆ Lm(G), find a supervisor SP such that

(i) Lm(SP /G) ⊆ K and L(SP /G) = Lm(SP /G);
(ii) There does not exist a supervisor S ′

p satisfying (i) such
that Lm(SP /G) ⊂ Lm(S ′

P /G).

We also define problem BSCOP-NB if (ii) is relaxed, i.e., we
only require SP satisfying (i).

Unlike the fully observed case, in which a supremal solution
always exists, no supremal solution exists for BSCOP-NBmax

since observability is not preserved under union, in general.
Consequently, there may be several incomparable maximal
solutions (w.r.t. set inclusion) for BSCOP-NBmax. To guarantee
the existence of a supremal solution, additional assumptions
are needed. For instance, if Ec ⊆ Eo, then controllability and
observability together imply normality (see, e.g., [2]), which
means that the supremal controllable and normal sublanguage
solves BSCOP-NBmax. However, this assumption is not re-
quired in this paper.

Let K = Lm(H) = L(H) ∩ Lm(G), for some trim (i.e., ac-
cessible and co-accessible) automaton H = (XH , E, fH , xH,0,
XH,m). Hereafter, we assume, without loss of generality, that
H and G satisfy the following properties: (i) H is a sub-
automaton of G (as defined in [2]); (ii) if x, y ∈ XH and
f(x, σ) = y then fH(x, σ) is defined and fH(x, σ) = y. In
words, all states of H are legal and all transitions in G between
legal states are also legal (and thus in H). This assumption is
usually referred to as “H is a strict sub-automaton of G” in
the literature. If the original G and H do not satisfy the above
conditions, the algorithm in [5] (see also the appendix of [17])
can be used to refine both of them and ensure that (i) and (ii)
hold. This algorithm involves taking the product of the original
G with a suitably modified H with a completed transition
function and extracting from it the new G and H automata.
Therefore, the automata obtained are at most of quadratic size
as compared with the original automata. This refinement of
H and G (if needed) will simplify the subsequent analysis.
Namely, we can talk of the legality of states of X rather than of
strings of L(G): a state x ∈ G is legal (safe) iff x ∈ XH .

For later use, we define the following terminology for a
prefix-closed language L ⊆ L(G), given automaton G: (i) L
is deadlock-free (w.r.t. G) if (∀s ∈ L)[δL(s) = ∅ ⇒ f(x0, s) ∈
Xm], where δL(s) := {e ∈ E : se ∈ L}; (ii) L is non-blocking
(w.r.t. G) if L ∩ Lm(G) = L; and (iii) L is safe (w.r.t. K)
if L ⊆ K. By the controllability and observability theorem,
BSCOP-NBmax and the problem of finding a maximal control-
lable, observable, safe and non-blocking sublanguage of K are
equivalent.

Given an automaton G, an execution is a sequence 〈x1, σ1,
. . . , σk−1, xk〉, where xi ∈ X,σi ∈ E and xi+1 = f(xi, σi),
∀i ∈ {1, 2, . . . , k − 1}. We say that an execution forms a cycle
if x1 = xk; we say that a cycle is an elementary cycle if
∀i, j ∈ {1, 2, . . . , k − 1} : i �= j ⇒ xi �= xj . A strongly con-
nected component (SCC) in G is a maximal set of states C ⊆ X
such that ∀x, y ∈ C, ∃s ∈ E∗ : f(x, s) = y; a SCC C is said

to be non-trivial if ∀x, y ∈ C, ∃s ∈ E∗ \ {ε} : f(x, s) = y. A
livelock in G is a non-trivial SCC C such that: (i) C ∩Xm = ∅,
i.e., there is no marked state in it; and (ii) ∀x ∈ C, ∀σ ∈ E :
f(x, σ) ∈ C, i.e., there is no transition defined out of it. We
say that 〈x1, σ1, . . . , σk−1, xk〉 is an elementary livelock cycle
if: (i) it is an elementary cycle; and (ii) there exists a livelock
C, such that {x1, x2, . . . , xk−1} ⊆ C. We say that L ⊆ L(G)
is a livelock language if any automaton generating L contains
a livelock; otherwise, we say that L is livelock-free. Clearly,
L is non-blocking if and only if it is both deadlock-free and
livelock-free.

Finally, we define three operators that will be used in this
paper.

The Unobservable Reach of the subset of states S ⊆ X under
the subset of events γ ⊆ E is given by

URγ(S) :={x ∈ X : ∃u∈S, ∃e∈(Euo ∩ γ)∗ s.t. x=f(u, e)}.
(1)

The Extended Unobservable Reach of the subset of states S ⊆
X under the subset of events γ ⊆ E is given by

UR+
γ (S) := URγ(S) ∪ {x ∈ X :

(∃u ∈ URγ(S))(∃e ∈ (Eo ∩ γ)) s.t. x = f(u, e)}. (2)

The Observable Reach of the subset of states S ⊆ X under
observable event e ∈ Eo is given by

Nexte(S) := {x ∈ X : ∃u ∈ S s.t. x = f(u, e)}. (3)

III. BIPARTITE TRANSITION SYSTEM

A. Bipartite Transition System

We start by defining the general notion of a Bipartite Tran-
sition System (denoted by BTS hereafter). Let an information
state (denoted by IS herafter) be a subset IS ⊆ X of states and
denote by I = 2X the set of all information states.

Definition III.1. (Bipartite Transition System): A bipartite
transition system T w.r.t. G is a 7-tuple

T =
(
QT

Y , Q
T
Z , h

T
Y Z , h

T
ZY , E,Γ, yT0

)
(4)

where
• QT

Y ⊆ I is the set of Y -states;
• QT

Z ⊆ I × Γ is the set of Z-states and I(z) and Γ(z) de-
note, respectively, the information state and the control de-
cision components of a Z-state z, so that z = (I(z),Γ(z));

• hT
Y Z : QT

Y × Γ → QT
Z is the partial transition function

from Y -states to Z-states, which satisfies the following
constraint: for any y ∈ QT

Y , z ∈ QT
Z and γ ∈ Γ, we have

hT
Y Z(y, γ) = z ⇒ [I(z) = URγ(y)] ∧ [Γ(z) = γ] (5)

• hT
ZY : QT

Z × E → QT
Y is the partial transition function

from Z-states to Y -states, which satisfies the following
constraint: for any y ∈ QT

Y , z ∈ QT
Z and e ∈ E, we have

hT
ZY (z, e) = y ⇒ [e ∈ Γ(z) ∩ Eo] ∧ [y = Nexte(I(z))] (6)

• E is the set of events of G;
• Γ is the set of admissible control decisions of G;
• yT0 ∈ QT

Y is the initial Y -state where yT0 = {x0}.



1242 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 5, MAY 2016

Intuitively, a BTS is a “game structure” between the con-
troller and the system. A Y -state is an information state where
control decisions are made (i.e., the controller plays). A Z-state
is an information state augmented with an admissible control
decision, i.e., z = (I(z),Γ(z)), from which observable events
occur (i.e., the system plays). A transition from a Y -state to
a Z-state represents the unobservable reach and “remembers”
the set of enabled events from the Y -state that leads to it.
This means that I(z) is the set of states reachable from some
state in the preceding Y -state through some string of enabled
unobservable events, and that Γ(z) is the control decision made
in the preceding Y -state. A transition from Z-state z to Y -state
y labeled by e ∈ Eo represents an observable reach of G. This
means that y is the set of states reachable from some state of the
information state component of z through enabled observable
event e, according to the definition of the Next function. Finally,
we call a sequence in the form of c1σ1 . . . cnσn, ci ∈ Γ, σi ∈
Eo such that hT

Y Z(y, c1)!, h
T
ZY (h

T
Y Z(y, c1), σ1)!, . . ., a run in

T from y.
The definition of a BTS is based on the plant G. For sim-

plicity, we will omit “with respect to G” in the remainder, if
it is clear which plant G is being considered. Since the control
decision for a Y -state may not be unique (i.e., a Y -state may
have several distinct successor Z-states), given a BTS T , we
define CT (y) := {γ ∈ Γ : hT

Y Z(y, γ)!}, to be the set of control
decisions defined at y ∈ QT

Y .

B. Total Controller and BTS Included Supervisor

We discuss the connection between BTS and supervisors in
this section.

Definition III.1 provides a general definition for a BTS.
However, for the purpose of control, we also want a BTS
to satisfy the two following conditions: (i) for any reachable
Y -state, there exists at least one control decision at that state
and; (ii) for all enabled observable events at a Z-state, their
corresponding transitions should be defined if they exist in G.
This leads to the notion of a complete BTS.

Definition III.2: A BTS T is said to be complete if:

1) (∀y ∈ QT
Y )[CT (y) �= ∅] and;

2) (∀z ∈ QT
Z)(∀e ∈ Γ(z) ∩ Eo)[(∃x ∈ I(z) : f(x, e)!)⇒

hT
ZY (z, e)!].

Note that “disable all (controllable) events” is a valid control
decision, but CT (y) = ∅ means there is no control decision,
which is not valid.

We are now ready to define an important type of BTS called
the Total Controller (denoted by TC herafter), which embeds all
possible behaviors between the controller and the plant.

Definition III.3. (Total Controller): The total controller
for G is defined as the BTS T C(G) = (QTCG

Y , QTCG
Z ,

hTCG
Y Z , hTCG

ZY , E,Γ, yTCG
0 ), where: (i) hTCG

Y Z contains all ad-
missible transitions from Y -states to Z-states, i.e., all admissi-
ble control decisions at the respective states of G; and (ii) hTCG

ZY

contains all admissible transitions from Z-states to Y -states,
i.e., all feasible and enabled observable events at the respective
states of G. Specifically, hTCG

Y Z and hTCG
ZY are obtained by

replacing “⇒” in (5) and (6) in Definition III.1 with “⇔”.

Since T C(G) has transitions defined for all admissible con-
trol decisions after each observation and for all possible event
observations after each control decision, it contains all strings in
L(G) and also every admissible supervisor. As a consequence,
this structure contains all possible supervisors and possible
languages under control, no matter safe or unsafe, or blocking
or non-blocking.

There is a special kind of Z-states in T C(G) that have
no successors. We say that a Z-state z is terminal if (∀x ∈
I(z))(∀e ∈ Eo ∩ Γ(z))[f(x, e) is not defined]. Consequently,
T C(G) can only end up with terminal Z-states.

Definition III.4: Given a supervisor SP and string s ∈
L(SP /G), ISY

SP
(y, s) is defined to be the Y -state that results

from the occurrence of string s, when starting in Y -state y. This
can be computed recursively as follows:

ISY
SP

(y, ε) := y

ISY
SP

(y, sσ)

:=

⎧⎨
⎩

hTCG
ZY (hTCG

Y Z (ISY
SP

(y, s), SP (s)), σ), ifσ∈Eo∩SP (s)

ISY
SP

(y, s), if σ∈Euo∩SP (s)
undefined, otherwise.

For brevity, we write ISY
SP

(yTCG
0 , s) as ISY

SP
(s).

Also, ISZ
SP

(z, s) is defined analogously as

ISZ
SP

(z, ε) := z

ISZ
SP

(z, sσ)

:=

⎧⎨
⎩
hTCG
Y Z (hTCG

ZY (ISZ
SP

(z, s), σ), SP (sσ)), ifσ∈Eo∩SP (s)

ISZ
SP

(z, s), ifσ∈Euo∩SP (s)
undefined, otherwise.

For brevity, we write ISZ
SP

(z0, s) as ISZ
SP

(s), where z0 =

hTCG
Y Z (yTCG

0 , SP (ε)).
In the above definition, we use hTCG

ZY and hTCG
Y Z to evalu-

ate the information state evolution, since T C(G) captures all
possible transitions, hence it captures the control actions of SP .
For simplicity, we will drop the superscript hereafter and write
hTCG
ZY and hTCG

Y Z as hZY and hY Z , respectively.
Now, given a complete BTS, it is possible for us to decode

supervisors from it, as we explain next.
Defintion III.5: Given a complete BTS T , a supervisor SP is

said to be included in T if

(∀s ∈ L(SP /G))
[
SP (s) ∈ CT

(
ISY

SP
(s)

)]
.

S(T ) denotes the set of all supervisors included in T .
Definition III.6: Given a complete BTS T , a language L is

said to be generated by T if (∃SP ∈ S(T ))[L(SP /G) = L].
LTS(T ) denotes the set of all languages generated by T .

Lemma III.1: Given a supervisor SP , for any string s ∈
L(SP /G), we have I(ISZ

SP
(s)) = {v ∈ X : ∃s′ ∈ L(SP /G)

s.t. P (s)= P (s′) ∧ v = f(x0, s
′)}.

Proof: Follows from the relevant definitions, by induction
on the length of s. �

This lemma simply says that the information state reached
by supervisor SP upon the occurrence of string s is only
determined by its projection P (s). Thus, strings that have the
same projection will lead to the same information state.



YIN AND LAFORTUNE: SYNTHESIS OF MAXIMALLY PERMISSIVE SUPERVISORS FOR PARTIALLY-OBSERVED DES 1243

Fig. 1. An example of (NB-)AIC. For G: Ec = {c1, c2}, Eo = {o1, o2} where state 15 is illegal. uc denotes all uncontrollable events. (a) Automaton G.
(b) AIC(G). (c) AICNB(G).

IV. THE ALL INCLUSIVE CONTROLLER

In this section, we restrict our attention to the case of prefix-
closed specifications, i.e., only safety needs to be ensured. We
first define the recursive structure of the All Inclusive Controller
that contains all solutions to the safety control problem. Then
we discuss the properties of the All Inclusive Controller and
provide its construction algorithm.

A. Definition of the AIC

Since any state in an information state reachable in a BTS
is itself reachable from the initial state of G, we say that an
information state i ∈ I violates safety if there exists a state x ∈
i such that x �∈ XH . (Recall that XH is the set of legal states.)
Then, we define the safety function for information state (w.r.t.
XH ) DI : I → {0, 1} by: DI(i) = 1 ⇔ i ⊆ XH . We say that
a supervisor SP maintains safety if L(SP /G) ⊆ L(H).

Theorem IV 1: Supervisor SP maintains safety if and only if
∀s ∈ L(SP /G) : DI(I(IS

Z
SP

(s))) = 1.
Proof: Follows from Lemma III.1. �

The above theorem allows us to transfer the safety control
problem under partial observation to the problem of finding a
subsystem of the total controller in which all reachable states
are safe. To formally describe this transformation, let us first
define the following notions.

Definition IV.1: Given two BTSs T1 = (QT1

Y , QT1

Z , hT1

Y Z ,

hT1

ZY , E,Γ, yT1
0 ) and T2 = (QT2

Y , QT2

Z , hT2

Y Z , h
T2

ZY , E,Γ, yT2
0 ),

we say T1 is a subsystem of T2, denoted by T1 � T2 if QT1

Y ⊆
QT2

Y , QT1

Z ⊆ QT2

Z and for any y ∈ QT1

Y , z ∈ QT1

Z , γ ∈ Γ and e ∈
E, we have that

1) hT1

Y Z(y, γ) = z ⇒ hT2

Y Z(y, γ) = z; and
2) hT1

ZY (z, e) = y ⇒ hT2

ZY (z, e) = y.

We define T1 ∪ T2 =(QT1

Y ∪QT2

Y , QT1

Z ∪QT2

Z , hT1∪T2

Y Z , hT1∪T2

ZY ,

E,Γ, yT1∪T2
0 ) to be the union of T1 and T2 if for any

y ∈ QT1

Y ∪QT2

Y , z ∈ QT1

Z ∪QT2

Z , γ ∈ Γ and e ∈ E, we have
that

1) hT1∪T2

Y Z (y, γ) = z ⇔ ∃i ∈ {1, 2} : hTi

Y Z(y, γ) = z; and
2) hT1∪T2

ZY (z, e) = y ⇔ ∃i ∈ {1, 2} : hTi

ZY (z, e) = y.

We are now ready to define the structure of the All Inclu-
sive Controller that contains all safe solutions to the control
problem.

Definition IV.2. (All Inclusive Controller): The All Inclu-
sive Controller for G, AIC(G) =(QAICG

Y , QAICG
Z , hAICG

Y Z ,

hAICG
ZY , E,Γ, yAICG

0 ), is defined as the largest subsystem of
T C(G) such that

1) AIC(G) is complete;
2) ∀z ∈ QAICG

Z : DI(I(z)) = 1.

By largest subsystem, we mean that for any T � T C(G)
satisfying 1) and 2), we have that T � AIC(G).

Remark 1: In the above definition, the largest subsystem of
the TC is uniquely defined, since by Definition IV.1, the TC
only has a finite number of subsystems and the union of any
two subsystems satisfying the above properties still satisfies
these properties. In the definition, we can also add another
condition that ∀y ∈ QAICG

Y : DI(y) = 1. However, since y ⊆
I(z) whenever z = hY Z(y, γ), the above definition suffices. In
the remainder of this paper, we only consider the reachable
part of the AIC, i.e., we assume that all Y and Z-states
in the AIC are reachable from the initial state of the AIC.
Formally, we assume that for any Y -state y ∈ QAICG

Y (respec-
tively, Z-state z ∈ QAICG

Z ) there exists SP ∈ S(AIC(G)) and
a string s ∈ L(SP /G) such that ISY

SP
(s) = y (respectively,

ISZ
SP

(s) = z).
Example IV.1: Let G be the automaton shown in Fig. 1(a).

The resulting AIC of G is shown in Fig. 1(b) (a formal con-
struction algorithm will be described later). In the diagram of
the AIC, (blue) rectangular states correspond to Y -states and
(yellow) oval states correspond to Z-states. For Y -state {3, 4},
we can make control decision {c1} or {c2}, however, we cannot
make control decision {c1, c2}, since it will unobservably lead
to illegal state 15 before a new event is observed. The same is
true for Y -state {5, 6}.

Remark 2: In Fig. 1(b), at the Y -state y0 = {0}, we can
also make control decision {c1, uc}. However, c1 will never be
executed within its unobservable reach. Formally, we say that a
control decision γ ∈ Γ is irredundant at i ∈ I if (∀e ∈ γ)(∃x ∈
URγ(i))[f(x, e)!]. Hereafter, we only keep irredundant control
decisions in the AIC; this will not affect its properties.

B. Properties of the AIC

The following results show that the AIC structure defined in
the preceding section contains and only contains all solutions
to the safety control problem. Due to space constraints, their
proofs have been omitted and they are available in [20].

Theorem IV.2: There exists a supervisor SP for system G
such that L(SP /G) ⊆ L(H) iff AIC(G) exists.



1244 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 5, MAY 2016

Theorem IV.3: If AIC(G) exists, then

(L = L �= ∅ ∧ L ⊆ L(H) ∧ L is controllable and observable)

⇔ L ∈ LTS(AIC(G))

C. Construction Algorithm

Definition IV.2 provides us with a direct way of constructing
the AIC. One way to proceed is to first build the total controller
TC and then search through the whole (Y and Z) state space
to iteratively prune states that violate the safety condition or
completeness condition. This approach does work, but it is
not the most computationally efficient. Here, we provide an
alternative approach that replaces this whole search by a single
calculation each time we would like to determine the safety of
a particular information state. First, inspired by the technique
used in [21], we define the set Xe ⊆ X called the “extended
specification”. In words, the extended specification is defined
as the set of states that should never be reached because even if
all events in Ec are disabled forever thereafter, there still exists
some sequence of events such that some illegal state will be
reached.

Definition IV.3: The extended specification (w.r.t. the set of
illegal states XH ) Xe ⊆ X is defined by Xe := {x ∈ X : ∃s ∈
E∗

uc s.t. f(x, s) /∈ XH}.
Note that the extended specification can be calculated off-

line all at once or online if so desired (see, e.g., [21]). In
the remainder of this paper, we assume that the extended
specification has already been pre-calculated.

Similarly to the safety function, by using the extended
specification, we define the extended safety function De

I : I →
{0, 1} by De

I(i) = 1 ⇔ i ∩Xe = ∅.
The following theorem shows how the states of the AIC can

be easily determined by using the extended specification. Its
proof is available in [20].

Theorem IV.4: For any Y -state y, suppose that y ∈ QAICG
Y ,

then for any control decision γ ∈ Γ, γ ∈ CAIC(G)(y) if and
only if De

I(UR+
γ (y)) = 1.

Theorem IV.4 provides an easy way to construct the AIC. At
any Y -state, we can determine whether or not taking control
decision γ is safe by verifying whether or not UR+

γ (y) satisfies
the extended specification. This idea is implemented by Algo-
rithm FIND-AIC, in which parameter AIC represents the AIC
we need to construct, with AIC.Y and AIC.Z being its set
of Y and Z states, respectively, and AIC.h being its transition
function. Initially, we need to check whether or not there exists
an uncontrollable string from the initial state to an illegal state.
If not, we know that the AIC exists and we set AIC.Y to
{y0} and then start the depth first search, which is implemented
by the procedure DoDFS. Lines 7 and 8 are used to find
the safe control decisions. This is done by considering each
admissible control decision γ ∈ Γ and determining whether it is
safe or not. For each control decision, we compute its extended
unobservable reach, and determine the value of De

I(UR+
γ (y)).

If the control decision is safe, then we move to the successor
Z-state hY Z(y, γ) and for each such Z-state, we compute all
possible Y -state successors and make a recursive call. This
recursive procedure allows us to traverse the whole reachable

space of Y and Z-states. Since the number of information states
is finite, the algorithm will eventually terminate.

Algorithm 1 AIC ← FIND-AIC(G)

1: If ∃s ∈ E∗
uc : f(x0, s) �∈ XH then

2: return the AIC does not exist
3: end if
4: AIC.Y ← {y0}, AIC.Z ← ∅, and AIC.h ← ∅
5: DoDFS(G, y0, AIC)
6: Procedure DoDFS(G, y,AIC)
7: for all γ ∈ Γ do
8: if De

I(UR+
γ (y)) = 1 then

9: z ← hY Z(y, γ)
10: AIC.h ← AIC.h ∪ {(y, γ, z)}
11: if z �∈ AIC.Z then
12: AIC.Z ← AIC.Z ∪ {z}
13: for all e ∈ γ ∩ Eo do
14: y′ ← Nexte(I(z))
15: AIC.h ← AIC.h ∪ {(z, e, y′)}
16: if y′ �∈ AIC.Y then
17: AIC.Y ← AIC.Y ∪ {y′}
18: DoDFS(G, y′, AIC)
19: end if
20: end for
21: end if
22: end if
23: end for
24: end procedure

Proposition IV.1: The running time of FIND-AIC is of
O(|X‖E|2|X|+|Ec|).

Proof: Algorithm FIND-AIC is implemented by a search
through the space of Y -states, and in the worst case there are
2|X| Y -states. For each Y state encountered, a maximum of
2|Ec| control decisions should be considered. For each control
decision, we need to compute the unobservable reach and the
extended unobservable reach, which can be done together in
O(|X‖E|) time. Checking whether the extended unobservable
reach satisfies the extended specification or not can be done in
time O(|X|). Finally, there are at most |Eo| successors from
z, and we need to take O(|X‖Eo|) time to compute all of
them. Combining the above together, the total running time is
therefore O([|X‖E|+ |X|+ |X‖Eo|]2|X|2|Ec|), which can be
simplified to O(|X‖E|2|X|+|Ec|). �

V. THE NON-BLOCKING ALL INCLUSIVE CONTROLLER

In this section, we tackle the case of non-prefix-closed spec-
ifications. We first define the Non-Blocking AIC (NB-AIC), a
bipartite transition system obtained from the AIC that contains
all safe and non-blocking control policies; then we investigate
its construction and properties.

A. Definition of the NB-AIC

Definition V.1. (Live Decision String): Given a BTS T , for
any Y -state y ∈ QT

Y and state x ∈ y in it, we say that a decision



YIN AND LAFORTUNE: SYNTHESIS OF MAXIMALLY PERMISSIVE SUPERVISORS FOR PARTIALLY-OBSERVED DES 1245

string c1c2 . . . cn, where ci ∈ Γ for i = 1, . . . n, is live for (y, x)
in T if there exists a string s = ξ1σ1ξ2 . . . σn−1ξn, where ξi ∈
(Euo ∩ ci)

∗, σi ∈ Eo ∩ ci, such that f(x, s) ∈ Xm and ∀i <
n : ci+1 ∈ CT (yi), where yi is the unique Y -state following
the run c1σ1 . . . σi−1ciσi in T from y. We say that a Y -state
y is live in T if for all x ∈ y, (y, x) has a live decision string.

Example V.1: Consider the automaton G and its correspond-
ing AIC shown in Fig. 1. {uc}{c2, uc} is a live decision string
for state 1 ∈ {1, 2}, since string o1c2, which leads state 1 to
marked state 8, exists under this decision string.

Intuitively, the liveness property of a Y -state simply says that
given a current information state, for each state in it, we can
always find a sequence of control decisions under which this
state will be able to reach some marked state through some
string. The verification of the liveness property of a Y -state
is a reachability problem in an automaton that is built from
the original BTS by explicitly adding transitions to capture
reachability within states in Z-states. Details can be found in
the Appendix.

The purpose of the above notion of liveness of information
states is to eliminate one source of blocking: clearly, if a
Y -state is not live, then no matter what control decision we take
at that Y -state, we will always be blocked by some state in it.

In the case of Z-states, we introduce a notion of deadlock-
freeness to complement the notion of liveness of Y -states.
Specifically, for a Z-state z, we require that any state x ∈ I(z)
should either have an unobservable path to a marked state or
a path that goes outside of the Z-state; otherwise, it will also
be a source of blocking. This leads to the following definition,
which depends on Z-state z and on G, but not on the BTS that
z is part of.

Definition V.2. (Deadlock-Free Z-State): A Z-state z is said
to be deadlock-free if for all x ∈ I(z) we have

(∃s ∈ (Γ(z) ∩ Euo)
∗)[f(x, s) ∈ Xm] ∨

(∃s ∈ (Γ(z) ∩ Euo)
∗(Γ(z) ∩ Eo))[f(x, s) is defined] (7)

Otherwise, z is said to be a deadlock Z-state.
We are now ready to define the NB-AIC structure, which

contains all safe and non-blocking solutions.
Definition V.3. Non-blocking All Inclusive Controller): The

Non-Blocking All Inclusive Controller for G, AICNB(G) =
(QNBG

Y , QNBG
Z , hNBG

Y Z , hNBG
ZY , E,Γ, yNBG

0 ), is defined as the
largest subsystem of AIC(G) such that

1) AICNB(G) is complete;
2) ∀y ∈ QNBG

Y : y is live;
3) ∀z ∈ QNBG

Z : z is deadlock-free.

In the above definition, the largest non-blocking subsys-
tem of the AIC is uniquely defined, since the union of any
subsystems satisfying the above properties still satisfies these
properties. Similar to the case of the AIC, we also only consider
the reachable part of the NB-AIC hereafter.

Example V.2: Going back to Fig. 1, the NB-AIC for G
is shown in Fig. 1(c). Comparing with its AIC, since all
Y -states in it are live, the deadlock Z-states that are removed
are ({3, 4}, {uc}) and ({5, 6}, {uc}).

B. Properties and Construction Algorithm

By definition, the NB-AIC is also a complete BTS. Thus, we
can talk about the properties of its generated language, which
are given in the following theorem.

Theorem V.1: The language generated by the NB-AIC,
LTS(AICNB(G)), satisfies the following two properties:

1) If L = L ∈ LTS(AICNB(G)), then L is controllable,
observable, safe, and deadlock-free;

2) If L = L is non-empty, controllable, observable, safe, and
non-blocking, then L ∈ LTS(AICNB(G)).

Proof:

1) Since the NB-AIC is a subsystem of the AIC, we know
that LTS(AICNB(G)) ⊆ LTS(AIC(G)). Thus, L is
controllable, observable and safe by Thm. IV.3. For L ∈
LTS(AICNB(G)), there exists SP ∈ S(AICNB(G))
such that L(SP /G) = L. Now, let us assume that L has
a deadlock, which implies that there exists s ∈ L such
that f(x0, s) �∈ Xm and δL(s) = ∅, where δL(s) := {e ∈
E : se ∈ L}. In terms of information state evolution, we
know that f(x0, s) ∈ ISZ

SP
(s). By Def. V.2, this implies

that the Z state ISZ
SP

(s) is a deadlock state, which contra-
dicts the definition of the NB-AIC. Thus, L is deadlock-
free.

2) We prove by contrapositive, i.e., we show that if L �∈
LTS(AICNB(G)) then L cannot cannot simultaneously
be non-empty, controllable, observable, safe, and non-
blocking. Since we know that LTS(AICNB(G)) ⊆
LTS(AIC(G)), there are two cases for L �∈
LTS(AICNB(G)):

Case 1) L �∈ LTS(AIC(G)). By Thm. IV.3, L cannot be
non-empty, controllable, observable and safe at the
same time.

Case 2) L ∈ LTS(AIC(G)) but L �∈ LTS(AICNB(G)).
Since L is generated by the AIC, it is controllable,
observable and safe and there exists SP such that
L(SP /G) = L. We now show that in this case L is
blocking. By Def. V.3, it can be shown by contra-
diction that there exists s ∈ L such that one of the
two following cases holds: (i) ISZ

SP
(s) is a deadlock

Z-state. By Def. V.2, L is blocking; (ii) ISY
SP

(s) is
not live. If y = ISY

SP
(s) is not live, then by Def. V.1,

there exists at least one state in y where no control
decision can be made to lead it to a marked state.
Specifically, (∃t ∈ L(SP /G) : P (t) = P (s))(∀v ∈
E∗ : tv∈ L(SP /G))[f(x0, tv) �∈ Xm]. Thus, L is
blocking. �

Note that for L ∈ LTS(AICNB(G)), L need not be livelock-
free in general. Let us consider the automaton G in Fig. 2(a) and
its corresponding NB-AIC shown in Fig. 2(a). Clearly, (ab)∗ ∈
LTS(AICNB(G)), but it is a livelock language. However, the
above statement is true when G is acyclic, i.e., there is no cycle
in G, since in this case, the deadlock-freeness condition and the
non-blockingness condition are equivalent. Therefore, we have
the following result.



1246 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 5, MAY 2016

Fig. 2. For G : Euo = ∅ and Euc = {b}. (a) Automaton G. (b) The corre-
sponding NB-AIC.

Corollary V.1: If G is acyclic, then L = L is non-
empty, controllable, observable, safe and non-blocking iff L ∈
LTS(AICNB(G)).

Algorithm 2 AICNB(G) ← FIND-NB-AIC(G)

1: A ← FIND-AIC(G)
2: Delete all Z-states in A that are deadlock states
3: while exists Y -state in A that is not live do
4: Delete all Y -states in A that are not live
5: while exists Y -state in A that has no successor do
6: Delete all such Y -states in A and delete all their

predecessor Z-states
7: end while
8: end while
9: if the initial Y -state has been removed then

10: return the NB-AIC does not exist
11: end if
12: AICNB(G) ← Accessible(A)

The construction procedure for the NB-AIC is given by
Algorithm FIND-NB-AIC. The basic idea of the construction
algorithm follows directly from the definition. We need to
keep pruning states from the AIC structure until convergence.
Specifically, there are three kinds of states that we need to
prune:

(i) All Z-state that are deadlock states;
(ii) All Y -states that are not live; and

(iii) All Y or Z-states that violate the definition of complete-
ness (Def. III.2).

In the algorithm, the elimination of (i), (ii) and (iii) are
implemented in line-2, line-4 and line-6, respectively. Note that
for (ii) and (iii), iteration steps are required, since pruning states
may change the liveness or the completeness of the transition
system. However, (i) just needs to be executed once, since the
deadlock property does not depend on T .

Proposition V.1: The running time of FIND-NB-AIC is in
O(|X‖E|22|X|+|Ec|−1).

Proof: The proof is given in the Appendix. �

VI. SYNTHESIS OF MAXIMALLY

PERMISSIVE SUPERVISORS

A. Synthesis Algorithm

We now tackle the synthesis problem for non-prefix-closed
specification languages, i.e., non-blockingness must be ensured
in addition to safety. Formally, we show how to synthesize a
maximal non-blocking supervisor from the NB-AIC.

First, we say that a supervisor SP is information-state-based
(IS-based) if

(∀s, t ∈ L(SP /G))
[
ISY

SP
(s) = ISY

SP
(t) ⇒ SP (s) = SP (t)

]

In other words, an IS-based supervisor takes the same con-
trol decision every time it visits the same information state.
Thus, we can define an IS-based supervisor as SI : I → 2E .
We define SI(AIC(G)) ⊆ S(AIC(G)) as the set of IS-based
supervisors included in the AIC. Clearly, the cardinality of
SI(AIC(G)) is finite.

In the prefix-closed case, once the AIC is built, we can
randomly pick one control decision and fix it at each reachable
information state and this will give us a (IS-based) supervisor
for safety. However, this strategy may not work in the non-
prefix-closed case, since the NB-AIC only guarantees that there
exists a good decision, but arbitrarily choosing one control
decision may return a livelock solution. This phenomenon was
already pointed out by the example in Fig. 2. Moreover, if we
go back to the example in Fig. 2, we find that we cannot remove
any (Y or Z) state from the NB-AIC, otherwise, some safe and
nonblocking solutions will be excluded. This means that the
NB-AIC is already the most “compact” structure that contains
all non-blocking solutions, even if it contains some livelock
solutions. One conjecture is that we can search through the
space of IS-based supervisors, which is finite, for the desired
maximal solution. Unfortunately, an IS-based solution does not
exist in general; an example where this occurs is presented in
Section VII.

The non-existence, in general, of an IS-based supervisor that
is both safe and non-blocking implies immediately that state
space refinement is required if we want to synthesize a solution
from the NB-AIC. Our synthesis algorithm, which is described
formally below, is based on the idea of suitably “unfolding”
the NB-AIC. To begin with, we need to build an IS-based
supervisor (Step 1) and then determine whether or not there
exists a livelock in it (Step 2). If not, then we are done and
return the solution. If yes, then we need to break the livelock
at some point and resolve it by unfolding the NB-AIC at that
point such that a live decision string can be added at the livelock
point (Steps 3 and 4). This will give us a new (non-IS-based)
supervisor. Finally, we need to go back to Step 2 and test again
until the iteration converges (Step 5). However, two questions
arise: (i) Where should we break a livelock? and (ii) How can
we unfold the NB-AIC? In order to answer these two questions,
we first define the concept of “extended BTS” and then we use
this notion to define “unfolded” BTS.

Let Z be the set of integers and N be the set of non-negative
integers. E is called an extended BTS (EBTS) of T if it is a
partial unfolding of a BTS T resulting in sets QE

Y = QT
Y × Z

and QE
Z = QT

Z × Z with corresponding transition functions
hE
Y Z : QE

Y × Γ → QE
Z and hE

ZY : QE
Z × E → QE

Y over the ex-
tended state space, such that the restrictions of hE

Y Z and hE
ZY

to domains QT
Y and QT

Z , respectively, are consistent with hT
Y Z

and hT
ZY whenever hE

Y Z and hE
ZY are defined. Specifically,

hE
Y Z((y, n), γ) (respectively, hE

ZY ((z, n), e)) is of the form
(hT

Y Z(y, γ), δ(y, n, γ)) (respectively, (hT
ZY (z, e), δ(z, n, e))),

where δ : (QT
Y ∪QT

Z)× Z× (Γ ∪ E) → Z is some updating



YIN AND LAFORTUNE: SYNTHESIS OF MAXIMALLY PERMISSIVE SUPERVISORS FOR PARTIALLY-OBSERVED DES 1247

function for the integer component of the state. (The exact form
of δ is left unspecified for the purpose of this general definition.)
Given an EBTS E, its included supervisors and its generated
languages are defined analogously as before for a BTS in
Def. III.5 and Def. III.6, respectively; we will still use the
notations S(E) and LTS(E) to represent the supervisors in-
cluded in E and the languages generated by E, respectively.
Clearly, if E is a complete EBTS of a complete BTS T , then
S(E) ⊆ S(T ) and LTS(E) ⊆ LTS(T ).

The definition of an EBTS only requires that the restriction
of the transition function to domains QT

Y and QT
Z be consistent

with the BTS. However, we also want that the restriction of the
transition function to domain Z satisfy certain rules (namely,
it should “remember” the number of times the current state
has been visited). This leads to the notion of an unfolded
BTS (UBTS), which is a particular type of EBTS defined as
follows. For simplicity, we will write state (y, n) as yn. Given
an extended state xn ∈ QE

Y ∪QE
Z , PreEY (x

n) and PreEZ (x
n)

denote, respectively, the set of Y -states and the set of Z-states
that can reach this state through some runs in E, excluding
itself; also, we call xn a control state if n ∈ N and a transient
state if n ∈ Z \ N.

Definition VI.1: We say that U is an unfolded BTS of a
complete BTS T if it is an EBTS of T , such that:

1) (∀yn ∈ QU
Y )[|CU (y

n)| ≤ 1];
2) (∀zn ∈ QU

Z )(∀e ∈ E)[hZY (z, e)! ⇒ hU
ZY (z

n, e)!];
3) There are no cycles in U ;
4) For any yn ∈ QU

Y , if n ∈ N, then n = |{yñ ∈
PreUY (y

n) : ñ ∈ N}|. Similarly, for any zn ∈ QU
Z ,

if n ∈ N, then n = |{zñ ∈ PreUZ (z
n) : ñ ∈ N}|.

5) The terminal states of U are either (i) terminal Z-states or
(ii) Y -states of the form yn with n ≥ 1. �

For brevity, hereafter, we also write yn
c→U zn

′
for

hU
Y Z(y

n, c) = zn
′

and zn
σ→U yn

′
for hU

ZY (z
n, σ) = yn

′
.

Conditions 1) and 2) together imply that except for Y -states
with no defined control decision, a UBTS will be complete.
Condition 4) says that the integer component of any control
state in U is n if there are n control states in its predecessors that
have the same Y -or Z-state component. By condition 5), any
branch of the UBTS ends up with a repeated control Y -state or
a terminal Z-state. Thus, given a UBTS U , we can merge each
terminal Y -state yn, n ≥ 1 with its predecessor state y0 and de-
note the resulting new EBTS by Ũ . Specifically, Ũ is obtained
by removing states R := {yn ∈ QU

Y : |CU (y
n)| = 0} from U

and for any yn ∈ R, any transition that originally goes to state
yn in U will go to the corresponding state y0 in Ũ . By definition
of a UBTS, Ũ is a complete EBTS. Moreover, we note that the
set of supervisors S(Ũ) included in Ũ is a singleton, since there
is only one control decision at each Y -state in Ũ . Thus, we
call the unique supervisor included in Ũ the supervisor induced
by UBTS U and denote it by SU . Similarly, for any Y -state
y ∈ QŨ

Y , we denote by cŨy the unique control decision defined

at y, i.e., CŨ (y) = {cŨy }. The supervisor SU can be realized by

an automaton AU = (QŨ
Y , E, ξ, q0, Q

Ũ
Y ), where q0 is the initial

Y -state of Ũ and ξ : QŨ
Y × E → QŨ

Y is a partial function defined
by: for any q ∈ QŨ

Y , σ ∈ E, we have (i) ξ(q, σ) = q if σ ∈ cŨy ∩

Fig. 3. Example of Steps 1 and 2. (a) UBTS U0 (without the dashed lines).
(b) AU0

. (c) L(SU0
/G) = L(AU0

×G).

Euo; (ii) ξ(q, σ) = hŨ
ZY (h

Ũ
Y Z(y, c

Ũ
y ), σ) if σ ∈ cŨy ∩ Eo; and

(iii) ξ(q, σ) is undefined if σ �∈ cŨy . Then we can compute the
controlled behavior by L(SU/G) = L(AU ×G), where “×”
denotes the usual product composition operation of automata;
see, e.g., [2] (p. 78).

If L(SU/G) is a livelock language, then there exists an
elementary livelock cycle 〈q1, σ1, . . . , σk−1, qk〉 in AU ×G
such that ∃i ∈ {1, . . . , k − 1} : σi ∈ Eo, since U only con-
tains deadlock-free Z-states. We call such a cycle a criti-
cal elementary livelock cycle (CELC). In our problem, any
CELC in a livelock of AU ×G corresponds to the presence
of some elementary cycle in Ũ . Moreover, since a cycle in
Ũ is obtained by merging some terminal Y -state ym and
its corresponding y0 in U , then for a CELC, there exists
some terminal Y -state in U that leads to it. We call such
a terminal Y -state an entrance Y -state of the CELC. More
specifically, let 〈q1, σ1, . . . , σk−1, qk〉 be a CELC. Note that
qi is in the form of (yni

i , xi). Then, there exists an observ-
able event σi, i ∈ {1, . . . , k − 1} such that qi+1 = (y0i+1, xi+1)

but hU
ZY (h

U
Y Z(y

ni
i , cŨ

y
ni
i

), σi) = ymi+1,m �= 0, where cŨ
y
ni
i

is the

unique control decision defined at yni
i in Ũ . In other words,

ymi+1 is a terminal Y -state of U , which is not in Ũ . Then ymi+1

is an entrance Y -state of the CELC and we call xi+1 ∈ yi+1 a
corresponding state in the entrance Y -state. In Definition V.1,
we introduced the notion of live decision string for a state pair
(y, x), y ∈ QT

Y , x ∈ y in a BTS T . We say that a live decision
string c1c2 . . . cn is locally maximal for (y, x) if there does not
exist another live decision string c′1c

′
2 . . . c

′
n for (y, x) in T such

that ∀i∈{1, 2, . . . , n} : ci⊆c′i and ∃j∈{1, 2, . . . , n} : cj⊂c′j .
Example VI.1: Consider the automaton G shown in Fig. 1.

An example of UBTS is given in Fig. 3(a); it is an unfolding
of AICNB(G). By merging state pairs ({3, 4}0, {3, 4}1) and
({5, 6}0, {5, 6}1) in U0 (connected by the dashed lines), we get
the corresponding EBTS Ũ0. The induced supervisor SU0

is
realized by the automaton AU0

shown in Fig. 3(b). The lan-
guage of the controlled system L(SU0

/G) = L(AU0
×G) is

given in Fig. 3(c). By the properties of the NB-AIC, we know
that the language is controllable, observable, safe, and



1248 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 5, MAY 2016

deadlock-free. However, we see that it is blocking. In AU0
×

G, we see that 〈({3, 4}0, 4), c2, ({3, 4}0, 9),o1, ({1, 2}0, 2), o1,
({3, 4}0, 4)〉 is a CELC, which is due to the presence of the
cycle {3, 4}0 → {1, 2}0 → {3, 4}0 in Ũ0 (we omit the Z-states
in the cycle since they are uniquely determined). Therefore,
{3, 4}1 is an entrance Y -state of this CELC and 4 ∈ {3, 4} is a
corresponding state in it.

We are now ready to state our synthesis algorithm, which
is formally presented in Algorithm NB-SOLU. For the sake of
readability, we decompose Algorithm NB-SOLU into five steps
that are mapped to the corresponding lines in the statement of
the algorithm.

Algorithm 3 SUk
← NB-SOLU(AICNB(G))

1: Set i ← 0, QUi

Y ← {y00},M = 0.
2: EXPAND(Ui)
3: i ← i+ 1, Ui ← Ui−1

4: while L(SUi−1
/G) is a livelock language do

5: find an entrance state yke ∈ QUi

Y for one CELC and a
corresponding state xe ∈ ye that is also in the livelock.

6: Find a locally maximal live decision string c1c2 . . . cn
for (ye, xe) in the NB-AIC.

7: From state yke , augment Ui with run c1σ1 . . . σn−1cn
and the Y and Z-states reachable along its prefixes,
where σj is defined in Def. V.1. Specifically, we augment
Ui with the following transitions:

yke
c1−→Ui

zk1
1

σ1−→Ui
yk2
1 . . .

σn−1−−−→Ui
y
k2n−2

n−1
cn−→Ui

zk2n−1
n

where the values of yj and zj are determined by hZY

and hY Z , respectively, by the definition of an EBTS and
kj = M − j, for any j = 1, . . . , 2n− 1.

8: M ← M − 2n+ 1.
9: EXPAND(Ui)

10: i ← i+ 1, Ui ← Ui−1

11: end while
12: return SUi−1

13: procedure EXPAND(U)
14: while ∃yn ∈ QU

Y such that CU (y
n) = ∅ ∧ n = 0

15: or ∃zn ∈ QU
Z such that

∃σ ∈ Γ(z) ∩ Eo : hZY (z, σ)! ∧ hU
ZY (z

n, σ) is not defined
(8)

do
16: for all yn ∈ QU

Y such that CU (y
n) = ∅ ∧ n = 0 do

17: Find a control decision c ∈ CAICNB(G)(y) in
AICNB(G) such that ∀c′ ∈ CAICNB(G)(y) : c �⊂ c′

18: Augment U with transition: yn
c−→Uz

n′
, where

z = hY Z(y, c) and

n′ =
∣∣{z̃ñ ∈ PreUZ (y

n) : z̃ = z and ñ ≥ 0
}∣∣

19: end for
20: for all zn ∈ QU

Z such that (8) holds do
21: for all σ ∈ Γ(z) ∩ Eo satisfying (8) do

22: Augment U with transition: zn
σ−→Uy

n′
, where

y = hZY (z, σ) and

n′ =
∣∣{ỹñ ∈ PreUY (z

n) : ỹ = y and ñ ≥ 0
}∣∣

23: end for
24: end for
25: end while
26: end procedure

Step 1—Generate an Initial UBTS (Lines 1–2): The goal
of this step is to initially generate an IS-based supervisor via
building a UBTS from the NB-AIC. First, we set U0 to be
the UBTS that only contains the initial state y00 of the NB-
AIC and call procedure EXPAND (lines 13–26). This procedure
expands the initial state and constructs a UBTS by a breadth-
first search in the NB-AIC. First, pick a locally maximal control
decision for y00 ; then, for the Z-state encountered, find all
its Y -state successors and pick one locally maximal control
decision for each of them, and so forth, until: (i) a terminal
Z-state is reached; or (ii) a Y -state yn whose information state
component has already been visited is reached, i.e., n �= 0. Note
that, all the states added by EXPAND are control states, since
the integer components are always greater than or equal to
zero. Since the construction procedure stops once a Y -state is
repeated, the largest index for a Y -state in the UBTS at this
step should be 1 and the UBTS induced supervisor is IS-based.
Note that the language L(SU0

/G) is a maximal language, since
we take locally maximal control decisions in the construction
procedure; however, it may be blocking in general.

Step 2—Detect Livelock (Lines 4–5): The goal of this step
is to detect a livelock (if one is present) and find a state where
it can be properly broken. If L(SUi

/G) is livelock-free, then
we stop the algorithm and return the current UBTS as the
solution. If not, we need to find one CELC causing livelock
and a corresponding entrance Y -state, as defined earlier.

Step 3—Resolve Livelock (Lines 6–7): This step aims to re-
solve the livelock found in Step 2. Specifically, we unfold the
UBTS from an entrance Y -state of the livelock by finding a live
decision string in the NB-AIC. The states added at this step are
transient states and we use a global variable M in Algorithm
NB-SOLU to remember how many transient states we have
added to U . Consequently, all the transient states in U have
different (negative) integer components. Also, to achieve maxi-
mality, all newly added control decisions are locally maximal.

Remark 3: To find such locally maximal live decision
strings, one approach is to first find an arbitrary live string and
then sequentially replace each control decision in it by a larger
one, whenever feasible, from c1 to cn. A formal algorithm for
this construction is given in the Appendix.

Step 4—Complete The UBTS (Line 8): After Step 3, the
resulting transition system may no longer be a UBTS. Thus, we
need to complete Ui as a UBTS such that we can again induce
a supervisor from it. This step is implemented by calling again
the procedure EXPAND, which finds one control decision for
each Y -state that has no successors, and adds all observations



YIN AND LAFORTUNE: SYNTHESIS OF MAXIMALLY PERMISSIVE SUPERVISORS FOR PARTIALLY-OBSERVED DES 1249

Fig. 4. Example of Steps 3, 4 and 5. Note that states in AU1
×G have been renamed for simplicity. (a) Incomplete UBTS U ′

1. (b) UBTS U1. (c) L(SU1
/G) =

L(AU1
×G).

for each Z-state that has some defined observations (i.e., is not
terminal).

Step 5—Iteration: Finally, we need to go back to Step 2 until
the iteration stops, i.e., until all livelocks have been resolved.

Example VI.2: Consider the automaton G and its NB-AIC
from Fig. 1. Consider the UBTS U0 and its induced lan-
guage L(SU0

/G) shown in Fig. 3. We see that U0 is a valid
UBTS generated after Step 1, which ends up with the repeated
Y -states {3, 4}1 and {5, 6}1, but it induces a livelock solution.
Consider the CELC highlighted in Fig. 3 as we have discussed
in Example VI.1. In Step 2, we find that ye = {3, 4}1 is an
entrance Y -state of this livelock and return ({3, 4}1, 4). For
Step 3, one possible choice is to take control decision {c1, uc}
at {3, 4}1, since state 4 will be able to reach marked state 10
via c1. Therefore, a transient Z-state ({3, 4, 7, 10}, {c1, uc})−1

is added and the resulting BTS U ′
1 is shown in Fig. 4(a). How-

ever, in U ′
1, the enabled observable event o1 is not defined at

Z-state ({3, 4, 7, 10}, {c1, uc})−1. Thus, Step 4 will call pro-
cedure EXPAND again to complete the UBTS by adding a new
Y -state {1, 2}1 that can be reached by observing o1 into U ′

1.
Since {1, 2} already exists in the UBTS, we stop the procedure
EXPAND and get U1 shown in Fig. 4(b) and its induced
language L(SU1

/G) is shown Fig. 4(c). Since L(SU1
/G) is

livelock-free, we stop the synthesis procedure and return it
as a maximal controllable, observable, safe, and non-blocking
solution.

Remark 4: In Fig. 3(a), we could also select control decision
{c2, uc} at state {5, 6}0. It can be easily verified that this will
induce a non-blocking and IS-based solution. Thus we can stop
the synthesis at Step 2 and return this solution. However, as
discussed earlier, the above situation may not always hold. This
is why we chose the non-IS-based solution to illustrate all the
steps of Algorithm NB-SOLU.

Remark 5: In the prefix-closed case, since all the states are
marked, only Step 1 is required in Algorithm NB-SOLU. Note
that SU0

is an IS-based supervisor. Therefore, there always
exists at least one IS-based supervisor SI such that L(SI/G)
is a maximal controllable, observable and safe language. More-
over, if Ec ⊆ Eo, then this IS-based supervisor will generate
the unique supremal controllable and observable sublanguage.

Once the AIC is built, such an IS-based supervisor can be
obtained by a simple breadth-first search on the AIC, which
takes time of O(|Eo|2|X|+|Ec|) in the worst case.

B. Correctness of the Synthesis Algorithm

In this section, we show that (i) the synthesis algorithm
presented in the previous section converges in a finite number
of iterations and (ii) the resulting solution is maximal.

In the synthesis steps of Algorithm NB-SOLU, the super-
visor should not only know its current information state, but
it also needs to remember the number of times the current
state has been visited. However, this does not tell us how
much memory we need to realize the supervisor. The following
theorem reveals that the supervisor can be represented in a finite
structure, i.e., the resulting language is regular.

Theorem VI.1: Algorithm NB-SOLU converges in a finite
number of iterations.

Proof: Suppose that x ∈ yn is detected in AUi
×G at

Step 2, where x is a corresponding state of an entrance Y -state
yn, n ≥ 1 and i ≥ 1. This implies that there exists a CELC
〈(y0, x), σ1, . . . , σk, (y

0, x)〉 in AUi
×G. We define the pair

being resolved for the CELC as the last state in the CELC before
the final state (y0, x) such that (i) its first component is y0; and
(ii) it is entered by an observable event. More specifically, we
can write this CELC in the form of

(y0, x)
σ1
1σ

1
2 ...σ

1
k1−−−−−−→(y0, x2)

σ2
1σ

2
2 ...σ

2
k2−−−−−−→(y0, x3)

· · ·
σj
1σ

j
2...σ

j
kj−−−−−−→(y0, xj+1)

σj+1
1 σj+1

2 ...σj+1
kj+1−−−−−−−−−−−→· · ·

σr−1
1 σr−1

2 ...σr−1
kr−1−−−−−−−−−−−→(y0, xr)

σr
1σ

r
2 ...σ

r
kr−−−−−−−→(y0, x) (9)

where σj
kj

∈ Eo, j = 1, . . . , r and (y0, xr) is the pair being re-

solved. Note that, inside of the CELC, cycle 〈y0, . . . , yn−1, y0〉
in AUi

may be involved for r times. Fig. 5 illustrates the notions
of detected and resolved states in the context of the CELC.

In order to prove the theorem, it suffices to prove that any
pair (y0, x), x ∈ y can be resolved at most once in Step 3.



1250 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 5, MAY 2016

Fig. 5. Conceptual illustration of the proof of Theorem VI.1.

To see this, let us first suppose that x ∈ yn was de-
tected in AUi

×G at Step 2, where n ≥ 1 and i ≥ 1. Let
(y0, xr), xr ∈ y be the corresponding pair being resolved.
Note that xr and x need not necessarily be the same state.
Since Step 3 is executed after detecting x ∈ yn, the above
CELC will be broken and a path from x ∈ yn to a marked
state is introduced. Formally, in AUi+1

×G, we know that
f[AUi+1

×G]((y
0, xr), σr

1σ
r
2 . . . σ

r
kr
) = (yn, x) and there exists a

string t ∈ E∗ such that f[AUi+1
×G]((y

0, xr), σr
1σ

r
2 . . . σ

r
kr
t) ∈

Q
Ui+1

Y ×Xm, where f[AUi+1
×G] denotes the transition function

of AUi+1
×G. This path is also illustrated in Fig. 5. In fact, t

can be the corresponding live path for the live decision string
introduced at yn as defined in Def. V.1.

Now, let us assume that after some iteration steps, xr ∈ y0

is resolved again for a CELC in AUi+q
×G, q ≥ 2. This means

that (y0, xr) is in a livelock of AUi+q
×G. Moreover, we have

already shown that there exists a string σr
1σ

r
2 . . . σ

r
kr
t from

(y0, xr) to a marked state in AUi+1
×G. Such a marked state

is also reachable from (y0, xr) in AUi+q
×G, since Ui+q is

unfolded from Ui+1 and any states reachable in Ui+1 are still
reachable in Ui+q . More specifically, such a marked state can
be reached from (y0, xr) via the same string σr

1σ
r
2 . . . σ

r
kr
t as

above. Therefore, (y0, xr) cannot be in any livelock, which
gives us a contradiction. Thus we conclude that any pair
(y, x), x ∈ y can be resolved at most once in Step 3.

Let the set of Y -states of AICNB(G) be denoted by QNBG
Y .

Then,
∑

y∈QNBG
Y

|y| ≤
∑|X|

i=1 i
(|X|

i

)
= |X|2|X|−1 gives an up-

per bound for the number of iterations.
Proposition VI.1: If the NB-AIC has been constructed, then

the running time of Algorithm NB-SOLU is O([|X|32|X| +
|E|]|X|22|X|+|E|).

Proof: The proof is given in the Appendix. �
Suppose that Algorithm NB-SOLU stops after n steps of

iteration and returns UBTS Un; then the induced supervisor
SUn

has the following properties.
Theorem VI.2: L(SUn

/G) is a controllable, observable, safe,
and non-blocking language.

Proof: Follows directly from Theorem V.1 and the
livelock-free stopping condition in Step 2. �

Theorem VI.3: L(SUn
/G) is maximal, i.e.

(
∀S ′ ∈ S

(
AICNB(G)

))
[L(SUn

/G) �⊂ L(S ′/G)] .

Proof: We prove this theorem by contradiction. Assume
that L(SUn

/G) is not maximal, i.e., ∃S ′ ∈ S(AICNB(G))
such that L(SUn

/G) ⊂ L(S ′/G). This implies the following
two facts1:

1) (∀s ∈ L(SUn
/G))[SUn

(s) ⊆ S ′(s)];
2) (∃t ∈ L(SUn

/G))[SUn
(t) ⊂ S ′(t)].

Let us consider the string t ∈ L(SUn
/G) such that SUn

(t) ⊂
S ′(t) and SUn

(t′) = S ′(t′), ∀t′ ∈ {t} \ {t}. Then we know that
ISY

SUn
(t) = ISY

S′(t), and we call this Y -state y. Then, for
the control decision at y in SUn

, i.e., SUn
(t), one of the two

following cases holds:
(i) SUn

(t) is a control decision returned by Step 1 or 4. By
the construction rule, we know that ∀c′ ∈CAICNB(G)(y) :

SUn
(t) �⊂ c′. Since S ′ ∈ S(AICNB(G)), by Def. III.5,

we know that SUn
(t) ⊂ S ′(t) cannot happen.

(ii) SUn
(t) is a control decision returned by Step 3. Suppose

that SUn
(t) is in a live control decision string c1c2 . . . cn

and let w := ξ1σ1ξ2 . . . ξi−1σi−1ξn be the correspond-
ing live path as defined in Def. V.1. We assume, with-
out loss of generality, that SUn

(t) = c1, SUn
(tξ1σ1) =

c2, . . . , SUn
(tξ1σ1ξ2 . . . σn−1) = cn. Consider another

live control decision string c′1c
′
2 . . . c

′
n, where c′i :=

S ′(tξ1σ1ξ2 . . . ξi−1σi−1), 1 ≤ i ≤ n. Such a live con-
trol decision string is well defined since L(SUn

/G) ⊂
L(S ′/G) and tw is also in L(S ′/G). By fact 2) above we
know that ci ⊆ c′i, i ≥ 2. Moreover, we know that c1 ⊂
c′1. Thus, c′1c

′
2 . . . c

′
n is strictly lager than c1c2 . . . cn,

which contradicts the fact that c1c2 . . . cn is locally
maximal.

For each case, we obtain a contradiction. Thus, no more
permissive supervisor exists. �

Remark 6: The intuition behind the above proof is that it is
impossible to construct a supervisor that generates a language
strictly larger than the one obtained by the proposed algorithm,
since we have taken either locally maximal control decisions
[case (i)] or locally maximal control decision strings [case (ii)].
For the first case, it is easy to see that the control decision
SUn

(t) is locally maximal. For the second case, it does not
mean that we cannot find a single control decision c′1 such that
c1 ⊂ c′1. However, if we do so, then c′1c2 . . . cn will not be a live
decision string. The intuition behind this phenomenon is that,
in partially-observed DES, enabling more events at the current
state may result in more conservative decisions in the future.
In other words, the control decision string c1c2 . . . cn is locally
maximal as a whole.

Recall that the NB-AIC exists if there exists a non-empty
solution to the problem under consideration and Algorithm NB-
SOLU always returns a maximal solution in a finite number
of iterations if the NB-AIC exists. Consequently, we have the
following theorem.

Theorem VI.4: BSCOP-NBmax is solvable if and only if
AICNB(G) exists.

Hence, the existence of the NB-AIC provides the solvability
condition for BSCOP-NBmax. This extends the results in [9]
and [14], that can only be applied to BSCOP-NB.

1Without loss of generality, we assume that the supervisors are irredundant.



YIN AND LAFORTUNE: SYNTHESIS OF MAXIMALLY PERMISSIVE SUPERVISORS FOR PARTIALLY-OBSERVED DES 1251

Fig. 6. Example discussed in Section VII.

C. Discussion and Computational Complexity

We have solved the maximally permissive supervisor syn-
thesis problem for both prefix-closed and non-prefix-closed
specification languages. It was shown in [1] that when the plant
can be fully observed, under the assumption that H � G, the
maximal permissive supervisor can be repressed in the form
of S : X → Γ. Analogously, for the partially-observed prefix-
closed specification case, since the information state we defined
captures all the information we need to solve the problem,
the supervisor we synthesized is in the form of SP : I → Γ.
For the non-prefix-closed specification case, we have shown
that the information state is not sufficient anymore to carry all
the information we need for synthesis purposes; in this case,
the “real” information state is the information state originally
defined augmented with an integer that represents the number
of times the current state has been visited. Thus, the maximally
permissive supervisor is in fact in the form of SP : I × Z → Γ.

We have shown in Proposition VI.1 that the worst-case time
complexity of the synthesis algorithm is exponential in both
|X| and |E|. One may ask that whether we can get rid of
such high computational complexity. However, it was shown
in [22] that there is no polynomial algorithm to synthesize a
partial observation supervisor, even if it is known a priori that
such a supervisor exists. Therefore, the exponential complexity
we obtained in the synthesis of maximally permissive safe and
non-blocking supervisors seems to be unavoidable. Such com-
putational complexity is due to the partially observed nature
of the system, and the only way to overcome this is to put
more sensors in the plant. But the motivation for this paper is
that in many cases the designer has no such option and partial
observability is the problem one must tackle.

VII. ILLUSTRATIVE EXAMPLE

We illustrate the synthesis algorithm of Section VI-A, Algo-
rtihm NB-SOLU, by an illustrative example. In particular, this
example shows that: (i) IS-based supervisors that are both safe
and non-blocking may not always exist in general; and (ii) a
maximal solution can still be obtained by using Algorithm NB-
SOLU, even when the algorithms in [7] and [8] return empty
solutions.

System Model: Consider the following guideway problem:
A town is divided into two zones, zone 1 and zone 2, with
single-way streets as shown in Fig. 6. At the top of the zones,
there is a recycling station. Everyday, only one zone will send a

robot (r1 or r2) to clean up the streets. The robot sent by zone 1
can only move counter-clockwise, i.e., move forward or turn
left; the robot sent by zone 2 can only move clockwise.

Control: There are two traffic lights, L1 and L2, close to the
bottom intersection as shown in the figure. The lights control
the robots as follows: When L1 is red, if robot r1 is at point
a, then it must wait until the light turns green; if robot r2 is at
point c, then it can choose to wait there or turn right. The effect
of L2 is analogous.

Sensing: There is a radar around the traffic lights that detects
whether there is a robot in region D, which is in front of each
light, every time unit. However, the radar cannot distinguish
which zone the detected robot belongs to.

Specification: Since all streets are one-way streets, with legal
directions shown in Fig. 6, we do not want movement in the
reverse direction to happen. Without any traffic light, the robot
from zone 1 could possibly violate this specification by entering
zone 2 through the points a, b, c and d. Clearly, if both L1 and
L2 are kept red, then the above specification can be satisfied
trivially. However, in order for the robot to be able to unload
the trash it collected along the streets, we require that the robot
should always be able to enter region E. In summary, the goal
for us is to design a control policy for the traffic lights for one
day’s operation based on the radar information and such that
the above requirements are satisfied.

The above problem can be modeled as a supervisory control
problem under partial observation. First, we use unobservable
and uncontrollable events a1 and a2 to represent the nonde-
terministic initial setting, since we do not know where the
robot starts from. Event o is used to model the event that the
radar detects a robot in region D, which is observable but
not controllable. We use event c1 to represent that there is a
robot that crosses L1 (from the RHS to the LHS or from the
LHS to the RHS); this event is controllable but not observable.
We define c2 analogously for the control effect of L2. Events
b1 and b2 represent that robots r1 and r2 unload their trash,
respectively; these events are unobservable and uncontrollable.
The automaton model G of this system is shown in Fig. 7(a), in
which states 9 and 10 are illegal states.

The corresponding NB-AIC for G is shown in Fig. 7(b).
By applying Algorithm NB-SOLU, we first obtain the initial
UBTS U0 shown in Fig. 7(c), which induces a livelock solution.
Thus, we need to unfold from the entrance Y -state {3,4}, which
results in the UBTS U1 shown in Fig. 7(d). UBTS U1 induces
the controllable, observable, safe, and non-blocking sublan-
guage L(Ũ1/G) shown in Fig. 7(e). Moreover, this language
is maximal.

This example, while simple, has important implications.
First, note that the solution obtained by Algorithm NB-SOLU
is a non-IS-based solution, since it enables c1 when state {3, 4}
is visited for 2k + 1 times and it enables c2 when state {3, 4} is
visited for 2k times, k ∈ N. Moreover, we see that any fixed
control decision at Y -state {3,4} will result in a livelock solu-
tion. This verifies our earlier assertion in Section VI that IS-
based solutions may not exist in general and that the unfolding
steps of Algorithm NB-SOLU are indeed needed. Second,
for this problem, the supremal controllable normal solution
and the solutions obtained by using the methods in [7], [8]



1252 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 5, MAY 2016

Fig. 7. For G: Ec = {c1, c2}, Eo = {o}, and states 9 and 10 are illegal.
(a) Automaton G. (b) The corresponding NB-AIC. (c) UBTS U0. (d) UBTS
U1. (e) L(SU1

/G).

are all empty, even though a solution exists. In general, the
solution obtained by the approach proposed in this paper is
incomparable with those obtained by using the methods in [7],
[8], even though they may not be maximal. How to synthesize a
maximal solution that contains a particular language is the topic
of ongoing research.

VIII. CONCLUSION

We solved the previously open problem of synthesizing a
controllable, observable, and locally maximal sublanguage of a
given non-prefix-closed language. This results in a supervisor
that is safe, non-blocking, and maximally permissive for a
partially observed DES. For this purpose, we first defined the
All Inclusive Controller, a bipartite transition system whose
structure contains all the safe solutions. We then defined the
Non-Blocking All Inclusive Controller, another new bipar-
tite transition system obtained from the AIC that takes non-
blockingness into account in addition to safety. We provided
a synthesis algorithm that uses the NB-AIC to synthesize the
desired maximal, controllable, and observable sublanguage.
Finally, the convergence and maximality of this algorithm were
proved. In the future, we will investigate: (i) extending the NB-
AIC to decentralized systems; and (ii) finding an “optimal”
solution with respect to some cost criterion.

APPENDIX

A. Implementation of the Algorithms

In this section, we discuss implementation issues related to
the construction and synthesis algorithms in the paper. Specifi-
cally, we answer the following two questions.

1) How to verify the liveness property defined in Def. V.1?
2) How to find a local maximal live decision string

c1c2 . . . cn for any state pair (y, x), y ∈ QT
Y , x ∈ y in a

BTS T ?

Fig. 8. Example of Inter-Connected System: The figure shows the correspond-
ing ICS for the automaton and its NB-AIC shown in Fig. 1. The blue dashed
rectangles and yellow dashed rectangles correspond to the Y -states and the
Z-states in the BTS, respectively.

The key to these two problems is to build an automaton that
contains all state connections inside of each Y -or Z-state in the
BTS. We call such an automaton the Inter-Connected System
(ICS) (see Fig. 8).

Definition A.1. (Inter-Connected System): Given a bipar-
tite transition system T (w.r.t. G), its corresponding Inter-
Connected System is defined as the automaton ICST =
(QICST

,ΣICST
, δICST

, qICST

0 , QICST

m ), where

• QICST ⊆ (QT
Y ×X) ∪ (QT

Z ×X) is the set of states de-
fined by

— (y, x) ∈ QICST
if y ∈ QY

T and x ∈ y

— (z, x) ∈ QICST
if z ∈ QZ

T and x ∈ I(z);

• ΣICST
= E ∪ Γ is the set of events;

• δICST
: QICST × Σ → QICST

is the partial transition
function defined by: for any γ ∈ Γ, σ ∈ E

— δICST
((y, x1), γ) = (z, x2) if x1 = x2 and

hT
Y Z(y, γ) = z

— δICST
((z, x1), σ) = (z, x2) if f(x1, σ) = x2 and σ ∈

Γ(z) ∩ Euo

— δICST
((z, x1), σ) = (y, x2) if f(x1, σ) = x2, σ ∈

Γ(z) ∩ Eo and hT
ZY (z, σ) = y

• qICST

0 = ({x0}, x0) is the initial state;
• QICST

m = {(z, x) ∈ QICST
: x ∈ Xm} is the set of

marked states. �
The ICS for an EBTS U is defined analogously.

Given an automaton, we say a state is co-accessible if there
is a string from this state to a marked state and we say an
automaton is co-accessible if all states in it are co-accessible;
see, e.g., [2]. The following result says that to verify the liveness
a Y -state in T it suffices to verify the co-accessibility of its
corresponding states in ICST .

Proposition A.1: Given a BTS T and its Inter-Connected
System ICST , a Y -state y in T is live if and only if for any
state x ∈ y in it, (y, x) ∈ QICST

is co-accessible in ICST .



YIN AND LAFORTUNE: SYNTHESIS OF MAXIMALLY PERMISSIVE SUPERVISORS FOR PARTIALLY-OBSERVED DES 1253

Proof: (⇒) Since the Y -state y is live in T , then
Definition V.1 implies that for any state x ∈ y in it, there
exists a decision string c1c2 . . . cn such that under this decision
string there exists a string s = ξ1σ1ξ2 . . . σn−1ξn, ξi ∈ (Euo ∩
ci)

∗, σi ∈ Eo ∩ ci, such that f(x, s) ∈ Xm. By the definition
of the ICS, such a string w = ciξ1σ1c2 . . . σn−1cnξn also exists
in ICST and δICST

((y, x), w) ∈ QICST

m . Thus, (y, x) is co-
accessible.

(⇐) By construction. Recall that ΣICST
= Eo ∪ Euo ∪ Γ.

Then we first define two natural projections PC : (Eo ∪ Euo ∪
Γ)∗ → Γ∗ and PCO : (Eo ∪ Euo ∪ Γ)∗ → (Eo ∪ Γ)∗, i.e., for
any s ∈ (ΣICST

)∗, PC(s) is of the form c1c2c3 . . . , ci ∈ Γ and
PCO(s) is of the form c1σ1c2σ2 . . . , ci ∈ Γ, σi ∈ Eo.

Since for any x ∈ y, (y, x) is co-accessible in ICST ,
we can find a string t = e1e2 . . . em ∈ (ΣICST

)
∗

such that
δICST

((y, x), t) ∈ QICST

m . By Definition V.1, it is clear that
PC(t) is a live decision string for (y, x). Consequently, y is live
in T . �

Corollary A.1.: Given a BTS T , all Y -states in T are live if
and only ICST is co-accessible.

In the construction algorithm of the NB-AIC, we need to
check whether or not there exists a Y -state in a BTS that
is not live. By Corollary A.1, this suffices to check the co-
accessibility of the ICST . Specifically, we need to first build
ICSAIC(G), the ICS of the AIC; then, for each iteration step,
we check whether or not ICSAIC(G) is co-accessible. If a state
(y, x) ∈ QICSAIC(G)

is not co-accessible, then (i) the Y -state
y in AIC(G) should be removed and; (ii) the set of states
{(y′, x′) ∈ QICSAIC(G)

: y′ = y} should also be removed from
the ICS; we then repeat until the ICS is accessible.

Now we are ready to show how to find a locally maximal live
decision string c1c2 . . . cn for (y, x), as needed in Algorithm
NB-SOLU. In the proof of Proposition A.1, we have already
shown how to find a live decision string for a given (y, x). For
computation simplicity, we can find a shortest live path s in
ICST such that δICST

((y, x), s) ∈ QICST

m and get the shortest
live decision string c1c2 . . . cn = PC(s) and its corresponding
run c1σ1c2σ2 . . . σn−1cn = PCO(s). To find a locally maximal
decision string, our approach is simply to sequentially replace
each single control decision in PC(s) by one that is as large as
possible. Specifically, we start from c1 and see whether or not
we can pick a control decision c′1 in CAICNB(G)(y) such that:
(i) c1 ⊂ c′1 and (ii) c′1c2 . . . cn is also a live decision string. If c′1
satisfies these two conditions, then we replace c1 by c′1, and try
to grow c′1, and so forth, until we cannot find a larger one. Then
we proceed to analyze c2, c3, . . . by the same manner. The only
difference is that when we try to replace ci by c′i, we just need
to consider the existence of the decision string c′ici+1 . . . cn and
do not need to consider those that have already been grown to
be maximal (namely, c1 to ci−1). This procedure is formally
described by Algorithm L-MAX.

Algorithm 4 c1c2 . . . cn←L-MAX(y,c1σ1c2σ2 . . . σn−1cn)

1: i ← 1, y1 ← y
2: while i ≤ n do
3: for all c′ ∈ CAICNB(G)(yi) do

4: if ci ⊂ c′ and the run c′σici+1σi+1 . . . σn−1cn is
defined at yi in the NB-AIC then

5: ci ← c′

6: end if
7: end for
8: yi+1 ← hZY (hY Z(yi, ci), σi)
9: i ← i+ 1

10: end while

B. Complexity Analysis

Proof of Proposition V.1.:
Proof: First, we need to build AIC(G), which can be

done in O(|X||E|2|X|+|Ec|) as discussed earlier. For each
Z-state in AIC(G), checking whether it is deadlock-free
can be done in O(|X||E|). Thus, line 2 in the algorithm
can be done in O(|X||E|2|X|+|Ec|). As discussed in
Appendix A, before starting the iteration, we need to build
ICSAIC(G), which has

∑
y∈QAICG

Y
|y|+

∑
z∈QAICG

z
|I(z)| ≤

(1 + 2|Ec|)
∑|X|

i=1 i
(|X|

i

)
= (1 + 2|Ec|)|X|2|X|−1 number of

states and 2|Ec| ∑
y∈QAICG

Y
|y|+ |E|

∑
z∈QAICG

z
|I(z)| ≤

(2|Ec|+2|Ec||E|)|X|2|X|−1 number of transitions; we
denote these upper bounds by n1 and n2, respectively.
Thus, the construction of ICSAIC(G) can be done in
O(|X||E|2|X|+|Ec|−1).

Since we need to remove at least one Y -state for each
iteration step, the whole iteration procedure will execute at
most |QAICG

Y | number of times, which is bounded by 2|X|. For
each iteration step, by Corollary A.1, we need to verify the co-
accessability of ICSAIC(G), which can be done in O(n1 + n2);
then we search through the state space of QAICG

Y and remove
the Y -states that have no successors and the corresponding
states in the ICS, which is still bounded by O(n1 + n2). Thus,
the total complexity for the construction of the NB-AIC is
O(|X||E|22|X|+|Ec|−1). �

Proof of Proposition VI.1:
Proof: First, in Algorithm 3, the EBTS Ũi contains

at most |X|222|X| Y -states and the same number of
Z-states. Therefore, in the ICS ICSŨi , there are at most n′

1 :=
|X|322|X|+1 states and n′

2 := |X|322|X|+|E|+1 transitions. The
above n′

1 and n′
2 are estimated based on the fact that the largest

superscript of any control Y -state y is |y| and for each iteration
we introduce at most |X|2|X| transient Y -states. Now we are
ready to analyze the complexity of the synthesis algorithm.

First, let us consider the complexity of each single iteration
step (Step 2–4):

• Step 2 is a livelock detection problem in the ICS of Ũi,
which can be done in O(n′

1 + n′
2).

• Step 3 involves two problems:
1) a shortest path search problem in the ICS of Ũi,

which requires O(n′
1 + n′

2) and
2) the problem of growing this path to be maximal.

For this problem, since such path has a length
N = |X|2|X|+1, in the worst case, then it requires
a complexity of O(N2|Ec| + (N − 2)2|Ec| + · · ·+
2|Ec|)= O(((N + 1)2/4)2|Ec|).



1254 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 5, MAY 2016

• Step 4 requires calling the procedure EXPAND, which can
be done in O(|Eo|2|X|+|Ec| + |Eo||X|2|X|).

Thus, the complexity of a single iteration step is of
O([|X|32|X| + |E|]2|X|+|E|).

In the convergence proof of Algorithm NB-SOLU, we have
already shown that |X|2|X|−1 provides an upper bound for the
number of iterations. Combining this with the above results,
we get that the total complexity of Algorithm NB-SOLU is
O([|X|32|X| + |E|]|X|22|X|+|E|). �

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for useful comments on improving this paper and pointing out
a mistake in an earlier version of the proof of Theorem VI.1.

REFERENCES

[1] P. Ramadge and W. Wonham, “Supervisory control of a class of discrete
event processes,” SIAM J. Cont. Opt., vol. 25, no. 1, pp. 206–230, 1987.

[2] C. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
2nd ed. New York: Springer, 2008.

[3] F. Lin and W. Wonham, “On observability of discrete-event systems,”
Inform. Sci., vol. 44, no. 3, pp. 173–198, 1988.

[4] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya, “Supervisory control
of discrete-event processes with partial observations,” IEEE Trans. Autom.
Control, vol. 33, no. 3, pp. 249–260, 1988.

[5] H. Cho and S. Marcus, “On supremal languages of classes of sublan-
guages that arise in supervisor synthesis problems with partial observa-
tion,” Math. Control Sig. Syst., vol. 2, no. 1, pp. 47–69, 1989.

[6] R. Brandt, V. Garg, R. Kumar, F. Lin, S. Marcus, and W. Wonham, “For-
mulas for calculating supremal controllable and normal sublanguages,”
Syst. Control Lett., vol. 15, no. 2, pp. 111–117, 1990.

[7] S. Takai and T. Ushio, “Effective computation of an Lm(G)-closed,
controllable, observable sublanguage arising in supervisory control,” Syst.
Control Lett., vol. 49, no. 3, pp. 191–200, 2003.

[8] K. Cai, R. Zhang, and W. Wonham, “Relative observability of discrete-
event systems and its supremal sublanguages,” IEEE Trans. Autom. Con-
trol, vol. 60, no. 3, pp. 659–670, 2015.

[9] K. Inan, “Nondeterministic supervision under partial observations,” in
Proc. 11th Int. Conf. Anal. Optim. Syst.: Discrete Event Syst., 1994,
pp. 39–48.

[10] R. Kumar, S. Jiang, C. Zhou, and W. Qiu, “Polynomial synthesis of super-
visor for partially observed discrete-event systems by allowing nondeter-
minism in control,” IEEE Trans. Autom. Control, vol. 50, no. 4, pp. 463–
475, 2005.

[11] A. Arnold, A. Vincent, and I. Walukiewicz, “Games for synthesis of
controllers with partial observation,” Theor. Comp. Sci., vol. 303, no. 1,
pp. 7–34, 2003.

[12] K. Chatterjee, L. Doyen, T. Henzinger, and J.-F. Raskin, “Algorithms for
omega-regular games with imperfect information,” in Computer Science
Logic. New York: Springer, 2006, pp. 287–302.

[13] J. Komenda and J. van Schuppen, “Control of discrete-event systems with
partial observations using coalgebra and coinduction,” Discrete Event
Dyn. Syst.: Theory Appl., vol. 15, no. 3, pp. 257–315, 2005.

[14] T.-S. Yoo and S. Lafortune, “Solvability of centralized supervisory con-
trol under partial observation,” Discrete Event Dyn. Syst.: Theory Appl.,
vol. 16, no. 4, pp. 527–553, 2006.

[15] J. Fa, X. Yang, and Y. Zheng, “Formulas for a class of controllable and
observable sublanguages larger than the supremal controllable and normal
sublanguage,” Sys. Control Lett., vol. 20, no. 1, pp. 11–18, 1993.

[16] M. Heymann and F. Lin, “On-line control of partially observed discrete
event systems,” Discrete Event Dyn. Syst.: Theory Appl., vol. 4, no. 3,
pp. 221–236, 1994.

[17] N. Ben Hadj-Alouane, S. Lafortune, and F. Lin, “Centralized and dis-
tributed algorithms for on-line synthesis of maximal control policies under
partial observation,” Discrete Event Dyn. Syst.: Theory Appl., vol. 6, no. 4,
pp. 379–427, 1996.

[18] X. Yin and S. Lafortune, “A general approach for synthesis of supervisors
for partially-observed discrete-event systems,” in Proc. 19th IFAC World
Congress, 2014, pp. 2422–2428.

[19] X. Yin and S. Lafortune, “Synthesis of maximally permissive non-
blocking supervisors for partially observed discrete event systems,” in
Proc. 53rd IEEE Conf. Decision Control, 2014, pp. 5156–5162.

[20] X. Yin and S. Lafortune, “Supplement material for the paper ‘Synthe-
sis of maximally permissive supervisors for partially-observed discrete-
event systems’.” [Online]. Available: http://www-personal.umich.edu/
xiangyin/TACsup.pdf

[21] N. Ben Hadj-Alouane, S. Lafortune, and F. Lin, “Variable lookahead
supervisory control with state information,” IEEE Trans. Autom. Control,
vol. 39, no. 12, pp. 2398–2410, 1994.

[22] J. Tsitsiklis, “On the control of discrete-event dynamical systems,” Math.
Control, Signals Syst., vol. 2, no. 2, pp. 95–107, 1989.

Xiang Yin (S’14) was born in Anhui, China, in
1991. He received the B.Eng degree in electrical
engineering from Zhejiang University, Hangzhou,
China, in 2012 and the M.S. degree in electrical
engineering from the University of Michigan, Ann
Arbor, in 2013, where he is currently pursuing the
Ph.D degree.

His research interests include supervisory control
of discrete-event systems, model-based fault diagno-
sis, formal methods, game theory and their applica-
tions to cyber and cyber-physical systems.

Stéphane Lafortune (F’99) received the B.Eng
degree from Ecole Polytechnique de Montréal,
Montréal, QC, Canada, in 1980, the M.Eng degree
from McGill University, Montréal, in 1982, and the
Ph.D degree from the University of California at
Berkeley, in 1986, all in electrical engineering.

Since September 1986, he has been with the
University of Michigan, Ann Arbor, where he is
a Professor of electrical engineering and computer
science. He is the Lead Developer of the software
package UMDES and co-developer of DESUMA.

He co-authored he textbook Introduction to Discrete Event Systems—Second
Edition (Springer, 2008). He is Editor-in-Chief of the Journal of Discrete
Event Dynamic Systems: Theory and Applications. His research interests are
in discrete event systems and include multiple problem domains: modeling,
diagnosis, control, optimization, and applications to computer and software
systems.

Dr. Lafortune received the Presidential Young Investigator Award from the
National Science Foundation in 1990 and the George S. Axelby Outstanding
Paper Award from the IEEE Control Systems Society, in 1994 and 2001,
respectively.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


