
2140 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 8, AUGUST 2016

A Uniform Approach for Synthesizing
Property-Enforcing Supervisors for

Partially-Observed Discrete-Event Systems
Xiang Yin, Student Member, IEEE, and Stéphane Lafortune, Fellow, IEEE

Abstract—The problem under consideration in this paper is
that of enforcement by supervisory control of a given property on
a partially-observed discrete-event system. We present a general
methodology that is applicable to a large class of properties pre-
viously studied (individually) in the literature. These properties
include, but are not restricted to, safety, diagnosability, opacity,
detectability, anonymity and attractability. When the given sys-
tem does not satisfy the considered property, the objective is to
synthesize a supervisor that restricts the system’s behavior and
provably enforces the given property; moreover, it is required that
this supervisor be maximally permissive. We consider the general
case where the system’s events are partitioned into observable
and unobservable events, and controllable and uncontrollable
events, and we do not make any assumptions about these two
partitions; in particular, we do not assume that all controllable
events are observable. Our uniform approach first maps the con-
sidered property to a suitably-defined information state for the
partially-observed system and then develops a supervisor syn-
thesis methodology based on a finite bipartite transition system
that embeds all reachable information states and all admissible
supervisory control strategies. This transition system is called the
All Enforcement Structure (or AES). We present an algorithm
for the construction of the AES and discuss its properties. Then
we use the AES to develop a synthesis algorithm that constructs
a supervisor that is provably property enforcing and maximally
permissive. We illustrate the application of our uniform approach
to the enforcement of the above-mentioned properties.

Index Terms— Discrete event systems (DES), partial observa-
tion, property enforcement, supervisory control.

I. INTRODUCTION

V ERIFICATION and synthesis are two important research
issues in the study of Discrete Event Systems (DES). In

large complex automated systems, we are first interested in
verifying whether or not the given system satisfies a certain
property of interest; when the answer is negative, we wish

Manuscript received August 6, 2015; accepted September 21, 2015. Date
of publication October 1, 2015; date of current version July 22, 2016. This
work was partially supported by the National Science Foundation (NSF)
grants CCF-1138860 (Expeditions in Computing project ExCAPE: Expeditions
in Computer Augmented Program Engineering), CNS-1421122 and CNS-
1446298, and by the TerraSwarm Research Center, one of six centers supported
by the STARnet phase of the Focus Center Research Program (FCRP) a
Semiconductor Research Corporation program sponsored by MARCO and
DARPA.

The authors are with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
xiangyin@umich.edu; stephane@umich.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2015.2484359

to synthesize a supervisor or controller that provably enforces
the property by restricting the system behavior in a manner
that maintains maximal permissiveness. In many applications,
the system of interest is partially observed due to the limited
sensing capabilities. In this paper, we are concerned with the
the problem of synthesizing a partial observation supervisor
for a DES in order to enforce a certain property on its set of
behaviors.

In the context of DES, many properties have been studied.
In the standard supervisory control problem [1], the properties
under consideration are safety and non-blockingness: safety
requires that the system should only execute legal behaviors
(modeled in terms of a regular language); non-blockingness
requires that the system should always be able to eventually
achieve one in a set of desired behaviors. In [2], the property
of diagnosability was defined and studied. Diagnosability is
related to the problem of fault diagnosis and isolation in au-
tomated systems and it requires that any type of fault event be
diagnosed unambiguously within a bounded delay. In [3] and
[4], a confidentiality property for partially-observed DES called
opacity was studied. Opacity captures the plausible deniability
of the system’s “secret” in the presence of an outside observer
that is potentially malicious. Anonymity is a type of opacity that
is of interest in the study of privacy. Several other properties
have been considered in the DES literature to capture different
requirements on the behavior of the system; among them we
mention detectability [5], [6] and attractability [7]–[9]. In the
computer science literature on verification and reactive synthe-
sis, linear temporal logic or branching time logic are also used
to describe desired properties of systems; see, e.g., [10].

When a system does not satisfy a given property of in-
terest, one is interested in enforcing the property via some
enforcement mechanism. One of the most commonly-used
enforcement mechanisms is to restrict the system behavior by
supervisory control. This approach has been extensively studied
in the context of DES since the the pioneering work of Ramadge
and Wonham [1]. In this setting, the control problem is to
synthesize a supervisor that prevents behaviors that violate the
property from occurring in the controlled system. A constraint
of that synthesis problem is for the supervisor to remain max-
imally permissive while enforcing the property; such maximal
permissiveness is only possible in a local sense, in general, for
partially observed DES.

Different approaches have been proposed to synthesize su-
pervisors for different properties. In the standard supervisory
control problem, the properties to be enforced are safety and

0018-9286 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto: xiangyin@umich.edu
mailto: stephane@umich.edu

YIN AND LAFORTUNE: UNIFORM APPROACH FOR SYNTHESIZING PROPERTY-ENFORCING SUPERVISORS FOR PARTIALLY-OBSERVED DES 2141

TABLE I
COMPARISON BETWEEN THE PROPOSED UNIFORM APPROACH AND PREVIOUS APPROACHES

non-blockingness. This problem was solved in [1] in the case
of full observation (e.g., no unobservable events). In the par-
tial observation setting, different solutions methodologies were
proposed; see, e.g., the following original references and books
[11], [12], [22]–[26]. In [20], an integrated approach to control
and diagnosis was studied. Specifically, the authors presented
an approach for designing a maximally permissive supervisor
that enforces diagnosability. This problem is also referred to
as the active diagnosis problem. Several approaches have also
been proposed in the literature for enforcing opacity of a given
system that is not opaque at the outset; see, e.g., [16]–[19],
[27], [28]. In this context, the control problem is to synthesize
a partial-observation supervisor that prevents behaviors that
reveal the secret from occurring in the controlled system. In
other words, the objective for the opacity-enforcing supervisor
is to hide the system’s secret in the presence of the external
intruder. In [21], the author studied the problem of synthesizing
a supervisor that enforces detectability. The enforcement of
attractability was studied in [7] and [8] for the fully-observed
case and more recently in [9] under the partial observation
assumption.

While there is a wide literature on the enforcement of prop-
erties of DES using supervisory control, several open prob-
lems remain. First, except for the standard supervisor control
problem under partial observation, all other works assume that
Σc ⊆ Σo, where Σc and Σo are the sets of events that can be
controlled and observed by the supervisor, respectively. In other
words, the solutions to these property enforcement problems
are only available under the assumption that all controllable
events are observable. Second, all of the existing literature
deals with different property-enforcing problems separately,
i.e., each enforcement technique developed is only applicable
to a specific property. Moreover, the enforcement of some
properties, such as anonymity, has not yet been addressed in
the literature.

In this paper, we propose a uniform approach that is applica-
ble to the enforcement, by supervisory control, of a large class
of properties that can be expressed in terms of suitably-defined
information states. We refer to such properties as information-
state-based (or IS-based) properties. Roughly speaking, an
IS-based property is a property that only depends on the current
local information of the system, as available to the supervisor,
and does not explicitly depend on the future behavior of the
system. The approach that we develop to tackle this problem
is significantly different from the previous approaches in the
literature, which are also concerned with property enforcement
by supervisory control. Specifically, our approach is based on
the construction of a finite information structure called the All
Enforcement Structure and abbreviated as AES. The AES is a

game structure between the supervisor and the “environment”
(aka system). By construction, the AES embeds in its structure
all property-enforcing supervisors. Therefore, it can serve as
the basis for solving the synthesis problem. The AES was
inspired by works in [29] and [30] for dynamic sensor activation
problems and by our recent work in [15], [28], [31], and [32],
which solves the standard safety supervisory control problem
and the opacity enforcement problem by using the same type
of transition system capturing the possible moves of the system
and the set of admissible supervisors. Note that the control prob-
lem considered in this paper and the sensor activation prob-
lem considered in [29] and [30] are incomparable. Activating/
deactivating sensors can only affect knowledge about the system,
whereas control actions can affect both knowledge about the
system and actual behavior of the system. Consequently, some
properties that can be enforced by control may not be en-
forceable by sensor activation, e.g., safety or attractability,
since sensor activations cannot change the actual behavior of
the system.

In this paper, we generalize the methodologies in [15] and
[28] and develop a single uniform solution methodology that
is applicable not only to safety and opacity, but to any property
that can be expressed as an IS-based property. This includes, but
is not restricted to, safety, diagnosability, opacity, detectability,
anonymity and attractability. There are properties that cannot be
formulated as IS-based properties; the prime example is non-
blockingness. In Table I, we compare our proposed approach
with previous work. To the best of our knowledge, the problem
of synthesizing a maximally permissive supervisor that en-
forces anonymity has not yet been considered in the literature;
this property can be enforced by our general methodology.
Moreover, we relax the assumption made by previous works
that all controllable events should be observable. We show
that, in this more general setting, uniqueness of a maximally
permissive solution is lost. Hence, our focus is on the synthesis
of solutions that are provably (locally) maximally permissive.

This paper is organized as follows. In Section II, we present
the model of the system to be analyzed. In Section III, we for-
mulate the information-state-based property enforcement prob-
lem that we solve in this paper. In Section IV, we define a class
of bipartite transition systems that is used for solving the prop-
erty enforcement problem. In Section V, we define the structure
called AES, the key notion for the approach investigated in
this paper. We then present a general-purpose synthesis algo-
rithm that returns a maximally-permissive partial-observation
supervisor based on the AES in Section VI. In Section VII, we
show how the proposed uniform approach can be applied to
enforce different specific properties. Finally, we conclude the
paper in Section VIII.

2142 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 8, AUGUST 2016

II. PRELIMINARY

Let Σ be a finite set of events and denote by Σ∗ the set of all
finite strings over Σ, including the empty string ε. A language
L ⊆ Σ∗ is a subset of Σ∗. The prefix closure of language L
is the set L = {t ∈ Σ∗ : ∃u ∈ Σ∗ s.t. tu ∈ L}. We say that a
language is prefix-closed if L = L. Given languageL and string
s ∈ L, we denote the active (event) set at s in L by ΔL(s) =
{σ ∈ Σ : sσ ∈ L} and use L/s = {t ∈ Σ∗ : st ∈ L} to denote
the set of continuations of s in L. For any σ ∈ Σ, s ∈ Σ∗, we
use σ ∈ s to denote that σ occurs at least once in s.

The DES of interest is modeled as a deterministic finite-
state automaton G = (X,Σ, δ, x0), where X is the finite set
of states, Σ is the finite set of events, δ : X × Σ → X is the
partial transition function, where δ(x, σ) = y means that there
is a transition labeled by event σ from state x to state y, and
x0 ∈ X is the initial state. The transition function δ is extended
to X × Σ∗ in the usual manner (see, e.g., [23]). For brevity, we
write δ(x0, s) as δ(s). The language generated by G is defined
by L(G) := {s ∈ Σ∗ : δ(x0, s)!}, where ! means “is defined.”

In the framework of supervisory control [1], the system G
is controlled by a supervisor that dynamically enables/disables
events of the system such that some specification is provably
achieved. The event set Σ is partitioned into two disjoint
subsets: Σ = Σc∪̇Σuc, where Σc is the set of controllable
events and Σuc is the set of uncontrollable events. We say that
a control decision γ ∈ 2Σ is admissible if Σuc ⊆ γ, namely,
uncontrollable events can never be disabled. We define Γ =
{γ ∈ 2Σ : Σuc ⊆ γ} as the set of admissible control decisions.
When the system is partially observed [11], [12], Σ is also
partitioned into two disjoint sets: Σ = Σo∪̇Σuo, where Σo is
the set of observable events and Σuo is the set of unobservable
events. The natural projection P : Σ∗ → Σ∗

o is defined by

P (ε) = ε and P (sσ) =

{
P (s)σ if σ ∈ Σo

P (s) if σ ∈ Σuo.
(1)

The inverse projection P−1 : Σ∗
o → 2Σ

∗
is defined by

P−1(t) := {s ∈ Σ∗ : P (s) = t}. Since a supervisor can only
make decisions based on its observations, a partial-observation
supervisor is a function SP : P (L(G)) → Γ. We use the nota-
tion SP /G to represent the controlled system and the language
generated by SP /G, denoted by L(SP /G), is defined recur-
sively in the usual manner (see, e.g., [23]).

Given a prefix-closed language K = K , we say that K
is controllable (w.r.t. G and Σc) if (∀ s ∈ K,σ ∈ Σuc)(sσ ∈
L(G) ⇒ sσ ∈ K); we say that K is observable (w.r.t. G, Σc

and Σo) if (∀ s, s′ ∈ K,σ ∈ Σc)(P (s) = P (s′) ∧ sσ ∈ K ∧
s′σ ∈ L(G) ⇒ s′σ ∈ K); we say that K is normal (w.r.t. G
and Σo) if K = P−1[P (K)] ∩ L(G). It is well known that
there exists a supervisor SP such that L(SP /G) = K if and
only if K is controllable and observable [11], [12]. In general,
observability is not preserved under union, unless additional
assumptions are made. For instance, it was shown in [33]
that if Σc ⊆ Σo, then controllability and observability together
imply normality, which is preserved under union. However, this
assumption is not required in this paper.

We define several operators that will be used in this paper.
The set of all possible states in G reachable from the initial state
x0 via some string in sublanguage L ⊆ L(G) with the same
projection as s ∈ L, is given by

RG(s, L) :={x ∈ X : ∃t ∈ L s.t. P (t)=P (s) ∧ x=δ(x0, t)}.
(2)

The unobservable reach of the subset of states S ⊆ X under
the subset of events γ ⊆ Σ is given by

URγ(S) := {x ∈ X : (∃u ∈ S)

(∃e ∈ (Σuo ∩ γ)∗) s.t. x = δ(u, e)} . (3)

The observable reach of the subset of states S ⊆ X under
observable event e ∈ Σo is given by

Nexte(S) := {x ∈ X : ∃u ∈ S s.t. x = δ(u, e)} . (4)

III. PROBLEM FORMULATION

In this section, we define the class of information-state-based
properties and formulate the Property Enforcement Problem
that we solve in this paper.

In the framework of the supervisory control theory initi-
ated by Ramadge and Wonham [1], the supervisor restricts
the behavior of the system such that the controlled system is
safe and non-blocking. In this paper, we do not consider the
non-blockingness property; this is why the definition of G in
Section II did not include a set of “marked” states. Instead,
we consider the (weaker) liveness property. Liveness is an
important property in many cyber and cyber-physical systems,
e.g., software systems [34] and flexible manufacturing systems
[35]. Formally, we say that a language L is live if for any
s ∈ L, we have ΔL(s) = ∅. We say that system G is live if its
generated language L(G) is live. Since the definitions of many
properties, e.g., diagnosability and detectability, are based on
the assumption that the system under consideration is live,
hereafter, we assume that G is live and we must ensure that the
controlled system is also live. The liveness assumption on G
is without essential loss of generality, since it can be relaxed by
adding observable self-loops at terminal states, as is done in [2].
(Essentially, this means that system deadlock is observable.)

In addition to liveness, in many applications, we are also
interested in enforcing additional properties on the system
behavior. In general, a property on a language (or a language-
based property) is a function ϕ : 2Σ

∗ → {0, 1}, where for any
language L, ϕ(L) = 1 means that L satisfies property ϕ. We
write that L |= ϕ if ϕ is a language-based property and ϕ(L) =
1. For example, safety is a typical property of interest. Let
K ∈ 2Σ

∗
be a specification language. Then the safety property

ϕ : 2Σ
∗ → {0, 1} can be defined by: for any L ∈ 2Σ

∗
, ϕ(L) =

1 ⇔ L ⊆ K .
To enforce a given property on the system, we need to

synthesize a supervisor that restricts the system behavior to a
sublanguage that satisfies the property; moreover, it is desired
that this sublanguage be as large as possible w.r.t. set inclusion.
In other words, the supervisor should only disable an event if it
is necessary to do so. By considering a general property instead
of only safety, the standard supervisory control problem under

YIN AND LAFORTUNE: UNIFORM APPROACH FOR SYNTHESIZING PROPERTY-ENFORCING SUPERVISORS FOR PARTIALLY-OBSERVED DES 2143

Fig. 1. For G: Σc= {a, b, c},Σo= {o1, o2}, and XS = {5}. (a) System G.
(b) Solution G1. (c) Solution G2.

partial observation [11], [12] is generalized to the Maximally
Permissive Property Enforcement Problem defined as follows.

Definition III.1. (Maximally Permissive Property Enforce-
ment Problem): Given system G and language-based property
ϕ : 2Σ

∗ → {0, 1}, synthesize a partial observation supervisor
SP : P (L(G)) → Γ, such that

1) L(SP /G) is live;
2) L(SP /G) |= ϕ;
3) For any S ′

P satisfying 1) and 2), we have that
L(SP /G) ⊂ L(S ′

P /G).

In the formulation of the above problem, the property of
interest is defined over languages; hence, it may not be possible
to bound a priori the memory needed for its verification. To
simplify our problem, hereafter, we will investigate a particular
class of properties called Information-State-based (IS-based)
properties. Since we are dealing with partially observed sys-
tems, we define the notion of an information state as a subset
IS ⊆ X of states of G and denote by I = 2X the set of all
information states. IS-based properties are defined as follows.

Definition III.2. (IS-Based Property): Given an automatonG,
an IS-based property ϕ w.r.t. G is a function ϕ : I → {0, 1},
where ∀ i ∈ 2X , ϕ(i) = 1 means that i satisfies this property.
We say that sublanguage L ⊆ L(G) satisfies ϕ w.r.t. G, which
is denoted by L |=G ϕ, if ∀ s ∈ L : ϕ(RG(s, L)) = 1.

We will show later in Section VII that by some proper
state space refinements, many important properties in the DES
literature, e.g., safety, diagnosability, opacity, detectability and
attractability, can be formulated as IS-based properties.

Example III.1: Let us consider the system G in Fig. 1(a),
where the set of observable events is Σo = {o1, o2}. Consider
the subset of states XS = {5}. We define the IS-based property
ϕ : I → {0, 1} by

ϕ(i) = 0 ⇔ i ⊆ XS (5)

∀ i ∈ I . We will show later in Section VII that the IS-based
property defined above essentially captures a security prop-
erty called current-state opacity. One may interpret XS as
the set of secret states that the system wants to hide from
a potentially malicious external observer, referred to as the
intruder. We say that property ϕ holds if the intruder can never
determine unambiguously that the secret has occurred based
on its observation capabilities. If the intruder’s observable set
is Σo = {o1, o2}, then the system language L(G) does not
satisfy ϕ, since RG(bao2,L(G)) = {5} ⊆ XS , i.e., upon the
occurrence of string bao2, the secret state 5 will be revealed to
the intruder. �

Similarly to the property enforcement problem, we formu-
late the Maximally Permissive IS-Based Property Enforcement
Problem (MPIEP) as follows.

Definition III.3. (Maximally Permissive IS-Based Property
Enforcement Problem): Given system G and IS-based property
ϕ : 2X → {0, 1} w.r.t. G, synthesize a partial observation su-
pervisor SP : L(G) → Γ, such that

1) L(SP /G) is live;
2) L(SP /G) |=G ϕ;
3) For any S ′

P satisfying 1) and 2), we have that
L(SP /G) ⊂ L(S ′

P /G).

Since controllability and observability together provide the
necessary and sufficient conditions for the existence of a partial
observation supervisor, to solve MPIEP, it suffices to find
a maximal controllable, observable and live sublanguage of
L(G) satisfying ϕ. We will show in Section VI that under the
assumption that Σc ⊆ Σo, there always exists a unique supre-
mal solution to MPIEP. However, this is not true in general, as
illustrated in the following example.

Example III.2: Consider again the system G in Fig. 1. Let the
set of controllable events be Σc = {a, b, c}, which is incompa-
rable with Σo. To enforce property ϕ defined in Example III.1,
we need to find a controllable, observable, and live sublanguage
of L(G) that satisfies ϕ. It is easy to verify that solutions
L(G1) and L(G2), shown in Fig. 1(b) and (c), respectively, are
two maximal controllable and observable solutions satisfying
ϕ. However, the union of these two solutions is not a valid
solution, since the system needs to enable event a at state 1
and to disable event a at state 3; but states 1 and 3 are
indistinguishable in L(G1) ∪ L(G2). This violates the property
of observability. �

IV. BIPARTITE TRANSITION SYSTEM

In this section, we define the general notion of bipartite
transition system (BTS), which was originally investigated in
[32] to solve the standard supervisor control problem for safety
and non-blockingness.

Definition IV.1. ([32]): A bipartite transition system T w.r.t.
G is a 7-tuple1

T =
(
QT

Y , Q
T
Z , h

T
Y Z , h

T
ZY ,Σ,Γ, y

T
0

)
(6)

where

• QT
Y ⊆ I is the set of Y -states;

• QT
Z ⊆ I × Γ is the set of Z-states and I(z) and Γ(z)

denote, respectively, the information state and the con-
trol decision components of a Z-state z, so that z =
(I(z),Γ(z));

• hT
Y Z : QT

Y × Γ → QT
Z is the partial transition function

from Y -states to Z-states, which satisfies the following
constraint: for any y ∈ QT

Y , z ∈ QT
Z and γ ∈ Γ, we have

hT
Y Z(y, γ) = z ⇒ [I(z) = URγ(y)] ∧ [Γ(z) = γ] . (7)

1The superscript refers to T and does not mean transposed.

2144 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 8, AUGUST 2016

Fig. 2. Example of the construction of the AES. In the diagrams, rectangular
(blue) states correspond to Y -states and oval (yellow) states correspond to
Z-states. For simplicity, in the diagrams, we omit all uncontrollable events
in the control decisions, e.g., decision {} represents {o1, o2}, and so forth.
(a) The resulting structure after procedure DoDSF. (b) The constructed AES.

• hT
ZY : QT

Z × Σ → QT
Y is the partial transition function

from Z-states to Y -states, which satisfies the following
constraint: for any y ∈ QT

Y , z ∈ QT
Z and e ∈ Σ, we have

hT
ZY (z, e)=y⇒ [e∈Γ(z)∩Σo] ∧ [y=Nexte (I(z))]. (8)

• Σ is the set of events of G;
• Γ is the set of admissible control decisions of G;
• yT0 ∈ QT

Y is the initial Y -state where yT0 = {x0}.

The purpose of defining the notion of BTS is to de-
scribe, in a general manner that will be specialized later, the
“game” between the “supervisor/controller” and the “system/
environment” (G). To capture this game, we need a bipartite
structure, with two types of nodes (states). A Y -state is an
information state, from which the supervisor issues control
decisions. A Z-state is an information state augmented with
control decisions, from which the system “selects” observable
events to occur within the set of enabled events. A transition
from a Z-state to a Y -state represents the observable reach,
i.e., y in the above definition is the set of states reachable from
some state of the information state component of the preceding
Z-state through the single observed event just executed by
G. A transition from a Y -state to a Z-state represents the
unobservable reach and “remembers” the set of enabled events
from the Y -state that leads to it. This means that I(z) is the
set of states reachable from some state in the preceding Y -state
through some enabled unobservable event string, and that Γ(z)
is the control decision made in the preceding Y -state.

Example IV.1: Consider again the system G in Fig. 1(a). As
an example of a BTS, the reader is referred directly to Fig. 2(b),
which is a particular type of BTS that we will discuss later in this
paper. From the initial Y -state y0 = {0}, by making control de-
cision γ={a, c, o1, o2} (the uncontrollable events o1 and o2 are
omitted in the figure), we will reach Z-state z=hT

Y Z(y0, γ)=
({0, 3, 4}, {a, c, o1, o2}). From z, only one observable event, o1,
can happen, and it leads to the next Y -state y1=hT

ZY (z, o1)=
{5, 6}. This BTS includes another control decision at y0 = {0},
γ = {b, o1, o2}, from which no observation will occur. Finally,
at Y -state {5, 6}, this BTS includes a single control deci-
sion, where only the uncontrollable events are included. �

Given two BTSs T1 and T2, we say that T1 is a subsystem
of T2, denoted by T1 � T2, if QT1

Y ⊆ QT2

Y , QT1

Z ⊆ QT2

Z , and for
any y ∈ QT1

Y , z ∈ QT1

Z , γ ∈ Γ, and e ∈ Σ, we have that

1) hT1

Y Z(y, γ) = z ⇒ hT2

Y Z(y, γ) = z;
2) hT1

ZY (z, e) = y ⇒ hT2

ZY (z, e) = y.

For example, we see that the BTS in Fig. 2(b) isa subsystem of
the BTS in Fig. 2(a).

In general, the control decision defined at a Y -state may
not be unique. Therefore, given a BTS T , we define CT (y) :=
{γ ∈ Γ : hT

Y Z(y, γ)!} to be the set of control decisions defined
at y ∈ QT

Y . Since for any two BTSs T1 and T2, hT1

Y Z(y, γ) =

hT2

Y Z(y, γ) whenever they are defined, we will drop the super-
script in hT

Y Z(y, γ) and write it as hY Z(y, γ) if it is defined for
some T ; the same holds for hZY .

Definition IV.1 provides a general definition for a BTS.
However, for the purpose of control, we also want a BTS to
satisfy the following two properties:

P1) For any y ∈ QY
T , CT (y) = ∅;

P2) For any z ∈ QZ
T , the following condition holds: ∀ e ∈

Γ(z) ∩ Σo : (∃x ∈ I(z) : δ(x, e)!) ⇒ hT
ZY (z, e)!.

The first property says that for any Y -state, we need to be able
to pick at least one control decision. The second property says
that for any Z-state, we cannot block any enabled and feasible
observable event. This is because we cannot choose which event
will occur once we have made a control decision; the system
will decide. Properties P1 and P2 together are referred to as the
completeness property of a BTS.

Given a complete BTS T , it is possible to “decode” supervi-
sors from it, as explained in the following definitions.

Definition IV.2. ([32]): Given a supervisor SP , ISY
SP

(y, s)
is defined to be the Y -state that results from the occurrence
of string s, when starting in Y -state y. This can be computed
recursively as follows:

ISY
SP

(y, ε) := y

ISY
SP

(y, sσ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
hZY

(
hY Z

(
ISY

SP
(y, s), SP (s)

)
, σ

)
if σ ∈ Σo ∩ SP (s)

ISY
SP

(y, s), if σ∈Σuo ∩ SP (s)

undefined, otherwise.

For brevity, we write ISY
SP

(y0, s) as ISY
SP

(s).
Also, ISZ

SP
(z, s) is defined analogously by

ISZ
SP

(z, ε) := z

ISZ
SP

(z, sσ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
hY Z

(
hZY

(
ISZ

SP
(z, s), σ

)
, SP (sσ)

)
,

if σ ∈ Eo ∩ SP (s)

ISZ
SP

(z, s), if σ ∈ Euo ∩ SP (s)

undefined, otherwise.

For brevity, we define ISZ
SP

(s) := ISZ
SP

(z0, s), where z0 =
hY Z(y0, SP (ε)). �

Definition IV.3: A supervisor SP is said to be included in a
complete BTS T if (∀ s ∈ L(SP /G))[SP (s) ∈ CT (IS

Y
SP

(s))].
S(T) denotes the set of all supervisors included in T .

YIN AND LAFORTUNE: UNIFORM APPROACH FOR SYNTHESIZING PROPERTY-ENFORCING SUPERVISORS FOR PARTIALLY-OBSERVED DES 2145

Example IV.2: The BTS shown in Fig. 2(b) is a complete
BTS. By picking control decision {b, o1, o2} (shown as {b}
in the figure) at the initial Y -state {0}, no future observable
behavior can occur, since the only enabled and feasible event e
forms an unobservable self-loop at state 1. This leads to a BTS-
included supervisor SP defined by SP (ε) = {b, o1, o2}. �

Remark IV.1: If a BTS T is complete and for any Y -state
y ∈ QT

Y , we have that |CT (y)| = 1, then it is clear that the
set of supervisors included in T is a singleton, since for each
information state, the control decision is unique. In this case,
we denote the unique supervisor included in T as ST , i.e.,
S(T) = {ST}. The BTS T provides a finite realization of the
supervisor ST .

The next result states that given a supervisor SP and a string
s ∈ L(SP /G), the Z-state defined above is, in fact, equivalent
to the set of all possible states the system can be in after
observing P (s).

Lemma IV.1: Given a system G and a supervisor SP , for any
string s ∈ L(SP /G), we have

I
(
ISZ

SP
(s)

)
= RG (s,L(SP /G)) . (9)

Proof: We prove by induction on the length of P (s). For
any string s, let |P (s)| = n. Let sk denote the string that con-
sists of the first k events in P (s) for k = 0, . . . , n and ek denote
the (k + 1)th event in P (s) for k = 0, . . . , n−1, so that s0=ε,
s1 = e0, etc. . . Define y0 as usual. For k = 0, . . . , n, let zk =
hY Z(yk, SP (sk)), and for k = 0, . . . , n− 1, define yk+1 =
hZY (zk, ek). By definition, we know that

RG (s,L(SP /G))=

{
v ∈ X :

∃s′ ∈ L(SP /G) s.t.
P (s)=P (s′) ∧ v=δ(x0, s

′)

}
.

(10)

Therefore, the inductive hypothesis is that

I(zk) =

{
v ∈ X :

∃s′k ∈ L(SP /G) s.t.
P (s′k) = sk ∧ v = δ (x0, s

′
k)

}
. (11)

Induction Basis: s0 = ε

I(z0)= URSP (ε)(y0)

= {v∈X : ∃t∈(SP (ε) ∩ Σuo)
∗ s.t. v = δ(x0, t)}

= {v∈X : ∃t∈L(SP /G) s.t. P (t) = ε ∧ v= δ(x0, t)} .

Induction Step:
Assume that the induction hypothesis is true at k. Then

yk+1 = hZY (zk, ek)

= {v ∈ X : ∃u ∈ I(zk) s.t. v = δ(u, ek)}

=

{
v ∈ X :

∃s′k ∈ L(SP /G) s.t.
P (s′k) = sk ∧ v = δ(x0, s

′
kek)}

}
I(zk+1) = URSP (skek)(yk+1)

=

{
v ∈ X :

∃u ∈ yk+1, ∃t ∈ (SP (skek) ∩ Σuo)
∗

s.t. v = δ(u, t)

}

=

{
v ∈ X :

∃s′k+1 ∈ L(SP /G)
s.t. P

(
s′k+1

)
=skek∧v=δ

(
x0, s

′
k+1

)} .

This completes the proof. �

V. A UNIFORM APPROACH FOR ENFORCING PROPERTIES

In this section, we define the All Enforcement Structure, a
specific type of BTS that embeds all supervisors that enforce a
given IS-based property in its transition structure. (How a BTS
embeds supervisors will be defined explicitly later.) We then
discuss its properties and its construction.

A. All Enforcement Structure for a Given Property

In Lemma IV.1, we have shown that given a supervisor SP ,
for any string s ∈ L(G), the Z-state ISZ

SP
(s) reached is the set

of all possible states the system could be in after s. Therefore,
it is clear that any IS-based property can be formulated as a
Z-state property. The following result shows that the liveness
property can also be transformed to a Z-state property.

Definition V.1. (Deadlock-Free Z-State): A Z-state z is
said to be deadlock-free if (∀x ∈ I(z))(∃σ ∈ Γ(z))[δ(x, σ)!].
Otherwise, it is said to be a deadlock state.

Lemma V.1: Given a system G and a supervisor SP , the
controlled system is live if and only if any reachable Z-state
under SP is deadlock-free. Mathematically

SP /G is live ⇔ ∀ s ∈ L(SP /G) : ISZ
SP

(s) is deadlock-free.

Proof: We proceed by contrapositive. if and only if ∃s ∈
L(SP /G) : ΔL(SP /G)(s) = ∅, which is equivalent to

∃s ∈ L(SP /G), ∀σ ∈ SP (s) : δ(x0, sσ) !. (12)

By Lemma IV.1, (12) holds if and only if

∃s ∈ L(SP /G), ∃x ∈ I
(
ISZ

SP
(s)

)
,

∀σ ∈ Γ
(
ISZ

SP
(s)

)
: δ(x, σ) !. (13)

To see the equivalence between (12) and (13), first suppose
that (12) holds. Then (13) holds by taking the same string s
in (12) and state x = δ(x0, s). If (13) holds, then there exists a
string t ∈ L(SP /G) such that P (s) = P (t) and δ(x0, t) = x.
Then (12) holds by taking such a string t. Moreover, by
Definition V.1, (13) is equivalent to

∃s ∈ L(SP /G) : ISZ
SP

(s) is deadlock. (14)

This completes the contrapositive proof. �
As a consequence of Lemmas IV.1 and V.1, if we construct a

BTS that is “as large as possible” and in which all reachable
Z-states are deadlock-free and satisfy the IS-based property,
then the resulting structure should contain all valid property-
enforcing supervisors. This leads to the definition of the All
Enforcement Structure for a given property.

Definition V.2. (All Enforcement Structure): Given a sys-
tem G and an IS-based property ϕ : I → {0, 1} w.r.t. G, the
All Enforcement Structure (AES) for property ϕ, denoted
by AESϕ(G) = (QAES

Y , QAES
Z , hAES

Y Z , hAES
ZY ,Σ,Γ, yAES

0), is
defined as the largest BTS w.r.t. G such that

1) For any y ∈ QAES
Y , we have that |CAESϕ(G)(y)| ≥ 1;

2) For any z ∈ QAES
Z , we have that

2.1) ∀ e∈Γ(z)∩Σo : (∃x∈I(z) :δ(x, e)!)⇒hAES
ZY (z, e)!;

2.2) ϕ(I(z)) = 1.
2.3) z is deadlock-free.

By “largest” subsystem, we mean that for any T satisfying the
above conditions, we have that T � AESϕ(G).

2146 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 8, AUGUST 2016

Conditions 1 and 2.1 simply say that the AES is a complete
BTS. Note that if T1 and T2 are two BTSs that satisfy the above
conditions, then it is easy to see that the union of them will still
satisfy these conditions, where the union of T1 and T2 is a
BTS T1 ∪ T2, defined by: 1) QT1∪T2

Y = QT1

Y ∪QT2

Y , QT1∪T2

Z =

QT1

Z ∪QT2

Z ; and 2) for any y ∈ QT1∪T2

Y , z ∈ QT1∪T2

Z , γ ∈ Γ

and e ∈ Σ, we have that hT1∪T2

Y Z (y, γ) = z ⇔ ∃i ∈ {1, 2} :

hTi

Y Z(y, γ) = z and hT1∪T2

ZY (z, e) = y ⇔ ∃i ∈ {1, 2} : hTi

ZY (z,
e) = y. Therefore, the notion of “largest BTS” in the definition
is well defined. This will also be seen when we present the
algorithm for the construction of the AES later.

Example V.1: We return to system G in Fig. 1(a) with the
IS-based property in (5). The BTS shown in Fig. 2(b) is, in
fact, its AES. For example, at initial Y -state {0}, we cannot
make control decision {a, b, c}, which would lead us to Z-state
({0, 1, 2, 3, 4}, {a, b, c}). This is because upon the occurrence
of event o2, Y -state {5} would be reached, from which no mat-
ter what control decision we take, the secret will be revealed.
We will discuss later that how to construct the AES. �

Remark V.1: In Fig. 2(a), we can also take control decision
{a} at the initial Y -state y0 = {0}. However, this control
decision is equivalent to decision {}, since event a will never be
executed within the unobservable reach. Formally, we say that a
control decision γ ∈ Γ is irredundant at information state i ∈ I
if, for any σ ∈ γ, there exists x ∈ URγ(i) such that f(x, σ) is
defined. From now on, we only consider irredundant control
decisions in the AES, which will clearly not affect its proper-
ties. Similarly, we say that a supervisor SP is irredundant if
for any s ∈ L(SP /G), control decision SP (s) is irredundant at
information state ISY

SP
(s). Hereafter, we also assume without

loss of generality that any SP is irredundant.
The following theorem shows that the AES (only) contains

valid solutions to the property enforcement problem.
Theorem V.1: Suppose that ϕ is an IS-based property w.r.t.

G. A live supervisor enforces property ϕ if and only if it is an
AES-included supervisor. Mathematically

[SP/G is live]∧[L(SP/G) |=G ϕ]⇔SP ∈S (AESϕ(G)). (15)

Proof: By Lemmas IV.1 and V.1, we know that the LHS
of (15) holds if and only if for any s ∈ L(SP /G)

ϕ
(
I
(
ISZ

SP
(s)

))
= 1 ∧ ISZ

SP
(s) is deadlock-free. (16)

Therefore, the “if” part follows immediately from Definitions IV.3
and V.2.

Next, we prove the “only if ” part by contradiction. Suppose
that SP is supervisor such that for any s∈L(SP /G), (16) holds.
We assume that SP ∈ S(AESϕ(G)). First, we know that there
exists a complete BTS T such that SP ∈ S(T). Specifically, the
complete BTS T can be constructed as follows:QT

Y := {y ∈ I :
∃s ∈ L(SP /G) s.t. y = ISY

SP
(s)}, QT

Z := {z ∈ I × Γ : ∃s ∈
L(SP /G) s.t. z = ISZ

SP
(s)} and for any y ∈ QT

Y , CT (y) :=

{γ∈Γ:∃s∈L(SP /G) s.t. y=ISY
SP

(s) ∧γ=SP (s)}. In other
words, any Y or Z-state in T are a Y or Z-state reached by su-
pervisor SP under some string t ∈ L(SP /G), respectively. By
Lemmas IV.1 and V.1, we know thatT satisfies both Conditions 1
and 2 in Definition V.2. SinceSP ∈S(AESϕ(G)), we know that
there exists a string s∈L(SP /G), such that SP (s) ∈CAESϕ(G)

(ISY
SP

(s)). In this case, the union of T andAESϕ(G) is strictly
larger than AESϕ(G), since control decision SP (s) is defined
at Y -state ISY

SP
(s) in T ∪ AESϕ(G) but not in AESϕ(G).

This is a contradiction since by definition, AESϕ(G) is the
largest BTS satisfying Conditions 1 and 2 in Definition V.2. �

Remark V.2: In Problem III.3, we have required that the
solution synthesized should be live, since the property under
consideration may depend on the liveness assumption in gen-
eral. However, in the case where the property to be enforced
does not depend on the liveness assumption, as is the case
with safety for instance, this requirement can be relaxed. In
this case, we remove Condition 2.3 from Definition V.2. It is
straightforward to show that in the resulting modified AES,
instead of the result in Theorem V.1, we have instead that
L(SP /G) |=G ϕ ⇔ SP ∈ S(AESϕ(G)). In other words, the
modified AES will contain all property-enforcing supervisors,
resulting in live or non live behavior.

B. Construction of the AES

The construction algorithm for the AES follows directly from
its definition and proceed in two steps. First, we construct the
BTS that enumerates all possible behaviors for each state by
a depth-first search and remove all Z-states that violate either
the IS-based property or deadlock-freeness, i.e., Conditions 2.2
and 2.3 in Def. V.2. Second, we prune states that violate
Conditions 1 or 2.1 in Def. V.2 from the remaining part of the
BTS, until convergence is achieved. In practice, in the depth-
first search part, we do not need to search the whole state space
and we can stop the search of a branch once a Z-state that
violates the IS-based property is encountered.

YIN AND LAFORTUNE: UNIFORM APPROACH FOR SYNTHESIZING PROPERTY-ENFORCING SUPERVISORS FOR PARTIALLY-OBSERVED DES 2147

The above procedure is formally described in Algorithm
FIND-AES whose parameters are as follows: (i) AES repre-
sents the AES that we want to construct; (ii) AES.Y and AES.Z
are its sets of Y - andZ-states, respectively; and (iii) AES.h is its
transition function. Initially, AES.Y is set to be y0 = {x0}. The
depth-first search is then started; it is implemented by the pro-
cedure DoDFS. Line 7 is used to determine whether the Z-state
encountered satisfies both deadlock-freeness and property ϕ.
If not, we terminate the search of this branch. Otherwise, we
compute all possible Y -state successors and make a recursive
call. This recursive procedure allows us to traverse the whole
reachable space of Y - and Z-states. The above procedure may
result in Y -states that have no successors. Therefore, we need to
iteratively prune: (i) all Y -states that have no successor states;
and (ii) all Z-states for which at least one observation is not
defined. This step is captured by procedure Prune. Finally,
states that are no longer accessible from the initial state of
the AES need to be removed before the algorithm returns.
Algorithm FIND-AES will terminate in finite steps, since the
number of Y - and Z-states is finite.

Example V.2: Consider our running example. We apply
Algorithm FIND-AES to construct the corresponding AES. The
resulting BTS after running the procedure DoDSF is shown in
Fig. 2(a). At the initial Y -state, we cannot take control decision
{} since this will lead to a deadlockZ-state ({0},{}). The depth-
first search DoDSF terminates at Y -state {5}, since no matter
what control decision we take from {5}, a Z-state [marked in
red in Fig. 2(a)] that violates the IS-based property (i.e., that re-
veals the secret) will be encountered. After procedure DoDSF is
done, we need to run procedure Prune. This starts by removing
Y -state {5}, since no successor state is defined from it. Since
Y -state {5} has been removed, all its predecessor Z-states,
i.e., ({0, 3}, {c}), ({0, 1, 2}, {a, b}) and so forth, must also be
removed. Finally, we remove inaccessible states {2, 5, 6} and
{2} and obtain the AES shown in Fig. 2(b). �

Theorem V.2: Algorithm FIND-AES correctly constructs
the AES.

Proof: LetT be the BTS returned by Algorithm FIND-AES.
T satisfies Conditions 1 and 2.1 in Def. V.2, since all states that
violate either one of these two conditions have been removed
by procedure Prune. Since procedure DoDSF only traverses the
state space where all Z-states are deadlock-free and satisfy ϕ,
Conditions 2.2 and 2.3 in Def. V.2 are also satisfied by T .
Therefore, it remains to show that T is the largest BTS with the
desired properties; for that proof, we proceed by contradiction.

Assume that T ′ is another BTS satisfying the conditions in
Def. V.2 that is strictly larger than T , i.e., T � T ′ and QT

Y ∪
QT

Z ⊂ QT ′
Y ∪QT ′

Z . Therefore, in Algorithm FIND-AES, T is
obtained by pruning states from some BTS T ′′ (which may not
satisfy the desired properties) such that T ′ � T ′′; e.g., T ′′ can
be the resulting BTS after procedure DoDFS. Then any Y - or
Z-states in T ′ satisfying the conditions in Def. V.2 should also
satisfy these conditions in T ′′, since T ′ is a subsystem of T ′′.
In other words, any Y - or Z-states in T ′ will not be removed
in T ′′ by procedure Prune. Therefore, Algorithm FIND-AES
will converge to a BTS that is strictly lager than T (at least as
large as T ′). This contradicts the fact that Algorithm FIND-AES
converges to T . �

VI. SYNTHESIS OF MAXIMALLY PERMISSIVE SUPERVISORS

In this section, we present a synthesis algorithm that returns
a solution to MPIEP. We first discuss the general case, where
Σc and Σo need not be comparable. Then we show that, under
the assumption that Σc ⊆ Σo, there always exists a unique
supremal solution to MPIEP.

A. General Case

Given an IS-based property, Theorem V.1 provides us with a
straightforward procedure for synthesizing a property-enforcing
supervisor. We can simply start from the initial Y -state and pick
one control decision defined in the AES; then we pick all pos-
sible observations for the successor Z-state, and so forth, until
reaching a Z-state that has no successor state. However, this
procedure may result in a solution with infinite domain, since
we may select different control decisions upon different visits
to the same information state. Therefore, we wish to consider a
particular type of solution, called an information-state-based
(IS-based) solution, that can be realized with finite memory.
Formally, a supervisor SP is IS-based if

(∀ s, t ∈ L(SP /G))
[
ISY

SP
(s)=ISY

SP
(t) ⇒ SP (s) = SP (t)

]
.

Clearly, if a supervisor is IS-based, then we can redefine it in
the form of SP : I → Γ.

We present a synthesis algorithm, called Algorithm MAX-
SYNT, for constructing an IS-based supervisor S∗ that solves
MPIEP. This algorithm starts from y0. For each reachable
Y -state y, it picks one control that is locally maximal and for
each reachable Z-state, it picks all possible observations, until:
(i) a terminal Z-state is reached; or (ii) a Y -state that has al-
ready been visited is reached. This is implemented by procedure
Expand in Algorithm MAX-SYNT, which is simply a depth-
first search. In other words, we pick a locally maximal control
decision and fix it for each Y -state. This will result in a BTS T
that includes a unique supervisor ST , which is our solution.

The following theorem establishes the correctness of
Algorithm MAX-SYNT:

2148 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 8, AUGUST 2016

Theorem VI.1: Let S∗ be a solution returned by Algorithm
MAX-SYNT. Then S∗ solves MPIEP.

Proof: First, we note that L(SP /G) is live and satisfies
ϕ; this follows from Theorem V.1 and the fact that, by construc-
tion, S∗ is an AES-included supervisor. Therefore, it remains
to show that S∗ is maximal; for that proof, we proceed by
contradiction.

Assume that S∗ is not maximal, which means that there
exists another AES-included supervisor S ′ ∈ S(AESϕ(G))
such that L(S∗/G) ⊂ L(S ′/G). Therefore, there exists a
string w ∈ L(S∗/G) ⊂ L(S ′/G) such that S∗(w) ⊂ S ′(w)

and S∗(w′) = S ′(w′), ∀w′ ∈ {w} \ {w}. We know that
ISY

S∗(w) = ISY
S′(w); let us call this Y -state y. But this

means that the control decision S∗(w) at y violates the
locally maximal construction rule, i.e., there should not exist
a control decision γ ∈ CAESϕ(G)(y) : S

∗(w) ⊂ γ. This is a
contradiction. Hence no such S ′ exists. �

By Theorem V.1, we know that the AES is non-empty if
MPIEP has a solution. Moreover, when the AES is non-empty,
Algorithm MAX-SYNT always returns a solution to MPIEP.
Therefore, we have the following result.

Corollary VI.1: MPIEP is solvable if and only if the AES is
non-empty.

Since supervisorS∗ is IS-based by construction, we also have
the following result.

Corollary VI.2: For any IS-based property ϕ, there exists an
IS-based supervisor that solves MPIEP iff AESϕ(G) is non-
empty.

Example VI.1: Wereturn to our running example. Ifwepick lo-
cally maximal control decision {a, c} at the initial Y -state {y0}
and pick the unique control decision ∅ at the reachable Y -state,
which means that all controllable events are disabled, then we
will obtain the maximal solution that was shown earlier in
Fig. 1(b). On the other hand, if we pick control decision {b} at
{0}, which is also locally maximal, then no observable behavior
can occur thereafter; this corresponds to the maximal solution
shown in Fig. 1(c). �

Remark VI.1: The running time of the entire synthesis pro-
cedure is O(22|X|+2|Σc |). First, we need to construct the AES
by Algorithm FIND-AES, which consists of two procedures,
DoDSF and Prune. The procedure DoDSF may result in a
BTS that, in the worst case, has 2|X|+|Σc | + 2|X| states. The
complexity of procedure Prune is quadratic in the size of
the above BTS. The complexity of Algorithm MAX-SYTN is
linear in the size of the AES that, in the worst case, also has
2|X|+|Σc | + 2|X| states. Therefore, our synthesis procedure is
exponential in the size of G. However, it was shown in [36]
that synthesizing a partial observation safe supervisor, which
is a special case of our problem, is NP-hard. Therefore, this
exponential complexity seems to be unavoidable and it is due
to the partial observation feature of our problem.

B. Case of Σc ⊆ Σo

It was shown in [33] that, under the assumption that Σc ⊆
Σo, observability and controllability together imply normality.
Therefore, there exists a supremal controllable and observ-
able sublanguage when Σc ⊆ Σo. It was also reported in [20]

(respectively, [17] and [9]) that, under the assumption that
Σc ⊆ Σo, there exists a supremal controlable, observable and
diagnosable (respectively, opaque and attractable) sublanguage.
In fact, we can prove the corresponding general result for any
IS-based property in our framework.

The following lemma reveals that, under the assumption that
Σc ⊆ Σo, the information state encountered does not depend on
the control policy we take.

Lemma VI.1: Let S1
P and S2

P be two supervisors. Under the
assumption that Σc ⊆ Σo, we have that(
∀ s∈L(S1

P /G)∩L(S2
P /G)

) [
I
(
ISZ

S1
P
(s)

)
=I

(
ISZ

S2
P
(s)

)]
.

(17)

Proof: We prove this lemma by induction on the length
of P (s). For any string s, let |P (s)| = n. Let sk and ek be
the same notations defined in the proof of Lemma IV.1. For
any i = 1, 2, define yi0 as usual and for k = 0, . . . , n, let zik =
hY Z(y

i
k, S

i
P (sk)), and for k = 0, . . . , n− 1, define yik+1 =

hZY (z
i
k, ek). Therefore, the inductive hypothesis is that

I
(
z1k
)
= I

(
z2k
)
. (18)

Induction Basis (s0 = ε):

I(z20) = URS2
P (ε)(y0)

=
{
v ∈ X : ∃t ∈

(
S2
P (ε) ∩ Euo

)∗
s.t. v = δ(x0, t)

}

=
{
v ∈ X : ∃t ∈

(
S1
P (ε) ∩ Euo

)∗
s.t. v = δ(x0, t)

}
= URS1

P (ε)(y0) = I
(
z10
)

where S2
P (ε)∩Σuo=S1

P (ε)∩Σuo holds because Σc∩Σuo=∅.
Induction Step:
Assume that the induction hypothesis is true at k. Then

y2k+1 =hZY (z
2
k, ek)

=
{
v ∈ X : ∃u ∈ I

(
z2k
)

s.t. v = δ(u, ek)
}

=
{
v ∈ X : ∃u ∈ I

(
z1k
)

s.t. v = δ (u, ek)
}

= y1k+1

I
(
z2k+1

)
=URS2

P (skek)

(
y2k+1

)
= URS2

P (skek)

(
y1k+1

)
=URS1

P (skek)

(
y1k+1

)
= I

(
z1k+1

)
where URS2

P (s′kek)
(y1k+1) = URS1

P (s′kek)
(y1k+1) follows from

the same argument as in the induction basis.
This completes the proof by induction. �
Consider two different supervisors; under the assumption

that Σc ⊆ Σo, the information state components of the Z-states
encountered upon the occurrence of the same string are identi-
cal. Therefore, in this scenario, state estimation (from observed
events) does not depend on the control policy we take. In [37],

YIN AND LAFORTUNE: UNIFORM APPROACH FOR SYNTHESIZING PROPERTY-ENFORCING SUPERVISORS FOR PARTIALLY-OBSERVED DES 2149

the authors show that for centralized partial observation control
problems, a given Z-state (termed as maximal information set
in [37]) is independent from the control policy the supervisor
will take in the future. (This is not true in general in decentral-
ized control; see again [37].) In essence, Lemma VI.1 extends
this result and says that, under the assumption that Σc ⊆ Σo,
control and state estimation are one-way “fully separated,” i.e.,
in addition to the non-dependency of state estimation on the
future control actions, the Z-state even does not depend on the
past control actions. This separability also leads to the follows
theorem, which says that for any IS-based property, under
the assumption that Σc ⊆ Σo, there exists a unique maximal
permissive supervisor that enforces the property.

Theorem VI.2: Assume that Σc ⊆ Σo. Then there exists a
unique (supremal) solution to MPIEP.

Proof: By contradiction. Suppose that ϕ : I → {0, 1} is
the IS-based property that we want to enforce. We assume
that S1

P and S2
P are two different solutions to MPIEP, i.e.,

L(S1
P /G) and L(S2

P /G) are two incomparable maximal con-
trollable and observable sublanguages satisfying ϕ. Under the
assumption that Σc ⊆ Σo and that the two given languages are
controllable and observable, we know that their union will also
be controllable and observable. Hence, there exists a partial
observation supervisor S∗

P such that L(S∗
P /G) = L(S1

P /G) ∪
L(S2

P /G). Specifically, for any s ∈ L(S∗
P /G) we have

S∗
P (s) = S1

P (s) ∪ S2
P (s).

Next, we show thatS∗
P also enforcesϕ. Let us assume thatS∗

P

does not enforce property ϕ, i.e., ∃s ∈ L(S∗
P /G) s.t. ϕ(RG(s,

L(S∗
P /G)))=0. Since L(S∗

P /G)=L(S1
P /G)∪L(S2

P /G), we
know that ∃i ∈ {1, 2} s.t. s ∈ L(Si

P /G). By Lemma VI.1, we
know that I(ISZ

S∗
P
(s))=I(ISZ

Si
P
(s)). Moreover, by Lemma IV.1,

we know that RG(s,L(S∗
P /G))=RG(s,L(Si

P /G)). However,

ϕ(RG(s,L(Si
P /G))) = 1, since Si

P enforces property ϕ. This

implies that ϕ(RG(s,L(S∗
P /G)))=1, which is a contradiction.

Therefore, S∗
P also enforces property ϕ.

Using the above result, we conclude that L(S1
P /G) ∪

L(S2
P /G) is also a controllable and observable sublanguage

satisfying ϕ, which contradicts the fact that L(S1
P /G) and

L(S2
P /G) are maximal. Therefore, there only exists a unique

solution to MPIEP. �
We have shown that Algorithm MAX-SYNT always returns

a maximal solution; moreover, under the assumption that Σc ⊆
Σo, this maximal solution is unique. Therefore, in this scenario,
Algorithm MAX-SYNT returns the unique supremal solution.

Corollary VI.3: Let S∗ be the solution returned by Algorithm
MAX-SYNT. When Σc ⊆ Σo, S∗ is the unique supremal solu-
tion to MPIEP.

Remark VI.2: In the standard supervisory control problem,
the supremal controllable and observable sublanguage can be
obtained under the assumption that Σc ⊆ Σo by computing the
supremal controllable and normal sublanguage [13]. Since both
the supermal normal approach and Algorithm MAX-SYNT take
exponential complexity in the size of the system, our approach
does not improve upon the complexity of the previous result un-
der this restrictive assumption. Instead, Algorithm MAX-SYNT
provides an alternative approach for the computation of super-
mal controllable and normal sublanguage for this special case.

VII. APPLICATIONS OF THE UNIFORM APPROACH

In this section, we show that how to apply the uniform
approach described in this paper to the enforcement of several
specific properties commonly encountered in the study of DES.
Our uniform approach comprises three steps:

1) Formulate the property to be enforced as an IS-based
property;

2) Construct the AES using Algorithm FIND-AES;
3) Find a maximal solution based on the AES using Algo-

rithm MAX-SYNT.

In Sections V and VI, we have discussed Steps 2 and 3, respec-
tively; it remains to discuss how to formulate a given property
as an IS-based property, whenever feasible. As was mentioned
earlier, there are properties that cannot be formulated as IS-
based properties; one such example is non-blockingness [32].
However, as we will see in this section, many important
properties in the DES literature, including but not restricted
to safety, opacity, diagnosability, detectbility, anonymity and
attractability, can be formulated as IS-based properties. There-
fore, all of them can be enforced by using the above three-step
methodology.

A. Enforcement of Safety

Given a prefix-closed specification language K , we say that
language L ⊆ L(G) is safe if L ⊆ K . When the uncontrolled
system is not safe, the standard supervisory control and obser-
vation problem [11], [12] asks to synthesize a least restrictive
supervisor such that the controlled system is safe. We show that
this can be solved by our uniform approach.

Let K = L(H), for some automaton H . In [13], the au-
thors provide an algorithm to construct refined automata HS =
(XHS

,Σ, δHS
, x0,HS

) and GS = (XGS
,Σ, δGS

, x0,GS
) such

that the following holds: 1) L(GS) = L(G) and L(HS) =
L(H); 2) HS is a sub-automaton of GS ; 3) For any x, y ∈
XHS

, σ ∈ Σ, we have δGS
(x, σ) = y ⇒ δHS

(x, σ) = y. For
the construction of GS and HS , the reader is referred to
[13]. The above conditions imply that XHS

captures the legal
behaviors, i.e., any string in L(GS) that leads to a state in
XHS

is safe and any string in L(GS) that leads to a state in
XGS

\XHS
is unsafe.

For the refined system model GS , we define the IS-based
property ϕsafe : 2

XGS → {0, 1} w.r.t. GS as follows. For any
information state i ∈ 2XGS , ϕsafe(i) = 1 ⇔ i ⊆ XHS

. Then
we have the following result.

Proposition VII.1: Let H be the specification automaton
and GS be the refined system automaton defined above, then
language L ⊆ L(G) is safe if and only if L |=GS

ϕsafe.
Proof: The proof follows directly from Definition III.2

and Lemma IV.1, since L |=Gs
ϕsafe if and only if ∃s ∈ L :

δGS
(x0,GS

, s) ∈ XHS
, which is equivalent to L ⊆ L(H). �

Hence, to solve the safety control problem, it suffices to syn-
thesize a supervisor that enforces the IS-based property ϕsafe

w.r.t. the refined state space of GS . Therefore, the maximally
permissive safety control problem can be solved by our uniform
approach.

2150 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 8, AUGUST 2016

B. Enforcement of Current-State Opacity

Opacity is a confidentiality property for partially-observed
systems. It captures the plausible deniability of the system’s
“secret” in the presence of an outside observer that is poten-
tially malicious. First, we recall the definition of current-state
opacity, as it is presented in [38] and [39].

Definition VII.1: Let G = (X,Σ, δ, x0) be the system au-
tomaton. Language L ⊆ L(G) is said to be current-state
opaque w.r.t. XS ⊆ X,G and P if

(∀ s ∈ L : δ(x0, s) ∈ XS) (∃t ∈ L)

[P (s) = P (t) ∧ δ(x0, t) ∈ XS] . (19)

Note that we assume in this section that the external observer
and the supervisor have the same observation set, Σo.

To formulate the current-state opacity enforcement problem
in our framework, we define the IS-based current-state opacity
property ϕopa : 2X → {0, 1} as follows. For any information
state i ∈ 2X , we have

ϕopa(i) = 0 ⇔ i ⊆ XS . (20)

The following result says that the IS-based property ϕopa

correctly captures the opacity property.
Proposition VII.2: Let G be the system automaton, XS ⊆ X

be the subset of secret states, and ϕopa be the IS-based property
defined above. Language L ⊆ L(G) is current-state opaque if
and only if L |=G ϕopa.

Proof: We proceed by contrapositive. By definition,
G is not current-state opaque if and only if (∃s ∈ L)(∀ t ∈
L)[P (s) = P (t) ⇒ δ(x0, t) ∈ XS], which is equivalent to
(∃s ∈ L)(∀x ∈ RG(s, L))[x ∈ XS]. This is equivalent to ∃s ∈
L : ϕopa(RG(s, L)) = 0, i.e., L |=G ϕopa. �

Consequently, the opacity enforcement problem can be
solved by using ϕopa in our uniform approach. Our running
example has already shown how to synthesize a maximally
permissive supervisor enforcing opacity.

Remark VII.1: It was shown in [39] that several other
notions of opacity, e.g., language-based opacity, initial-state
opacity, and initial-and-final-state opacity, can be transformed
to current-state opacity in polynomial time. Therefore, the
enforcement of these notions of opacity can be done by first
transforming them to current-state opacity and then enforcing
current-state opacity as discussed above.

C. Enforcement of K-Diagnosability

In fault diagnosis problems, f ∈ Σuo is a fault event whose
occurrences must be diagnosed by the diagnoser within a finite
number of steps. Suppose L is the language to be diagnosed.
We define Ψ(f, L) = {sf ∈ L : s ∈ Σ∗} to be the set of strings
that end with the fault event. We say that a language is
K-diagnosable if this diagnosis delay is uniformly bounded by
a given number K . The formal definition of K-diagnosability
is recalled from [2], [29], and [30].

Definition VII.2. (K-Diagnosability): A live language L
is said to be K-diagnosable w.r.t. P and f ∈ Σuo if

(∀ s ∈ Ψ(f, L)) (∀ t ∈ L/s)[
|t| ≥ K ⇒

(
∀w ∈ P−1 (P (st)) ∩ L : f ∈ w

)]
. (21)

To formulate K-diagnosability as an IS-based property, we
need to refine the state space of the original system G, which
is similar to the refinement procedure in [30]. Given G =
(X,Σ, δ, x0) and non-negative integer K , we define the new
automaton GD = (XD,Σ, δD, xD,0), where

• XD ⊆ X × {−1, 0, 1, . . . ,K} is the set of states;
• Σ is the set of events (same as defined in G);
• δD : XD × Σ → XD is the partial transition function that

is built from δ in G as follows: for any u = (x, n) ∈
XD, σ ∈ Σ

δD(u, σ)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(δ(x, σ),−1) , if
n = −1 and

σ ∈ Σ \ {f}

(δ(x, σ), n + 1) , if
0 ≤ n < K or

n = −1 ∧ σ = f

(δ(x, σ),K) , if n = K.

(22)

• xD,0 = (x0,−1) ∈ XD is the initial state.

By construction, we have that L(G) = L(GD), i.e., GD is
language-equivalent to G but refines its state space. Therefore,
we can analyze the (language-based) property of diagnosability
based on the refined system GD . To this end, we define the
IS-based property termed K-diagnosability.

Definition VII.3. (IS-Based K-Diagnosability): The
property of IS-based K-diagnosability ϕdiag : 2XD → {0, 1}
w.r.t. GD is defined by: for any i ∈ 2XD

ϕdiag(i) = 0 ⇔ (∃u, v ∈ i) [[u]n = −1 ∧ [v]n = K] (23)

where [u]n denotes the integer component of state u.
The following result establishes that to enforce K-

diagnosablility, it suffices to enforce the property of IS-based
K-diagnosability defined above.

Proposition VII.3: A live language L ⊆ L(G) = L(GD)
is K-diagnosable w.r.t. P and f if and only if L |=GD

ϕdiag.
We proceed by contrapositive

L is not K − diagnosable

⇔∃tv = tv,1tv,2, tu ∈ L s.t. tv,1 ∈ Ψ(f, L) and

tv,2 ≥ K and ΣF ∈ tu and P (tu) = P (tv) Def. VII.2

⇔∃tv, tu ∈ L s.t. [δK(xD,0, tv)]n = K and

[δD(xD,0, tu)]n = −1 and P (tu) = P (tv)

⇔∃tv ∈ L s.t. ϕdiag (RGD
(tv, L)) = 0 Def. VII.3

⇔L |=GD
ϕdiag Def. III.2.

The second equivalence is from the definition of GD. �

YIN AND LAFORTUNE: UNIFORM APPROACH FOR SYNTHESIZING PROPERTY-ENFORCING SUPERVISORS FOR PARTIALLY-OBSERVED DES 2151

Fig. 3. For G: Σc = {b, o},Σo = {a, c, d, o}, and f is the fault event. For the sake of brevity, in the diagram of the AES, we write state (x, n) in the form of
xn and all uncontrollable events in the control decisions are omitted. We also represent all Z-states z such that ∀xn ∈ I(z) : n ≥ 0 as a single state F , since we
can diagnose the failure unambiguously at such states. (a) G. (b) GD . (c) L(S∗/G). (d) AESPdiag

(GD).

Example VII.1: Let us consider the system G in Fig. 3(a),
where the set of controllable events is Σc = {b, o} and the set
of observable events is Σo = {a, c, d, o}; these two sets are
incomparable. Event f is the unique fault event. Consider a
desired diagnosis delay of K = 2. The corresponding unfolded
system GD is shown in Fig. 3(b). The corresponding AES
AESPdiag

(GD) for GD w.r.t. ϕdiag is given in Fig. 3(d). For
the sake of brevity, we write state (x, n) in the form of xn.
For example, at Y -state {31, 2−1, 4−1}, we cannot enable event
o, since no matter what control decision we take after the
occurrence of o, a Z-state that contains both states 32 and 4−1

will be encountered, i.e., the IS-based property ϕdiag will be
violated.

By applying Algorithm MAX-SYNT to AESϕdiag
(GD), a

maximally permissive supervisor S∗ is obtained; we highlight
the chosen locally maximal control decision at each reachable
Y -state (which in this example is unique) and all feasible
observable events at each reachable Z-state in the diagram.
The corresponding controlled behavior is given in Fig. 3(c).
By Theorem V.1, L(S∗/G) is a maximal live, controllable,
observable and 2-diagnosable sublanguage of L(G). �

D. Enforcement of Strong Detectability

Detectability is a property arising in state estimation of DES.
In [21], the enforcement of strongly detectability is studied
under the assumption that Σc ⊆ Σo. Here, we show that strong
detectability with a pre-specified detection delay K , or strong
K-detectability, can be enforced without such an assumption
by using the uniform approach. First, we recall the formal
definition of strong K-detectability from [5], [21].

Definition VII.4. (Strong K-Detectability): A live language
L ⊆ L(G) is said to be strongly K-detectable w.r.t. P and G if

(∀ s ∈ L) [|P (s)| ≥ K ⇒ |RG(s, L)| = 1] . (24)

Analogous to the enforcement of diagnosability, given an
automaton G = (X,Σ, δ, x0), we can build a new automaton
GT = (XT ,Σ, δT , xT,0), where

• XT ⊆ X × {0, 1, . . . ,K} is the set of states;
• Σ is the set of events;

• δT : XT × Σ → XT is the partial transition function and
for any u = (x, n) ∈ XT , σ ∈ Σ, δT is defined by

δT (u, σ)=

⎧⎪⎨
⎪⎩
(δ(x, σ), n) , if σ ∈ Σuo ∧ n < K

(δ(x, σ), n + 1) , if σ ∈ Σo ∧ n < K

(δ(x, σ),K) , if n = K.

(25)

• xT,0 = (x0, 0) is the initial state.

With the refined system GT , we define IS-based
K-detectability as follows.

Definition VII.5. (IS-Based Strong K-Detectability): The
property of IS-based K-detectability ϕdet : 2

XT → {0, 1}
w.r.t. GT is defined by: for any i ∈ 2XT

ϕdet(i) = 0 ⇔ (∃u ∈ i : [u]n = K) ∧ |i| > 1 (26)

where [u]n denotes the integer component of u.
The following result says that to enforce strong

K-detectability it suffices to enforce the IS-based property
ϕdet defined above.

Proposition VII.4: A live language L is strongly
K-detectable w.r.t. P and G if and only if L |=GT

ϕdet.
Proof: We proceed by contrapositive

L is not strongly K − detectable w.r.t. P and G

⇔∃s ∈ L s.t. |P (s)| ≥ K and |RG(s, L)| > 1 Def. VII.4

⇔∃s ∈ L s.t. |P (s)| ≥ K and |RGT
(s, L)| > 1

⇔∃s ∈ L s.t. [δT (xT,0, s)]n = K and |RGT
(s, L)| > 1

⇔∃s ∈ L s.t. ϕdet (RGT
(s, L)) = 0

⇔L |=GT
ϕdet Def. III.2.

The third and fourth equivalences follow from the construction
of GT and the definition of ϕdet, respectively. For the second
equivalence, first we have the following observations:

1) |RG(s, L)| > 1 if and only if

∃t ∈ L : P (s) = P (t) ∧ δ(x0, t) = δ(x0, s). (27)

2152 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 8, AUGUST 2016

2) |RGT
(s, L)| > 1 if and only if

∃t ∈ L : [P (s) = P (t)] ∧ [δ(x0, t) = δ(x0, s)

or max {|P (t)|,K} = max {|P (s)|,K}] . (28)

However, is always true thatmax{|P (t)|,K}=max{|P (s)|,K}
if P (s) = P (t). Therefore, (28) is equivalent to (27), which
implies that |RG(s, L)| > 1 ⇔ |RGT

(s, L)| > 1. �

E. Enforcement of Anonymity

Strong detectability requires that the supervisor eventually be
able to determine the exact system state. In security and privacy
applications, when the system is monitored by a potentially
malicious observer, we may want to enforce the exact opposite,
i.e., the exact system state should never be revealed. This is
related to the notion of opacity discussed earlier and it is termed
anonymity [40], which is defined as follows.

Definition VII.6. (Anonymity): Language L ⊆ L(G) is said
to be anonymous w.r.t. P and G if

(∀ s ∈ L)(∃t ∈ L) [P (s) = P (t) ∧ δ(x0, s) = δ(x0, t)] . (29)

Anonymity is different from either detectability or opacity.
However, anonymity can be easily formulated as an IS-based
property, which means that it can enforced by using the uniform
approach. To this end, we define the IS-based property ϕano :
2X → {0, 1} w.r.t. G by: for any i ∈ 2X , ϕano(i) = 0 ⇔ |i| =
1. Then we have the following result, which says that enforcing
anonymity is equivalent to enforcing IS-based property ϕano.

Proposition VII.5: Language L is anonymous w.r.t. P and G
if and only if L |=G ϕano.

Proof: L is not anonymous if and only if (∃s ∈ L)(∀ t ∈
L)[P (s) = P (t) ⇒ δ(x0, s) = δ(x0, t)], This is equivalent to
(∃s ∈ L)[|RG(s, L)| = 1], i.e., L |=G ϕano. �

F. Enforcement of Attractability

The last property enforcement problem we study in this
section is the state attraction problem. In this problem, the goal
is to design a supervisor such that the controlled system will
converge to a desired attractor in a bounded number of event
occurrences. In [9], the state attraction problem under partial
observation is studied under the assumption that Σc ⊆ Σo.
We show that this assumption can be relaxed by taking the
uniform approach developed in this paper. Hereafter, instead of
allowing arbitrary bounded convergence delay, we require that
the system converge to the attractor in a pre-specified number
of steps, leading to the notion of K-attractability.

Definition VII.7. (K-Attractability): Let G = (X,Σ, δ, x0)
be the system automaton. Language L ⊆ L(G) is said to be
K-attractable w.r.t. G and A ⊆ X if for any s ∈ L, we have

1) |s| ≥ K ⇒ δ(x0, s) ∈ A;
2) δ(x0, s) ∈ A ⇒ ∀ st ∈ L : δ(x0, st) ∈ A.

Remark VII.2: In [9], the authors assume thatA ⊆ X is an in-
variant set, i.e., (∀x ∈ A)(∀ s ∈ Σ∗)[δ(x, s) ∈ A]. In this case,
the second requirement in Definition VII.7 will be satisfied
trivially. Therefore, the definition of attractability we consider
here is more general.

Given an automaton G = (X,Σ, δ, x0), to formulate
K-attractability as an IS-based property, we first construct the
new automaton GA = (XA,Σ, δA, xA,0), where

• XA ⊆ X × {0, 1, . . . ,K} is the set of states;
• Σ is the set of events;
• δA : XA × Σ → XA is the partial transition function and

for any u = (x, n) ∈ XA, σ ∈ Σ, δT is defined by

δA(u, σ)=

⎧⎪⎨
⎪⎩
(δ(x, σ), n + 1) , if n < K ∧ x ∈ A

(δ(x, σ),K) , if
n < K ∧ x ∈ A

or n = K.

(30)

• xA,0 = (x0, 0) is the initial state.

We define IS-based K-attractability as follows.
Definition VII.8. (IS-Based K-Attractability): The property

of IS-based K-attractability ϕatt : 2
XA → {0, 1} w.r.t. GA is

defined by: for any i ∈ 2XA

ϕatt(i) = 0 ⇔ ∃u ∈ i : [u]x ∈ A ∧ [u]n = K (31)

where [u]x and [u]n are the state component and the integer
component of u, respectively.

The following result says that to enforce K-attractability
w.r.t. G, it suffices to enforce the IS-based property ϕatt w.r.t.
GA defined above.

Proposition VII.6: A live language L is K-attractable w.r.t.
G if and only if L |=GA

ϕatt.
Proof: We proceed by contrapositive

L is not K − attractable w.r.t. G

⇔∃s ∈ L s.t. [|s| ≥ K ∧ δ(x0, s) ∈ A] or

[δ(x0, s) ∈ A ∧ ∃t ∈ L/s : δ(x0, st) ∈ A] Def. VII.7

⇔∃w ∈ L s.t. [δA(xA,0, w)]x ∈ A and [δA(xA,0, w)]n=K

⇔∃w ∈ L s.t. ϕatt (RGA
(w,L)) = 0 Def. VII.8

⇔L |=GA
ϕatt Def. III.2.

For the second equivalence, the proof of the “⇒” direction
can be done by taking w = s if the first case holds and w =
st if the second case holds. For the “⇐” direction, since
[δA(xA,0, w)]n = K , by the construction of GA, we know
that (i) |w| ≥ K or (ii) ∃w1w2 ∈ {w} s.t. δ(x0, w1) ∈ A and
δ(x0, w1w2) ∈ A. These two cases correspond to the two cases
after the first equivalence, respectively. �

Remark VII.3: So far, we have discussed the enforce-
ment of K-diagnosability,K-detectability and K-attractability.
Since K-diagnosability (respectively, K-detectability and
K-attractability) is stronger than diagnosability (respectively,

YIN AND LAFORTUNE: UNIFORM APPROACH FOR SYNTHESIZING PROPERTY-ENFORCING SUPERVISORS FOR PARTIALLY-OBSERVED DES 2153

detectability and attractability), enforcing the former one im-
plies that the latter one is also enforced. Moreover, the uniform
approach guarantees the diagnosis (respectively, detection and
attraction) delay of the controlled system, which cannot be
guaranteed by the previous approaches. In this sense, enforcing
these properties with desired delay K is a new feature of the
uniform solution rather than a restrictive assumption. However,
if one does not care about the diagnosis (respectively, detection
and attraction) delay and just wants to enforce diagnosability
(respectively, detectability and attractability), then the maxi-
mally permissive solution obtained for K-diagnosability (re-
spectively, K-detectability and K-attractability) may not be the
maximally permissive solution for diagnosability (respectively,
detectability and attractability). Moreover, as K increases, the
permissiveness of the solution increases, but the complexity
of the synthesis algorithm also increases, since we need to
“unfold” the system for more steps. In other words, there is
a tradeoff between the permissiveness of the solution and the
complexity of synthesis algorithm when there is no delay K
required a priori. In this case, one may proceed as follows.
First, one may start with a solution by choosing a relatively
small K . If the permissiveness of this solution satisfies the de-
sign requirement, then stop. Otherwise, choose a larger K and
repeat the above procedure until a desirable solution is found.

XII. CONCLUSION

We presented a uniform approach to the problem of syn-
thesizing a maximally permissive supervisor that enforces a
certain property for a partially-observed discrete-event system
that does not originally satisfy the property. To this end, we
defined a class of properties called Information-State-Based
properties and a novel information structure called the All En-
forcement Structure that embeds all valid supervisors enforcing
any IS-based property. Based on the AES, a synthesis algorithm
was provided to synthesize a locally maximal solution to this
problem, without making any assumptions about the observ-
ability properties of the controllable events. In this regard, our
approach relaxes the assumption that all controllable events are
observable in the existing works on property enforcement by
supervisory control. We showed that many important properties
in the DES literature can be enforced by the uniform approach
described in this paper. Moreover, this approach can be applied
to enforce other properties, such as anonymity, for which no
synthesis methodologies exist in the current literature. In ad-
dition, the AES can be used for solving quantitative optimal
property enforcement control problems when a cost structure
is imposed on this problem. Since the AES embeds all valid
property-enforcing supervisors, it provides a suitable solution
space over which to solve such optimal control problems.

As we emphasized in the introduction, this paper only con-
siders liveness and does not take non-blockingness into ac-
count. In our recent work [32], we show that non-blockingness
is more complicated to deal with and different techniques are
required. However, one could combine the general framework
proposed in this paper and the techniques in [32] in order
to obtain a non-blocking supervisor enforcing some IS-based
property.

REFERENCES

[1] P. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM J. Control Optim., vol. 25, no. 1,
pp. 206–230, 1987.

[2] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, “Diagnosability of discrete-event systems,” IEEE Trans.
Autom. Control, vol. 40, no. 9, pp. 1555–1575, 1995.

[3] A. Saboori and C. N. Hadjicostis, “Notions of security and opacity in
discrete event systems,” in Proc. 46th IEEE Conf. Decision Control, 2007,
pp. 5056–5061.

[4] J. W. Bryans, M. Koutny, L. Mazaré, and P. Y. Ryan, “Opacity generalised
to transition systems,” Int. J. Inform. Security, vol. 7, no. 6, pp. 421–435,
2008.

[5] S. Shu, F. Lin, and H. Ying, “Detectability of discrete event sys-
tems,” IEEE Trans. Autom. Control, vol. 52, no. 12, pp. 2356–2359,
2007.

[6] S. Shu and F. Lin, “I-detectability of discrete-event systems,” IEEE Trans.
Autom. Sci. Eng., vol. 10, no. 1, pp. 187–196, 2013.

[7] Y. Brave and M. Heymann, “Stabilization of discrete-event processes,”
Int. J. Control, vol. 51, no. 5, pp. 1101–1117, 1990.

[8] C. M. Özveren, A. S. Willsky, and P. J. Antsaklis, “Stability and stabi-
lizability of discrete event dynamic systems,” J. ACM, vol. 38, no. 3,
pp. 729–751, 1991.

[9] K. W. Schmidt and C. Breindl, “A framework for state attraction of
discrete event systems under partial observation,” Inform. Sci., vol. 281,
no. 10, pp. 265–280, 2014.

[10] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. Cambridge,
MA: MIT press, 1999.

[11] F. Lin and W. M. Wonham, “On observability of discrete-event systems,”
Inform. Sci., vol. 44, no. 3, pp. 173–198, 1988.

[12] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya, “Supervisory control
of discrete-event processes with partial observations,” IEEE Trans. Autom.
Control, vol. 33, no. 3, pp. 249–260, 1988.

[13] H. Cho and S. I. Marcus, “On supremal languages of classes of sub-
languages that arise in supervisor synthesis problems with partial obser-
vation,” Math. Contr. Sig. Syst., vol. 2, no. 1, pp. 47–69, 1989.

[14] N. Ben Hadj-Alouane, S. Lafortune, and F. Lin, “Centralized and distrib-
uted algorithms for on-line synthesis of maximal control policies under
partial observation,” Discrete Event Dynamic Syst.: Theory Appl., vol. 6,
no. 4, pp. 379–427, 1996.

[15] X. Yin and S. Lafortune, “A general approach for synthesis of supervisors
for partially-observed discrete-event systems,” in Proc. 19th IFAC World
Congress, 2014, pp. 2422–2428.

[16] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, and
P. Darondeau, “Concurrent secrets,” Discrete Event Dynamic Syst.:
Theory Appl., vol. 17, no. 4, pp. 425–446, 2007.

[17] J. Dubreil, P. Darondeau, and H. Marchand, “Supervisory control for
opacity,” IEEE Trans. Autom. Control, vol. 55, no. 5, pp. 1089–1100,
2010.

[18] M. Ben-Kalefa and F. Lin, “Supervisory control for opacity of discrete
event systems,” in Proc. 49th IEEE Annual Allerton Conf. Commun.,
Control, Comp., 2011, pp. 1113–1119.

[19] A. Saboori and C. N. Hadjicostis, “Opacity-enforcing supervisory strate-
gies via state estimator constructions,” IEEE Trans. Autom. Control,
vol. 57, no. 5, pp. 1155–1165, 2012.

[20] M. Sampath, S. Lafortune, and D. Teneketzis, “Active diagnosis of
discrete-event systems,” IEEE Trans. Autom. Control, vol. 43, no. 7,
pp. 908–929, 1998.

[21] S. Shu and F. Lin, “Enforcing detectability in controlled discrete event
systems,” IEEE Trans. Autom. Control, vol. 58, no. 8, pp. 2125–2130,
2013.

[22] R. Kumar and V. K. Garg, Modeling and Control of Logical Discrete Event
Systems. Norwell, MA: Kluwer, 1995.

[23] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Sys-
tems, 2nd ed. New York: Springer, 2008.

[24] M. Iordache and P. J. Antsaklis, Supervisory Control of Concurrent Sys-
tems: A Petri Net Structural Approach. New York: Springer Science &
Business Media, 2007.

[25] C. Seatzu, M. Silva, and J. H. Van Schuppen, Control of Discrete-Event
Systems. Automata and Petri Net Perspectives. London, U.K.: Springer
London, 2013.

[26] W. M. Wonham, Supervisory Control of Discrete-Event Systems.
Toronto, Canada, ON: University of Toronto, 2014.

[27] P. Darondeau, H. Marchand, and L. Ricker, “Enforcing opacity of regular
predicates on modal transition systems,” Discrete Event Dynamic Syst.:
Theory Appl., pp. 1–20, 2014.

2154 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 8, AUGUST 2016

[28] X. Yin and S. Lafortune, “A new approach for enforcing opacity via su-
pervisory control for partially-observed discrete-event systems,” in Proc.
Amer. Control Conf., 2015, pp. 377–383.

[29] F. Cassez and S. Tripakis, “Fault diagnosis with static and dynamic ob-
servers,” Fund. Inform., vol. 88, no. 4, pp. 497–540, 2008.

[30] E. Dallal and S. Lafortune, “On most permissive observers in dynamic
sensor activation problems,” IEEE Trans. Autom. Control, vol. 59, no. 4,
pp. 966–981, 2014.

[31] X. Yin and S. Lafortune, “Synthesis of maximally permissive non-
blocking supervisors for partially observed discrete event systems,” in
Proc. 53rd IEEE Conf. Decision Control, 2014, pp. 5156–5162.

[32] X. Yin and S. Lafortune, “Synthesis of maximally permissive supervi-
sors for partially observed discrete event systems,” IEEE Trans. Autom.
Control, 2016.

[33] F. Lin and W. M. Wonham, “Supervisory control of timed discrete-event
systems under partial observation,” IEEE Trans. Autom. Control, vol. 40,
no. 3, pp. 558–562, 1995.

[34] H. Liao, S. Lafortune, S. Reveliotis, Y. Wang, and S. Mahlke, “Optimal
liveness-enforcing control for a class of petri nets arising in multithreaded
software,” IEEE Trans. Autom. Control, vol. 58, no. 5, pp. 1123–1138,
2013.

[35] Z. Li, M. Zhou, and N. Wu, “A survey and comparison of petri net-based
deadlock prevention policies for flexible manufacturing systems,” IEEE
Trans. Syst., Man, Cybern. C, vol. 38, no. 2, pp. 173–188, 2008.

[36] J. N. Tsitsiklis, “On the control of discrete-event dynamical systems,”
Math. Control, Signals Syst., vol. 2, no. 2, pp. 95–107, 1989.

[37] G. Barrett and S. Lafortune, “On the separation of estimation and control
in discrete-event systems,” in Proc. 39th IEEE Conf. Decision Control,
2000, vol. 3, pp. 2258–2259.

[38] F. Lin, “Opacity of discrete event systems and its applications,” Automat-
ica, vol. 47, no. 3, pp. 496–503, 2011.

[39] Y.-C. Wu and S. Lafortune, “Comparative analysis of related notions
of opacity in centralized and coordinated architectures,” Discrete Event
Dynamic Syst., vol. 23, no. 3, pp. 307–339, 2013.

[40] L. Sweeney, “K-anonymity: A model for protecting privacy,” Int. J. Un-
certainty, Fuzziness Knowledge-Based Syst., vol. 10, no. 05, pp. 557–570,
2002.

Xiang Yin (S’14) was born in Anhui, China, in 1991.
He received the B.Eng. degree in electrical engineer-
ing from Zhejiang University, Zhejiang, China, in
2012 and the M.S. degree in electrical engineering
from the University of Michigan, Ann Arbor, in 2013,
where he is currently pursuing the Ph.D degree.

His research interests include supervisory control
of discrete-event systems, model-based fault diagno-
sis, formal methods, game theory and their applica-
tions to cyber and cyber-physical systems.

Stéphane Lafortune (F’99) received the B.Eng.
degree from Ecole Polytechnique de Montréal,
Montréal, QC. Canada, in 1980, the M.Eng. degree
from McGill University, Montréal, QC. Canada, in
1982, and the Ph.D. degree from the University
of California at Berkeley in 1986, all in electrical
engineering.

Since September 1986, he has been with the
University of Michigan, Ann Arbor, where he is a
Professor of Electrical Engineering and Computer
Science. He is the lead developer of the software

package UMDES and co-developer of DESUMA with L. Ricker. He co-
authored the textbook Introduction to Discrete Event Systems—Second Edition
(Springer, 2008). He is Editor-in-Chief of the Journal of Discrete Event Dy-
namic Systems: Theory and Applications. His research interests are in discrete
event systems and include multiple problem domains: modeling, diagnosis,
control, optimization, and applications to computer and software systems.

Dr. Lafortune received the Presidential Young Investigator Award from the
National Science Foundation in 1990 and the George S. Axelby Outstanding
Paper Award from the Control Systems Society of the IEEE, in 1994 and 2001,
respectively.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

