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a b s t r a c t

Initial-state estimation is an important problem in discrete-event systems. In this problem, the initial-
state of the system is unknown and one wants to determine the initial-state of the system based on
its observation. In this paper, we investigate the problem of initial-state detection of partially-observed
discrete-event systems in the stochastic setting.We consider two sources of randomness in this problem:
stochastic dynamic of the system and probabilistic sensor failures. Specifically, we model a stochastic
discrete-event system by a probabilistic finite-state automaton and we use a probabilistic projection
function as the observation model. The notion of stochastic initial-state detectability (SI-detectability)
is introduced in order to capture whether or not the probability of detecting the initial-state converges to
one even in the presence of potential sensor failures. An approach for the verification of SI-detectability
is proposed. We also investigate the complexity of the SI-detectability verification problem and we show
that this problem is PSPACE-complete.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

State estimation is one of the most fundamental problems
in Discrete-Event Systems (DES). In many applications, our
information about the system is limited and we need to estimate
the state of the system in order to make some decision. Due
to its importance, the state estimation problem has received
considerable attention in the DES literature; see, e.g., Cabasino,
Hadjicostis, and Seatzu (2015), Özveren and Willsky (1990), Sears
and Rudie (2014), Shu, Lin, and Ying (2007) and Yin and Lafortune
(2015a). Recently, the state estimation problem has been studied
systematically in the framework of detectability; see, e.g., Keroglou
and Hadjicostis (2015), Shu and Lin (2013b) and Shu et al. (2007);
Shu, Lin, Ying, and Chen (2008). Particularly, in Shu et al. (2007),
the authors defined four types of detectability in order to capture
different requirements in the current-state estimation problem.
When the original system is not detectable, several approaches
have also been proposed in order to actively enforce detectability,
e.g., by sensor activations (Shu,Huang, & Lin, 2013; Yin& Lafortune,
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2015b) and by supervisory control (Shu & Lin, 2013a; Yin &
Lafortune, 2016).

One important class of state estimation problems is the initial-
state estimation problem; see, e.g., Li andHadjicostis (2013), Saboori
and Hadjicostis (2013) and Shu and Lin (2013b). In this problem,
we assume that the initial-state of the system is fully unknown
or only partially known. Then, we want to infer the initial-state of
the system by observing the output of the system. In particular,
in Shu and Lin (2013b), the notion of I-detectability was proposed
to capture whether or not we can always uniquely determine the
initial-state of the system by observing a finite sequence of events.
A polynomial-time algorithm for checking I-detectability was also
provided in Shu and Lin (2013b). In Li and Hadjicostis (2013), an
algorithm for recursively computing theminimum initial-marking
of a Petri net was proposed. In Saboori and Hadjicostis (2013), the
notion of initial-state opacity was investigated. This notion can be
considered as the dual of I-detectability, since it requires that the
intruder,which ismodeled as an observer, can never determine the
initial-state of the system.

Although the initial-state estimation problem and the notion
of I-detectability have been studied in the literature, several
important issues still remain. First, the notion of I-detectability
is defined for logical DES. Specifically, it requires that we can
always uniquely determine the initial-state of the system based
on an arbitrarily long observation. However, this requirement
sometimes is too strong when stochastic dynamic of the system
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is considered. For example, it is possible that the probability of
detecting the initial-state of the system becomes arbitrarily close
to one aswe observemore andmore events. Such an asymptomatic
property is also very useful in practice, but I-detectability fails to
capture this feature. Another issue is that, in all of the existing
works on detectability, it is assumed that each observable event
can be reliably observed. However, this assumption may not hold
in practice, since sensors for observable events may fail. This leads
to observation uncertainties and one has to handle this issue.

In order to address the above discussed issues, in this paper,
we study the initial-state estimation problem for stochastic
DES with probabilistic sensor failures. Specifically, this paper
has the following contributions. First, we extend the initial-
state estimation problem from logical DES to the stochastic
setting. We consider a DES modeled by a probabilistic finite-state
automaton in order to describe the stochastic dynamic of the
system. Moreover, we model the observation of the system by
a probabilistic projection function in order to address the issue
of sensor failures. Namely, we assume that the occurrence of an
observable event may not be observed with a given probability
if its associated sensor is not reliable. Then, we define the
notion of stochastic initial-state detectability (SI-detectability)
with probabilistic sensor failures in order to capture whether or
not the probability of detecting the initial-state goes to one. This
notion is strictly weaker than logical I-detectability by taking the
stochastic dynamic of the system into account. Then, we provide
an approach to verify SI-detectability. This is based on the structure
of robust initial-state estimator proposed in the paper. Finally, we
also investigate the precise complexity of deciding SI-detectability.
We show that, unlike I-detectability, which can be verified in
polynomial-time, checking SI-detectability is PSPACE-complete.

Our work is related to several works in the literature; we
discuss the differences between our work and these works.
Property analysis of stochastic DES has been considered in many
different works in the literature; see, e.g., Bertrand, Haddad, and
Lefaucheux (2014), Chen and Kumar (2015a,b), Chen, Ibrahim, and
Kumar (2016); Chen, Keroglou, Hadjicostis, and Kumar (2017),
Keroglou and Hadjicostis (2013, 2015), Lunze and Schröder (2001),
Saboori and Hadjicostis (2014), Shu et al. (2008) and Thorsley
and Teneketzis (2005). The current-state detection problem in
stochastic DES was studied in Keroglou and Hadjicostis (2015)
and Shu et al. (2008) under the assumption that all sensors are
reliable. In particular, the notion of A-detectabilitywas proposed in
Keroglou and Hadjicostis (2015). Our definition of SI-detectability
is similar to A-detectability; both of them require to detect the
(initial or current) state of the system for sure with probability
one. However, we investigate the initial-state detection problem,
which is different from the current-state detection problem.
Moreover, we consider probabilistic sensor failures, which is
also not considered in Keroglou and Hadjicostis (2015) and Shu
et al. (2008). In Keroglou and Hadjicostis (2013), the notion of
initial-state opacity was investigated in the stochastic setting.
However, initial-state opacity and initial-state detectability are
clearly incomparable; the former is an always property, while the
latter is an eventuallyproperty.Moreover, Keroglou andHadjicostis
(2013) also assumes that the observation is always reliable.
Regarding works on unreliable observations, Athanasopoulou, Li,
and Hadjicostis (2010), Carvalho, Basilio, and Moreira (2012),
Takai and Ushio (2012) and Thorsley, Yoo, and Garcia (2008)
studied the sensor reliability issue in the fault diagnosis problem.
In particular, Carvalho et al. (2012) and Takai and Ushio (2012)
investigated the effect of intermittent sensor failure, which is
stronger than the probabilistic sensor failure considered in this
paper. The models used in Athanasopoulou et al. (2010) and
Thorsley et al. (2008) are more related to our setting. Specifically,
they also consider both stochastic dynamic of the system and
probabilistic sensor failures. However, diagnosability is more
related to the current-state estimation problem rather than the
initial-state estimation problem. As a consequence, the verification
procedure we propose in this paper is also very different from the
approaches in Athanasopoulou et al. (2010) and Thorsley et al.
(2008). Overall, all of the above mentioned works are clearly
different from the problem considered in this paper. Our work
provides a systematic study of the initial-state estimation problem
under a fully stochastic framework with both stochastic system
dynamic and probabilistic sensor outputs.

2. Initial-state detection with probabilistic sensor failures

2.1. System model

Let Σ be a finite set of events. A string is a finite sequence of
events andΣ∗ denotes the set of all finite strings overΣ , including
the empty string ϵ. A language L is subset of Σ∗. For any string
s ∈ Σ∗, |s| denotes its length, where |ϵ| = 0. We denote by s the
set of prefixes of s, i.e., s = {t ∈ Σ∗

: ∃v ∈ Σ∗ s.t. tv = s}.
A nondeterministic finite-state automaton (NFA) is a 4-tuple

G = (X, Σ, δ, X0) (1)

where X is the finite set of states, Σ is the finite set of events,
δ : X×Σ → 2X is the partial nondeterministic transition function,
and X0 is the set of initial-states. The transition function δ is also
extended to X × Σ∗ in the usual manner; see, e.g., Cassandras and
Lafortune (2008). The language generated by G from state x ∈ X is
L(G, x) = {s ∈ Σ∗

: δ(x, s)!}, where ‘‘!’’ means ‘‘is defined’’. Then,
the language generated by G is L(G) = ∪x∈X0 L(G, x).

A probabilistic finite-state automaton (PFA) is a 6-tuple

G = (X, Σ, δ, X0, π0, p) (2)

where (X, Σ, δ, X0) is a NFA and we call this NFA the support of
G. Hereafter, we use G to denote the support of G. Also, π0 :

X0 → [0, 1] is the initial-states distribution vector such that
x∈X0

π0(x) = 1 and each element of π0 is nonnegative, and
p : X ×Σ ×X → [0, 1] is the state transition probability function.
For any x, x′

∈ X, σ ∈ Σ , we write p(x′, σ | x) as the probability
that event σ occurs from state x and leads to state x′. We assume
that p satisfies the following requirements

1. ∀x, x′
∈ X, σ ∈ Σ : x′

∈ δ(x, σ ) ⇔ p(x′, σ | x) > 0;
2. ∀x ∈ X :


σ∈Σ


x′∈X p(x′, σ | x) = 1.

Note that these two requirements together also implicitly implies
that the system is live, i.e., ∀x′

∈ X, ∃σ ∈ Σ : δ(x, σ )!. Function
p is also extended to X × Σ∗

× X inductively as follows: for any
s ∈ Σ∗, σ ∈ Σ , we have

p(x′, sσ | x) =


x′′∈X

p(x′′, s | x)p(x′, σ | x′′).

Then, the probability that string s ∈ Σ∗ occurs from state x ∈ X is
p(s | x) =


x′∈X p(x′, s | x) and the probability that string s ∈ Σ∗

occurs from any initial-state is p(s) =


x0∈X0
p(s | x0)π0(x0). We

also write L(G) = L(G) and L(G, x) = L(G, x), where NFA G is
the support of PFA G.

2.2. Observation model

In this paper, we consider a probabilistic observation model.
Specifically, the observation is specified by a probabilistic projection
function M : Σ → [0, 1], where M(σ ) denotes the probability
of observing event σ when it occurs. Note that this observation
probability is independent from the probability that σ occurs at
some state. For any event σ ∈ Σ , we say that σ is (1) unobservable,
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if M(σ ) = 0; and (2) reliable, if M(σ ) = 1; and (3) unreliable,
if 0 < M(σ ) < 1. We denote by Σuo, Σre and Σur the sets of
unobservable, reliable and unreliable events, respectively. We also
define Σo = Σ \ Σuo = Σre ∪ Σur . Clearly, this observation model
is more general than the standard natural projection (Cassandras
& Lafortune, 2008) that is widely used in logical DES, where each
event is either unobservable or reliable.

Let s = σ1σ2 · · · σn ∈ L(G) be a string. Let I = {i1, i2, . . . , ik} be
a set of integers such that 1 ≤ i1 < · · · < ik ≤ n. We say that I is a
realization index set for s (w.r.t.M) if, for any i ∈ {1, . . . , n}, we have
(1) M(σi) = 1 ⇒ i ∈ I; and (2) M(σi) = 0 ⇒ i ∉ I . We denote by
IM(s) the set of realization index sets for string sw.r.t.M . Then, for
any string s = σ1σ2 · · · σn ∈ L(G), we say that σi1σi2 · · · σik is an
output realization of s under M , if {i1, . . . , ik} ∈ IM(s). We denote
by Pr(σi1σi2 · · · σik | s) the probability of this output realization
given the occurrence of string s. Note that two different output
realizationsmay yield the same observation. For example, for string
abb, where a ∈ Σre and b ∈ Σur , abϵ and aϵb are two different
output realizations which have the same observation ab. (We use
ϵ to denote that the corresponding observation at that place is lost.)
Then, the probability thatα ∈ Σ∗

o is observed given the occurrence
of s is
Pr(α | s) =


{i1,...,ik}∈IM (s): σi1σi2 ···σik=α

Pr(σi1σi2 · · · σik | s).

We define a mapping O : Σ∗
→ 2Σ∗

o by, for any s ∈ Σ∗,
α ∈ O(s) ⇔ Pr(α | s) > 0. Mapping O is also extended to O :

2Σ∗

→ 2Σ∗
o by, for any L ⊆ Σ∗

: O(L) = {α ∈ Σ∗
o : ∃s ∈ L s.t. α ∈

O(s)}. Therefore, O(L(G)) is the set of all possible observations of
the system. Note that mapping O is essentially equivalent to the
language dilation operator defined in Carvalho et al. (2012) or the
communication loss operator defined in Lin (2014) if we do not
consider the observation probability Pr(α | s). Finally, we denote
by Pr(α | x) the probability that α ∈ Σ∗

o is observed starting from
state x ∈ X .

2.3. Initial-state detection problem

In this paper, we investigate the initial-state detection problem.
Initially, our knowledge about the initial-state distribution is given
by π0. However, this knowledge can be improved by observing
more events generated by the system. Specifically, the posterior
probability that the initial-state of the system is x ∈ X0 given
α ∈ Σ∗

o observed is

π̂0(x | α) =
Pr(α | x)π0(x)

x0∈X0
Pr(α | x0)π0(x0)

. (3)

We say that the initial-state of the system is detected after
observing α ∈ Σ∗

o if ∃x ∈ X0 : π̂0(x | α) = 1, i.e., for all
x′

∈ X \ {x} : π̂0(x′
| α) = 0. We define a detectability function

D : Σ∗
o → {0, 1} by, for any α ∈ Σ∗

o

D(α) =


1 if ∃x ∈ X0 : π̂0(x | α) = 1
0 otherwise (4)

i.e., the initial-state is detected after observing α ∈ Σ∗
o if and only

if D(α) = 1.

3. Stochastic initial-state detectability with probabilistic sen-
sor failures

In Shu and Lin (2013b), the notion of I-detectability was
introduced for logical (non-stochastic) DES in order to capture
whether or not the initial-state of the system can be detected
within a finite delay. Let G = (X, Σ, δ, X0) be a NFA and suppose
that all observable events are reliable, i.e., Σ = Σre∪̇Σuo. First, we
recall the definition of I-detectability.
Definition 1 (I-Detectability Shu & Lin, 2013b). NFA G = (X, Σ,
δ, X0) is said to be I-detectable w.r.t. Σre ⊆ Σ if

(∃n ∈ N)(∀x ∈ X0)(∀α ∈ P(L(G, x)) : |α| ≥ n)[| In(α)| = 1]

where In(α) = {x ∈ X0 : ∃s ∈ L(G, x) s.t. Pre(s) = α} and
Pre : Σ∗

→ Σ∗
re is the natural projection.

Intuitively, I-detectability requires that there do not exist two
arbitrarily long strings starting from two distinct initial-states such
that the observations of these two strings are equivalent. The
following example illustrates I-detectability and its drawback in
the stochastic setting.

Example 1. Let us consider NFA G1, which is the support of PFA G1
shown in Fig. 1(a). The initial-states are X0 = {1, 2}. Suppose that
Σre = Σ = {a, b}, i.e., all events can be reliably observed. Then,
we know that G1 is not I-detectable, since string (ba)n is defined
at both initial-states 1 and 2 for any n ∈ N. Now, let us assume
that the transition probability function p for G1 is specified by the
number associated with each transition in Fig. 1(a), e.g., we have
p(2, a | 1) = 0.1. We also assume that π0(1) = π0(2) = 0.5.
Then, we know that the probability that string (ba)n occurs is
p((ba)n) = p((ba)n | 1)π0(1) + p((ba)n | 2)π0(2) = 0.5 × (0.9 ×

1)n + 0.5 × (1 × 0.9)n = 0.9n, which goes to zero as n increases.
Once two a (respectively, two b) are observed in succession, we
know immediately that the initial-state of the system is state 1
(respectively, state 2). In other words, the probability of detecting
the initial-state ofG1 goes to onewhen the systemexecutes infinite
number of steps. �

The above example illustrates that I-detectability for logical
DES may not be adequate for the initial-state detection problem
in the stochastic setting even without considering the issue
of probabilistic sensor failures. In order to resolve this issue,
we introduce the notion of stochastic initial-state detectability
(SI-detectability) with probabilistic sensor failures.

Definition 2 (SI-Detectability). Let G = (X, Σ, δ, X0, π0, p) be a
PFA and M : Σ → [0, 1] be a probabilistic projection function.
We say that G is SI-detectable w.r.t.M if

(∀∆ > 0)(∃n ∈ N) s.t. Pr[s ∈ L(G) : ND ∧ |s| = n] < ∆

wherewehave Pr[s ∈ L(G) : ND∧|s| = n] =


s∈Σ∗: |s|=n


α∈O(s)
(1 − D(α))Pr(α | s)p(s).

We make several comments on SI-detectability.

Remark 1. Intuitively, SI-detectability requires that the probabil-
ity of detecting the initial-state of the system will converge to
one as the length of the string generated by the system increases.
One can easily verify that SI-detectability for a PFA is strictly
weaker than I-detectability for its support even without consid-
ering probabilistic observations. For example, we have shown in
Example 1 that PFA G1 is SI-detectable although its support G1 is
not I-detectable. �

Remark 2. In Keroglou and Hadjicostis (2015), the notion of
A-detectability is defined for the current-state detection problem.
Specifically, under the assumption that all sensors are reliable,
A-detectability requires ∀∆ > 0, ∃N ∈ N : Pr({s ∈ Σ∗

: |s|
≥ N, |R(X0,O(s))| > 1}) < ∆, where R(X0,O(s)) is the current-
state estimate of the system. Comparing SI-detectability with
A-detectability, one can easily verify that these two notions are in-
comparable; none of them implies the other. On the other hand,
these two notions do bear some similarities, since in both of these
two problems, we need to know the (current or initial) state of the
system for sure with probability one. Similar criteria in the form of
∀∆ > 0, ∃N ∈ N are also used in the fault diagnosis (Thorsley &
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(a) G1 . (b) G2 .

Fig. 1. Examples for stochastic initial-state detectability. The number associated with each transition denotes the probability of this transition rather than the observation
probability.
Teneketzis, 2005) and the fault prognosis (Chen&Kumar, 2015b) of
stochastic DES. However, our definition focuses on the initial-state
detection problem rather than the current-state detection prob-
lem. Moreover, we consider the issue of observation uncertainty,
which is not considered in Keroglou and Hadjicostis (2015).

Remark 3. We note that I-detectability is defined in terms of the
length of the observed string, while our SI-detectability is defined
in terms of the length of the generated string. The reason why we
choose the generated string to defined SI-detectability is that, for
any string s, the length of its observation may not be unique under
the probabilistic projection function.

Remark 4. The probabilistic sensor failure model we use in this
paper is also different from the intermittent sensor failure model
used in Carvalho et al. (2012) and Takai and Ushio (2012).
Specifically, in the intermittent sensor model, we need to consider
the worst-case where failure always occurs in each unreliable
sensor. However, such a worst-case analysis may be too strong in
practice. For example, let us consider PFAG2 shown in Fig. 1(b) and
assume thatπ0(1) = π0(2) = 0.5,M(a) = M(b) = 1,M(c) = 0.5
and M(d) = 0. By using the intermittent sensor failure model,
we need to consider the case where we always cannot observe
the occurrence of event c . Therefore, we cannot detect the initial
state since string bn can be observed from both initial-states 1 and
2 for any n ∈ N. However, G2 is SI-detectable, since the probability
that the sensor for c always fails goes to zero as the length of the
string increases. Specifically, for initial-state 1, reliable event awill
eventually occur due to the stochastic dynamic of the system and
its occurrence will reveal this initial-state. For initial-state 2, we
know that c will eventually be observed and its occurrence will
also reveal this initial-state. This example also illustrates that the
stochastic dynamic of the system and the probabilistic observation
play different roles in our problem.

4. Verification of SI-detectability

4.1. Robust initial-state estimator

In order to check SI-detectability, the first question is how to
determine whether or not D(α) = 1 after observing α ∈ O(L(G)).
Note that this cannot be done by directly using the initial-state
estimator proposed in Saboori and Hadjicostis (2013) and Shu
and Lin (2013b) since we also need to consider the observation
uncertainties. To resolve this issue, we propose the structure of
robust initial-state estimator that estimates all possible initial-
states in the presence of unreliable sensors. First, we introduce
some necessary definitions.

Mapping Ξ : Σ∗
o → 2X×X is defined by: for any α ∈ Σ∗

o ,

Ξ(α) = {(x, x′) ∈ 2X×X
: ∃s ∈ Σ∗ s.t. α ∈ O(s) ∧ x′

∈ δ(x, s)}.

Composition operator ◦ : 2X×X
× 2X×X

→ 2X×X is defined by: for
any q1, q2 ∈ 2X×X , we have q1 ◦ q2 = {(x1, x3) ∈ 2X×X

: ∃x2 ∈

X s.t. (x1, x2) ∈ q1 ∧ (x2, x3) ∈ q2}. We are now ready to introduce
the robust initial-state estimator.
Definition 3 (Robust Initial-State Estimator). Let G be a PFA and M
be a probabilistic projection function. Let G be the support of G
and Σ = Σre∪̇Σur ∪̇Σuo Then, the robust initial-state estimator
for G and M is the deterministic finite-state automaton (DFA)
Gobs = (Qobs, Σo, δobs, qobs,0), where Qobs ⊆ 2X×X is the set of
states, δobs : Qobs × Σo → Qobs is the transition function such that,
∀q ∈ Qobs, σ ∈ Σo : δobs(q, σ ) = q ◦ Ξ(σ ) and the initial-state is
defined by qobs,0 = Ξ(ϵ) ∩ (X0 × X). For the sake of simplicity, we
only consider the reachable part of Gobs.

Remark 5. For each (x, x′) ∈ 2X×X , we call x the starting state
and call x′ the ending state. Intuitively, Gobs tracks all possible
pairs of starting state and ending state that are consistent with
the observation. The difference between the robust initial-state
estimator and the initial-state estimator without observation
uncertainty (Saboori & Hadjicostis, 2013; Shu & Lin, 2013b) is that,
here we need to treat an unreliable event σ as both observable
event and unobservable event. Specifically, the possibility that the
sensors for events inΣur fail is considered inΞ(σ ), wheremapping
O is used. On the other hand, the transition function δobs is defined
for all events inΣre∪Σur . This essentially allows us to ‘‘encode’’ the
sensor reliability issue into the plant model. A similar feature also
exists in the stochastic fault diagnosis problem; see, e.g., Thorsley
et al. (2008).

In order to compute Ξ(σ ), we construct a new NFA Ĝ =

(X, Σ̂, δ̂, X0) as follows. The event set is Σ̂ = Σ ∪ Σ̂ur , where
Σ̂ur = {σ̂ : σ ∈ Σur} is a set of new events. The transition function
δ̂ is obtained as follows. First, we copy all transitions in δ. Then,
for any σ ∈ Σur and any x′

∈ δ(x, σ ), we add a new transition
x′

∈ δ̂(x, σ̂ ). We define Re : Σ̂ → Σ as the function that renames
events in Σ̂ back to Σ , i.e., Re(σ̂ ) = σ if σ̂ ∈ Σ̂ur and Re(σ ) = σ

if σ ∈ Σ . We denote by Po : Σ̂∗
→ Σ∗

o the natural projection.
Then, we have ∀s ∈ L(Ĝ) : Po(s) ∈ O(Re(s)). This is because that
the possibility that an unreliable event σ ∈ Σ may fail has been
taken care by the corresponding event σ̂ ∈ Σ̂ur , which is added in
parallel with σ . Then, for any x, we have

{x′
∈ X : ∃s ∈ Σ∗ s.t. α ∈ O(s) ∧ x′

∈ δ(x, s)}

= {x′
∈ X : ∃s ∈ Σ̂∗ s.t. α ∈ Po(s) ∧ x′

∈ δ̂(x, s)}.

Therefore, Ξ(σ ) can be computed by taking the standard unob-
servable reach in Ĝ under natural projection Po. Similar construc-
tions are also used in Carvalho et al. (2012) and Lin (2014) for
different purposes.

Example 2. Let us consider PFAG2 shown in Fig. 1(b), whereπ0(1)
= π0(2) = 0.5. Suppose that the projection function M is de-
fined by M(a) = M(b) = 1 and M(c) = M(d) = 0.5, i.e.,
Σre = {a, b} and Σur = {c, d}. Then, the robust initial-state es-
timator Gobs is shown in Fig. 2. Initially, since all events defined
at X0 are reliable, we have that qobs,0 = Ξ(ϵ) ∩ (X0 × X) =

{(1, 1), (2, 2)}. Once event b is observed, we know that Ξ(b) =

{(1, 1), (1, 3), (2, 2), (2, 4)} and we have δobs(qobs,0, b) = {(1, 1),
(2, 2)} ◦ {(1, 1), (1, 3), (2, 2), (2, 4)} = {(1, 1), (1, 3), (2, 2),
(2, 4)}. �
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Fig. 2. The robust initial-state estimator Gobs for G2 . For each q ∈ 2X×X , we connect
state x on the LHS with state x′ on the RHS to denote that (x, x′) ∈ q.

For any state q ∈ Qobs, we denote by S(q) the set of starting
states in q, i.e., S(q) = {x1 ∈ X : ∃x2 ∈ X s.t. (x1, x2) ∈ q}. By
definition, we know that L(Gobs) = O(L(G)), i.e., any potential
observation is defined in Gobs. The following result reveals that Gobs
correctly estimates the initial-state of the system.

Proposition 1. For any α ∈ O(L(G)), we have

S(δobs(qobs,0, α)) = {x ∈ X0 : π̂0(x | α) > 0}. (5)

4.2. Verification algorithm

Let Gobs = (Qobs, Σo, δobs, qobs,0) be the robust initial-state es-
timator. We construct the DFA Ĝobs = (Qobs, Σ̂, δ̂obs, qobs,0) by
adding a self-loop at each state in Qobs for each event in Σ̂ur ∪ Σuo.
Next, we construct the product of Ĝ and Ĝobs denoted by Gaug =

(Qaug , Σ̂, δaug ,Qaug,0) := Ĝ × Ĝobs, where ‘‘×’’ is the usual prod-
uct composition operation of automata; see, e.g., Cassandras and
Lafortune (2008). The product automaton Gaug has the following
property. Suppose that a string s ∈ L(Gaug) leads to (x, q) ∈ Qaug .
Then, it implies that the string generated by the system is Re(s),
which leads to x in G, and the observation of Re(s) is Po(s), which
leads to q in Gobs. We call a state (x, q) ∈ Qaug in Gaug a certain state
if S(q) is a singleton; otherwise, we call it an uncertain state. We
denote by Qcer ⊆ Qaug the set of certain states, i.e., Qcer = {(x, q) ∈

Qaug : |S(q)| = 1}.
A strongly connected component (SCC) in Gaug is a maximal set

of states v ⊆ Qaug such that ∀q1, q2 ∈ v, ∃s ∈ Σ̂∗
: q2 ∈

δaug(q1, s). We denote by {v1, . . . , vm} the set of SCCs in Gaug . Then,
we construct a new NFA

T = (V , Σ̂, δT , V0) (6)

where

• V = {v1, . . . , vm} is the set of SCCs in Gaug ;
• δT : V × Σ̂ → 2V is the nondeterministic transition function

defined by: for any v1, v2 ∈ V , σ ∈ Σ̂ , we have v2 ∈ δT (v1, σ )
if

∃q1 ∈ v1, ∃q2 ∈ v2 : [q2 ∈ δaug(q1, σ )] ∧ [v1 ≠ v2].

• The set of initial-states V0 is the set of SCCs in Gaug that contain
a state in Qaug,0, i.e., V0 = {v ∈ V : v ∩ Qaug,0 ≠ ∅}.

Moreover, for each SCC v ∈ V , we say that

• v is a certain SCC, if v ⊆ Qcer , and we denote by Vcer ⊆ V the set
of certain SCCs.

• v is an uncertain SCC if, v ⊈ Qcer , and we denote by Vunc ⊆ V
the set of uncertain SCCs.

• v is a terminal SCC if, ∀σ ∈ Σ̂ : δT (v, σ )¬!, where ‘‘¬!’’ means
‘‘is not defined’’, and we denote by Vter ⊆ V the set of terminal
SCCs.
Example 3. We still consider PFA G2 shown in Fig. 1(b) and func-
tionM defined in Example 2. The robust initial-state estimator Gobs

has been shown in Fig. 2. The corresponding Ĝ, Ĝobs are shown in
Fig. 3(a) and (b), respectively. Specifically, Ĝ is obtained by adding
new transitions labeled with ĉ and d̂ to G in parallel with transi-
tions label with unreliable events c and d, respectively. The prod-
uct NFA Gaug is also shown in Fig. 3(c), which has seven SCCs; each
set of states in a dashed rectangular in Fig. 3(c) represents a SCC.
Then, NFA T is just the NFA by considering each dashed rectan-
gular in Fig. 3(c) as a single state. For example, we know that state
(4, q2) ∈ Gaug is not a certain state, since S(q2) = {1, 2}. Therefore,
SCC v3 is an uncertain SCC. However, SCCs v6 and v7 are certain and
both of them are also terminal SCCs. �

Remark 6. Note that NFA T is acyclic, i.e., there is no cycle in T ,
since states in the same cycle are merged into the same SCC. We
also note that, if a SCC v ∈ V contains one certain state (respec-
tively, uncertain state), then we know that all states in this SCC are
certain (respectively, uncertain). Namely, V = Vcer ∪̇Vunc , and, for
each SCC v ∈ V , v ⊈ Qcer and v ∩ Qcer = ∅ are equivalent. This
is because that, once we detect the initial-state, we will detect the
initial-state forever. �

Based on NFA T , we are now ready to present the main result to
verify SI-detectability.

Theorem 1. Let G be a PFA and M be a probabilistic projection
function. Let T be the acyclic NFA constructed from Gaug = Ĝ × Ĝobs.
Then,G is SI-detectable w.r.t. M, if and only if, Vter ∩Vunc = ∅, i.e., any
terminal SCC is certain.

The following example illustrates how to use Theorem 1 to
verify SI-detectability.

Example 4. Let us still consider PFA G2 shown in Fig. 1(b), where
π0(1) = π0(2) = 0.5 and M is defined by M(a) = M(b) = 1 and
M(c) = M(d) = 0.5. The NFA T has been shown in Fig. 3(c). Since
the only two terminal SCCs v6 and v7 are certain, by Theorem 1, G2
is SI-detectable w.r.t.M . �

Remark 7. In Keroglou and Hadjicostis (2015), a Markov-
chain-based approach was proposed for the verification of
A-detectability. Specifically, the approach in Keroglou and Had-
jicostis (2015) evaluates some properties on the set of recurrent
states in a Markov-chain. Moreover, the trellis-based initial-state
estimation is also related to the approach in Shu and Lin (2013b)
that augments the systemmodel by tracking the initial states; both
of them essentially require to record a pair of states. One may
also use similar ideas to verify SI-detectability by constructing a
Markov-chain based onGaug and estimating the initial-states based
on the augmentedmodel. In fact, computing all recurrent states in a
Markov-chain is equivalent to computing the set of terminal SCCs.
Hence, this alternative approach should be equivalent to our ap-
proach, which verifies SI-detectability directly based on the struc-
tural analysis of Gaug .

Remark 8. Theorem 1 also reveals a structural property of SI-
detectability. In particular, we see that SI-detectability does not
depend on the specific transition probability of G or the specific
value ofM . Instead, it only depends on the support of G, i.e., G, and
the partition on Σ induced by M , i.e., which events are reliable,
unreliable or unobservable. In other words, given a threshold ∆,
without changing the support of G and the partition on Σ induced
by M , modifying the values of p and M will only affect the value
of the corresponding integer n. However, it will not affect the
existence of such an integer. Namely, the probability of detecting
the initial-state will still converge to one but with a different
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(a) Ĝ. (b) Ĝobs . (c) Gaug = Ĝ × Ĝobs .

Fig. 3. Examples for the verification of SI-detectability, where Σre = {a, b} and Σur = {c, d}.
rate of convergence. This structural property is very useful in
practice, since in many cases, we only know that a transition or
an observation is possible, but it may be very hard to obtain the
precise value of p or M .

We conclude this section by discussing the complexity of the
proposed approach for verifying SI-detectability. First, we need to
constructGobs, which has 2|X0|×|X | states and |Σ |2|X0|×|X | transitions
in theworst-case. Constructing Ĝ and Ĝobs are linear in the sizes ofG
and Gobs, respectively. Therefore, in the worst case, Gaug = Ĝ× Ĝobs

has |X |2|X0|×|X | states and |Σ | |X |2|X0|×|X | transitions. Computing
all SCCs for Gobs is linear in the size of Gobs. Therefore, the overall
complexity is O(|Σ | |X |2|X0|×|X |), which is exponential in the size
ofG. However, wewill show later that this exponential complexity
is unavoidable.

5. The complexity of SI-detectability

So far, we have provided an approach for verifying SI-
detectability. However, the complexity of our approach is expo-
nential in the size of G. It was shown in Shu and Lin (2013b)
that, for logical DES, the notion of I-detectability can be checked
in polynomial-time. Unfortunately, we show in this section that
checking SI-detectability is PSPACE-complete, which means that
it is highly unlikely that such a polynomial-time algorithm ex-
ists. Note that, in Keroglou and Hadjicostis (2015), the authors also
show that verifying A-detectability is PSPACE-hard by reducing
the Universality Problem for NFA to the A-detectability verification
problem. However, the universality problem is more related to the
current-state estimation problem rather than the initial-state es-
timation problem. Hereafter, we provide a different approach for
establishing the complexity result.

It is well-known that the Language Equivalence Problem for NFAs
are PSPACE-complete, which is stated as follows.

Theorem 2 (Stockmeyer & Meyer, 1973). Let A and B be two NFAs
with unique initial-states xA,0 and xB,0, respectively. Deciding whether
or not L(A) = L(B) is PSPACE-complete.

We will not directly use the language equivalence problem
for NFAs to prove the PSPACE-hardness of the SI-detectability
verification problem. Instead, we consider a variation of this
problem. Note that, to test whether or not L(A) = L(B), it suffices
to test whether or not L(A) ⊆ L(B) and L(B) ⊆ L(A). First, we
have the following corollary.

Corollary 1. Let A and B be two NFAs with unique initial-states xA,0
and xB,0, respectively. Deciding whether or not L(A) ⊆ L(B) is
PSPACE-hard.

For any two languages L1, L2 ⊆ Σ∗, we say that L1 and L2 are
comparable if L1 ⊆ L2 or L2 ⊆ L1. Then, we also have the following
result.
Fig. 4. Conceptual illustration of how to construct G from A and B.

Corollary 2. Let A and B be two NFAs with unique initial-states xA,0
and xB,0, respectively. Deciding whether or not L(A) and L(B) are
comparable is PSPACE-hard.

Proof. We reduce the language inclusion problem to the lan-
guage comparison problem. Let A and B be two NFAs, where
L(A), L(B) ⊆ Σ∗ and x0,A and x0,B are the unique initial-states of
A and B, respectively. We construct a new NFA B′ by adding a self-
loop transition labeled with # at the initial-state x0,B in B, where
# ∉ Σ is a new event. Then, we claim that L(A) ⊆ L(B) if and
only if L(A) and L(B′) are comparable.

(⇒) By construction, we have that L(B) ⊂ L(B′). Therefore,
L(A) ⊆ L(B) implies that L(A) ⊂ L(B′), which means that L(A)
and L(B′) are comparable.

(⇐) Suppose that L(A) and L(B′) are comparable, i.e., L(B′) ⊆

L(A) or L(A) ⊆ L(B′). Since #∗
∈ L(B′) \ L(A), we know that

the only possibility is L(A) ⊆ L(B′). This implies that L(A) ⊆

L(B′) ∩ Σ∗
= L(B). �

Using the above corollary, we are now ready to show that
checking SI-detectability is PSPACE-complete.

Theorem 3. Let G be a PFA and M be a probabilistic projection func-
tion. Deciding whether or not G is SI-detectable w.r.t. M is PSPACE-
complete.

Proof. It is in PSPACE, since we can check the condition in Theo-
rem 1 by constructing Gaug and T on the fly in a nondeterministic
manner, which only requires polynomial space. Then, by the Sav-
itch’s theorem (Savitch, 1970), we know that it is in PSPACE.

Next, we show that this problem is PSPACE-hard by reducing
the language comparison problem to the SI-detectability verifica-
tion problem. Let A = (XA, Σ, δA, x0,A) and B = (XB, Σ, δB, x0,B)
be two NFAs with unique initial-states xA,0 and xB,0, respectively.
We assume that A and B are both live. Otherwise, we can add a
self-loop with a new symbol at each state in A and B; this will not
affect the result. We construct a PFAG = (X, Σ ∪{#}, δ, X0, π0, p),
where # ∉ Σ is a new event. Its support G = (X, Σ ∪ {#}, δ, X0)
is obtained as follows. First, we take the union of A and B, i.e., X =

XA ∪ XB, X0 = {xA,0, xB,0} and δ is consistent with δA and δB. Then,
we add a transition labeled with # from each state in XA \ {xA,0}

(respectively, XB \ {xB,0}) to initial-state xA,0 (respectively, xB,0). A
conceptual illustration of this construction is shown in Fig. 4. The
initial-state distribution is π0(xA,0) = π0(xA,0) = 0.5. We set
the transition probability by uniform distribution at each state, i.e.,
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∀x, x′
∈ X, σ ∈ Σ ∪ {#} : p(x′, σ | x) =

1
|Tran(x)| , where Tran(x) =

{(x, σ , x′) ∈ X × (Σ ∪ {#}) × X : x′
∈ δ(x, σ )} is the set of tran-

sitions defined at x. The projection function M is defined by ∀σ ∈

Σ∪{#} : M(σ ) = 1, i.e., all events are reliable. Note that the size of
G is linear in the sizes of A and B. Hereafter, we show thatL(A) and
L(B) are comparable if and only if G is not SI-detectable w.r.t.M .

(⇒) Suppose that L(A) and L(B) are comparable. We assume
without loss of generality that L(A) ⊆ L(B). Then, we know that,
for any n ∈ N, we have


s∈L(G, xA,0): |s|=n(1−D(s))Pr(s | xA,0) = 1.

This is because, for any s ∈ L(G, xA,0), there exists s ∈ L(G, xB,0).
Therefore, by choosing ∆ = π0(xA,0) − ε, where ε is an arbitrarily
small number, we know that G is not SI-detectable w.r.t.M .

(⇐) By contraposition. Suppose that L(A) and L(B′) are not
comparable, i.e.,L(B) ⊄ L(A) orL(A) ⊄ L(B). Let s ∈ L(A)\L(B)
and t ∈ L(B) \ L(A). Clearly, whenever s or w#s occurs, where
w ∈ (Σ ∪ {#})∗, we know immediately that the initial-state is
xA,0; similarly, whenever t or w#t occurs, where w ∈ (Σ ∪ {#})∗,
we know immediately that the initial-state is xB,0. Due to the pres-
ence of event #, we can always reset to initial-states infinite of-
ten. Therefore, if the system starts from initial-state xA,0, then the
probability that string s or w#s occurs goes to one as the length of
the generated string increases. Similarly, if the system starts from
initial-state xB,0, then the probability that string t or w#t occurs
goes to one as the length of the generated string increases. There-
fore, the probability of detecting the initial-state goes to one, i.e., G
is SI-detectable w.r.t.M . �

6. Conclusion

In this paper, we investigated the initial-state detectability
problem in the stochastic setting. Both stochastic dynamic of
the system and probabilistic sensor failures were considered.
The notion of SI-detectability was introduced in order to capture
whether or not the probability of detecting the initial-state con-
verges to one. An algorithm for the verification of SI-detectability
was provided. Finally, we proved that checking SI-detectability is
PSPACE-complete.

Appendix. Proofs not contained in main body

Proof of Proposition 1. First, we claim that

δobs(qobs,0, α) = {(x1, x2) ∈ 2X×X
:

∃x1 ∈ X0, x2 ∈ X, ∃s ∈ Σ∗ s.t. α ∈ O(s) ∧ x2 ∈ δ(x1, s)}. (A.1)

We prove this claim by induction on the length of α ∈ Σ∗
o .

For |α| = 0, i.e., α = ϵ, we know that Eq. (A.1) holds by the
definition of qobs,0. Let us assume that Eq. (A.1) holds for |α| = k.
Then, we need to show that Eq. (A.1) still holds for α′

= ασ , where
|α| = k and σ ∈ Σo. We have that

δobs(qobs,0, ασ ) = δobs(qobs,0, α) ◦ Ξ(σ )

= {(x1, x2) ∈ 2X×X
: ∃x1 ∈ X0, x2 ∈ X, ∃s ∈ Σ∗

s.t. α ∈ O(s) ∧ x2 ∈ δ(x1, s)}

◦ {(x2, x3) ∈ 2X×X
: ∃s ∈ Σ∗ s.t. σ ∈ O(s) ∧ x3 ∈ δ(x2, s)}

= {(x1, x3) ∈ 2X×X
: ∃x1 ∈ X0, x3 ∈ X, ∃s ∈ Σ∗

s.t. ασ ∈ O(s) ∧ x3 ∈ δ(x1, s)}.

Therefore,we know that Eq. (A.1) always holds. Then, by the defini-
tion of π̂0(x | α), we know that π̂0(x | α) > 0 iff Pr(α | x) > 0 and
π0(x) > 0. Moreover, Pr(α | x) > 0 iff ∃s ∈ L(G, x) : α ∈ O(s).
Therefore, {x ∈ X0 : π̂0(x | α) > 0} = {x ∈ X0 : ∃s ∈ L(G, x) s.t.
α ∈ O(s)} = S(δobs(qobs,0, α)). �
Proof of Theorem 1. (⇒) By contraposition. Suppose that there
exists an uncertain terminal SCC in T ; say v ∈ V . Let (x, q) ∈ v be
an uncertain state in v and let s ∈ L(Gaug) be a string that reaches
(x, q) in Gaug . We define sR = Re(s) and α = Po(s). Then, we know
that x ∈ δ(x0, sR), δobs(qobs,0, α) = q and α ∈ O(sR). We choose
∆ = Pr(α | sR)p(sR) and we claim that, for any integer n ∈ N,
we have that Pr[s ∈ L(G) : ND ∧ |s| = n] ≥ ∆. To see this, we
consider the following two cases for n.

Case 1: n ≤ |sR|. Since (x, q) is uncertain, we know that D(α) =

0, which implies that, for any prefix β ∈ α, we have D(β) = 0.
Therefore, for any n ≤ |sR|, we can choose t ∈ sR such that
|t| = n. Then, we know that Pr[s ∈ L(G) : ND ∧ |s| = n] =

s∈L(G): |s|=n


α∈O(s)(1 − D(α))Pr(α | s)p(s) ≥


β∈α Pr(β | t)
p(t) ≥ Pr(α | sR)p(sR) = ∆

Case 2: n > |w|. Since (x, q) ∈ Vter ∩ Vunc , we know that
∀t ∈ L(G, x), ∀β ∈ O(t) : D(αβ) = 0. Therefore, for any
n > |w|, Then, we know that Pr[s ∈ L(G) : ND ∧ |s| = n] =

s∈L(G): |s|=n


α∈O(s)(1−D(α))Pr(α | s)p(s) ≥


sRt∈L(G): |sRt|=n Pr
(α | sR)Pr(sRt) = Pr(α | sR)p(sR) = ∆.

(⇐) Suppose s ∈ L(G) is generated and α ∈ O(s) is observed.
Let x ∈ δ(X0, s) and q = δobs(qobs,0, α). We know that (x, q) ∈

Qaug . We denote by p(x, q) the probability that the initial-state
can be detected in the future given that the current state is x
and the current estimator state is q. Note that p(x, q) is non-
zero, since Vter ∩ Vunc = ∅ and (x, q) can always reach a certain
state, i.e., (∃t ∈ L(G, x))(∃β ∈ O(t))[|S(δobs(q, β))| = 1]. We
denote by tmin(x, q) the shortest t satisfying the above condition
and define nmin(x, q) := |tmin(x, q)|. Then, we know that, given x
and q, the probability that the initial-state is detected in the next
nmin(x, q)-steps is non-zero and we denote by pD(x, q) > 0 this
probability. Then, we define nmax := maxx∈X,q∈Qobs nmin(x, q) and
pmin := minx∈X,q∈Qobs pD(x, q). We know that, for any instant, the
probability that the initial-state can be detected in the next nmax-
steps is greater than or equal to pmin. Therefore, for any k ∈ N, we
have that Pr[s ∈ L(G) : ND ∧ |s| = knmax] ≤ (1 − pmin)

k. Then,
for any ∆ > 0, by taking n ∈ N such that n ≥ nmax⌈log ∆

1−pmin
⌉,

where ⌈k⌉ denotes the smallest integer greater than or equal to
k, we have that Pr[s ∈ L(G) : ND ∧ |s| = n] ≤ ∆, i.e., G is
SI-detectable w.r.t.M . �
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