
DPO-SYNT: Discrete Control Synthesis for
Partially-Observed Systems ?

Xiang Yin ∗ Maxwell Morrison ∗ Siyuan Sheng ∗

Stéphane Lafortune ∗

∗Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI 48109, USA.

(e-mail:{xiangyin,morrimax,ssyssy,stephane}@umich.edu)

Abstract: This paper describes DPO-SYNT, a C++ based software toolbox for property
enforcement in partially-observed Discrete Event Systems. DPO-SYNT implements a recently
developed uniform framework for synthesizing maximally-permissive supervisors and optimal
sensor activation policies. It can handle the enforcement/synthesis problems for a large variety
of properties, including safety, opacity, diagnosability, and detectability, in a uniform manner.

Keywords: Synthesis Tools, Discrete Event Systems, Partial Observation, Supervisory Control,
Sensor Activation.

1. INTRODUCTION

The DPO-SYNT software toolbox is designed for the
synthesis of supervisors and sensor activation policies for
partially-observed Discrete Event Systems (DES) modeled
by finite-state automata. It is based upon the recently
developed framework presented in [Yin and Lafortune
2015, 2016b,a, 2017] that handles the supervisory control
problem and the sensor activation problem in a uniform
manner. DPO-SYNT can be used to solve a large class
of supervisory control problems under the partial observa-
tion setting, including but not restricted to, the standard
supervisory control problem, the active diagnosis problem,
the discrete stabilization problem, and the opacity enforce-
ment problem. For all of the above mentioned problems,
the non-blockingness requirement can also be guaranteed.
When the property under consideration is safety, DPO-
SYNT guarantees the minimal behavior achieved by solv-
ing a range control problem. DPO-SYNT can also handle
the sensor activation policy synthesis problem in a similar
manner. This allows the use of DPO-SYNT to synthe-
size optimal sensor activation policies for the purposes of
supervisory control, fault diagnosis, and fault prognosis.
DPO-SYNT implements the algorithms in [Yin and Lafor-
tune 2015, 2016b,a, 2017] in an explicit manner, without
using symbolic methods. As such, it is a useful educational
and research tool for systems of small or moderate size.

DPO-SYNT can be downloaded from
https://gitlab.eecs.umich.edu/M-DES-tools/DPO-SYNT .

1.1 Related Software Tools

Several software tools have been developed for solving
analysis and synthesis problems for DES modeled as finite-
state automata (FSA). Among them, we mention DESUMA

? This work was partially supported by NSF grants CCF-1138860
(Expeditions in Computing project ExCAPE: Expeditions in Com-
puter Augmented Program Engineering), CNS-1421122, and CNS-
1446298.

[Ricker et al. 2006], SUPREMICA [Åkesson et al. 2006], TCT
[Feng and Wonham 2006], LibFAUDES [Moor et al. 2008],
DESLAB [Clavijo et al. 2012], DESPOT [Leduc 2015], and
IDES [Rudie 2006]. Compared with the above mentioned
tools, DPO-SYNT has the following distinguishing fea-
tures: (1) it solves a large class of control problems in
addition to the standard supervisory control problem; (2)
it handles the issue of non-blockingness under the par-
tial observation setting; (3) it synthesizes optimal sensor
activation policies. These capabilities extend the state-of-
the-art in FSA-based DES tools.

2. DESCRIPTION OF DPO-SYNT

2.1 Theoretical Foundations

The main computational object in DPO-SYNT is a DES
modeled as a deterministic FSA, as a special case of a la-
beled transition system. DPO-SYNT can handle two types
of synthesis problems: the supervisory control problem and
the dynamic sensor activation problem. We briefly review
the theoretical foundations of DPO-SYNT; the reader
is referred to the publications [Yin and Lafortune 2015,
2016b,a, 2017] for more technical details.

In our recent work [Yin and Lafortune 2016b,a], a two-
stage approach for synthesizing non-blocking and property-
enforcing supervisors was proposed. The class of proper-
ties under consideration are so-called Information-State-
based (or IS-based) properties. Specifically, an IS-based
property is a predicate ϕ : 2X → {0, 1}, where X is the set
of states of the FSA. It was shown by Yin and Lafortune
[2016b] that many important system-theoretic properties
such as safety, K-diagnosability, and opacity, can be for-
mulated as IS-based properties. The key of the uniform
computational approach is the construction of two discrete
structures called the All Enforcement Structure (AES) and
the Non-Blocking All Enforcement Structure (NB-AES).
Based on the (NB-)AES, a maximally-permissive (non-
blocking) supervisor satisfying ϕ can be synthesized.

Preprints of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright by the
International Federation of Automatic Control (IFAC)

6026

Control
Sensing

Non-Blocking

No

Property: 𝝋 System: 𝑮

NB-AES MPO

Yes
Non-blocking?

Minimal
Behavior? Yes

(Safety Only)

CSR AES

No

Control or
Sensing ?

Supervisor for 𝝋
Supervisor

for 𝝋
Supervisor for 𝝋

with Minimal Behavior
Sensor Activation

Control or Sensing
Non-blocking Required?

Minimal Behavior
Required?

Policy for 𝝋

Fig. 1. The architecture of DPO-SYNT

Fig. 2. Example of a complete NB-AES

A similar approach was also developed recently in [Yin
and Lafortune 2015] for the synthesis of optimal sensor
activation policies. The key structure in this synthesis
problem is called the Most Permissive Observer (MPO),
which embeds all valid sensor activation policies in its
structure. Based on the MPO, an optimal sensor activation
policy can be synthesized.

2.2 The Tool

To use DPO-SYNT, first, we need to provide the plant
automaton, which is implemented by class FSM. The FSM
format is depicted in Table 1; each state is then mapped
to an integer in the C++ toolbox. Second, we need to
specify the IS-based property ϕ : 2X → {0, 1} that is
to be enforced. Each information state, which is a set of
states of the plant automaton, is encoded as a Boolean
variable without enumerating all state names as a set. In
the current version of DPO-SYNT, we have included three
different types of IS-based properties, namely, safety, state
distinguishability, and opacity. For example, for the safety
requirement, we need to specify the set of illegal states,
while for the state disambiguation problem, we need to
specify the set of state pairs that we need to distinguish.
One is also allowed to define any custom IS-based property
in DPO-SYNT by defining a truth table on 2X .

Next, we need to select whether we want to solve a su-
pervisory control problem or a sensor activation problem.
Under the selection of the supervisory control problem for

〈number of states〉 〈number of events〉

〈state 1〉 〈m or u〉 /*marked or not*/
...

〈state n〉 〈m or u〉

〈event 1〉 〈c or u〉 〈o or u〉 /*controllability & observability*/
...

〈event n〉 〈c or u〉 〈o or u〉

〈event state〉 〈event state〉 ... /*transitions from state 1*/
...

〈event state〉 〈event state〉 ... /*transitions from state n*/

Table 1. The FSM format in DPO-SYNT

instance, one can further select whether or not the non-
blockingness condition is required. If one is only interested
in enforcing safety without non-blockingness, then DPO-
SYNT can also guarantee the minimal behavior achieved
by the resulting supervisor; this is done by computing the
Control Simulation Relation (CSR) developed in [Yin and
Lafortune 2017].

The basic architecture of DPO-SYNT is summarized in
Figure 1. The default output of DPO-SYNT is either
an optimal sensor activation policy, which is realized by
a Bipartite Dynamic Observer (BDO), or a maximally-
permissive supervisor, which is realized by a Bipartite
Transition System (BTS). The BPO and the BTS are dis-
crete structures that can be viewed as a form of bipartite
labeled transition system. One can also choose to export
the AES, the NB-AES, or the MPO, which are constructed
in the intermediate steps. The similarity between the AES
and the MPO allows the implementation of these two
structures, as well as the BTS and the BDO, with the
same data structure in DPO-SYNT.

DPO-SYNT is implemented in C++ with approximately
5000 lines of code (current version). DPO-SYNT is
command-line-based and it does not have a GUI. How-
ever, command CONVERT is provided to transform an FSA

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

6027

in DPO-SYNT FSM format to the .fsm format used in
DESUMA. This allows drawing an FSA using the layout and
export capabilities of DESUMA. Note that both the AES and
the MPO are bipartite structures with two different types
of states; this feature is preserved by using marked states
in the conversion, namely, marking is used to distinguish
between the two different types of states. An example of
AES is shown in Figure 2, in which each state without a
double circle is called a Y -state (where the supervisory
controller acts) and each state with a double circle is
called a Z-state (where the system reacts). Note that the
structure in Figure 2 is also a BTS, since the AES is a
special class of BTS.

Fig. 3. Average number of states in the NB-AES

Fig. 4. Average running time of the synthesis algorithm
(y-axis) in terms of number of system states (x-axis)

2.3 Scalability

We discuss computational complexity in terms of the num-
ber of states of the plant automaton, |X|. In the worst
case, the resulting BTS or BDO in solving a (control
or sensor activation) synthesis problem may contain 2|X|

states. However, this theoretical upper bound may not be
achieved in practice. To better understand this exponential
growth and test the limits of the current explicit imple-
mentation in DPO-SYNT, we performed scalability tests
of DPO-SYNT on an 8 GB Lenovo Laptop with a 2.5-GHz
Intel core i7.

We fixed the number of events as |E| = 10 and varied the
number of states from |X| = 1 to |X| = 50. We considered
the standard non-blocking supervisor synthesis problem
for a safety requirement. For each |X| ∈ {1, . . . , 50}, we
randomly generated 20 system models using the following
parameters: the out-degree of each state is |X|/2, 50%
of the events are controllable, 50% of the events are

observable, 20% of the states are marked states, and 20%
of the states are illegal. Then we constructed the NB-AES
for each randomly generated automaton and computed the
average number of states of the NB-AESs for each |X|.
Also, we computed the average running time of the entire
synthesis algorithm for each |X|.
The experimental results are summarized in Figures 3
and 4. Specifically, Figure 3 shows the average number
of states in the NB-AES compared with the theoretical
upper bound. Figure 4 shows the average running time
of the entire synthesis algorithm when the number of
states in the system increases. These experimental results
show that, in these tests on random plant models, the
complexity of the synthesis algorithm is much smaller
than its theoretical upper bound. This was due to the
fact that for our randomly generated automata, the expo-
nential upper bound when constructing the observer was
not achieved. However, we also found that the running
time increases significantly when the number of events
increases. The current version of DPO-SYNT can handle
systems with about 100 states and 20 events. Note that
the current implementation of DPO-SYNT does not use
symbolic methods. It is well known that using symbolic
methods can significantly improve the scalability of reac-
tive synthesis algorithms. Indeed, several DES tools have
BDD-based implementations, such as SUPREMICA, TCT, and
the recent supervisor synthesis tool SynthSMV 1 [Rawlings
2016]. Implementing a new version of DPO-SYNT using
symbolic methods is an important future direction.

REFERENCES

Åkesson, K., Fabian, M., Flordal, H., and Malik, R. (2006).
Supremica - an integrated environment for verification,
synthesis and simulation of discrete event systems. In
8th International Workshop on Discrete Event Systems,
384–385.

Clavijo, L., Basilio, J., and Carvalho, L. (2012). DESLAB:
A scientific computing program for analysis and syn-
thesis of discrete-event systems. In 11th International
Workshop on Discrete Event Systems, 349–355.

Feng, L. and Wonham, W. (2006). TCT: A computation
tool for supervisory control synthesis. In 8th Interna-
tional Workshop on Discrete Event Systems, 388–389.

Leduc, R. (2015). DESpot. URL http://www.cas.
mcmaster.ca/~leduc/DESpot.html.

Moor, T., Schmidt, K., and Perk, S. (2008). libFAUDES
an open source C++ library for discrete event systems.
In 9th International Workshop on Discrete Event Sys-
tems, 125–130.

Rawlings, B. (2016). Discrete Dynamics in Chemical
Process Control and Automation. Ph.D. thesis, Carnegie
Mellon University.

Ricker, L., Lafortune, S., and Genc, S. (2006). DESUMA:
A tool integrating GIDDES and UMDES. In 8th Inter-
national Workshop on Discrete Event Systems, 392–393.

Rudie, K. (2006). The integrated discrete-event systems
tool. In 8th International Workshop on Discrete Event
Systems, 394–395.

Yin, X. and Lafortune, S. (2015). A general approach for
solving dynamic sensor activation problems for a class

1 https://bitbucket.org/blakecraw/synthsmv/

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

6028

of properties. In 54th IEEE Conference on Decision and
Control, 3610–3615.

Yin, X. and Lafortune, S. (2016a). Synthesis of maximally
permissive supervisors for partially observed discrete
event systems. IEEE Transactions on Automatic Con-
trol, 61(5), 1239–1254.

Yin, X. and Lafortune, S. (2016b). A uniform ap-
proach for synthesizing property-enforcing supervisors
for partially-observed discrete-event systems. IEEE
Transactions on Automatic Control, 61(8), 2140–2154.

Yin, X. and Lafortune, S. (2017). Synthesis of maximally-
permissive supervisors for the range control prob-
lem. IEEE Transactions on Automatic Control. DOI:
10.1109/TAC.2016.2644867.

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

6029

