
2576 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 5, MAY 2017

Technical Notes and Correspondence

Supervisor Synthesis for Mealy Automata With Output Functions:
A Model Transformation Approach

Xiang Yin

Abstract—Recently, Ushio and Takai have proposed a Mealy-
automata-based framework to study the non-blocking supervisory
control problem under partial observation. This framework can
handle observation uncertainties by taking both state-dependent
observations and nondeterministic outputs into account. In this
technical note, we propose a model-transformation-based ap-
proach to solve the supervisor synthesis problem in this frame-
work. First, we propose a transformation algorithm that transforms
the non-blocking supervisor synthesis problem for Mealy automata
to a conventional supervisory synthesis problem under partial ob-
servation, which can be solved effectively by an existing algorithm.
Then we show that the supervisor synthesized for the transformed
problem indeed solves the original problem. Our results bridge the
gap between the conventional supervisory control framework un-
der partial observation and the recently proposed Mealy automata
framework where nondeterministic output function is used.

Index Terms—Discrete event systems, mealy automata, non-
blockingness, supervisor synthesis, supervisory control.

I. INTRODUCTION

S upervisory control under partial observation is an important prob-
lem that has drawn considerable attention in the discrete-event

systems (DES) literature. This problem was initiated in [3], [8], where
the partial observability is modeled by using projection function or
mask function. Under this conventional framework, an event in a DES
is either an observable event or an unobservable event. However, in
many cases, the observation of the system is both nondeterministic
and state-dependent due to communications, sensor failures or mea-
surement uncertainties. Therefore, several more advanced observation
models have been proposed recently in order to handle these issues;
see, e.g., [1], [4], [7], [9], [11]–[14], [17]–[19]

In [11]–[13], the problem of sensor failure tolerant supervisory con-
trol was formulated. In this framework, the occurrence of an observ-
able event can be observed only when its associated sensor works
normally. In other words, an originally observable event can become
unobservable after a sensor failure occurs. In [19], the supervisory
control problem was studied by using nondeterministic mask. In [4],
the authors studied the decentralized supervisory control problem by
assuming that the observation is state-dependent (or transition-based).
In [1], [7], the supervisory control problem under observation losses
was addressed. Recently, Ushio and Takai [17] provided a framework
for supervisory control problem under partial observation by using
Mealy automata. It was shown that Mealy automata is very suitable for

Manuscript received June 13, 2016; accepted August 9, 2016. Date
of publication August 17, 2016; date of current version April 24, 2017.
Recommended by Associate Editor S. Takai.

The author is with the Department of Automation, Shanghai Jiao Tong
University, Shanghai 200240, China (e-mail: xiangyin.sjtu@gmail.com;
xiangyin@umich.edu).

Digital Object Identifier 10.1109/TAC.2016.2601118

modeling measurement uncertainties, since it can capture both state-
dependent observations [4], [18], [20] and nondeterministic outputs,
which includes intermittent sensor failures [1] and observation losses
[7]. Mealy-automata-based framework has also been used in the fault
diagnosis problem; see, e.g., [6], [15].

Although many different approaches have been proposed in the lit-
erature to tackle the supervisory control problem under observation
uncertainties, several fundamental problems still remain. First, most
of the existing works only address the supervisor existence problem,
which requires to achieve a given specification exactly. However, the
supervisor synthesis problem, which is more important in practice, has
received little attention. In fact, the supervisor synthesis problem is fun-
damentally more difficult than the supervisor existence problem. For
the partially-observed case, even in the conventional supervisory con-
trol framework, the supervisor synthesis problem had remained open
for more than twenty years, until it was solved very recently by our
work [21]. Moreover, the issue of non-blockingness is more difficult
to handle than the safety requirement. For example, [17] only provides
sufficient conditions for the existence of non-blocking supervisor and
the supervisor synthesis problem is still not considered.

In this technical note, we also consider the Mealy automata frame-
work, which is general enough to capture many other frameworks.
We solve a general supervisor synthesis problem in this framework
for both safety and non-blockingness specifications without imposing
any restrictive assumption. We propose a model-transformation-based
approach that consists of two stages. First, we provide a transforma-
tion algorithm that transforms the synthesis problem in the Mealy
automata framework to a synthesis problem in the conventional frame-
work. Therefore, this allows us to use the synthesis algorithm developed
in [21] to solve the transformed problem. Second, we show that the pro-
posed transformation preserves all desired properties of the closed-loop
system, i.e., safety, non-blockingness and maximal permissiveness. In
other words, the supervisor synthesized for the transformed system is
indeed the desired maximally permissive safe and non-blocking super-
visor for the original system. We believe that this transformation-based
approach brings new insights to this problem and it also bridges the gap
between the conventional supervisory control framework and several
recently proposed frameworks.

We note that the model transformation technic proposed in this note
is similar to the notion of language lifting proposed in [19]. However,
they have the following significant differences. First, the notion of lan-
guage lifting is defined for the purpose of supervisor existence, while
our transformation technic is also suitable for the purpose of supervi-
sor synthesis. Second, our results are developed based on the Mealy
automata framework which is more general than the nondeterministic
mask used in [19]. Finally, the transformation proposed in this techni-
cal note allows us to handle non-blockingness specification, which is
also not addressed in [19].

0018-9286 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 5, MAY 2017 2577

The rest of this note is organized as follows. In Section II, we
review the conventional supervisory control framework under partial
observation and the supervisory control problem in the Mealy automata
framework by using nondeterministic output function. In Section III,
we show how to effectively solve the supervisor synthesis problem
in the Mealy automata framework. Specifically, a transformation
algorithm is proposed and the correctness of the transformation is
proved. Section IV discusses some further results for the case where the
output function is deterministic. We conclude this note in Section V.

II. DISCRETE EVENT SYSTEM MODEL

Let Σ be a finite set of events. A finite string s = σ1 . . . σn is finite
sequence of events in Σ and we denote by |s| the length of s. We
use ε to denote the empty string with |ε| = 0. We denote by Σ∗ the
set of all finite strings including ε. A language L ⊆ Σ∗ is a set of
strings. The prefix-closure of language L is defined as L := {w ∈ Σ∗ :
∃v ∈ Σ∗s.t.wv ∈ L}, where “s.t.” means “such that”. We say that L is
prefix-closed if L = L. For two sets A and B, A ⊆ B means that A is
a subset of B; A ⊂ B means that A is a proper subset of B. We also
denote by A �⊂ B that A is not a proper subset of B.

A. Standard Supervisory Control Under Partial Observation

A finite-state automaton (FSA) is G = (Q, Σ, f, q0 , Qm ), where Q
is the finite set of states, Σ is the finite set of events, f : Q × Σ→ Q is
the partial transition function, q0 ∈ Q is the initial state and Qm ⊆ Q is
the set of marked states. The transition function f is extended to Q × Σ∗

in the usual manner. The language generated by G isL(G) :={s∈Σ∗ :
f (q0 , s)!}, where “!” means “is defined”. The language marked by G
is Lm (G) :={s∈Σ∗ : f (q0 , s) ∈ Qm }.

In the supervisory control framework [10], we assume that Σ is
partitioned as Σ = Σc ∪̇Σu c , where Σc and Σu c denote the set of con-
trollable events and the set of uncontrollable events, respectively. Under
the partial observation assumption [3], [8], we also assume that Σ is
partitioned as Σ = Σo ∪̇Σu o , where Σo and Σu o denote the set of ob-
servable events and the set of unobservable events, respectively. We
denote by P : Σ∗ → Σ∗o the natural projection; see, e.g., [2]. A (par-
tial observation) supervisor is a function S : P (L(G))→ 2Σ c , where
S(s) is the set of events enabled after observing s ∈ P (L(G)) (un-
controllable events are always enabled by default). We denote by S/G
the closed-loop system under control and L(S/G) can be computed
recursively as follows:

• ε ∈ L(S/G); and
• [sσ ∈ L(S/G)]
⇔ [sσ∈L(G)] ∧ [s∈L(S/G)] ∧ [σ∈S(P (s)) ∪ Σu c ].

We define Lm (S/G) = L(S/G) ∩ Lm (G). Supervisor S is said to
be non-blocking if Lm (S/G) = L(S/G).

Let K = K ⊆ L(G) be a non-empty prefix-closed specification lan-
guage. The standard supervisor control problem under partial observa-
tion (SSCPPO) is formulated as follow.

Problem II.1. (SSCPPO) Let G be a plant FSA designed with con-
trollable events Σc and observable events Σo . Let K ⊆ L(G) be
a non-empty specification language. Find a non-blocking supervisor
S : P (L(G))→ 2Σ c such that
1. S is safe, i.e., L(S/G) ⊆ K ; and
2. S is maximally permissive, i.e., for any non-blocking S ′ s.t.
L(S ′/G)⊆K , we have L(S/G) �⊂L(S ′/G).

Remark II.1 The reason why we requireL(S/G) �⊂L(S ′/G) rather
than L(S ′/G)⊆L(S/G) is that a supremal solution satisfying the lat-
ter does not exist in general. Instead, there may have several incom-
parable maximal solutions that solve SSCPPO. It was shown in [21]
that SSCPPO can be solved without any assumption on Σc and Σo .

Fig. 1. For GM , we have Σc = {σ1 , σ2}. Also, we use double circles to
denote marked states in GM . (a) Mealy Automaton GM . (b) Specification
K .

Hereafter, we will only use the fact that SSCPPO can be effectively
solved and the reader is referred to [21] for more details about the
solution.

B. Supervisory Control of Mealy Automata With Output
Function

In [17], a Mealy-automata-based supervisory control framework is
proposed to address both nondeterministic outputs and state-dependent
observations. This framework is reviewed as follows. A Mealy automa-
ton with nondeterministic output function is

GM = (Q, Σ, f, q0 , Qm , Δ, λ) (1)

where (Q, Σ, f, q0 , Qm ) is a FSA, Δ is a finite set of output sym-
bols and λ : Q × Σε → 2Δ ε is the nondeterministic output function,
where Σε := Σ ∪ {ε} and Δε := Δ ∪ {ε}. We also denote by Δ∗ the
set of all finite strings over Δ including ε. Let q ∈ Q be a state and
σ ∈ Σ be an event defined at q. Then λ(q, σ) describes the set of po-
tential observations for this transition, which may include ε. We define
λ(q, ε) = {ε} for any q ∈ Q. The generated and marked languages
of GM are the same as the generated and marked languages of the
corresponding FSA, respectively, i.e.,L(GM ) := {s ∈ Σ∗ : f (q0 , s)!}
andLm (GM ) := {s ∈ Σ∗ : f (q0 , s) ∈ Qm }. We denote by O : Σ∗ →
2Δ ∗ the nondeterministic observation mapping. Formally, O is defined
recursively by

• O(ε) = {ε};
• O(sσ) = {αδ ∈ Δ∗ : α ∈ O(s) ∧ δ ∈ λ(f (q0 , s), σ)}.

Mapping O is also extended to 2Σ ∗ by O(L) = {α ∈ Δ∗ : ∃s ∈
L s.t. α ∈ O(s)}.

An extended event is a tuple (σ, δ) ∈ Σ ×Δε , where (ε, ε) is
the empty extended event. An extended string is a sequence of ex-
tended events. For any extended string s = (σ1 , δ1 ) . . . (σn , δn ) ∈
(Σ ×Δε )∗, we define ΘΣ (s) := σ1 . . . σn and ΘΔ (s) := δ1 . . . δn

as its first and its second components, respectively. For any string
σ1 . . . σn ∈ L(GM ), we say that δ1 . . . δn is an output realization
of σ1 . . . σn if δ1 . . . δn ∈ O(σ1 . . . σn ). Note that the output re-
alization of a string is not unique in general. An extended string
s = (σ1 , δ1 ) . . . (σn , δn ) ∈ (Σ ×Δε )∗ is said to be generated by GM

if ΘΣ (s) ∈ L(GM ) and ΘΔ (s) is an output realization of ΘΣ (s). We
denote by Le (GM ) the set of extended strings generated by GM .

Example II.1 Let us consider Mealy automaton GM in Fig. 1(a),
where we have Σ = {σ1 , σ2} and Δ = {δ1 , δ2}. For each transition,
the set of symbols on the right hand side of “σ/” denotes λ(q, σ), which
is the set of potential outputs of this transition. For σ1σ2 ∈ L(GM ),
we have that O(σ1σ2 ) = {δ1δ1 , δ2δ1}. Therefore, (σ1 , δ1 )(σ2 , δ1 ) ∈
Le (GM ).

Under the Mealy automata framework, we still assume that Σ =
Σc ∪̇Σu c , where Σc ⊆ Σ is the set of controllable events. However, we
do not consider observable events, since observation has already been
specified by the output function, which is more general than using Σo .
Therefore, a supervisor is defined as a function S : O(L(GM ))→ 2Σ c .
We also denote by S/GM the closed-loop system under control and



2578 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 5, MAY 2017

denote by Le (S/GM ) the generated extended language, which can be
computed recursively as follows:

• (ε, ε) ∈ Le (S/GM );
• [sa∈Le (GM )]∧[s∈Le (S/GM )]∧[ΘΣ (a)∈S(ΘΔ (s))∪Σu c ]
⇔[sa ∈ Le (S/GM )].

We also define

Le ,m (S/GM ) = {s ∈ Le (S/GM ) : ΘΣ (s) ∈ Lm (GM )} (2)

L(S/GM ) = {s ∈ Σ∗ : ∃t ∈ Le (S/GM ) s.t. ΘΣ (t) = s} (3)

Lm (S/GM ) = L(S/GM ) ∩ Lm (GM ). (4)

We say that supervisor S : O(L(GM ))→ 2Σ c is strongly non-blocking
if Le ,m (S/GM ) = Le (S/GM ).

Remark II.2 In the Mealy automata framework, Σ∗ is the domain
of the actual behavior of the system, while Δ∗ is the domain of the
observed behavior of the system. In other words, suppose that event σ ∈
Σ occurs at x ∈ X , then σ is the actual event generated by the system
and λ(x, σ) is the set of observations the supervisor may observe.
Therefore, we can only disable the occurrences of events in Σc . Once
event σ ∈ Σ occurs at state x ∈ X , we cannot choose observation in
λ(x, σ) due to measurement uncertainties. In particular, if the output is
ε, then it means that nothing is observed upon the occurrence of σ due
to the lack of sensor or sensor failure.

Remark II.3 It was shown in [17] that standard non-blockingness
condition, i.e., Lm (S/GM ) = L(S/GM ), is not adequate for the
Mealy automata framework. For example, let us consider GM in
Fig. 1(a) and consider supervisor S defined as follows:

S(α) =

{
∅ if α = δ2

{σ1} otherwise
(5)

We have that Lm (S/GM ) = {σ1σ1} = {ε, σ1 , σ1σ1} = L(S/GM ).
However, string σ1 will be blocked if its output is δ2 . This is because
that Lm (S/GM ) = L(S/GM ) only guarantees that each string can
reach a marked state under a particular output realization. Recall that
the output realization for a string is not unique in general. In order
to resolve this issue, we need to require that any string cannot be
blocked under any output realization. This is why the notion of strong
non-blockingness is used in this framework.

Still, we consider a prefix-closed specification language K = K ⊆
L(GM ). Then we formulate the supervisory control problem for Mealy
automata with nondeterministic output function (SCPMNF).

Problem II.2. (SCPMNF) Let GM be a plant Mealy automaton de-
signed with controllable events Σc . Let K ⊆ L(GM ) be a specification
language. Find a strongly non-blocking supervisor S : O(L(GM ))→
2Σ c s.t.
1. S is safe, i.e., L(S/GM ) ⊆ K ;
2. S is maximally permissive, i.e., for any strongly non-blocking S ′

s.t. L(S ′/GM )⊆K , we have that Le (S/GM ) �⊂Le (S ′/GM ).
Remark II.4 Similar to the blockingness issue, the maximal permis-

siveness is also defined in terms of the extended language rather than the
generated language. For example, let us still consider GM in Fig. 1(a)
and supervisor S defined by Equation (5). Suppose that S ′ is another
supervisor defined by S ′(α) = {σ1}, ∀α ∈ Δ∗. Then we have that
L(S/GM ) = L(S ′/GM ) = {σ1σ1}, i.e., their generated languages
are exactly the same. However, (σ1 , δ2 )(σ1 , δ1 ) ∈ Le (S ′/GM ) but
(σ1 , δ2 )(σ1 , δ1 ) /∈ Le (S/GM ). This implies that S ′ is more permis-
sive than S under some possible observation realization of a string,
although their generated languages are the same. This is why we
choose Le (S/GM ) �⊂ Le (S ′/GM ) as the maximal permissiveness
criterion. In general, Le (S/GM ) �⊂ Le (S ′/GM ) and L(S/GM ) �⊂
L(S ′/GM ) are incomparable, i.e., neither condition implies the other.

One instance where these two conditions coincide is discussed in
Section IV.

III. SYNTHESIS OF MAXIMALLY PERMISSIVE NON-BLOCKING

SUPERVISORS

In this section, we discuss how to solve SCPMNF. Our approach
consists two stages:
1) First, we transform SCPMNF to SSCPPO, which can be effectively

solved by the algorithm proposed in [21].
2) Then we show that the supervisor synthesized for the transformed

SSCPPO also solves the original SCPMNF.

A. The Transformation Algorithm

First, we present the model transformation procedure.
Let GM = (Q, Σ, Δ, f, λ, q0 , Qm ) be the Mealy automaton under

control and K = K ⊆ L(GM ) be the prefix-closed specification lan-
guage. We denote by PΣ : (Σ ∪Δ)∗ → Σ∗ the natural projection from
Σ ∪Δ to Σ. We construct a new FSA G̃ = (Q̃, Σ̃, f̃ , q0 , Qm ) and
a new prefix-closed specification language K̃ ⊆ L(G̃) by Algorithm
MODEL-TRANSF as follows.

Algorithm 1 MODEL-TRANSF

input : GM = (Q, Σ, Δ, f, λ, q0 , Qm ), K and Σc .
output: G̃ = (Q̃, Σ̃, f̃ , q0 , Qm ), K̃, Σ̃c and Σ̃o .

1 Build a new FSA G̃ = (Q̃, Σ̃, f̃ , q0 , Qm ), where
• Q̃ = Q ∪ (Q × Σ) is the set of states;
• Σ̃ = Σ ∪Δε is the set of events;
• q0 is the initial state, which is the same as GM ;
• Qm is the set of marked states, which is the same as GM ;
• f̃ : Q̃ × Σ̃→ Q̃ is the transition function defined by:
(i) For any q ∈ Q ⊂ Q̃ and σ ∈ Σ ⊂ Σ̃, we have

f̃ (q, σ) = (q, σ) if f (q, σ)! (6)

(ii) For any (q, σ) ∈ (Q × Σ) ⊂ Q̃ and δ∈Δε ⊂ Σ̃, we have

f̃ ((q, σ), δ) = f (q, σ) if δ ∈ λ(q, σ) (7)

2 Set K̃ ← P −1
Σ (K) ∩ L(G̃)

3 Set Σ̃c ← Σc

4 Set Σ̃o ← Δ;

In Algorithm MODEL-TRANSF, language K̃ defined in line 2 can
be recognized as follows. Let H be the FSA generating K , i.e.,L(H) =
K . First, we add self-loop for each event in Δ at each state in H and
denote by H̃ the resulting FSA. Then, we take the product composition
of H̃ and G̃ and it is easy to verify that the resulting product FSA
generates K̃ .

Remark III.1 Let us discuss the intuition of the proposed transfor-
mation algorithm. The key idea is to separate the control and observa-
tion that are originally coupled in the Mealy automaton GM without
essentially affecting the real dynamic of the system. In fact, we see that
the transformed FSA G̃ is bipartite automaton consisting of two types
of states Q and Q × Σ. Intuitively, a state in Q is a real system state
from which we make a control decision and then move to a state in
Q × Σ, which is just a intermediate state. From this intermediate state,
all output symbols associated with this transition can occur and each
of them leads to the same system state that is reached in the original
model. This essentially captures the state-dependent nondeterministic
output without affecting the system’s dynamic. The set of controllable
events is still Σc . Because the transformed FSA is bipartite, after a
system event is generated, it forces an output symbol, including ε, to



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 5, MAY 2017 2579

Fig. 2: For G̃: Σ̃c = {σ1 , σ2} and Σ̃o = {δ1 , δ2}. (a) Transformed G̃.
(b) Specification K̃ .

occur before the next system event is generated. Finally, we would
like to remark that, although event in Σ and event in Δ are generated
alternatively in order, they are occurring simultaneously physically.
However, we will show later that such discrepancy is not an issue for
the purpose of synthesis.

Remark III.2 In [5], a similar transformation was used for the pur-
pose of learning and inference. However, in the present technical note,
we use the transformation for the purpose of control synthesis. It is not
always true that a transformation that preserves some desired property
for the original system can still preserve the same desired property
for the closed-loop system under control. Consequently, we need to
handle the issues of observability, controllability and the specification
language, which do not exist in [5]. Moreover, the output function in [5]
is deterministic, while we consider non-deterministic output function
in the present technical note.

Let us illustrate the transformation algorithm Algorithm MODEL-
TRANSF by the following example.

Example III.1 Let us still consider the Mealy automaton GM shown
in Fig. 1(a) and the specification language K generated by the FSA
shown in Fig. 1(b). Then the transformed FSA G̃ and the transformed
specification language K̃ are shown in Figs. 2(a) and (b), respectively.
Note that the automaton that generates the transformed specification
language K̃ can be obtained by first adding self-loops with Δε at
each state in the automaton generating K and then taking the parallel
composition with the transformed plant G̃. Initially, if σ1 ∈ Σ occurs,
then we move to intermediate state (0, σ1 ). From this state, two possible
output δ1 and δ2 can occur and both of them lead to system state 1,
which is the same state reached by σ1 from state 0 in the original
model GM .

B. Correctness of the Transformation

Now, we discuss how to use the transformed model to synthesize a
non-blocking supervisor that works for the original model.

We note that one important property of the transformation is that,
although the event sets of GM and G̃ are different, the domain of
control decisions and the domain of observations for each model are
exactly the same. Specifically, for both GM and G̃, a control decision
is an element in 2Σ c and an observation is a sequence of symbols
in Δ∗. Therefore, for supervisor S : PΔ (L(G̃))→ 2Σ c designed for
G̃, where PΔ : Σ̃∗ → Δ∗, it is still a well-defined supervisor for GM ,
since PΔ (L(G̃)) = O(L(GM )) ⊆ Δ∗. This allows us to directly use
the supervisor synthesized for the transformed model G̃ to control the
original model GM .

Note that, for any string s in L(S/G̃), we can always write it in
the form of s = σ1δ1 . . . σn δn ∈ (ΣΔε )∗, where σi ∈ Σ and δi ∈ Δε

That is, if two events in Σ appear in succession in s, then we insert an
ε-event in between. The following result says that, under the control
of the same supervisor S : Δ∗ → 2Σ c , GM and G̃ essentially generate
the same behavior.

Lemma III.1 Let GM be the Mealy automaton and G̃ be the trans-
formed FSA. Let S : Δ∗ → 2Σ c be a supervisor. Then

(σ1 , δ1 ) . . . (σn , δn )∈Le (S/GM )⇔σ1δ1 . . . σn δn ∈L(S/G̃). (8)

Proof: We prove by induction on the length of the string. Clearly,
ε ∈ L(S/G̃) and (ε, ε) ∈ Le (S/GM ) by definition. Now, we assume
that Equation (8) holds for n = k and we want to show that it still holds
for n = k + 1.

First, we suppose that (σ1 , δ1 ) . . . (σk , δk )(σk+1 , δk+1 )∈
Le (S/GM ). By the definition of Le (S/GM ), this implies that:
1) (σ1 , δ1 ) . . . (σk , δk )∈Le (S/GM );
2) (σ1 , δ1 ) . . . (σk , δk )(σk+1 , δk+1 )∈Le (GM ); and
3) σk+1 ∈ S(δ1 . . . δk ) ∪ Σu c .

By the induction hypothesis, 1) implies that σ1δ1 . . . σk δk ∈
L(S/G̃). By the transformation algorithm, we know that
f̃ (q0 , σ1δ1 . . . σk δk ) = f (q0 , σ1 . . . σk ) =: qk , which also implies
that f̃ (qk , σk+1 )!. Moreover, since δk+1 ∈λ(qk , σk+1 ), we also have
f̃ (qk , σk+1δk+1 )!. Since PΔ (σ1δ1 . . . σk δk ) = δ1 . . . δk , we know
that σk+1 ∈ S(PΔ (σ1δ1 . . . σk δk )). Moreover, since σk+1 ∈ Σ̃u o and
δk+1 ∈ Σ̃u c , we have that σ1δ1 . . . σk δk σk+1δk+1 ∈ L(S/G̃).

Next, we suppose σ1δ1 . . . σk+1δk+1 ∈ L(S/G̃). We also have:
1) σ1δ1 . . . σk δk ∈ L(S/G̃);
2) σ1δ1 . . . σk δk σk+1δk+1 ∈ L(G̃);
3) σk+1 ∈S(P (σ1δ1 . . . σk δk ))∪Σu c = S(δ1 . . . δk )∪Σu c .

By the induction hypothesis, 1) implies that (σ1 , δ1 ) . . . (σk , δk )∈
Le (S/GM ). Moreover, 2) implies that f (qk , σk+1 )! and δk+1 ∈
λ(qk , σk+1 ), where qk =f (q0 , σ1 . . . σk ). Therefore, by σk+1 ∈
S(δ1 . . . δk ) ∪ Σu c , we have (σ1 , δ1 ) . . . (σk , δk )(σk+1 , δk+1 )∈
Le (S/GM ). �

With the above result, next, we show that safety is preserved under
the proposed transformation.

Lemma III.2 Let GM be the Mealy automaton, G̃ be the trans-
formed FSA and S : Δ∗ → 2Σ c be a supervisor. Then we have

L(S/GM ) ⊆ K ⇔ L(S/G̃) ⊆ K̃ (9)

Proof: (⇒) Suppose that L(S/GM ) ⊆ K . Let us consider an arbi-
trary string σ1δ1 . . . σn δn ∈ L(S/G̃). Then, by Lemma III.1, we know
that (σ1 , δ1 ) . . . (σn , δn ) ∈ Le (S/GM ), which implies σ1 . . . σn ∈
L(S/GM ) ⊆ K . Therefore, σ1δ1 . . . σn δn ∈ P −1

Σ (K) ∩ L(G̃) = K̃ .
Note that for any string in L(S/G̃) that ends up with a symbol in Σ,
we can always extend it to a string ending up with a symbol in Δ,
since all events in Δ are uncontrollable. Therefore, considering string
σ1δ1 . . . σn δn is w.l.o.g.

(⇐) Suppose that L(S/G̃) ⊆ K̃ . Let us consider an arbitrary
string σ1 . . . σn ∈ L(S/GM ). Let (σ1 , δ1 ) . . . (σn , δn ) ∈ Le (S/GM )
be an extended string such that δ1 . . . δn is an output realization of
σ1 . . . σn . By Lemma III.1, we know that σ1δ1 . . . σn δn ∈ L(S/G̃).
Assume that σ1 . . . σn /∈ K , then we know that σ1δ1 . . . σn δn /∈
P −1

Σ (K) ∩ L(G̃) = K̃ . However, it contradicts the fact thatL(S/G̃) ⊆
K̃ . Therefore, σ1 . . . σn ∈ K , i.e., L(S/GM ) ⊆ K . �

The following is a Corollary of Lemma III.2.
Corollary III.1 Let S : Δ∗ → 2Σ c be a supervisor. Then

L(S/GM ) = ΘΣ (Le (S/GM )) = PΣ (L(S/G̃)), where PΣ : (Σ ∪
Δ)∗ → Σ∗.

Next, we show that non-blockingness is also preserved under the
proposed transformation.

Lemma III.3 Let GM be the Mealy automaton, G̃ be the trans-
formed FSA and S : Δ∗ → 2Σ c be a supervisor. Then S is a strongly
non-blocking supervisor for GM , if and only if, S is a non-blocking
supervisor for G̃, i.e.,

Le ,m (S/GM ) = Le (S/GM )⇔ Lm (S/G̃) = L(S/G̃) (10)

Proof: (⇒) By contradiction. Suppose that Le ,m (S/GM ) =
Le (S/GM ) and assume that Lm (S/G̃) ⊂ L(S/G̃). Let

σ1δ1 . . . σn δn ∈ L(S/G̃) \ Lm (S/G̃) be a blocked string. By
Lemma III.1, we know that (σ1 , δ1 ) . . . (σn , δn ) ∈ Le (S/GM ).



2580 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 5, MAY 2017

Since S is strongly non-blocking for GM , we can
find (σ1 , δ1 ) . . . (σn , δn )(σn +1 , δn +1 ) . . . (σn + k , δn + k ) ∈
Le ,m (S/GM ). Again, by Lemma III.1, we know that
σ1δ1 . . . σn δn σn + k δn + k ∈ L(S/G̃). By the definition of
Le ,m (S/GM ), we know that σ1 . . . σn + k ∈ Lm (GM ). Therefore,
we know that f̃ (q0 , σ1δ . . . σn + k δn + k ) = f (q0 , σ1 . . . σn + k ) ∈ Qm ,
i.e., σ1δ . . . σn + k δn + k ∈ Lm (S/G̃). This contradicts the fact that
σ1δ1 . . . σn δn is a blocked string.

(⇐) By contradiction. Suppose that Lm (S/G̃)=L(S/G̃) and
assume that Le ,m (S/GM )⊂Le (S/GM ). Let (σ1 , δ1 ) . . . (σn , δn )∈
Le (S/GM ) be a blocked string. By Lemma III.1, σ1δ1 . . . σn δn ∈
L(S/G̃). Since S is non-blocking for G̃, we can find
σ1δ1 . . . σn δn . . . σn + k δn + k ∈ Lm (S/G̃). By Lemma III.1, we
know that (σ1 , δ1 ) . . . (σn , δn )(σn +1 , δn +1 ) . . . (σn + k , δn + k ) ∈
Le (S/GM ). Since σ1δ1 . . . σn + k δn + k ∈ Lm (S/G̃),
by the transformation, f (q0 , σ1 . . . σn + k ) ∈ Qm , i.e.,
(σ1 , δ1 ) . . . (σn , δn )(σn +1 , δn +1 ) . . . (σn + k , δn + k )∈Le ,m (S/GM ).
This contradicts the assumption (σ1 , δ1 ) . . . (σn , δn ) is blocked. �

Finally, we show that supervisor S solves SSCPPO if and only if it
solves SCPMNF.

Theorem III.1 S is a maximally permissive safe and non-blocking
supervisor for the transformed FSA G̃ with respect to K̃, Σ̃c and Σ̃o , if
and only if, S is a maximally permissive safe and strongly non-blocking
supervisor for GM with respect to K and Σc

Proof: (⇒) By contradiction. Let us assume that S is not max-
imally permissive for GM . Then we know that there exists another
safe and strongly non-blocking supervisor S ′ such that Le (S/GM ) ⊂
Le (S ′/GM ). Then, for any string σ1δ1 . . . σn δn ∈ L(S/G̃), by
Lemma III.1, we know that (σ1 , δ1 ) . . . (σn , δn ) ∈ Le (S/GM ) ⊂
Le (S ′/GM ). Again, by Lemma III.1, this implies that σ1δ1 . . . σn δn ∈
L(S ′/G̃). Note that for any string σ1δ1 . . . σn , we can always extend
it to a string in the form of σ1δ1 . . . σn δn , since δn is uncontrol-
lable. Therefore, L(S/G̃) ⊆ L(S ′/G̃). Now let us consider a string
(σ1 , δ1 ) . . . (σn , δn ) ∈ Le (S ′/GM ) \ Le (S/GM ). By Lemma III.1,
we know that σ1δ1 . . . σn δn ∈ L(S ′/G̃) \ L(S/G̃). Therefore, we
know that L(S/G̃) ⊂ L(S ′/G̃). Moreover, by Lemma III.2 and III.3,
we know that S ′ is safe and strongly non-blocking for GM implies that
S ′ is also safe and non-blocking for G̃. However, this contradicts the
fact that S is a maximally permissive safe and non-blocking supervisor
for G̃.

(⇐) Still by contradiction. Assume that S is not maximally permis-
sive for G̃. Then there exists a safe and non-blocking supervisor S ′ such
that L(S/G̃) ⊂ L(S ′G̃). By Lemma III.1, similar to the “only if” part,
we know that Le (S/GM ) ⊂ Le (S ′/GM ). Moreover, by Lemma III.2
and III.3, we know that S ′ is safe and non-blocking for G̃ implies
that S ′ is also safe and strongly non-blocking for GM . However, this
contradicts the fact that S is a maximally permissive safe and strongly
non-blocking supervisor for GM . �

Algorithm 2 MEALY-SYNT

input: GM , K and Σc .
output: S∗.

1 Obtain G̃ and K̃ by Algorithm MODEL-TRANSF;
2 Using Algorithm NB-SOLU in [21] to synthesize a maximally

permissive non-blocking supervisor S∗ for G̃ with respect to
K̃, Σ̃c and Σ̃o ;

3 return S∗ as the maximally permissive safe and
non-blocking supervisor for GM ;

Based on Theorem III.1, Algorithm MEALY-SYNT is proposed in
order to solve SCPMNF. First, we transform the Mealy automaton GM

and its specification K to G̃ and K̃ , respectively, and formulate the

Fig. 3. Two incomparable maximal solutions. (a) L(S1 /G̃). (b)
L(S2 /G̃).

transformed parameters as an instance of SSCPPO. Then we exploit
Algorithm NB-SOLU recently proposed in [21] to solve the trans-
formed standard supervisory control problem. Algorithm NB-SOLU is
rather complicated and it is beyond the scope of this technical note;
the reader is referred to [21] for more details and examples. Note that
the complexity of Algorithm NB-SOLU is exponential in the size of
G̃ and the transformed model G̃ is linear in the size of the original
Mealy automaton GM . Therefore, the overall complexity of Algorithm
MEALY-SYNT is exponential in the size of GM . However, such an
exponential complexity is known to be unavoidable under the partial
observation setting [16].

We illustrate the transformation-based synthesis method by the fol-
lowing example.

Example III.2 We still consider the Mealy automaton GM shown
in Fig. 1(a) and the specification language K generated by the FSA
shown in Fig. 1(b). Then the transformed FSA G̃ and the transformed
specification language K̃ have been shown in Figs. 2(a) and (b), respec-
tively, where Σ̃c = Σ and Σ̃o = Δ. Note that, it was shown in [21] that
SSCPPO does not have a unique supremal supervisor in general and it
may have several incomparable maximal supervisors. For example, for
the transformed problem, there are two incomparable maximal super-
visors S1 and S2 , whose closed-loop behaviors are shown in Figs. 3(a)
and (b), respectively. For S1 , by choosing to enable both σ and σ2

initially, we cannot enable σ2 after observing δ1 , since we are not sure
whether the system is at state 1 or 2. However, for S2 , by choosing
to disable σ2 initially, event σ2 can be enabled after observing δ1 ,
since we know for sure that the current state is 1. Note that, although
Le (S1/GM ) and Le (S2/GM ) are incomparable, for this example, we
have that L(S2/GM ) ⊂ L(S1/GM ). But, as we discussed earlier, it
does not imply that S1 is more permissive than S2 , since S1 does not
allow σ2 to occur after observing δ2 , while it is allowed by S2 .

IV. FURTHER RESULTS ON MAXIMAL PERMISSIVENESS

In the above development, we have shown how to synthesize a maxi-
mally permissive safe and non-blocking supervisor for Mealy automata
with nondeterministic output function. Note that the maximally permis-
siveness is defined in terms of the extended language of the closed-loop
system, i.e., a supervisor S is maximal if for any other safe and non-
blocking supervisor S ′, we have Le (S/GM ) �⊂ Le (S ′/GM ). The mo-
tivation for the this requirement has been discussed in Remark II.4.
However, in addition to the above requirement, one may impose an
additional requirement in terms of the generated language L(S/GM )
and require that, for any other safe and non-blocking supervisor S ′, we
also have L(S/GM ) �⊂ L(S ′/GM ). In general, the synthesized max-
imally permissive supervisor does not satisfy the above requirement.
For example, the supervisor S2 in Fig. 3(b) is a maximally permissive
supervisor, but L(S2/GM ) ⊂ L(S1/GM ).

Hereafter, we consider a special case, under which the synthesized
supervisor is not only maximally permissive in terms of the extended
language but also maximally permissive in terms of the generated
language. We say that the output function λ : Q × Σε → 2Δ ε is deter-
ministic if ∀s ∈ Q, ∀σ ∈ Σε : |λ(q, σ)| = 1. Then the following result



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 5, MAY 2017 2581

reveals that the synthesized maximally permissive supervisor is also
maximal in terms of the generated language when the output function
is deterministic.

Theorem IV.1 Suppose that the output function λ for GM is deter-
ministic. Let S a maximally permissive safe and strongly non-blocking
supervisor. Then for any other safe and strongly non-blocking supervi-
sor S ′, we have that L(S/GM ) �⊂ L(S ′/GM ).

Proof: By contradiction. Suppose that S a maximally permissive
safe and strongly non-blocking supervisor. We assume that there
exists another safe and strongly non-blocking supervisor S ′ such that
L(S/GM ) ⊂ L(S ′/GM ).

First, we claim that Le (S/GM ) ⊆ Le (S ′/GM ). To see this,
we show that s ∈ Le (S/GM ) implies s ∈ Le (S ′/GM ) by induc-
tion on the length of s. Clearly, the induction basis holds, since
(ε, ε) ∈ Le (S/GM ) and (ε, ε) ∈ Le (S ′/GM ) by definition. Now,
let us assume that for any (σ1 , δ1 ) . . . (σk , δk ) ∈ Le (S/GM ), we
have (σ1 , δ1 ) . . . (σk , δk ) ∈ Le (S ′/GM ). For the induction step, let
us consider an extended string (σ1 , δ1 ) . . . (σk , δk )(σk+1 , δk+1 ) ∈
Le (S/GM ). This implies that
1) (σ1 , δ1 ) . . . (σk , δk ) ∈ Le (S/GM );
2) (σ1 , δ1 ) . . . (σk , δk )(σk+1 , δk+1 ) ∈ Le (GM );
3) σk+1 ∈ S(δ1 . . . δk ).

Since the output function is deterministic, the output realization of
σ1 . . . σ2 is unique, which is δ1 . . . δn . Therefore, we know that σk+1 ∈
S ′(δ1 . . . δk ); otherwise σ1 . . . σk σk+1 �∈ L(S ′/GM ), which contra-
dicts the fact thatL(S/GM ) ⊂ L(S ′/GM ). Moreover, by the induction
hypothesis, 1) implies that (σ1 , δ1 ) . . . (σk , δk ) ∈ Le (S ′/GM ). There-
fore, we know that (σ1 , δ1 ) . . . (σk , δk )(σk+1 , δk+1 ) ∈ Le (S ′/GM ).

Since L(S/GM ) ⊂ L(S ′/GM ), we consider a string
σ1 . . . σn σn +1 ∈ L(S ′/GM ) such that σ1 . . . σn ∈ L(S/GM ) but
σ1 . . . σn σn +1 �∈ L(S/GM ). This implies that σn +1 /∈ S(δ1 . . . δn ).
Still, since the output function is deterministic, we know that the
unique output realization of σ1 . . . σ2 is δ1 . . . δn , i.e., for any
(σ1 , δ

′
1 ) . . . (σn , δ′n ) ∈ Le (S/GM ), we have δ′i = δi , i = 1, . . . n.

Therefore, σn +1 /∈ S(δ1 . . . δn ) implies that σ . . . σn σn +1 /∈
L(S/GM ). This together with Le (S/GM ) ⊆ Le (S ′/GM ) implies
that Le (S/GM ) ⊂ Le (S ′/GM ), which contradicts the fact that S is
a maximally permissive supervisor. �

Remark IV.1 It is worth remarking that using Mealy automata with
deterministic output function is still more general than using the con-
ventional natural projection or mask framework, since it allows state-
dependent observations. In fact, the supervisory control problem under
transition-based observation investigated by [4] is essentially a special
case of Mealy automata with deterministic output function. Specif-
ically, we can define Δ = Σ and for each q ∈ Q, σ ∈ Σ, we have
λ(q, σ) = σ or ε. Namely, λ(q, σ) = σ if this transition is observable
and λ(q, σ) = ε if this transition is unobservable. Although [4] studies
a decentralized control problem, only supervisor existence conditions
are provided. Therefore, our transformation-based approach also solves
the supervisor synthesis problem under transition-based observation in
the centralized setting. Moreover, an example was provided in [4] to
show that we cannot transform the FSA model for the purpose of control
by simply renaming the same event that has different observation prop-
erties at different transitions. The issue of this approach is that changing
the label of an event may change its controllability. However, the result
in this technical note suggests that transition-based observation can
be reduced to projection-based observation for the centralized case by
separating the issues of controllability and observability appropriately
for each transition. We believe similar results can also be established
for the decentralized case by using the proposed transformation.

V. CONCLUSION

In this technical note, we investigated the supervisor synthesis prob-
lem in the Mealy automata framework. A model transformation al-

gorithm was proposed to transform this problem to a supervisor syn-
thesis problem in the conventional framework. We showed that the
supervisor synthesized for the transformed problem solves the original
synthesis problem, since the transformation preserves all desired prop-
erties of the closed-loop system. Therefore, the general non-blocking
supervisor synthesis problem under observation uncertainties was
solved.

ACKNOWLEDGMENT

The author thanks the anonymous reviewers for their useful com-
ments on improving this technical note.

REFERENCES

[1] M. V. S. Alves, J. C. Basilio, A. E. Carrilho da Cunha, L. K. Carvalho,
and M. V. Moreira. Robust supervisory control against intermittent loss of
observations. In Proc. 12th Int. Workshop Disc. Event Syst., vol. 12, pp.
294–299, 2014.

[2] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.
New York: Springer, 2nd ed., 2008.

[3] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya. Supervisory control
of discrete-event processes with partial observations. IEEE Trans. Autom.
Control, vol. 33, no. 3, pp. 249–260, 1988.

[4] Y. Huang, K. Rudie, and F. Lin. Decentralized control of discrete-event
systems when supervisors observe particular event occurrences. IEEE
Trans. Autom. Contr., vol. 53, no. 1, pp. 384–388, 2008.

[5] M. N. Irfan, C. Oriat, and R. Groz. “Model inference and testing, ”in
Advances in Computers, vol. 89, pp. 89–139, 2013.

[6] N. Kanagawa and S. Takai, “Diagnosability of discrete event systems
subject to permanent sensor failures,” Int. J. Control, vol. 88, no. 12,
pp. 2598–2610, 2015.

[7] F. Lin, “Control of networked discrete event systems: Dealing with com-
munication delays and losses,” SIAM J. Control Optimiz., vol. 52, no. 2,
pp. 1276–1298, 2014.

[8] F. Lin and W. M. Wonham, “On observability of discrete-event systems,”
Inform. Sci., vol. 44, no. 3, pp. 173–198, 1988.

[9] S.-J. Park and K.-H. Cho, “Delay-robust supervisory control of discrete
event systems with bounded communication delays,” IEEE Trans. Autom.
Contr., vol. 51, no. 5, pp. 911–915, 2006.

[10] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM J. Control Optimiz., vol. 25, no. 1, pp. 206–
230, 1987.

[11] K. Rohloff. “Sensor failure tolerant supervisory control,” in Proc. 44th
IEEE Conf. Decision and Control, pp. 3493–3498, 2005.

[12] K. Rohloff, “Bounded sensor failure tolerant supervisory control,” in Proc.
11th Int. Workshop Discrete Event Systems, pp. 272–277, 2012.

[13] A. M. Sánchez and F. J. Montoya. “Safe supervisory control under ob-
servability failure,” Discrete Event Dynam. Syst.: Theory & Appl., vol. 16,
no. 4, pp. 493–525, 2006.

[14] S. Shu and F. Lin, “Supervisor synthesis for networked discrete event sys-
tems with communication delays,” IEEE Trans. Autom. Control, vol. 60,
no. 8, pp. 2183–2188, 2015.

[15] S. Takai and T. Ushio, “Verification of codiagnosability for discrete
event systems modeled by mealy automata with nondeterministic out-
put functions,” IEEE Trans. Autom. Control, vol. 57, no. 3, pp. 798–804,
2012.

[16] J. N. Tsitsiklis, “On the control of discrete-event dynamical systems,”
Math. Control, Signals and Syst., vol. 2, no. 2, pp. 95–107, 1989.

[17] T. Ushio and S. Takai, “Nonblocking supervisory control of discrete
event systems modeled by mealy automata with nondeterministic out-
put functions,” IEEE Trans. Autom. Control, vol. 61, no. 3, pp. 799–804,
2016.

[18] W. Wang, A. R. Girard, S. Lafortune, and F. Lin, “On codiagnosability and
coobservability with dynamic observations,” IEEE Trans. Autom. Control,
vol. 56, no. 7, pp. 1551–1566, 2011.

[19] S. Xu and R. Kumar, “Discrete event control under nondeterministic
partial observation,” in Proc. IEEE Conf. Aut. Sci. Eng., pp. 127–132,
2009.

[20] X. Yin and S. Lafortune, “Codiagnosability and coobservability under dy-
namic observations: Transformation and verification,” Automatica, vol. 61,
pp. 241–252, 2015.

[21] X. Yin and S. Lafortune, “Synthesis of maximally permissive supervi-
sors for partially observed discrete event systems,” IEEE Trans. Autom.
Control, vol. 61, no. 5, pp. 1239–1254, 2016.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


