
3914 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 8, AUGUST 2017

Synthesis of Maximally-Permissive Supervisors
for the Range Control Problem

Xiang Yin, Student Member, IEEE, and Stéphane Lafortune, Fellow, IEEE

Abstract—We investigate the supervisor synthesis prob-
lem for centralized partially-observed discrete event sys-
tems subject to safety specifications. It is well known that
this problem does not have a unique supremal solution in
general. Instead, there may be several incomparable locally
maximal solutions. One then needs a mechanism to select
one locally maximal solution. Our approach in this paper is
to consider a lower bound specification on the controlled
behavior, in addition to the upper bound for the safety spec-
ification. This leads to a generalized supervisory control
problem called the range control problem. While the up-
per bound captures the (prefix-closed) legal behavior, the
lower bound captures the (prefix-closed) minimum required
behavior. We provide a synthesis algorithm that solves this
problem by effectively constructing a maximally-permissive
safe supervisor that contains the required lower bound
behavior. This is the first algorithm with such properties,
as previous works solve either the maximally-permissive
safety problem (with no lower bound), or the lower bound
containment problem (without maximal permissiveness).

Index Terms—Discrete event systems, maximal permis-
siveness, partial observation, supervisory control, synthe-
sis.

I. INTRODUCTION

W E INVESTIGATE the supervisor synthesis problem for
partially-observed Discrete Event Systems (DES) in the

framework of supervisory control theory [16]. In this prob-
lem, one is interested in synthesizing a supervisor such that
the closed-loop system under control satisfies a given safety
specification. Formally, let G be a system and K ⊆ L(G) be a
prefix-closed specification language describing the legal behav-
ior for the controlled system. The goal is to find a supervisor S
such that L(S/G) ⊆ K, where L(S/G) denotes the language
generated by G under the control of S (closed-loop system).

Manuscript received August 24, 2016; revised December 8, 2016;
accepted December 16, 2016. Date of publication December 23, 2016;
date of current version July 26, 2017. This work was supported in part by
the U.S. National Science Foundation grants CCF-1138860 (Expeditions
in Computing project ExCAPE: Expeditions in Computer Augmented
Program Engineering) and CNS-1446298. This work was done when
the first author was at the University of Michigan. Recommended by
Associate Editor S. Takai. (Corresponding author: Xiang Yin.)

X. Yin is with the Department of Automation, Shanghai Jiao Tong
University, Shanghai 200240, China (e-mail: xiangyin@umich.edu).

S. Lafortune is with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109 USA
(e-mail: stephane@umich.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2016.2644867

Moreover, we want the supervisor S to be as permissive as
possible.

Let L ⊆ K be a sub-language of K. Under the partial obser-
vation setting, it is well-known that there exists a supervisor that
exactly achieves L if and only if L is controllable and observ-
able [8], [13]. Since controllability is preserved under union,
there exists a supremal controllable sub-language of K; this is
the unique supremal solution to the synthesis problem when all
events are observable. However, the supervisor synthesis prob-
lem is much more challenging under the partial observation
setting, since observability is not preserved under union. There-
fore, the supervisor synthesis problem may not have a unique
supremal solution in general. Instead, there may be several in-
comparable locally maximal solutions.

Several approaches have been proposed in the literature in
order to tackle the synthesis problem; see, e.g., [2]–[4], [7], [9],
[19], [29]. One approach is to compute the supremal control-
lable and normal solution, which was initially proposed in [8],
[13]; see, also [3], [7] for its computation. When all controllable
events are observable, normality and controllability coincide
with observability and controllability, which implies that the
synthesis problem has a supremal solution for this special case.
However, the supremal normal solution may be conservative in
general, when there are controllable events that are unobserv-
able. In [4], [19], two different solutions that are strictly larger
than the supremal normal solution were derived. However, the
solutions obtained by these approaches are not maximal in gen-
eral. In [2], an online approach was proposed in order to com-
pute a maximal solution. This approach can only be applied to
prefix-closed specifications, since the solution obtained may be
blocking in general. The problem of supervisor (or controller)
synthesis under partial observation has also been investigated in
other frameworks; see, e.g., [1], [6], [12], [21].

In our recent works [27], [28], we proposed a new information
structure called the All Inclusive Controller (AIC) in order to
solve the supervisor synthesis problem. The AIC is a finite struc-
ture that “embeds” all (infinitely many in general) safe supervi-
sors for a given specification. A maximal solution for the prefix-
closed case was also obtained based on the AIC. The structure
of the AIC was further extended to the non-prefix-closed case,
where the Non-Blocking All Inclusive Controller (NB-AIC)
was proposed. By using the NB-AIC as a basis, we showed
that the problem of synthesizing a maximally-permissive safe
and non-blocking supervisor for partially-observed DES is de-
cidable. Moreover, the solution can be represented by a finite
structure.

0018-9286 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

YIN AND LAFORTUNE: SYNTHESIS OF MAXIMALLY-PERMISSIVE SUPERVISORS FOR THE RANGE CONTROL PROBLEM 3915

Fig. 1. Let G be the system, K be the legal behavior and R be the
required behavior. Max1, Max2 and Max3 are three incomparable
maximal solutions in K , i.e., ∀i, j ∈ {1, 2, 3} : Maxi �⊂ Maxj. However,
Max1 and Max2 contain the required behavior R, while Max3 does
not contain any string in R.

Although maximal solutions have been reported in the liter-
ature in [2], [27], the maximal solutions obtained so far are just
a particular type of maximal solutions, namely, greedy maximal
solutions. In a greedy maximal solution, the supervisor tries to
enable as many events as possible at each control decision in-
stant. However, no consideration is given to including some min-
imum required behavior in these solutions, a meaningful crite-
rion when choosing among locally maximal solutions. This phe-
nomenon is illustrated in Fig. 1. In fact, none of the synthesis al-
gorithms in [2]–[4], [7], [19], [27], [29] can guarantee that the su-
pervisor synthesized therein contains a given required behavior.

In order to resolve the above issue, we consider in this paper a
generalized supervisor synthesis problem called the Maximally-
Permissive Range Control Problem. In this problem, we not
only want to find a locally maximal supervisor, but we also re-
quire that the synthesized maximal supervisor contains a given
behavior. Namely, we want to find a “meaningful” maximal
solution. Note that, as illustrated by Fig. 1, such a solution
need not be unique. More specifically, in addition to the safety
specification language K, which is also referred to as the up-
per bound language, we consider a prefix-closed lower bound
language R ⊆ K, which models the required behavior that the
closed-loop system must achieve. To solve the range control
problem, we present a new synthesis algorithm based on the
two notions of All Inclusive Controller (AIC) and Control Sim-
ulation Relation (CSR). The AIC was originally proposed in
[27] in order to synthesize an arbitrary maximal solution, with
no consideration to a lower bound behavior. Throughout the
paper, we only consider prefix-closed languages. Therefore, the
issue of non-blockingness cannot be handled. On the other hand,
to the best of our knowledge, the maximally-permissive range
control problem we solve herein was an open problem even in
the prefix-closed case. Note that the range control problem is
quite different from the problems studied in [27], [28], where no
lower bound specification is considered. Consequently, several
new techniques are developed in this paper to tackle the lower
bound requirement.

This paper is organized as follows. In Section II, we first
introduce some necessary background. Then we formulate the
maximally-permissive range control problem that we solve in
the paper. The notions of Bipartite Transition Structure (BTS)
and AIC are reviewed in Section III. The main contributions
of this paper are presented in Sections IV–VI. In Section IV,
we first reveal that the notion of strict sub-automaton plays an
important role in the range control problem. Then we provide
a new constructive approach for computing the infimal safe
supervisor that contains the lower bound behavior. In Section V,

we define the notion of Control Simulation Relation (CSR). The
CSR is used to resolve the future dependency issue, which is
the main difficulty in handling maximal permissiveness with
the lower bound constraint. In Section VI, we first provide an
algorithm to synthesize a maximally-permissive supervisor that
contains the required behavior. Then we prove the correctness of
the proposed algorithm. We also discuss how to verify whether
a given supervisor is maximal or not. Finally, we conclude the
paper in Section VII.

Preliminary and partial versions of some of the results in this
paper are presented in [25], [26]. The differences between the
present paper and its conference versions are as follows. First,
the approach in [25] does not solve the range control problem,
since it does not guarantee finite convergence. Second, although
the algorithm proposed in [26] solves the range control prob-
lem, the complexity of the algorithm is double-exponential in
general. This is because [26] assumes that the lower bound spec-
ification language is controllable and observable; in the worst
case, it requires exponential state-space explosion of the original
lower bound automaton in order to make this assumption hold.
In this paper, we provide a unified and simplified framework that
subsumes all results in [25], [26], together with all proofs (only
some proofs are presented in [25], [26]). Moreover, we relax
the assumption that the lower bound specification language is
controllable and observable; this significantly reduces the com-
plexity of the synthesis procedure from double-exponential-time
to exponential-time.

II. PROBLEM FORMULATION

A. Preliminaries

Let Σ be a finite set of events. We denote by Σ∗ the set of all
finite strings over Σ, including the empty string ε. For any string
s ∈ Σ∗, |s| denotes its length with |ε| = 0. A language L is a
subset of Σ∗. We denote by L the prefix-closure of language L;
L is said to be prefix-closed if L = L, i.e., L = {u ∈ Σ∗ : ∃v ∈
Σ∗ s.t. uv ∈ L}.

A DES is modeled as a finite-state automaton G =
(X,Σ, δ, x0 ,Xm), where X is the finite set of states, Σ is the
finite set of events, δ : X × Σ → X is the partial transition func-
tion, x0 ∈ X is the initial state, and Xm ⊆ X is the set of marked
states. The transition function δ is extended to X × Σ∗ in the
usual manner; see, e.g., [5]. For brevity, we write δ(x, s) as δ(s)
if x = x0 . We define L(G, x) := {s ∈ Σ∗ : δ(x, s)!} as the lan-
guage generated by G from state x, where ! means “is defined”.
We write L(G, x) as L(G) if x = x0 . In this paper, we will
only deal with prefix-closed languages. Therefore, we assume
that Xm = X and denote an automaton by G = (X,Σ, δ, x0).

Given two automata A=(XA,Σ, δA , xA,0) and B=
(XB ,Σ, δB , xB ,0), we say that A is a sub-automaton of B, de-
noted by A
 B, if δA (xA,0 , s)=δB (xB,0 , s) for all s∈L(A).
We say that A is a strict sub-automaton1 of B, denoted by A �
B, if (i) A
 B; and (ii) ∀x, y ∈ XA,∀s ∈ Σ∗ : δB (x, s)=y⇒
δA (x, s)=y. Note that, for any two automata A and B such

1The definition of strict sub-automaton used in this paper is slightly stronger
than the definition used in [7].

3916 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 8, AUGUST 2017

that L(A) ⊆ L(B), we can always refine the state spaces of
A and B and obtain two new automata A′ and B′ such that
L(A′)=L(A), L(B′)=L(B) and A′ � B′.

In the supervisory control framework [16], the event set is
partitioned into two disjoint sets Σ = Σc ∪̇Σuc , where Σc is the
set of controllable events and Σuc is the set of uncontrollable
events. A control decision γ ∈ 2Σ is a set of events with the
constraint that Σuc ⊆ γ, i.e., the supervisor should always en-
able uncontrollable events. We denote by Γ the set of all control
decisions, i.e., Γ := {γ ∈ 2Σ : Σuc ⊆ γ}. Under the partial ob-
servation setting [8], [13], the event set is further partitioned into
another pair of disjoint sets Σ = Σo ∪̇Σuo , where Σo is the set
of observable events and Σuo is the set of unobservable events.
The natural projection P : Σ∗ → Σ∗

o is defined by

P (ε) = ε and P (sσ) =
{

P (s)σ if σ ∈ Σo

P (s) if σ ∈ Σuo
(1)

The projection P is extended to 2Σ∗
by P (L) = {t ∈ Σ∗

o : ∃s∈
L s.t. t=P (s)} and P−1 denotes the inverse projection. A su-
pervisor is a function S : P (L(G)) → Γ, i.e., it enables events
only based on its observations. We denote by L(S/G) the lan-
guage generated by the closed-loop system under control, com-
puted recursively by:

i) ε ∈ L(S/G); and
ii) sσ∈L(S/G)⇔s∈L(S/G)∧sσ∈L(G)∧σ∈

S(P (s)).
Let K ⊆ L(G). We say that language K is
� controllable (w.r.t. Σc and G), if KΣuc ∩ L(G) = K;
� observable (w.r.t. Σc and Σo and G), if (∀s ∈ K,∀σ ∈

Σc : sσ ∈ K)[P−1P (s)σ ∩ L(G) ⊆ K]
It is well-known that, given a language K ⊆ L(G), there

exists a partial observation supervisor S such that L(S/G) =
K, if and only if, K is controllable and observable [8], [13].

When K is not controllable or observable, i.e., K cannot be
exactly achieved by a supervisor, one is interested in finding
a controllable and observable sub-language of K that is as
“large” as possible in terms of language inclusion; this problem
is also referred to as the synthesis problem. Since controllability
is preserved under union, there exists a supremal controllable
sub-language of K [16], i.e., the synthesis problem under the
full observation setting has a unique optimal solution. However,
there does not exist a supremal controllable and observable sub-
language of L(G), since observability is not preserved under
union in general, i.e., L1 ∪ L2 may be not observable even if
both L1 and L2 are observable. Instead, there may be several
incomparable locally maximal sub-languages; the definition of
locally maximal will become clear later.

Although observability is not preserved under union, both
controllability and observability are preserved under intersec-
tion when the languages are prefix-closed. Therefore, for a given
language R ⊆ L(G), we define the following class of languages

CO(R) = {L ⊆ Σ∗ : (L = L) ∧ (R ⊆ L ⊆ L(G))

∧ (L is controllable and observable)} (2)

and there exists an infimal element in class CO(R) defined by
R↓C O :=

⋂
L∈CO(R) L. We call R↓C O the infimal prefix-closed

controllable and observable super-language of R. Moreover, it
was shown in [11], [17] that R↓C O is a regular language when
R is regular; language-based formulas for R↓C O were provided
in [11], [17].

Since we consider partially-observed DES, we define an in-
formation state as a set of states and denote by I = 2X the set
of information states. Let i ⊆ I be an information state, γ ∈ Γ
be a control decision, and σ ∈ Σo be an observable event. We
define the following two operators:

URγ (i)={x∈X : ∃y∈ i,∃s∈(Σuo ∩ γ)∗ s.t. x=δ(y, s)} (3)

Nextσ (i)={x ∈ X : ∃y ∈ i s.t. x = δ(y, σ)} (4)

B. Problem Formulation

In this paper, we consider a generalized supervisory control
synthesis problem, called the range control problem, where we
have two prefix-closed specification languages:

� the upper bound language K =K⊆L(G); and
� the lower bound language R=R⊆K.

The upper bound K describes the legal behavior of the sys-
tem and we say that a supervisor S is safe if L(S/G)⊆K.
We say that a safe supervisor S is maximally permissive (or
maximal) if there does not exist another safe supervisor S ′,
such that L(S/G)⊂L(S ′/G). Note that the maximal super-
visor may not be unique and there may be two incomparable
maximal supervisors S1 and S2 such that L(S1/G) �⊂L(S2/G)
and L(S2/G) �⊂L(S1/G). In order to synthesize a “meaning-
ful” maximal solution, we introduce a lower bound language
R describing the required behavior that the closed-loop sys-
tem must achieve. Examples of using the range requirement to
impose design constraints can be found in [10], [13]–[15]. We
now formulate the Maximally-Permissive Range Control Prob-
lem (MPRCP):

Problem 1. (Maximally-Permissive Range Control Problem)
Given system G, lower bound language R and upper
bound language K such that R ⊆ K ⊆ L(G), synthesize a
maximally-permissive supervisor S∗ : P (L(G)) → Γ such
that R ⊆ L(S∗/G) ⊆ K.

Remark 1: We make several comments on MPRCP.
1) First, under the assumption that Σc ⊆ Σo , MPRCP has a

unique solution, if one exists. In this case, since control-
lability and observability together imply normality, the
supremal controllable and observable sub-language of K
does exist [5] and it coincides with the supremal control-
lable and normal sub-language of K, denoted by K↑C N .
Therefore, it suffices to compute K↑C N , and test whether
or not R ⊆ K↑C N . If so, then K↑C N is the unique supre-
mal solution; otherwise, there does not exist a solution to
MPRCP.

2) Second, when the lower bound requirement is relaxed,
i.e., R = {ε}, MPRCP is solved by the results in [2],
[27], since it suffices to synthesize an arbitrary max-
imal supervisor without taking the lower bound into
consideration.

3) Finally, if the maximal permissiveness requirement is
relaxed, then we just need to compute R↓C O , and test

YIN AND LAFORTUNE: SYNTHESIS OF MAXIMALLY-PERMISSIVE SUPERVISORS FOR THE RANGE CONTROL PROBLEM 3917

whether or not R↓C O ⊆ K. If so, then R↓C O is the most
conservative solution; otherwise, MPRCP does not have
a solution.

Hence, many existing problems solved in the literature are
special cases of MPRCP. To the best of our knowledge, MPRCP
is still open for the general case, which is clearly more difficult
than the above special cases. In fact, the idea of using both the
upper bound and the lower bound specifications was originally
introduced in [13]. However, the approach proposed in [13] can
only find the most restrictive supervisor satisfying the range
requirement. �

Remark 2: Since controllability and observability provide
the necessary and sufficient conditions for the existence of a su-
pervisor that achieves a given language, MPRCP is equivalent
to the problem of finding a maximal controllable and observable
language L such that R ⊆ L ⊆ K. This language-based formu-
lation and the supervisor-based formulation are essentially the
same. All results developed hereafter will be stated in terms of
supervisors rather than languages. �

Throughout the paper, we use K = (XK ,Σ, δK , x0,K)
to denote the automaton generating K, and use R =
(XR,Σ, δR , x0,R) to denote the automaton generating R. For
the sake of simplicity and without loss of generality, we assume
that K � G. This assumption essentially says that legality of
strings is fully captured by states. Namely, X \ XK is the set of
illegal states and δ(x0 , s) /∈ XK iff s /∈ K.

III. ALL INCLUSIVE CONTROLLER

In order to solve MPRCP, we use the two structures called
Bipartite Transition System (BTS) and All Inclusive Controller
(AIC); these were introduced in [27] to solve supervisory control
problems. For the sake of completeness of this paper, we review
in this section key definitions and results from [27].

Definition 1: (Bipartite Transition System): A bipartite tran-
sition system T w.r.t. G is a 7-tuple

T = (QT
Y ,QT

Z , hT
Y Z , hT

ZY ,Σo ,Γ, y0) (5)

where QT
Y ⊆ I = 2X is the set of Y -states; QT

Z ⊆ I × Γ is the
set of Z-states and I(z) and Γ(z) denote, respectively, the infor-
mation state and the control decision components of a Z-state
z, so that z = (I(z),Γ(z)); hT

Y Z : QT
Y × Γ → QT

Z is the partial
transition function from Y -states to Z-states, which satisfies the
following constraint: for any y ∈ QT

Y , z ∈ QT
Z and γ ∈ Γ, we

have

hT
Y Z (y, γ) = z ⇒ [I(z)=URγ (y)] ∧ [Γ(z) = γ]; (6)

hT
ZY : QT

Z × Σo → QT
Y is the partial transition function from

Z-states to Y -states, which satisfies the following constraint:
for any y ∈ QT

Y , z ∈ QT
Z and σ ∈ Σo , we have

hT
ZY (z, σ) = y ⇔ [σ∈Γ(z)] ∧ [y=Nextσ (I(z))]; (7)

Σo is the set of observable events of G; Γ is the set of control
decisions of G; and y0 ∈ QT

Y is the initial Y -state, where y0 =
{x0}.

Intuitively, a BTS is a game structure between the system
(control decision) and the environment (event occurrence). Each

Y -state is a “system state” from which the supervisor makes
control decisions. Each Z-state is an “environment state” from
which (enabled) observable events occur. Since the supervisor
cannot choose which event will occur once it has made a control
decision, all enabled and feasible observable events should be
defined at a Z-state; this is why we put “⇔” in Equation (7). We
denote by CT (y) the set of control decisions defined at y ∈ QT

Y

in T , i.e., CT (y) = {γ ∈ Γ : hT
Y Z (y, γ)!}. We say that a BTS T

is
� complete, if ∀y ∈ QT

Y : CT (y) �= ∅; and
� deterministic, if ∀y ∈ QT

Y : |CT (y)| = 1.
If T is deterministic, then we also use notation cT (y) to denote

the unique control decision defined at y ∈ QT
Y .

For simplicity, we also write y
γ−→T z if z = hT

Y Z (y, γ) and
z

σ−→T y if y = hT
ZY (z, σ). Note that, for two BTSs T1 and

T2 , we have that hT1
Y Z (y, γ) = hT2

Y Z (y, γ) whenever they are
defined. Therefore, we will drop the superscript in hT

Y Z (y, γ)
and write it as hY Z (y, γ) and y

γ−→ z if it is defined for some T ;
the same holds for hZY and z

σ−→ y. We call γ0σ1γ1σ2 . . . σnγn ,
where γi ∈ Γ, σi ∈ Σo , a run. A run also induces a sequence

y0
γ0−→ z0

σ1−→ y1
γ1−→ . . .

γn −1−−−→ zn−1
σn−→ yn

γn−→ zn

We say that a run is generated by T if its induced sequence is
defined in T .

Let S : P (L(G)) → Γ be a partial observation supervisor.
It works as follows. Initially, it makes control decision S(ε).
Then new control decision S(σ) is made upon the occurrence of
(enabled) observable event σ, and so forth. Let s = σ1 . . . σn ∈
P (L(S/G)) be an observed string. Then the execution of s
induces a well-defined sequence

y0
S (ε)−−→ z0

σ1−→ y1
S (σ1)−−−→ . . .

σn−→ yn
S (σ1 ...σn)−−−−−−→ zn

We denote by ISY
S (s) and ISZ

S (s), the last Y -state and Z-state
in y0z0y1z2 . . . zn−1ynzn , respectively, i.e., ISY

S (s) = yn and
ISZ

S (s) = zn . That is, ISY
S (s) and ISZ

S (s) are the Y -state and
the Z-state that result from the occurrence of string s under su-
pervisor S, respectively. Moreover, ISY

S (s) and the information
state component of ISZ

S (s) can also be expressed as follows

ISY
S (s) = {x ∈ X : ∃t ∈ (Σ∗Σo ∪ {ε}) ∩ L(S/G)

s.t. P (t) = s ∧ δ(x0 , t) = x}
I(ISZ

S (s))={x∈X : ∃t∈L(S/G) s.t. P (t)=s ∧ δ(x0 , t)=x}
Example 1: Let us consider the system G shown in Fig. 2(a).

The upper bound automaton K is obtained by removing the sin-
gle illegal state 7 from G. Let Σc = {c1 , c2} and Σo = {a, b}.
The structure shown in Fig. 2(b) is a complete BTS. From the
initial Y -state y0 = {1}, we can make control decision {},

which leads to a Z-state via {1} {}−→ ({1, 2}, {}). By observ-
ing event a from this Z-state, we move to the next Y -state by
({1, 2}, {}) a−→ {3, 4}. This BTS is not deterministic since there
are three different control decisions defined at Y -state {3, 4}.

Let us consider supervisor S defined by

S(s) =
{

Σuc if s = ε
{c1} ∪ Σuc if s ∈ {a, b} (8)

3918 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 8, AUGUST 2017

Fig. 2. For G, we have Σo = {a, b} and Σc = {c1 , c2}. In the AIC, rect-
angular states represent Y -states and oval states represent Z -states.
For the sake of simplicity, uncontrollable events a and b are omitted in
each control decision in the figure. (a) K and G, (b) AIC(G, K), (c) R.

Then, for string a ∈ P (L(S/G)), S induces the sequence

{1} S (ε)−−→ ({1, 2}, {}) a−→ {3, 4} S (a)−−−→ ({3, 4, 5}, {c1})
Therefore, we have that ISY

S (a) = {3, 4} and ISZ
S (a) =

({3, 4, 5}, {c1}). �
With the above notions, we can “decode” supervisors from a

BTS as explained in the following definition.
Definition 2: A supervisor S is said to be included in a BTS

T if for any observable string s ∈ P (L(S/G)), the control de-
cision made by S is defined at the corresponding Y -state, i.e.,
S(P (s)) ∈ CT (ISY

S (s)). We denote by S(T) the set of super-
visors included in T .

In [27], the AIC structure is defined as the largest BTS in-
cluding only safe supervisors.

Definition 3. (All Inclusive Controller) The All Inclusive
Controller for G and K, AIC(G,K) = (QAIC

Y ,QAIC
Z , hAIC

Y Z ,
hAIC

ZY ,Σo ,Γ, y0), is defined as the largest complete BTS such
that ∀z ∈ QAIC

Z : I(z) ⊆ XK .
Note that the AIC only depends on the system model G

and the upper bound automaton K; it does not depend on the
lower bound automaton R. We refer the reader to [27] for more
details and for the construction of the AIC. Here we recall a key
property of the AIC from [27].

Theorem 1: ([27]): A supervisor S is safe iff it is included
in the AIC, i.e., S ∈ S(AIC(G,K)).

Let y ∈ QAIC
Y be a Y -state in the AIC. We say that a control

decision γ ∈ Γ is safe at y if γ ∈ CAIC(G ,K)(y). Then we have
the following monotonicity properties.

Proposition 1: (Monotonicity Properties [24]):
1) Any control decision that is safe at Y -state y1 is also safe

at Y -state y2 ⊆ y1 .
2) If control decision γ1 is safe at Y -state y, then so is any

control decision γ2 ⊆ γ1 .
If a BTS T is deterministic, then the supervisor included

in T is unique, since the control decision at each Y -state is
unique. In this case, we denote by ST the unique supervisor
included in T , i.e., S(T)={ST }. Essentially, T is a realization
of supervisor ST . However, not all supervisors can be realized by
a BTS, since a supervisor may make different control decisions
at different visits to the same Y -state. We say that a supervisor

S is information-state-based (IS-based) if

∀s, t ∈ P (L(S/G)) : ISY
S (s) = ISY

S (t) ⇒ S(s) = S(t).

Then, a supervisor can be realized by a BTS iff it is IS-based.
Example 2: Let us consider again the system G and the spec-

ification K in Fig. 2(a). The AIC for this system is in fact the
BTS shown in Fig. 2(b). Note that, at Y -state {3, 4}, we can
either choose to enable c1 or c2 , but we cannot make control
decision {c1 , c2}, since it will unobservably lead to illegal state
7. This is why control decision {c1 , c2} is not defined at {3, 4}
in the AIC. It is easy to verify that supervisor S defined in Equa-
tion (8) is included in the AIC, since S(ε) ∈ CAIC(G ,K)({1})
and S(a), S(b) ∈ CAIC(G ,K)({3, 4}). Therefore, S is a safe su-
pervisor. Moreover, S is an IS-based supervisor. In particular, if
we remove control decisions {} and {c2} from Y -state {3, 4}
and call the remaining (deterministic) BTS T , then we have that
S(T) = {S}, i.e., S = ST . �

Remark 3: In Fig. 2(b), we can also make control decision
{c1} at the initial Y -state {1}. However, event c1 is not feasible
before the next observable event occurs. Therefore, we treat
c1 as a redundant event and omit it in the control decision.
Formally, we say that a control decision γ is irredundant at
Y -state y if ∀σ ∈ γ,∃x ∈ URγ (y) : δ(x, sσ)!. We say that a
BTS is irredundant if for any y ∈ QT

Y and for any γ ∈ CT (y),
γ is irredundant at y. Similarly, we say that a supervisor is
irredundant if for any s ∈ P (L(S/G)), S(s) is irredundant at
ISY

S (s). Hereafter, we will only consider irredundant BTSs and
supervisors; this will not affect their properties. �

IV. SYNTHESIS OF THE INFIMAL SUPERVISOR

In this section, we synthesize a BTS TR that realizes the in-
fimal supervisor achieving the lower bound, i.e., L(STR

/G) =
R↓C O . This infimal supervisor will be further used as a ba-
sis to solve MPRCP. First, we illustrate the role of strict sub-
automaton in this problem. Then, we provide an effective algo-
rithm to construct TR .

A. The Role of Strict Sub-Automaton

The goal of this section is to construct a BTS TR such that
L(STR

/G) = R↓C O . Although we know that R↓C O is a regular
language, this fact in itself is not sufficient for the purpose of
synthesis. Specifically, we are interested in whether or not R↓C O

can be achieved by an IS-based supervisor which can be realized
by a BTS. This question is very important, since it essentially
asks what is the right state space in order to realize the infi-
mal supervisor that contains R. One may conjecture that there
always exists a BTS TR such that L(STR

/G) = R↓C O when
R↓C O ⊆ K. However, this is not true in general as illustrated
by the following example.

Example 3: Let us still consider the system G and the upper
bound automaton K shown in Fig. 2(a). We consider a lower
bound language R which is generated by automaton R shown
in Fig. 2(c). One can easily check that any IS-based supervisor
S does not contain R. This is because events a and b lead to
the same Y -state {3, 4} in any BTS and control decision S(a)
and S(b) should always be the same in any IS-based supervisor

YIN AND LAFORTUNE: SYNTHESIS OF MAXIMALLY-PERMISSIVE SUPERVISORS FOR THE RANGE CONTROL PROBLEM 3919

S. However, we can find a non-IS-based supervisor S ′, which
enables c1 after observing a and enables c2 after observing b,
such that R↓C O = L(S ′/G). �

The reason why there may not exist an IS-based supervisor
that achieves R↓C O is explained as follows. Suppose that R is
a sub-automaton of K such that we can match the state space
of R with the state space of K. Let s ∈ P (R) be an observable
string in P (R) and define

yR (s) = {x ∈ XR : ∃t ∈ R ∩ (Σ∗Σo ∪ {ε})
s.t. δR (x0 , t) = x ∧ P (t) = s}

as the “information state” of R reached upon observing s,
which is analogous to a Y -state in a BTS. Then it is possi-
ble that two different “information states” under the original
control strategy can be merged as a single information state
under the new (more permissive) control strategy. As a con-
sequence, information is lost by using the newly reached in-
formation state. We call this phenomenon information merge.
For example, for the lower bound automaton R shown in
Fig. 2(c), we have that yR (a) = {3} and yR (b) = {4}. In or-
der to achieve R, in addition to enabling events a and b ini-
tially, we also need to enable event u, since it is uncontrol-
lable. Then the two different “information states” {3} and {4}
in R, which are reached by observing a and b, respectively,
will be merged as a single state {3, 4}. However, simply know-
ing state {3, 4} is not sufficient for making control decisions
in order to contain the lower bound behavior. To find an IS-
based solution, state {3, 4} has to be split into two states:
one is reached by observing a and the other is reached by
observing b.

Let y ∈ 2X be an information state and suppose that XR ⊆
X . We denote by y|R the restriction of y to the state space of
R, i.e., y|R = y ∩ XR . The following result says that the state
merging phenomenon described above will not occur when R
is a strict sub-automaton of K.

Proposition 2: Assume that R � K � G. Then for any su-
pervisor S such that R ⊆ L(S/G), we have that

1. ∀s∈P (R) : ISY
S (s)|R = yR (s);

2. ∀s, t∈P (R) : yR (s) �=yR (t)⇒ISY
S (s) �=ISY

S (t).
Proof: See the Appendix. �
Remark 4: The intuition of the above result is as follows.

Since R � K, any newly introduced string, namely a string in
L(K) \ L(R), must lead to a state in XK \ XR . Therefore, if
strings s and t lead to two distinct “information states” y1 =
yR (s) and y2 = yR (t), respectively, then the newly reached Y -
states y′

1 and y′
2 under a supervisor whose closed-loop language

contains R must be in the form of y′
1 = y1 ∪ ŷ1 and y′

2 = y2 ∪
ŷ2 , respectively, where ŷ1 , ŷ2 ⊆ XK \ XR . Since y1 �= y2 , we
know that y′

1 �= y′
2 . �

Therefore, we make the following assumption hereafter.
Assumption 1: R � K � G.
Remark 5: Note that the above assumption is without loss of

generality: if R, K and G do not satisfy this assumption, then we
can always refine the state spaces of R, K and G by construct-
ing new automata R′, K′ and G′ such that 1) R′ � K′ � G′;
and 2) L(R) = L(R′), L(K) = L(K′) and L(G) = L(G′).

Fig. 3. In Fig. 3(a), G′ is the entire automaton and K′ is obtained by
removing illegal state 7 from G′. (a) K′ and G′, (b) AIC(G′, K′).

Such a pre-processing algorithm can be found in [23], which
generalizes the procedure in [7] from two automata to three
automata. In the worst case, the refined system model G′ con-
tains |X| × (|XK | + 1) × (|XR | + 1) states. Therefore, only
polynomial-space refinement is needed to make Assumption 1
hold; this is different from the state-partition-automata-based
refinement in the literature, which has an exponential complex-
ity. This assumption and Proposition 2 play important roles in
this paper; they will also be involved several times in our later
development. Finally, we remark that the reason why we as-
sume that K�G and the reason why we assume that R�K
are different. We assume that K�G to guarantee that legality
of strings is fully captured by states. We assume that R�K
to make sure that the information merge phenomenon will not
occur. �

Example 4: Let us return to Example 2. The original au-
tomata R and K in Figs. 2(c) and (a) do not satisfy the assump-
tion that R � K. Therefore, we refine the state spaces of K and
G and obtain new automata K′ and G′ shown in Fig. 3(a) such
that R � K′ � G′, L(K) = L(K′) and L(G) = L(G′). The
AIC AIC(G′,K′) for the refined system is shown in Fig. 3(b).
We see that the original state {3, 4} in AIC(G,K) splits into
two states {3′, 4} and {3, 4′} in AIC(G′,K′).

�

B. Synthesis Algorithm

We are now ready to show how to compute the supervisor that
achieves R↓C O . In particular, we show that such a supervisor
can be realized by a BTS.

Let y ⊆ XR be a set of states in R. We first define the fol-
lowing set of events

ΓR (y) := {σ ∈ Σ : ∃x ∈ y,∃s ∈ Σ∗
uo s.t. δR (x, sσ)!}

The following result reveals that ΓR (y) is indeed the set of
events that should be enabled at y in order to achieve R.

3920 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 8, AUGUST 2017

Proposition 3: For any supervisor S : P (L(G)) → Γ, R ⊆
L(S/G), if and only if,

∀s ∈ P (L(S/G)) : ISY
S (s)|R �= ∅ ⇒ ΓR (ISY

S (s)|R) ⊆ S(s).

Proof: See the Appendix. �
Now, we are ready to present the algorithm that constructs the

BTS TR such that L(STR
/G) = R↓C O . Specifically, the BTS

TR is constructed by a depth-first search as follows. Initially, we
start from the initial Y -state y0 . For each Y -state y encountered,
if y|R �= ∅, we choose ΓR (y|R) ∪ Σuc as the unique control
decision defined at y. Note that y|R �= ∅ implies that y can be
reached by some string in P (R), i.e., the supervisor is not sure
whether or not the system has already gone outside the lower
bound language R. Therefore, we choose ΓR (y|R) ∪ Σuc as the
control decision since it is the smallest control decision we need
in order to contain R. If y|R = ∅, then we know for sure that
the system has already gone outside R and we just choose Σuc

as the control decision, i.e., all controllable events are disabled.
To summarize the above rule, in the constructed BTS TR , we
have that

∀y ∈ QTR

Y : cTR
(y) =

{
ΓR (y|R) ∪ Σuc if y|R �= ∅
Σuc if y|R = ∅

Based on the above discussion, Algorithm INF-SYNT is pro-
posed to construct TR . Namely, for each Y -state encountered,
we choose one control decision based on the above-discussed
rules; for each Z-state encountered, we need to consider all
observable events that are feasible. Such a depth-first search is
implemented by the recursive procedure termed DoDFS. More-
over, Algorithm INF-SYNT returns “No Solution” when a Y -
state y such that ΓR (y|R) ∪ Σuc �∈ CAIC(G ,K)(y) is encoun-
tered. This implies that achieving the lower bound R will violate
the safety specification, either immediately or unavoidably in the
future. In this case, MPRCP has no solution. Of course, R↓C O

always exists, but our focus herein is on solving MPRCP. (If the
focus is solely on the computation of R↓C O , then it suffices to
set K = L(G) in the above development.)

Next, we first illustrate Algorithm INF-SYNT by an example.
Then we prove its correctness.

Example 5: Let us return to the running example. The input
parameters of Algorithm INF-SYNT are R and AIC(G′,K′)
shown in Figs. 2(c) and 3(b), respectively. We start procedure
DoDFS from the initial Y -state y0 = {1}. Since {1}|R �= ∅,
we take control decision ΓR ({1}) ∪ Σuc = Σuc (which is de-
picted as {} in Fig. 3(b) for simplicity since all events in it
are uncontrollable events), and move to the successor Z-state
({1, 2}, {}). Then we need to consider all possible event oc-
currences from this Z-state. If a occurs, then Y -state {3, 4′}
is reached. Since {3, 4′}|R = {3} �= ∅, we need to take control
decision ΓR ({3}) ∪ Σuc = {c1} ∪ Σuc . Similarly, we need to
take control decision {c2} ∪ Σuc if Y -state {3′, 4} is reached.
The above procedure yields deterministic BTS TR , which is the
part highlighted in Fig. 3(b). �

We now prove the correctness of Algorithm INF-SYNT. First,
we show that, under the assumption that R � K � G, Algo-
rithm INF-SYNT will never return “No Solution” when a solu-
tion exists.

Theorem 2: Algorithm INF-SYNT returns “No Solution” if
and only if R↓C O �⊆ K.

Proof: (⇐) By contraposition. Suppose that Algorithm INF-
SYNT returns BTS TR . Since STR

is an IS-based supervisor,
for any s ∈ P (L(STR

/G)) such that ISY
ST R

(s)|R �= ∅, we have

STR
(s) = cTR

(ISY
ST R

(s)) = ΓR (ISY
ST R

(s)|R) ∪ Σuc

Therefore, by Proposition 3, we know that R ⊆ L(STR
/G).

Then, by the definition of ↓C O , we know that R↓C O ⊆
L(STR

/G). Moreover, STR
is safe since it is an AIC-

included supervisor, i.e., L(STR
/G) ⊆ K. Overall, we know

that R↓C O ⊆ K.
(⇒) By contradiction. Assume that Algorithm INF-SYNT

returns “No Solution” but R↓C O ⊆ K. Therefore, we know that
there exists a supervisor S such that R ⊆ L(S/G) ⊆ K and
there exists a sequence in the form of

y0
ΓR (y0 |R)∪Σu c−−−−−−−−→z1

σ1−→y1 . . .
ΓR (yn −1 |R)∪Σu c−−−−−−−−−−→zn

σn−→yn (9)

in procedure DoDFS in Algorithm INF-SYNT such that
1) ∀i = 0, . . . , n : yi |R �= ∅; and
2) ∀i = 0, . . . , n − 1 : ΓR (yi |R) ∪ Σuc ∈ CAIC(G ,K)(yi);

and
3) ΓR (yn |R) ∪ Σuc �∈ CAIC(G ,K)(yn).

Next, we show by induction that, for any i ≥ 0, we have that

yi ⊆ ISY
S (σ1 . . . σi) and yi |R = ISY

S (σ1 . . . σi)|R (10)

YIN AND LAFORTUNE: SYNTHESIS OF MAXIMALLY-PERMISSIVE SUPERVISORS FOR THE RANGE CONTROL PROBLEM 3921

Clearly, the induction basis holds for i = 0, since y0 = ISY
S (ε).

Let us assume that Equation (10) holds for i = k; we need to
show that Equation (10) holds for i = k + 1. By definition, we
know that

yk+1 ={x∈X : ∃x′ ∈yk ,∃w∈((ΓR (yk |R) ∪ Σuc) ∩ Σuo)∗

s.t. δ(x′, wσk+1) = x} (11)

={x∈XR : ∃x′ ∈yk |R ,∃w∈((ΓR (yk |R) ∪ Σuc) ∩ Σuo)∗

s.t. δR (x′, wσk+1) = x} ∪ AG\R (12)

where AG\R ⊆ X \ XR . Note that the second equality is a con-
sequence of the assumption that R � G, since any string that
leaves the state space of R must lead to a state in X \ XR .
Similarly, we can write

ISY
S (σ1 . . . σk+1)

= {x∈X : ∃x′ ∈ISY
S (σ1 . . . σk),∃w∈(S(σ1 . . . σk) ∩ Σuo)∗

s.t. δ(x′, wσk+1) = x} (13)

={x∈XR :∃x′ ∈ISY
S (σ1 . . . σk)|R ,∃w∈(S(σ1 . . . σk)∩Σuo)∗

s.t. δR (x′, wσk+1) = x} ∪ BG\R (14)

= {x∈XR : ∃x′ ∈ISY
S (σ1 . . . σk)|R ,

∃w∈((ΓR (ISY
S (σ1 . . . σk)|R) ∪ Σuc)∩Σuo)∗

s.t. δR (x′, wσk+1) = x} ∪ BG\R (15)

= {x∈XR : ∃x′ ∈yk |R ,∃w∈((ΓR (yk |R) ∪ Σuc) ∩ Σuo)∗

s.t. δR (x′, wσk+1) = x} ∪ BG\R (16)

where BG\R ⊆ X \ XR . Note that the second equality also
comes from the assumption that R � G. The third equality
comes from the fact that, for any string

w ∈ ((S(σ1 . . . σk) \ ΓR (ISY
S (σ1 . . . σk)|R)) ∩ Σuo)∗

δR (x′, wσk+1) is not defined for x′ ∈ XR . Note that the last
equality follows from the induction hypothesis that yk |R =
ISY

S (σ1 . . . σk)|R .
Therefore, by Equations (12) and (16), we know that

yk+1 |R = ISY
S (σ1 . . . σk+1)|R . Moreover, by the induction hy-

pothesis and Proposition 3, we know

ΓR (yk |R) = ΓR (ISY
S (σ . . . σk)|R) ⊆ S(σ1 . . . σk). (17)

Since Equation (10) holds for i = k, combining Equations (11),
(13) and (17) together, we obtain yk+1 ⊆ ISY

S (σ1 . . . σkσk+1),
i.e., Equation (10) holds for i = k + 1.

Now, let us go back to the sequence in Equation (9).
Since L(S/G) ⊆ K, by Theorem 1, we have S(σ1 . . . σn) ∈
CAIC(G ,K)(ISY

S (σ1 . . . σn)). We have proved that yn ⊆
ISY

S (σ1 . . . σn). Then, by Proposition 1, S(σ1 . . . σn) ∈
CAIC(G ,K)(yn). Moreover, since we have shown that
ΓR (yn |R) = ΓR (ISY

S (σ1 . . . σn)|R), by Proposition 3, we have
ΓR (yn |R) ∪ Σuc ⊆ S(σ1 . . . σn). Then, by Proposition 1 again,

we know that ΓR (yn |R) ∪ Σuc ∈ CAIC(G ,K)(yn). However,
this is a contradiction. �

Remark 6: Note that the “only if” part of the proof of the
above theorem relies on the condition that R � G. In fact,
if R � G does not hold, then Algorithm INF-SYNT may re-
turn “No Solution” even when R↓C O ⊆ K. For example, let us
use R and AIC(G,K) shown in Figs. 2(c) and (b), respec-
tively, as the input parameters of Algorithm INF-SYNT, where
R is a sub-automaton of G but not a strict sub-automaton.
Then, after taking control decision Σuc at the initial state
and observing event a, we will reach Y -state {3, 4}. Since
ΓR ({3, 4}) ∪ Σuc = {c1 , c2} ∪ Σuc /∈ CAIC(G ,K)({3, 4}), Al-
gorithm INF-SYNT returns “No Solution”. However, a solution
does exist since R↓C O ⊆ K. This highlights our earlier asser-
tion that the strict sub-automaton condition plays an important
role in the synthesis algorithm. �

The next result reveals that the BTS returned by Algorithm
INF-SYNT is indeed the one that realizes the infimal safe
supervisor.

Theorem 3: Suppose that Algorithm INF-SYNT returns
BTS TR . Then L(STR

/G) = R↓C O .
Proof: We prove this by contradiction. Let us assume that

L(STR
/G) �= R↓C O . In the proof of Theorem 2, we have shown

that R ⊆ L(STR
/G). Therefore, there exists a supervisor S ′

such that R ⊆ L(S ′/G) ⊂ L(STR
/G). This implies that ∃s ∈

P (L(S ′/G)) ∩ P (L(STR
/G)) such that S ′(s) ⊂ STR

(s). For
string s, we have the following two cases.

Case 1: ISY
ST R

(s)|R = ∅.
In this case, by Algorithm INF-SYNT, we know that

STR
(s) = cTR

(ISY
ST R

(s)) = Σuc . However, it contradicts the

fact that S ′(s) ⊂ STR
(s), since S ′(s) always contains Σuc .

Case 2: ISY
ST R

(s)|R �= ∅.

In this case, by Algorithm INF-SYNT, STR
(s) =

ΓR (ISY
ST R

(s)|R) ∪ Σuc . Since R ⊆ L(S ′/G), by Proposi-

tion 3, we know that ΓR (ISY
S ′(s)|R) ∪ Σuc ⊆ S ′(s). More-

over, by Proposition 2, we have ISY
S ′(s)|R = ISY

ST R
(s)|R =

yR (s), since both S ′ and STR
contains R. This implies that

ΓR (ISY
ST R

(s)|R) ∪ Σuc ⊆ S ′(s). However, this also contra-

dicts the fact that S ′(s) ⊂ STR
(s). �

Remark 7: Although language-based formulas for R↓C O

were provided in [11], [17], the formula-based approach does
not tell us directly what is the right structure and how many
states are required to realize the supervisor achieving R↓C O . To
the best of our knowledge, no constructive approach for R↓C O ,
in terms of supervisor, is provided in the literature. The results
in this section not only provide a direct constructive approach
to compute the infimal prefix-closed controllable and observ-
able super-language, but also provides a new structural prop-
erty about the corresponding infimal supervisor. In particular,
we show that, when the state spaces have been properly refined,
i.e., R�K�G, 2X is sufficient enough to represent this su-
pervisor, i.e., the infimal supervisor can be written in the form
of STR

:2X →Γ. Moreover, the BTS TR will be further used as
a basis to synthesize a maximal safe supervisor containing R.
This will be discussed in Section VI. �

3922 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 8, AUGUST 2017

Fig. 4. For R, K and G: Σc = {v, w} and Σo = {a, b, v}. (a) R, (b) K, (c) G, (d) AIC(G, K), (e) TR .

V. CONTROL SIMULATION RELATION

In this section, we first discuss the difficulty that arises in
solving the range control problem. Then we define the notion of
Control Simulation Relation (CSR) as the tool to overcome the
difficulty.

A. Difficulty in Handling the Lower Bound

In order to synthesize a maximal supervisor, the general idea
is to guarantee by construction that the control decision made by
the supervisor at each instant cannot be improved any further.
However, this is not an easy task. Suppose that y ∈ QAIC

Y is a
Y -state in the AIC; by Theorem 1, we know that any control
decision in CAIC(G ,K)(y) is a safe control decision. Therefore,
if there is no lower bound requirement and one is only interested
in the safety upper bound K, then we can simply pick a “greedy
maximal” decision from CAIC(G ,K)(y). This is essentially the
strategy we use in [27]; a similar strategy (but not based on the
AIC) is used in [2]. However, the following example illustrates
how to choose a control decision from CAIC(G ,K)(y) becomes
much more complicated when the lower bound specification R
has to be considered.

Example 6: Let us consider automata R,K and G shown in
Figs. 4(a), (b) and (c), respectively, where we haveR � K � G.
Let Σc = {v, w} and Σo = {a, b, v}. The AIC AIC(G,K) is
shown in Fig. 4(d). By applying Algorithm INF-SYNT, we
construct BTS TR that realizes the infimal supervisor achieving
R↓C O ; TR is shown in Fig. 4(e). Initially, TR chooses to disable
w, i.e., cTR

(y0) = {}, while enabling w is also a safe choice at
the initial Y -state according to the AIC. It seems that choosing
{w} provides more behavior than choosing {}. However, if we
choose {w}, then upon the occurrence of a, we can only choose
to disable v, since we are not sure whether the current state is 3
or 4. This leads to failure to contain the lower bound behavior
(av)∗, where we need to enable v after observing a. Therefore,
the lower bound behavior can only be achieved by choosing
{} at the beginning rather than choosing {w}, which is greedy
maximal. �

The above example illustrates the following issue. In some
scenario, enabling more events is not a good choice, since it
may introduce more information uncertainty. Consequently, to
maintain safety, the control decision may become more con-
servative in the future due to this information uncertainty. This

may make the lower bound behavior unachievable. More prob-
lematically, we do not know whether or not enabling an event
will lead to failure to contain the lower bound behavior, un-
less we get stuck at some instant in the future, e.g., after ob-
serving event a in the previous example. Moreover, we do
not know a priori, when or whether or not this phenomenon
will occur in the future. In other words, whether or not a
decision defined in the AIC is a “good” control decision de-
pends on its effects in the future. This future dependency is
the fundamental difficulty of the range control problem and
it is in fact the essential difference between MPRCP and the
standard supervisor synthesis problem without a lower bound
requirement.

B. Definition of the CSR

In order to resolve the future dependency issue discussed
above, we propose a simulation-like relation, called the Control
Simulation Relation (CSR), to pre-process this future depen-
dency and transform it to local information. The key idea is to
compare two BTSs T1 and T2 and to establish a formal relation-
ship between states in T1 and states in T2 . The formal definition
of the CSR is presented next.

Definition 4. (Control Simulation Relation) Let T1 and T2
be two BTSs w.r.t. the same G. A relation Φ = ΦY ∪ ΦZ ⊆
(QT1

Y × QT2
Y) ∪ (QT1

Z × QT2
Z) is said to be a control simulation

relation from T1 to T2 if the following conditions hold:
1) (y0 , y0) ∈ Φ;
2) For every (y1 , y2) ∈ ΦY we have that:

y1
γ1−→T1 z1 in T1 implies the existence of y2

γ2−→T2 z2 in
T2 such that γ1 ⊆ γ2 and (z1 , z2) ∈ ΦZ ;

3) For every (z1 , z2) ∈ ΦZ we have that:
z1

σ−→T1 y1 in T1 implies the existence of z2
σ−→T2 y2 in

T2 such that (y1 , y2) ∈ ΦY .
We say that T1 is control-simulated by T2 or that T2 control-

simulates T1 , denoted by T1 � T2 , if there exists a control sim-
ulation relation from T1 to T2 .

Intuitively, the control simulation relation captures whether or
not T2 is able to match an arbitrary control decision made by T1
by either taking the same control decision or a control decision
that is strictly larger than the one made by T1 and maintain this
ability for all possible future behaviors.

Given two BTSs T1 and T2 , a relevant question is whether or
not there exists a CSR from T1 to T2 . To answer this question,

YIN AND LAFORTUNE: SYNTHESIS OF MAXIMALLY-PERMISSIVE SUPERVISORS FOR THE RANGE CONTROL PROBLEM 3923

we define an operator

F : 2Q
T 1
Y ×Q

T 2
Y ∪ 2Q

T 1
Z ×Q

T 2
Z → 2Q

T 1
Y ×Q

T 2
Y ∪ 2Q

T 1
Y ×Q

T 2
Y

as follows. For any Φ = ΦY ∪ ΦZ ⊆ (QT1
Y × QT2

Y) ∪ (QT1
Z ×

QT2
Z), we have that

1) (y1 , y2) ∈ F (ΦY) if (y1 , y2) ∈ ΦY and for any transition
y1

γ1−→T1 z1 in T1 , there exists y2
γ2−→T2 z2 in T2 such that

γ1 ⊆ γ2 and (z1 , z2) ∈ ΦZ .
2) (z1 , z2) ∈ F (ΦZ) if (z1 , z2) ∈ ΦZ and for any transition

z1
σ−→T1 y1 in T1 , there exists z2

σ−→T2 y2 in T2 such that
(y1 , y2) ∈ ΦY .

The following results reveal how operator F is related to the
CSR.

Proposition 4: The operator F has following properties:
1) Φ is a control simulation relation from T1 to T2 , if and

only if, Φ ⊆ F (Φ) and (y0 , y0) ∈ Φ;
2) Φ1 ⊆ Φ2 ⇒ F (Φ1) ⊆ F (Φ2).
Proof: See the Appendix. �
The above results have the following implications. First, since

Φ ⊆ F (Φ) for any CSR Φ, we know that the maximal relation
Φ is a fixed-point of operator F , i.e., F (Φ) = Φ. Note that
F (Φ) ⊆ Φ always holds. By the second property in Proposition
4, we know that F is monotone. Therefore, by Tarski’s fixed-
point theorem [20], we know that the supremal fixed-point of F ,
denoted by Φ∗(T1 , T2), exists and it can be computed as follows

Φ∗(T1 , T2) = lim
k→∞

Fk ((QT1
Y × QT2

Y) ∪ (QT1
Z × QT2

Z)) (18)

In other words, Φ∗(T1 , T2) is a maximal control simulation rela-
tion from T1 to T2 if (y0 , y0) ∈ Φ∗(T1 , T2). Otherwise, T1 �� T2
if (y0 , y0) �∈ Φ∗(T1 , T2). This is similar to the standard simu-
lation relation; see, e.g., [18]. Note that the limit in Equation
(18) can be achieved within at most |QT1

Y ||QT2
Y | + |QT1

Z ||QT2
Z |

iterations.
Example 7: We consider again the AIC AIC(G,K) and

BTS TR shown in Figs. 4(e) and 4(d), respectively. We com-
pute the maximal CSR between TR and AIC(G,K); we write
Φ∗(TR ,AIC(G,K)) = Φ∗

Y ∪ Φ∗
Z , where Φ∗

Y ⊆ QTR

Y × QAIC
Y

and Φ∗
Z ⊆ QTR

Z × QAIC
Z . Then we have

Φ∗
Y = {({1}, {1}), ({3}, {3}))}

Φ∗
Z = {(({1}, {}), ({1}, {})), (({3}, {v}), ({3}, {v})),

(({3}, {v}), ({3, 5}, {v, w}))}
The reason why ({3}, {3, 4}) /∈ Φ∗

Y is that {v} is defined
at {3} in TR but there is no decision containing {v} de-
fined at {3, 4} in the AIC. Consequently, we know that
(({1}, {}), ({1, 2}, {w})) /∈ Φ∗

Z , where ({1}, {}) and ({1, 2},
{w}) are the predecessor Z-states that enter {3} and {3, 5} with
the same event a, respectively. �

C. Properties of the CSR

Hereafter, we present properties of the CSR that will be
used later in the paper. Their proofs are provided in the
Appendix.

The first result reveals that the CSR indeed captures whether
or not any possible behavior from a state in a BTS can be
matched by another BTS from some different state.

Proposition 5: Let T1 and T2 be two complete BTSs and
z1 ∈ QT1

Z and z′1 ∈ QT2
Z be two Z-states in T1 and T2 , re-

spectively. Then (z1 , z
′
1) ∈ Φ∗(T1 , T2), if and only if, for any

sequence

z1
σ1−→ y1

γ1−→ . . .
γn −1−−−→ zn−1

σn−→ yn
γn−→ zn (19)

in T1 , there exists a sequence

z′1
σ1−→ y′

1
γ ′

1−→ . . .
γ ′

n −1−−−→ z′n−1
σn−→ y′

n

γ ′
n−→ z′n (20)

in T2 , such that γi ⊆ γ′
i ,∀i ≥ 0.

The next result reveals the relationship between the CSR and
the closed-loop behavior of the system.

Proposition 6: Let T1 and T2 be two deterministic BTSs.
Then L(ST1 /G) ⊆ L(ST2 /G), if and only if, T1 � T2 .

The last result reveals that the CSR is transitive.
Proposition 7: Let T1 , T2 and T3 be three BTSs such that

T1 � T2 and T2 � T3 . For i = 1, 2, 3, let yi ∈ QTi

Y and γi ∈
CTi

(yi) be a Y -state in Ti and a control decision defined at this
state, respectively. Then

[(z1 , z2) ∈ Φ∗(T1 , T2) ∧ (z2 , z3) ∈ Φ∗(T2 , T3)]

⇒ [(z1 , z3) ∈ Φ∗(T1 , T3)]

where zi = hY Z (yi, γi), i = 1, 2, 3.

VI. SYNTHESIS OF A MAXIMALLY-PERMISSIVE SUPERVISOR

In this section, we first present the main synthesis algorithm
that solves MPRCP. Then we prove its correctness.

A. Synthesis Algorithm

As we discussed earlier, to synthesize a maximally permis-
sive supervisor containing R, we need to consider some infor-
mation in the future. Fortunately, such future information has
been transformed to local information by the CSR. The idea of
the synthesis algorithm is as follows. First, we construct BTS
TR that includes the infimal supervisor STR

achieving R↓C O .
Then we compute the maximal CSR between BTS TR and the
AIC AIC(G,K). Next, we construct a new BTS, denoted by
T ∗, such that TR � T ∗, by using a depth-first search procedure.
Specifically, suppose that y is a Y -state in T ∗ at which we need
to choose a control decision. First, this control decision should
be chosen from CAIC(G ,K)(y) in order to guarantee safety. In
order to take care of the lower bound behavior, we need to make
sure that this control decision preserves the CSR. The reason
why we consider the CSR between TR and AIC(G,K) is that
TR realizes the infimal supervisor containing R; namely, any
BTS whose induced supervisor contains R should “simulate”
the behavior of TR .

In order to formalize the above idea, let y ∈ QAIC
Y be a Y -

state in the AIC and ŷ ∈ QTR

Y be a Y -state that “tracks” y in TR

such that y|R , ŷ|R �= ∅. (How ŷ “tracks” y will be clear later.)
We denote by Φ∗

R := Φ∗(TR,AIC(G,K)) the maximal CSR

3924 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 8, AUGUST 2017

from TR to AIC(G,K). Then we define

Ξ(y, ŷ) :=

{
γ ∈ Γ :

γ∈CAIC(G ,K)(y) and γ⊇cTR
(ŷ)and

(hY Z (ŷ, cTR
(ŷ)), hY Z (y, γ)) ∈ Φ∗

R

}

Set Ξ(y, ŷ) will be the key in the synthesis algorithm. Intuitively,
γ ∈ Ξ(y, ŷ) is a control decision such that:

1) It is safe at y, i.e., γ ∈ CAIC(G ,K)(y); and
2) It contains the corresponding control decision made by

STR
at ŷ, i.e., cTR

(ŷ); and
3) Any behavior that can occur from the corresponding

Y -state ŷ in TR can still occur from y in the AIC by
taking γ.

We are now ready to present the main synthesis algorithm,
which is formally presented in Algorithm MAX-RANGE. Let us
explain how it works. Initially, we construct TR and compute the
maximal CSR Φ∗(TR,AIC(G,K)) from TR to AIC(G,K).
Then we construct a new deterministic BTS T ∗ by a depth-first
search as follows. Initially, we start from the initial Y -state y0 .
We pick one control decision from the AIC for each Y -state en-
countered (how this control decision is picked will be specified
soon) and pick all observations for each Z-state encountered.
This depth-first search is implemented by recursive procedure
DoDFS in Algorithm MAX-RANGE, which traverses the reach-
able state space of T ∗. Moreover, during the construction BTS
of T ∗, we use TR to track the sequence that reaches the Y - or
Z-state in T ∗. Specifically, whenever T ∗ moves from a Y -state
y to a Z-state z (line 10), we need to move from Y -state ŷ
to its (unique) successor Z-state ẑ in TR (line 12). Similarly,
whenever T ∗ moves from a Z-state z to a Y -state y via observ-
able event σ (line 18), we need to move from Z-state ẑ to a
successor Y -state ŷ in TR through the same observable event σ
(line 20). In other words, Y -state ŷ in TR essentially “tracks”
Y -state y in the AIC or in T ∗, since they are always reached by
sequences that have the same projected string. Note that we use
TR to track T ∗ only when the current Y -state y encountered in
T ∗ satisfies y|R �= ∅. Whenever y|R = ∅, then we just set ŷ = ∅
(line 21). This means that we know for sure that the string is
already outside of L(R).

Now it still remains to discuss how to choose the control
decision at each Y -state in T ∗. To this end, we need to consider
two cases for each Y -state y encountered:

1) Suppose that y|R �= ∅; this means that y must be reached
by a sequence y0

γ1 σ1 ...γn σn−−−−−−−→ y such that the projected string
in this sequence is in P (R), i.e., σ1 . . . σn ∈ P (R). Then we
know that there exists a sequence in TR that “tracks” the above
sequence, which means that ŷ �= ∅. In this case, we choose a
locally maximal decision in Ξ(y, ŷ), since we still need to be
able to match any behavior in R in the future. This case is
implemented by line 8 of Algorithm MAX-RANGE.

2) Suppose that y|R = ∅; this means that y must be reached
by a sequence y0

γ1 σ1 ...γn σn−−−−−−−→ y such that σ1 . . . σn /∈ P (R).
This also implies that ŷ = ∅. Then we simply chose a locally
maximal decision in CAIC(G ,K)(y), since we know for sure that
the string is already outside of L(R). This case is implemented
by line 9 of Algorithm MAX-RANGE.

Note that, in line 8 of Algorithm MAX-RANGE, the locally
maximal element in Ξ(y, ŷ) may not be unique. If multiple lo-
cally maximal elements exist, then we will randomly choose
one from them; which one to choose may depend on the spe-
cific implementation of the algorithm. However, we will show
in Section VI-B that, no matter which maximal element we
choose from Ξ(y, ŷ), our algorithm always guarantees that 1)
the solution satisfies the range requirement; and 2) it cannot be
improved anymore.

We illustrate Algorithm MAX-RANGE in the next example.
Example 8: Let us return to the system we have considered

in Example 6. The inputs are BTS TR that includes the infi-
mal supervisor and the AIC AIC(G,K), which are shown in
Figs. 4(e) and 4(d), respectively. We first start procedure DoDFS
from the pair of initial Y -states, i.e., y = ŷ = y0 = {1}. Since
(({1}, {}), ({1, 2}, {w})) /∈ Φ∗

R , we know that Ξ({1}, {1}) =
{∅}. Therefore, the only control decision we can choose is {}
and we have z = ẑ = hY Z (y, {}) = ({1}, {}). Then upon ob-
serving a, we reach new Y -states y = ŷ = {3}. This time we

YIN AND LAFORTUNE: SYNTHESIS OF MAXIMALLY-PERMISSIVE SUPERVISORS FOR THE RANGE CONTROL PROBLEM 3925

Fig. 5. Figures in Example 8. (a) T ∗, (b) L(ST ∗/G), (c) Another maxi-
mal solution.

have Ξ({3}, {3}) = {{w}, {v, w}}, since ({3}, {v}) is related
to both ({3}, {v}) and ({3, 5}, {v, w}). Therefore, we choose
{v, w} at state {3} in T ∗. Then we move to z = ({3, 5}, {v, w})
and ẑ = ({3}, {v}).

Now, from Z-state ({3, 5}, {v, w}), if event v occurs, T ∗

moves to Y -state y = {1}, which has already been visited. If
event b occurs, T ∗ moves to Y -state y = {6}. However, TR

cannot track this move since b is not defined at ẑ = ({3}, {v})
in TR . Therefore, we set ŷ = ∅, which means that the string is
already outside of R. Therefore, for Y -state {6}, we just choose
a locally maximal control decision in CAIC({6}), i.e., {w}, and
move to z = ({5, 6}, {w}) and ẑ = ∅. Finally, by observing b
again, T ∗ moves back to Y -state {6} that has been visited. This
completes the depth-first search and returns the deterministic
BTS T ∗ shown in Fig. 5(a), which includes a supervisor ST ∗

such that R ⊆ L(ST ∗/G) ⊆ K, where L(ST ∗/G) is shown in
Fig. 5(b). (We will prove later that this supervisor is indeed
maximal.) �

Remark 8: One can verify that the language shown in
Fig. 5(c) is a maximal controllable and observable sub-language
of K. In fact, this solution is obtained by using the strategies
proposed in [2], [27], i.e., we pick a locally maximal decision in
CAIC(G ,K)(y) for each Y -state y and disregard the lower bound
requirement. However, this solution does not fully contain R
although it is maximal. �

Note that, given arbitrary Y -states y and ŷ, set Ξ(y, ŷ) may
be empty. For example, in Fig. 4, if we take y = {3, 4} and
ŷ = {3}, then we know that Ξ(y, ŷ) = ∅, since cTR

(ŷ) = {v}
but no control decision defined at y in the AIC contains {v}.
If such a scenario occurs, then Algorithm MAX-RANGE may
get stuck before it correctly returns T ∗. However, the following
result reveals that Ξ(y, ŷ) is always non-empty for any Y -states y
and ŷ encountered in Algorithm MAX-RANGE, i.e., the control
decision Act in line 8 of Algorithm MAX-RANGE is always
well-defined.

Proposition 8: For any Y -state y reached in procedure
DoDFS, if ŷ �= ∅, then Ξ(y, ŷ) �= ∅. Moreover, y|R = ŷ|R .

Proof: We prove it by induction on the length of the sequence
that reaches y in procedure DoDFS.

Induction Basis: The induction basis holds, since for the ini-
tial state, we have that y0 |R = y0 , i.e., cTR

(y0 |R) ∈ Ξ(y0 , y0).
Induction Hypothesis: We assume that, for any Y -state

reached by sequence in the form of

y0
γ0−→ z1

σ1−→ y1 . . .
γn −1−−−→ zn

σn−→ yn

in procedure DoDFS, if ŷn �= ∅, we have Ξ(yn , ŷn) �= ∅ and
yn |R = ŷn |R .

Induction Step: To proceed, we show that, for any Y -state
reached by sequence in the form of

y0
γ0−→ z1

σ1−→ y1 . . .
γn −1−−−→ zn

σn−→ yn
γn−→ zn+1

σn + 1−−−→ yn+1

in procedure DoDFS, if ŷn+1 �= ∅, we have that Ξ(yn+1 ,
ŷn+1) �= ∅ and yn+1 |R = ŷn+1 |R , where ŷn+1 is the state
reached by the following sequence in TR

y0
cT R

(y0)−−−−−→ ẑ1
σ1−→ ŷ1

cT R
(ŷ1)−−−−−→

. . .
cT R

(ŷn −1)−−−−−−→ ẑn
σn−→ ŷn

cT R
(ŷn)−−−−−→ ẑn+1

σn + 1−−−→ ŷn+1

First, we show that yn+1 |R = ŷn+1 |R . To see this, we write

yn+1 |R = {x ∈ X : ∃x′ ∈ yn ,∃wσn+1 ∈ L(G) s.t.

w∈(γn ∩ Σuo)∗ and δ(x′, wσn+1)=x}|R
= {x ∈ XR : ∃x′ ∈ yn |R ,∃wσn+1 ∈ L(R) s.t.

w∈(γn ∩ Σuo)∗ and δ(x′, wσn+1)=x}
= {x ∈ XR : ∃x′ ∈ ŷn |R ,∃wσn+1 ∈ L(R) s.t.

w∈(cTR
(ŷn) ∩ Σuo)∗ and δ(x′, wσn+1)=x}

= {x ∈ X : ∃x′ ∈ ŷn ,∃wσn+1 ∈ L(G) s.t.

w∈(cTR
(ŷn) ∩ Σuo)∗ and δ(x′, wσn+1)=x}|R

= ŷn+1 |R
The second and the fourth equalities follow from the assumption
that R � G, since any string that leaves the state space of R
must lead to a state in X \ XR . The third equality follows from
the induction hypothesis that yn |R = ŷn |R and the fact that
ΓR (ŷn |R) = cTR

(ŷn) ⊆ γn .
Next, we show that Ξ(yn+1 , ŷn+1) �= ∅. According to line 8

in Algorithm MAX-RANGE, γn is chosen such that γn ∈
Ξ(yn , ŷn). Note that Ξ(yn , ŷn) is non-empty by the induction
hypothesis. Therefore, cTR

(ŷn) ⊆ γn and

(hY Z (ŷn , cTR
(ŷn)), hY Z (yn , γn)) ∈ Φ∗

R

That is, (ŷn+1 , yn+1) ∈ Φ∗
R . Therefore, for any sequence

ŷn+1
cT R

(ŷn + 1)−−−−−−→ ẑn+2
σn + 2−−−→ . . .

cT R
(ŷn + k −1)−−−−−−−−→ ẑn+k

in TR , there exists a sequence

yn+1
γn + 1−−−→ zn+2

σn + 2−−−→ . . .
γn + k −1−−−−→ zn+k

in the AIC, such that cTR
(ŷn+i) ⊆ γn+i ,∀i ≥ 1. Hence, γn+1 ∈

CAIC(G ,K)(yn+1) and (ẑn+2 , zn+2) ∈ Φ∗
R , i.e.,

(hY Z (ŷn+1 , cTR
(ŷn+1)), hY Z (yn+1 , γn+1)) ∈ Φ∗

R (21)

Therefore, γn+1 ∈ Ξ(yn+1 , ŷn+1), i.e., Ξ(yn+1 , ŷn+1) is also
non-empty. This completes the induction step. �

Remark 9: Let us discuss the complexity of Algorithm
MAX-RANGE. First, we need to construct the AIC, which
takes O(|X||Σ|2|X |+ |Σ |) according to [27]. Then Algorithm
INF-SYNT takes O(|X||Σ|2|X |) to construct TR , since there
are at most 2|X | Y -states and the same number of Z-states in
TR ; for each Y -state it takes O(|X||Σ|) to determine its con-
trol decision and for each Z-state it takes O(|Σ|) to consider

3926 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 8, AUGUST 2017

all possible observations. Computing the maximal CSR Φ∗
R

takes O(22|X |+2|Σ |). For procedure DoDFS in Algorithm MAX-
RANGE, it takes O(2|Σ |) to determine control decision Act for
each Y -state and it takes O(|Σ|) to consider all observations for
each Z-state. In the worst case, there are still 2|X | Y -states and
the same number of Z-states in T ∗, which implies that procedure
DoDFS takes O(2|X |+ |Σ |) to construct T ∗. Therefore, the over-
all complexity of Algorithm MAX-RANGE is O(22|X |+2|Σ |),
which is exponential w.r.t. G. However, it is well-known that the
supervisor synthesis problem under partial observation is NP-
hard even without the lower bound requirement [22]. Therefore,
it is highly unlikely that there exists a polynomial-time algorithm
for MPRCP. Note that, under the assumption that K � G, the
complexity of computing a maximal solution without consid-
ering the lower bound is O(|X||Σ|2|X |+ |Σ |) [27]. Therefore,
we do need to spend additional effort to guarantee the lower
bound behavior. Also we note that, if Assumption 1 does not
hold, then the refined system automaton may contain at most
|X ′| := |X| × (|XK | + 1) × (|XR | + 1) states. In the case, the
overall complexity becomes O(22|X ′ |+2|Σ |), which is still single
exponential w.r.t. G, K and R. �

B. Correctness of the Algorithm

In this section, we establish the correctness of Algorithm
MAX-RANGE, i.e., it effectively solves MPRCP.

Hereafter, we still denote by T ∗ the BTS returned by Algo-
rithm MAX-RANGE and denote by ST ∗ the supervisor induced
by T ∗. First, we show that ST ∗ is a safe supervisor.

Lemma 1: L(ST ∗/G) ⊆ K, i.e., ST ∗ is safe.
Proof: This follows directly from Theorem 1. Since for each

Y -state y encountered, cT ∗(y) is chosen from Ξ(y, ŷ), which is
a subset of CAIC(G ,K)(y). Therefore, ST ∗ is an AIC-included
supervisor, which means that it is safe.

Next, we show that language R is contained in L(ST ∗/G).
Lemma 2: R ⊆ L(ST ∗/G).
Proof: We use Proposition 3 to show that ST ∗ contains R. Let

us consider an arbitrary observable string s ∈ P (L(ST ∗/G))
s.t. ISY

ST ∗ (s)|R �= ∅. For simplicity, we denote y = ISY
ST ∗ (s).

Since y|R �= ∅, when y is reached for the first time in proce-
dure DoDFS of Algorithm MAX-RANGE, i.e., when state y

is added, it is reached by a sequence y0
γ1 σ1 ...γn σn−−−−−−−→ y in T ∗,

where σ1 . . . σn ∈ P (R). Since σ1 . . . σn ∈ P (R), there exists

a corresponding sequence y0
γ ′

1 σ1 ...γ ′
n σn−−−−−−−→ ŷ in TR that tracks

the above sequence leading to y in T ∗, i.e., ŷ is the Y -state that
tracks y in the depth-first search. Note that σ1 . . . σn need not
be equal to s since there may exist multiple sequences that lead
to y and the depth-first search just randomly picks one of them.
Therefore, ŷ may depend on the specific implementation of the
depth-first search.

By Algorithm MAX-RANGE, cT ∗(y) is chosen such that
cTR

(ŷ) ⊆ cT ∗(y). By Algorithm INF-SYNT, cTR
(ŷ) is chosen

such that ΓR (ŷ|R) ∪ Σuc = cTR
(ŷ). By Proposition 8, we know

that y|R = ŷ|R . Moreover, ST ∗ is an IS-based supervisor, which
implies that ST ∗(s) = cT ∗(y). Overall, we know that

ΓR (ISY
ST ∗ (s)|R) = ΓR (ŷ|R) ⊆ cTR

(ŷ) ⊆ cTR
(y) = ST ∗(s).

Recall that s is an arbitrary string in P (L(ST ∗/G)). Therefore,
by Proposition 3, we know that R ⊆ L(ST ∗/G). �

Finally, we show that ST ∗ is maximal.
Lemma 3: ST ∗ is a maximally-permissive supervisor, i.e.,

for any safe supervisor S ′, L(ST ∗/G) �⊂ L(S ′/G).
Proof: By contradiction. Assume that ST ∗ is not maximal.

This implies that there exists another safe supervisor S ′ such
that L(ST ∗/G) ⊂ L(S ′/G). This implies that

1) ∀s ∈ L(ST ∗/G) : ST ∗(P (s)) ⊆ S ′(P (s)); and
2) ∃s ∈ L(ST ∗/G) : ST ∗(P (s)) ⊂ S ′(P (s)).

Let us consider an observable string t ∈ P (L(ST ∗/G)) such
that ST ∗(t)⊂S ′(t) and ∀t′ ∈{t} \ {t} : ST ∗(t′)=S ′(t′). Then
we have that ISY

ST ∗ (t)=ISY
S ′(t); we call this Y -state y.

We claim that, for the above y and S ′(t), we have

(hY Z (y, cT ∗(y), hY Z (y, S ′(t))) ∈ Φ∗(T ∗,AIC(G,K)) (22)

Too see this, let us consider an arbitrary sequence

y
cT ∗ (y)−−−→z1

σ1−→y1
cT ∗ (y1)−−−−→ . . . zn

σn−→yn
cT ∗ (yn)−−−−→zn+1 (23)

in T ∗. Since, L(ST ∗/G) ⊆ L(S ′/G), S ′ induces the following
sequence

y
S ′(t)−−→z′1

σ1−→y′
1

S ′(tσ1)−−−−→ . . . z′n
σn−→y′

n

S ′(tσ1 ...σn)−−−−−−−→z′n+1 (24)

Since S ′ is a safe supervisor, by Theorem 1, S ′ is an AIC-
included supervisor. This implies that the above sequence exists
in the AIC. Hence, Equation (22) holds by Proposition 5.

Next, we consider two cases for this Y -state y to show the
contradiction.

Case 1: y|R = ∅.
Since S ′ is a safe supervisor, by Theorem 1, S ′(t) ∈

CAIC(G ,K)(y). Moreover, cT ∗(y) is chosen as a maximal el-
ement in CAIC(G ,K)(y). Therefore, we obtain a contradiction
immediately since cT ∗(y) ⊂ S ′(t) is not possible.

Case 2: y|R �= ∅.
Suppose that Y -state y is reached, for the first time, by the

following sequence

y0
γ1−→ z1

σ1−→ y1
γ2−→ . . .

γn−→ zn
σn−→ y (25)

in procedure DoDFS in Algorithm MAX-RANGE. Since y|R �=
∅, we know that σ1 . . . σn ∈ P (R) and the following sequence,
which tracks the sequence in Equation (25), is well-defined in
TR

y0
cT R

(y0)−−−−−→ ẑ1
σ1−→ ŷ1

cT R
(ŷ1)−−−−−→ . . .

cT R
(ŷn)−−−−−→ ẑn

σn−→ ŷ (26)

Since L(STR
/G) ⊆ L(ST ∗/G), by Proposition 6, we know

that TR � T ∗. Therefore, by the definition of the CSR, Equa-
tions (25) and (26) imply that (y, ŷ) ∈ Φ∗(TR, T ∗). This further
implies that

(hY Z (ŷ, cTR
(ŷ)), hY Z (y, cT ∗(y))) ∈ Φ∗(TR , T ∗) (27)

Overall, by Eqs. (22) and (27) and by Proposition 7, we get

(hY Z (ŷ, cTR
(ŷ)), hY Z (y, S ′(t))) ∈ Φ∗(TR ,AIC(G,K))

Note that we also have that cTR
(ŷ) ⊆ cT ∗(y) ⊂ S ′(t) and

S ′(t) ∈ CAIC(G ,K)(y). Therefore, S ′(t) ∈ Ξ(y, ŷ). However,

YIN AND LAFORTUNE: SYNTHESIS OF MAXIMALLY-PERMISSIVE SUPERVISORS FOR THE RANGE CONTROL PROBLEM 3927

cT ∗(y)⊂S ′(t) is not possible, since cT ∗(y) is chosen as a max-
imal decision in Ξ(y, ŷ). This is a contradiction. �

Finally, combining Lemmas 1, 2 and 3 together, we have the
following theorem.

Theorem 4: ST ∗ is a maximally-permissive supervisor such
that R ⊆ L(ST ∗/G) ⊆ K, i.e., Algorithm MAX-RANGE ef-
fectively solves MPRCP.

Since the resulting supervisor ST ∗ is realized by BTS T ∗, we
also have the following corollary.

Corollary 1: ST ∗ is an IS-based solution, which implies that
the closed-loop language L(ST ∗/G) is regular.

Remark 10: We have shown that Algorithm MAX-RANGE
solves MPRCP. In fact, it also solves the maximal-
permissiveness verification problem. Specifically, suppose that
there exists a given supervisor S : P (L(G)) → Γ and we want
to verify whether it is maximal or not. In this case, we can
just set R = L(S/G) as the lower bound requirement and ap-
ply Algorithm MAX-RANGE to find a maximal safe super-
visor S∗ that contains R. If L(S/G) = L(S∗/G), then we
know that the given supervisor S is already maximally per-
missive, since we cannot improve it any further. Otherwise, if
L(S/G) ⊂ L(S∗/G), then we know that S is not maximal. To
the best of our knowledge, the maximality verification problem
was open in the literature; it is now solved as a special case of
the synthesis problem. �

VII. CONCLUSION

We have solved a generalized supervisor synthesis problem,
called the range control problem, for partially-observed DES.
We considered both a standard upper bound specification that
describes the legal behavior and a lower bound specification that
describes the desired behavior. We provided new information-
state-based constructive approaches for computing both infimal
and maximal supervisors satisfying these requirements. The pro-
posed approach combines the three notions of AIC, strict sub-
automaton, and CSR, in a novel manner; each of them plays a
different role in the synthesis problem. This results in a “mean-
ingful” maximally-permissive safe supervisor that contains a
given behavior. An interesting future direction is to extend the
results in this paper to the non-prefix-closed case.

APPENDIX

A. Proofs Not Contained in Main Body

Proof of Proposition 2
Proof: First, we show the first statement. By the definition

of ISY
S , we have that

ISY
S (s) = {x ∈ X : ∃w ∈ {ε} ∪ (L(S/G) ∩ Σ∗Σo)

s.t. δ(x0 , w) = x ∧ P (w) = s}
= {x ∈ XR : ∃w ∈ {ε} ∪ (R ∩ Σ∗Σo)

s.t. δR (x0 , w) = x ∧ P (w) = s} ∪ AG\R

= yR (s) ∪ AG\R

where AG\R = {x∈X : ∃w∈{ε}∪((L(S/G)\R)∩Σ∗Σo)s.t.
δ(x0 , w)=x ∧ P (w)=s} ⊆ X \ XR . The reason why we
know that AG\R does not contain a state in R is that we have
already assumed that R is a strict sub-automaton of both K and
G. Hence, any string that goes outside of R will not go back to
the state space of R. Therefore, we have that

ISY
S (s)|R = yR (s)|R ∪ AG\R |R = yR (s) (28)

Next, we show the second statement. Let us consider two
arbitrary strings s, t ∈ P (L(R)) such that yR (s) �= yR (t). By
the first statement, we can write ISY

S (s) in the form of
ISY

S (s) = yR (s) ∪ AG\R , where AG\R ⊆ X \ XR . Similarly,
we can write ISY

S (t) in the form of ISY
S (t) = yR (t) ∪ BG\R ,

where BG\R ⊆ X \ XR . Note that yR (s), yR (t) ⊆ XR . There-
fore, since yR (s) �= yR (t), we have ISY

S (s) �= ISY
S (t). �

Proof of Propositon 3
Proof: (⇒) By contradiction. Assume that ∃s ∈

P (L(S/G)) such that ISY
S (s)|R �= ∅ and ΓR (ISY

S (s)|R) �⊆
S(s). Let σ be an event in ΓR (ISY

S (s)|R) \ S(s). By the
definition of ΓR (·), we have that ∃x ∈ ISY

S (s)|R ,∃w ∈
Σ∗

uo s.t. δR (x,wσ)!. Since x ∈ ISY
S (s)|R , there exists a string

t ∈ R such that P (t) = s and δR (x0 , t) = x, which implies
that twσ ∈ R. However, since σ /∈ S(s) = S(P (tw)), we
know that twσ /∈ L(S/G). This contradicts the fact that
R ⊆ L(S/G).

(⇐) It suffices to show that, t ∈ R ⇒ t ∈ L(S/G). We pro-
ceed by induction on the length of the projection of t.

Induction Basis: For string t ∈ R such that |P (t)| = 0,
we know that t ∈ (ΓR ({x0}) ∩ Σuo)∗ ∩ R. Since ΓR ({x0}) =
ΓR (ISY

S (ε)) ⊆ S(ε), we know that t ∈ (S(ε) ∩ Σuo)∗ ∩
L(G) ⊆ L(S/G), i.e., the induction basis holds.

Induction Hypothesis: Assume that t ∈ R ⇒ t ∈ L(S/G)
for any t such that |P (t)| = k.

Induction Step: To prove the induction step, we show that
vσw ∈ R ⇒ vσw ∈ L(S/G), where |P (v)| = k, σ ∈ Σo and
w ∈ Σ∗

uo . Note that any string t such that |P (t)| = k + 1 can be
written in the above form. Let v′ ∈ {v} be the longest prefix of
v that ends up with an observable event and let x = δ(x0 , v

′) ∈
XR . Since |P (v′)| = |P (v)| = k, by the induction hypothe-
sis, we know that v′ ∈ L(S/G). Therefore, x = δ(x0 , v

′) ∈
ISY

S (P (v)). By the definition of ΓR (·), all events between v′

and vσ are in ΓR ({x}). Since x ∈ XR and x ∈ ISY
S (P (v)),

we know that ISY
S (P (v))|R �= ∅. Therefore, ΓR ({x}) ⊆

S(P (v)), which implies that vσ ∈ L(S/G). Similarly, let
x′ = δ(x0 , vσ) ∈ XR . We know that x′ ∈ ISY

S (P (v)σ) and
ISY

S (P (v)σ)|R �= ∅. Again, since ΓR ({x′}) ⊆ S(P (v)σ), we
have sσw ∈ L(S/G). This completes the induction step. �

Proof of Proposition 4
Proof: The proof is similar to the proof in [18] for the

standard simulation relation. Suppose that Φ = ΦY ∪ ΦZ is a
control simulation relation from T1 to T2 . Let (y1 , y2) ∈ ΦY .
Since (∀y1

γ1−→T1 z1)(∃y2
γ2−→T2 z2)[γ1 ⊆γ2 ∧ (z1 , z2)∈ΦZ], we

know that (y1 , y2) ∈ F (Φ). Similarly, for any (z1 , z2) ∈ ΦZ ,
since (∀z1

σ−→T1 y1)(∃z2
σ−→T2 y2)[(y1 , y2) ∈ ΦY], we know

that (z1 , z2) ∈ F (ΦZ). Therefore, we conclude that Φ ⊆ F (Φ)
and (y0 , y0) ∈ Φ.

3928 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 8, AUGUST 2017

Suppose that Φ ⊆ F (Φ) and (y0 , y0) ∈ Φ. Clearly, the first
requirement in Definition 4 is satisfied. For any (y1 , y2) ∈ ΦY ,
we know that the first requirement in the definition of F im-
plies that second requirement in Definition 4. Similarly, for any
(z1 , z2) ∈ ΦZ , we know that the second requirement in the defi-
nition of F implies that third requirement in Definition 4. Hence,
we know that Φ is a control simulation relation from T1 to T2 .

Now we prove the second property. For any (y1 , y2) ∈
F (Φ1) ∩ (QT1

Y × QT2
Y), we have that (y1 , y2) ∈ Φ1 and

(∀y1
γ1−→T1 z1)(∃y2

γ2−→T2 z2)[γ1 ⊆γ2 ∧ (z1 , z2)∈Φ1] (29)

Since Φ1 ⊆ Φ2 , we know that (y1 , y2), (z1 , z2) ∈ Φ2 . There-
fore, Equation (29) implies that (y1 , y2) ∈ F (Φ2). Simi-
larly, for any (z1 , z2) ∈ F (Φ1) ∩ (QT1

Z × QT2
Z), we have that

(z1 , z2) ∈ Φ1 and (∀z1
σ−→T1 y1)(∃z2

σ−→T2 y2)[(y1 , y2) ∈ Φ1].
Since Φ1 ⊆ Φ2 , we also know that (y1 , y2), (z1 , z2) ∈ Φ2 .
Therefore, (z1 , z2) ∈ F (Φ2). �

Proof of Proposition 5
Proof: The “only if” part is straightforward. For a sequence

in Equation (19), we can always construct a sequence in Equa-
tion (20) by choosing γ′

i for each i ≥ 0 such that γi ⊆ γ′
i and

(hY Z (yi, γi), hY Z (y′
i , γ

′
i)) ∈ Φ∗(T1 , T2). The definition of the

CSR guarantees the existence of such γ′
i at each y′

i encountered.
Next, we show the “if part” by contraposition. Suppose

that (z1 , z
′
1) �∈ Φ∗(T1 , T2). Then, by Equation (18), either

there exists an event σ1 ∈ Σo : hZY (z1 , σ1)! but σ1 ∈ Σo :
hZY (z1 , σ1)¬!, where “¬!” means “is not defined”; or there
exists Φ1 ⊃ Φ∗(T1 , T2) such that (z1 , z

′
1) ∈ Φ1 but

(∃σ1 ∈ Σo)[(y1 , y
′
1) �∈ Φ1] (30)

where y1 = hZY (z1 , σ1) and y′
1 = hZY (z′1 , σ1).

For the first case, we know immediately that there exists
a sequence z1

σ1−→ y1
γ1−→ z2 in T1 , where γ1 is an arbitrary

control decision in CT1 (y1), such that there does not exist a

sequence z′1
σ1−→ y′

1
γ ′

1−→ z′2 in T2 satisfying γ1 ⊆ γ′
1 . Hereafter,

we consider the case where Equation (30) holds. Again, by
Equation (18), (y1 , y

′
1) �∈ Φ1 implies that either

(∃γ1 ∈ CT1 (y1))(∀γ′
1 ∈ CT2 (y

′
1))[γ1 �⊆ γ′

1] (31)

or there exists Φ2 ⊃ Φ1 such that (y1 , y
′
1) ∈ Φ2 but

(∃γ1 ∈CT1 (y1)(∀γ′
1 ∈CT2 (y

′
1) : γ1 ⊆ γ′

1)[(z2 , z
′
2) �∈Φ2] (32)

where z2 = hY Z (y1 , γ1) and z′2 = hY Z (y′
1 , γ

′
1).

Suppose that Equation (31) holds, then we also know im-
mediately that there exists a sequence z1

σ1−→ y1
γ1−→ z2 in T1 ,

such that there does not exist a sequence z′1
σ1−→ y′

1
γ ′

1−→ z′2
in T2 satisfying γ1 ⊆ γ′

1 . Suppose that Equation (32) holds.
Let γ1 ∈ CT1 (y1) be a control decision satisfying Equation
(32) and let γ′

1 ∈ CT2 (y
′
1) be an arbitrary control decision

such that γ1 ⊆ γ′
1 . Note that γ1 ⊆ γ′

1 implies that ∀σ ∈ Σo :
hT1

ZY (z2 , σ)! ⇒ hT2
ZY (z′2 , σ)!. Since (z2 , z

′
2) /∈ Φ2 , by Equation

(18), ∃Φ3 ⊃ Φ2 such that (z2 , z
′
2) ∈ Φ3 but

(∃σ2 ∈ Σo)[(y2 , y
′
2) �∈ Φ3] (33)

where y2 = hZY (z2 , σ2) and y′
2 = hZY (z′2 , σ2).

By iteratively applying the above arguments, suppose that,
for some m ≥ 1, we have that

(∃γm ∈ CT1 (ym))(∀γ′
m ∈ CT2 (y

′
m))[γm �⊆ γ′

m] (34)

and

(∀1 ≤ i ≤ m)(∃Φ2i−1 ⊃ Φ2i−2 : (zi, z
′
i) ∈ Φ2i−1)

(∃σi ∈ Σo :)[(yi, y
′
i) �∈ Φ2i−1] (35)

where yi = hZY (zi, σi), y′
i = hZY (z′i , σi) and Φ0 = Φ∗(T1 ,

T2); and

(∀1≤ i≤m − 1)(∃Φ2i ⊃Φ2i−1 : (yi, y
′
i)∈Φ2i)(∃γi ∈CT1 (yi))

(∀γ′
i ∈ CT2 (y

′
i) : γi ⊆ γ′

i)[(zi+1 , z
′
i+1) �∈ Φ2i] (36)

where zi+1 = hY Z (yi, γi) and z′i+1 = hY Z (y′
i , γ

′
i). In par-

ticular, Equations (34), (35), and (36) are the generaliza-
tions of Equations (31), (33) and (32), respectively. Then
we know that there exists a sequence z1

σ1−→ y1
γ1−→ . . .

γm −1−−−→
zm−1

σm−−→ ym
γm−−→ zm in T1 such that, for any sequence z′1

σ1−→
y′

1
γ ′

1−→ . . .
γ ′

m −1−−−→ z′m−1
σm−−→ y′

m

γ ′
m−−→ z′m in T2 , if γi ⊆ γ′

i , i =
0, . . . ,m − 1, then there does not exist a control decision
γ′

m ∈ CT2 (y
′
m) such that γm ⊆ γ′

m . This completes the con-
trapositive proof.

Note that, since Φ1 ⊂ Φ2 ⊂ · · · ⊂ Φ2m is strictly increas-
ing, such a m always exists. To see this, let Φ2m = (QT1

Y ×
QT2

Y) ∪ (QT1
Z × QT2

Z), which is the largest possible relation.
Suppose that for any i < m, there exists Φ2i ⊃ Φ2i−1 such
that (yi, y

′
i) ∈ Φ2i but (∃γi ∈ CT1 (yi))(∀γ′

i ∈ CT2 (y
′
i) : γi ⊆

γ′
i)[(zi+1 , z

′
i+1) �∈ Φ2i] Then for Φ2m , it must be (∃γm ∈

CT1 (ym))(∀γ′
m ∈ CT2 (y

′
m))[γm �⊆ γ′

m] since there does not ex-
ist a relation that is larger than Φ2m anymore. �

Proof of Proposition 6
Proof: (⇒) By contraposition. Suppose that T1 �� T2 ,

which means that (y0 , y0) /∈ Φ∗(T1 , T2). Therefore, either (i)
cT1 (y0) �⊆ cT2 (y0); or (ii) (z1

1 , z2
1) /∈ Φ∗(T1 , T2), where zi

1 =
hY Z (y0 , cTi

(y0)), i = 1, 2. If case (i) holds, then we know
immediately that L(ST1 /G) �⊆ L(ST2 /G), since ST1 (ε)=
cT1 (y0) �⊆cT2 (y0)=ST2 (ε). If case (ii) holds, then by Propo-
sition 5, there exists a string σ1 . . . σn ∈ P (L(ST1 /G))
such that ST1 (σ1 . . . σi) ⊆ ST2 (σ1 . . . σi),∀i = 1, . . . , n − 1
but ST1 (σ . . . σn) �⊆ ST2 (σ . . . σn). Therefore, we still have that
L(ST1 /G) �⊆ L(ST2 /G).

(⇐) By contraposition. Suppose that L(ST1 /G) �⊆
L(ST2 /G). Then ∃σ1 . . . σn ∈ P (L(ST1 /G)) such that
ST1 (σ1 . . . σn−1) ⊆ ST2 (σ1 . . . σn−1) but ST1 (σ1 . . . σn) �⊆
ST2 (σ1 . . . σn). Since T1 is deterministic, the above string
σ1 . . . σn uniquely determines the following sequence in T1

y0
γ 1

0−→ z1
1

σ1−→ y1
1

γ 1
1−→ . . .

γ 1
n −1−−−→ z1

n−1
σn−→ y1

n

γ 1
n−→ z1

n (37)

where γ1
i = ST1 (σ1 . . . σi) is the unique control decision de-

fined at y1
i . However, there does not exist a sequence

y0
γ 2

0−→ z2
1

σ1−→ y2
1

γ 2
1−→ . . .

γ 2
n −1−−−→ z2

n−1
σn−→ y2

n

γ 2
n−→ z2

n (38)

in T2 such that γ1
i ⊆ γ2

i ,∀i = 1, . . . , n, since the control deci-
sion from each y2

i in T2 is uniquely defined and the only control

YIN AND LAFORTUNE: SYNTHESIS OF MAXIMALLY-PERMISSIVE SUPERVISORS FOR THE RANGE CONTROL PROBLEM 3929

decision defined at y2
n , i.e., ST2 (σ1 . . . σn), does not contain

γ1
n = ST1 (σ1 . . . σn). �

Proof of Proposition 7

Proof: Let z1
σ1−→ y1

1
γ 1

1−→ . . .
γ 1

n −1−−−→ z1
n−1

σn−→ y1
n

γ 1
n−→ z1

n be
an arbitrary sequence in T1 . Since (z1 , z2) ∈ Φ∗(T1 , T2), by

Proposition 5, there exists a sequence z2
σ1−→ y2

1
γ 2

1−→ . . .
γ 2

n −1−−−→
z2
n−1

σn−→ y2
n

γ 2
n−→ z2

n in T2 such that γ1
i ⊆ γ2

i ,∀i = 1, . . . , n.
Similarly, since (z2 , z3) ∈ Φ∗(T2 , T3), by Proposition 5, there

exists a sequence z3
σ1−→ y3

1
γ 3

1−→ . . .
γ 3

n −1−−−→ z3
n−1

σn−→ y3
n

γ 3
n−→ z3

n

in T3 such that γ2
i ⊆ γ3

i ,∀i = 1, . . . , n. Therefore, (z1 , z3) ∈
Φ∗(T1 , T3) by Proposition 5. �

REFERENCES

[1] A. Arnold, A. Vincent, and I. Walukiewicz, “Games for synthesis of con-
trollers with partial observation,” Theoretical Computer Science, vol. 303,
no. 1, pp. 7–34, 2003.

[2] N. Ben Hadj-Alouane, S. Lafortune, and F. Lin, “Centralized and dis-
tributed algorithms for on-line synthesis of maximal control policies under
partial observation,” Discrete Event Dynamic Systems: Theory & Appli-
cations, vol. 6, no. 4, pp. 379–427, 1996.

[3] R. Brandt, V. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M. Won-
ham, “Formulas for calculating supremal controllable and normal sublan-
guages,” Syst. & Contr. Lett., vol. 15, no. 2, pp. 111–117, 1990.

[4] K. Cai, R. Zhang, and W. M. Wonham, “Relative observability of discrete-
event systems and its supremal sublanguages,” IEEE Trans. Autom. Con-
trol, vol. 60, no. 3, pp. 659–670, 2015.

[5] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems.
Springer: New York, 2nd edition, 2008.

[6] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin, “Algorithms
for omega-regular games with imperfect information,” In Computer Sci-
ence Logic, pages 287–302. Springer: New York, 2006.

[7] H. Cho and S. I. Marcus, “On supremal languages of classes of sublan-
guages that arise in supervisor synthesis problems with partial observa-
tion,” Math. Contr. Sig. Syst., vol. 2, no. 1, pp. 47–69, 1989.

[8] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya, “Supervisory control
of discrete-event processes with partial observations,” IEEE Trans. Autom.
Control, vol. 33, no. 3, pp. 249–260, 1988.

[9] K. Inan, “Nondeterministic supervision under partial observations,”. In
11th Int. Conf. Analy. Opt. Syst.: Discr. Event Syst., 39–48, 1994.

[10] S. Jiang, R. Kumar, S. Takai, and W. Qiu, “Decentralized control of
discrete-event systems with multiple local specifications,” IEEE Trans.
Autom. Sci. Eng., vol. 7, no. 3, pp. 512–522, 2010.

[11] R. Kumar and M. Shayman, “Formulae relating controllability, observ-
ability, and co-observability,” Automatica, vol. 34, no. 2, pp. 211–215,
1998.

[12] O. Kupferman and M. Vardi, “Synthesis with incomplete informatio,”. In
Advances in Temporal Logic, pages 109–127. Springer, 2000.

[13] F. Lin and W. M. Wonham, “On observability of discrete-event systems,”
Inform. Sciences, vol. 44, no. 3, pp. 173–198, 1988.

[14] F. Lin and W. M. Wonham, “Decentralized control and coordination of
discrete-event systems with partial observation,” IEEE Trans. Autom. Con-
trol, vol. 35, no. 12, pp. 1330–1337, 1990.

[15] T. Moor and K. W. Schmidt, “Fault-tolerant control of discrete-event
systems with lower-bound specifications,” In Proc. 5th Int. Workshop
DCDS, pages 161–166, 2015.

[16] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM J. Cont. Opt., vol. 25, no. 1, pp. 206–230,
1987.

[17] K. Rudie and W. M. Wonham, “The infimal prefix-closed and observable
superlanguange of a given language,” Syst. & Contr. Let., vol. 15, no. 5,
pp. 361–371, 1990.

[18] P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic Ap-
proach, Springer: New York, 2009.

[19] S. Takai and T. Ushio, “Effective computation of an Lm (G)-closed, con-
trollable, and observable sublanguage arising in supervisory control,” Syst.
& Contr. Let., vol. 49, no. 3, pp. 191–200, 2003.

[20] A. Tarski, “A lattice-theoretical fixpoint theorem and its applications,”
Pacific J. Math., vol. 5, no. 2, pp. 285–309, 1955.

[21] J. G. Thistle and H. M. Lamouchi, “Effective control synthesis for partially
observed discrete-event systems,” SIAM J. Control Optim., vol. 48, no. 3,
pp. 1858–1887, 2009.

[22] J. N. Tsitsiklis, “On the control of discrete-event dynamical systems,”
Math. Control, Signals Syst., vol. 2, no. 2, pp. 95–107, 1989.

[23] X. Yin and S. Lafortune, “Supplement material,” http://www-
personal.umich.edu/˜xiangyin/TAC-range-sup.pdf.

[24] X. Yin and S. Lafortune, “A general approach for synthesis of supervisors
for partially-observed discrete-event systems,” In Proc. 19th IFAC World
Congress, pages 2422–2428, 2014.

[25] X. Yin and S. Lafortune, “On maximal permissiveness in partially-
observed discrete event systems: Verification and synthesis,” In Proc.
13th Int. Workshop Discrete Event Syst., pages 1–7, 2016.

[26] X. Yin and S. Lafortune, “On maximally permissive range control problem
in partially-observed discrete event systems,” In Proc. 55th IEEE Conf.
Decision Control, 2016.

[27] X. Yin and S. Lafortune, “Synthesis of maximally permissive supervisors
for partially observed discrete event systems,” IEEE Trans. Autom. Contr.,
vol. 61, no. 5, pp. 1239–1254, 2016.

[28] X. Yin and S. Lafortune, “A uniform approach for synthesizing property-
enforcing supervisors for partially-observed discrete-event systems,”
IEEE Trans. Autom. Contr., vol. 61, no. 8, pp. 2140–2154, 2016.

[29] T.-S. Yoo and S. Lafortune, “Solvability of centralized supervisory control
under partial observation,” Discrete Event Dynamic Systems: Theory &
Applications, vol. 16, no. 4, pp. 527–553, 2006.

Xiang Yin (S’16) was born in Anhui, China, in
1991. He received the B.Eng. degree from Zhe-
jiang University, Zhejian, China, in 2012, the
M.S. degree from the University of Michigan,
Ann Arbor, in 2013, and the Ph.D. degree from
the University of Michigan, Ann Arbor, in 2017,
all in electrical engineering.

He is now with the Department of Automation,
Shanghai Jiao-Tong University. His research in-
terests include supervisory control of discrete-
event systems, model-based fault diagnosis, for-

mal methods, security and their applications to cyber and cyber-physical
systems.

Dr. Yin received the Outstanding Reviewer Award from Automatica
in 2016 and the IEEE Conference on Decision and Control (CDC) Best
Student Paper Award Finalist in 2016. He is the co-chair of the IEEE
CSS Technical Committee on Discrete Event Systems.

Stéphane Lafortune (F’99) received the B.Eng.
degree from Ecole Polytechnique de Montréal in
1980, the M.Eng. degree from McGill University
in 1982, and the Ph.D. degree from the Univer-
sity of California at Berkeley in 1986, all in elec-
trical engineering.

Since September 1986, he has been with the
University of Michigan, Ann Arbor, where he is
a Professor of Electrical Engineering and Com-
puter Science. He is the Lead Developer of the
software package UMDES and co-developer of

DESUMA. He co-authored the textbook Introduction to Discrete Event
Systems - Second Edition (Springer, 2008). He is Editor-in-Chief of the
Journal of Discrete Event Dynamic Systems: Theory and Applications.
His research interests are in discrete event systems and include multiple
problem domains: modeling, diagnosis, control, optimization, and appli-
cations to computer and software systems.

Dr. Lafortune received the Presidential Young Investigator Award from
the National Science Foundation in 1990 and the George S. Axelby Out-
standing Paper Award from the Control Systems Society of the IEEE in
1994 and 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

