
1830 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 25, NO. 6, DECEMBER 2017

A Belief-Evolution-Based Approach for Online Control of Fuzzy
Discrete-Event Systems Under Partial Observation

Xiang Yin

Abstract—In this paper, we investigate the partially observed supervisor
synthesis problem in the framework of fuzzy discrete-event systems (DESs).
The goal is to synthesize a fuzzy supervisor such that the behavior of the
closed-loop system is within a given fuzzy language. A new approach for
solving this problem is proposed based on the idea of belief evolution.
Specifically, we propose an algorithm that can be implemented in an online
manner. We show that the proposed algorithm is both sound and complete,
i.e., it effectively solves the supervisor synthesis problem. To the best of our
knowledge, this is the first algorithm with such a property for fuzzy DESs,
as previous works on this topic mostly focus on the supervisor existence
condition rather than the supervisor synthesis problem.

Index Terms—Belief evolution, fuzzy discrete-event systems (FDESs),
partial observation, supervisor control.

I. INTRODUCTION

Discrete-event systems (DESs) are a class of dynamic systems which
have inherently event-driven behaviors and discrete state spaces. Mod-
eling and analysis using DES have been successfully applied to many
applications, e.g., flexible manufacturing systems, software systems,
and communication protocols. However, standard (crisp) DES model
cannot capture uncertainty, vagueness, or imprecision of the system.
To address this issue, the theory of fuzzy DES (FDES) was developed
a decade ago by Lin and Ying in [1] and Lin et al. in [2]. Since then,
many results in the framework of FDES have been developed; see,
e.g., [3]–[6].

The motivation of studying FDES is that, in many applications, it is
impossible to obtain the precise model of the system. Instead, one may
only have a vague knowledge about the system’s behavior based on the
experience. For example, such an issue arises in the medical treatment
problem, since it is hard to tell whether a patient’s condition is “good”
or “bad” precisely. However, FDES provides a suitable framework for
addressing the issues of uncertainty, vagueness, and imprecision. Due
to these advantages, the theory of FDES has also been successfully
applied to many applications, e.g., HIV/AIDS treatment [7], [8], robot
motion planning [9]–[12], and fault diagnosis [13]–[16].

One of the most important problems in DES is the supervisory con-
trol problem initiated by Ramadge and Wonham [17]. In this problem,
one is interested in synthesizing a supervisor to restrict the system’s
behavior such that some specifications are achieved. Due to measure-
ment uncertainties and limited sensor capabilities, the issue of partial
observation also arises in many applications and one has to handle this
issue in the supervisory control problem [18], [19]. In the supervisory
control theory, the most fundamental two problems are the supervi-
sor existence problem and the supervisor synthesis problem. The for-
mer asks whether or not we can exactly achieve a given specification

Manuscript received May 2, 2016; revised July 23, 2016; accepted Septem-
ber 19, 2016. Date of publication October 13, 2016; date of current version
November 29, 2017.

The author is with the Department of Automation, Shanghai Jiao Tong
University, Shanghai 200240, China (e-mail: xiangyin@umich.edu).

Digital Object Identifier 10.1109/TFUZZ.2016.2617361

language, while the later asks to synthesize a supervisor such that behav-
ior of the closed-loop system is a sublanguage of the given specification
language.

The supervisory control problem has also drawn considerable at-
tention in the framework of FDES; see, e.g., [6], [11], [20]–[31]. In
particular, in [22], Cao and Ying investigated the supervisor existence
problem under the partial observation setting, where the notions of
fuzzy controllability and fuzzy observability were proposed. It was
shown that these two notions together provide the necessary and suf-
ficient conditions for the existence of a supervisor that achieves a
given fuzzy language. In [25], Qiu and Liu proposed a more general
framework for the supervisory control of partially observed FDES by
considering fuzziness in both observation and control. Necessary and
sufficient conditions for the supervisor existence problem were also
derived.

Although the supervisory control of FDES has been investigated
by many works, there are still several important problems remain. In
particular, both [22] and [25] only focus on the supervisor existence
problem. However, when the necessary and sufficient conditions for
the supervisor existence problem do not hold, how to synthesize a
supervisor has drawn little attention. Moreover, in both the framework
of [22] and the framework of [25], the notion of observability is not
preserved under union. Consequently, unlike the fully-observed case,
there does not exist a supremal solution to the synthesis problem under
the partial observation setting. To address this issue, in [22], the notion
of fuzzy normality, which is strictly stronger than fuzzy observability,
was proposed. Since fuzzy normality is preserved under union, we can
compute the supremal fuzzy normal sublanguage in order to synthesize
a supervisor. However, this approach has a limitation since normality
may be too strong in many cases. Therefore, using the supremal normal
approach to synthesize a supervisor is just sound but not complete, i.e.,
the supremal fuzzy normal language may be empty even if a nonempty
supervisor exists. To the best of our knowledge, finding a sound and
complete algorithm for the supervisor synthesis problem in partially
observed FDES is still an open problem.

In this paper, we tackle the supervisor synthesis problem for partially
observed FDES in the framework of Cao and Ying [22]. Specifically,
we consider fuzzy languages recognized by max-min automata, where
controllability is fuzzy and observability is crisp. We propose a new
synthesis approach based on the concept of belief evolution. The idea of
using belief sets is motivated by some related approaches in crisp DES;
see, e.g., [32]–[35]. Roughly speaking, a belief is a sufficient statistic
of all information available. In this paper, we generalize the idea of
belief evolution from the crisp case to FDES by taking the degree of
membership into account. We propose an effective online algorithm
that synthesizes a supervisor recursively. Such an online mechanism is
useful in many practical situations, where the system is time-varying
or the system is too large to compute the supervisor offline all at once.
Moreover, unlike the supremal fuzzy normal approach, which is sound
but not complete, we show that the proposed algorithm is both sound
and complete. Therefore, it effectively solves the supervisor synthesis

1063-6706 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 25, NO. 6, DECEMBER 2017 1831

problem for FDES. To the best of our knowledge, this is the first
algorithm with such a property for FDES.

The rest of this paper is organized as follows. In Section II, we
review the theory of FDES. In Section III, we first present the concept
of belief evolution. Then, we propose an online algorithm that solves
the supervisor synthesis problem. In Section IV, we show that the
proposed algorithm is both sound and complete. An illustrative example
is provided in Section V. Finally, we conclude the paper in Section VI.

II. PROBLEM FORMULATION

A. FDES and Fuzzy Languages

Let Σ be a finite set of alphabets or events. We denote by Σ∗ the set
of finite strings over Σ. A language L ⊆ Σ∗ is a subset of Σ∗. For any
language L, the prefix closure of L is defined as L = {s ∈ Σ∗ : ∃t ∈
Σ∗ s.t. st ∈ L}. For any string s, we write s = {s} for simplicity. For
any two languages L1 and L2 , we denote by L1L2 their concatenation,
i.e., L1L2 = {st ∈ Σ∗ : s ∈ L1 , t ∈ L2}.

A crisp DES is a deterministic finite-state automaton G =
(Q, Σ, δ, q0), where Q is a finite state of states, Σ is a finite set of events,
δ : Q × Σ → Q is the partial transition function, and q0 ∈ Q is the ini-
tial state. The transition function is also extended to δ : Q × Σ∗ → Q
in the usual manner; see, e.g., [36]. The language generated by G is
LG = {s ∈ Σ∗ : δ(q0 , s)!}, where “!” means “is defined.”

Let X be a universal set. A fuzzy set A w.r.t. X is a membership
function A : X → [0, 1] that assigns each element in X a value in
[0, 1]. Namely, for any x ∈ X , A(x) denotes its degree of membership
in A. We denote by supp[A] the support of fuzzy set A. Specifically,
supp[A] is a crisp set defined by supp[A] = {x ∈ X : A(x) > 0}.
Let supp[A] = {x1 , . . . , xn } be the support of A. We also write A
in Zadeh’s notation [37] A = A(x 1)

x 1
+ A(x 2)

x 2
+ · · · + A(xn)

xn
. We use

F(X) to denote the set of all fuzzy sets over X . Let A,B ∈ F(X)
be two fuzzy sets. We denote by A ⊆ B if ∀x ∈ X : A(x) ≤ B(x).
We denote by A ⊂ B if 1) A ⊆ B ; and 2) ∃x ∈ X : A(x) < B(x).
The empty fuzzy set, denoted by O, is a fuzzy set such that ∀x ∈ X :
O(x) = 0. We denote by ∨ and ∧ the supremum and the infimum
operators, respectively.

In this paper, we consider FDES modeled by max–min automata.
Specifically, an FDES is a four-tuple G = (Q, Σ, δ, q0), where Q is a
finite set of states, Σ is a finite set of events, δ : Q × Σ × Q → [0, 1]
is the fuzzy transition function, and q0 is the initial state. The fuzzy
transition function is extended to δ : Q × Σ∗ × Q → [0, 1] inductively
as follows: for any q1 , q2 ∈ Q, s ∈ Σ∗, and σ ∈ Σ, we have

δ(q1 , ε, q2) =
{

1, if q1 = q2 ,
0, otherwise

(1)

δ(q1 , sσ, q2) = ∨q ′∈Q (δ(q1 , s, q
′) ∧ δ(q′, σ, q2)). (2)

The fuzzy language generated by G, denoted byLG , is a fuzzy subset
over Σ∗, i.e., LG ∈ F(Σ∗). Specifically, LG is defined by ∀s ∈ Σ∗ :
LG (s) = ∨q∈Q δ(q0 , s, q). Namely, LG (s) denotes the degree of mem-
bership of string s in LG . By definition, we know that 1) LG (ε) = 1;
and 2) ∀s, t ∈ Σ∗ : LG (st) ≤ LG (s). Moreover, if a fuzzy language
L ∈ F(Σ∗) satisfies these two conditions, then we can always con-
struct an FDES G such that LG = L; see, e.g., [22]. We will assume
the above two conditions for any fuzzy language except O.

B. Supervisory Control of FDES

We review the supervisory control theory of FDES in the framework
of Cao and Ying [22]. In this framework, the event set is partitioned by
Σ = Σc ∪̇Σu c = Σo ∪̇Σu o , where Σc , Σu c , Σo , and Σu o are the sets

of controllable, uncontrollable, observable, and unobservable events,
respectively. The natural projection P : Σ∗ → Σ∗

o is defined in the
usual manner; see, e.g., [36]. The natural projection is also extended
to 2Σ ∗

.
Then, a partial observation fuzzy supervisor is defined as a function

S : P (supp[LG]) → F(Σ) such that ∀α ∈ P (supp[LG]), ∀σ ∈ Σu c :
S(α)(σ) = 1. For any observable string α ∈ P (supp[LG]), S(α)(σ)
denotes the degree of enablement of event σ. Clearly, we cannot disable
an uncontrollable event in any degree.

Given a fuzzy supervisor S, S/G denotes the closed-loop sys-
tem under control. The fuzzy language generated by S/G, denoted
by LS/G , is defined recursively by [22]: 1) LS/G (ε) = 1; and 2)
LS/G (sσ) = LG (sσ) ∧ LS/G (s) ∧ S(P (s))(σ).

Let K ∈ F(Σ∗) be a fuzzy language. We say that K is
fuzzy controllable (w.r.t. LG and Σc) [21] if (∀s ∈ Σ∗)(∀σ ∈
Σu c)[K(sσ) = K(s) ∧ LG (sσ)]. We say that K is fuzzy ob-
servable (w.r.t. LG , Σo and Σc) [22] if (∀s, s′ ∈ supp[K] :
P (s) = P (s′))(∀σ ∈ Σc : sσ ∈ supp[K])(∃x ∈ [0, 1]) s.t. K(sσ) =
K(s) ∧ LG (sσ) ∧ x and K(s′σ) = K(s′) ∧ LG (s′σ) ∧ x.

It was shown in [22] that, given a fuzzy language K, there exists
a fuzzy supervisor S such that LS/G = K, if and only if, K is fuzzy
controllable and fuzzy observable. These two conditions are referred
to as the supervisor existence conditions. However, in general, a fuzzy
language may not be controllable and observable. Therefore, we need
to synthesize a fuzzy supervisor S such that the closed-loop fuzzy
language is safe, i.e., LS/G ⊆ K. This problem is referred to as the
supervisor synthesis problem, which is formulated as follows.

Problem 1: (Fuzzy Supervisor Synthesis Problem). Let G be an
FDES with Σc and Σo . Let K ⊆ LG be a fuzzy specification language.
Synthesize a fuzzy supervisor S : P (supp[LG]) → F(Σ) such that
LS/G ⊆ K.

Remark II.1: It was shown in [21] that fuzzy controllability is
closed under union. Therefore, the supremal fuzzy controllable sublan-
guage of K exists. Hereafter, we assume without the loss of generality
that the specification language K is fuzzy controllable; otherwise, we
can compute the supremal fuzzy controllable sublanguage of K to re-
place K. However, fuzzy observability is not closed under union [22],
i.e., there does not exist a supremal fuzzy observable sublanguage.
This is the fundamental difficulty in the partially observed synthesis
problem. In this paper, we will propose a constructive approach for
synthesizing a supervisor in order to tackle this difficulty.

Remark II.2: In this paper, we follow the framework of Cao and
Ying [22], where controllability is fuzzy while observability is crisp.
A general framework, where both controllability and observability are
fuzzy, was proposed by Qiu and Liu [25]. In principle, the idea in
this paper can be extended to the general framework. We choose the
simple framework in order to simplify our technical development and
to present the essence of our idea that solves the supervisor synthesis
problem.

III. SYNTHESIS ALGORITHM

In this section, we address the fuzzy supervisor synthesis problem.
First, we discuss the concept of belief evolution in the partial-observed
system. Then, we propose an online approach that effectively synthe-
sizes a safe supervisor.

A. Belief Evolution

In the partially observed synthesis problem, one of the most impor-
tant issues is what is our belief about the system. Roughly speaking,
a belief is a sufficient statistic of all available information we have

1832 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 25, NO. 6, DECEMBER 2017

Fig. 1. FEDS G and LH = K, where Σc = {c} and Σo = {a}. (a) G.
(b) H .

obtained so far. Hereafter, we will explore two language-based beliefs,
B̂ and B.

Let S : P (supp[LG]) → F(Σ) be a fuzzy supervisor and α ∈
P (supp[LS/G]) be an observable string. Specifically, B̂(α) is defined
as the set of strings in supp[LS/G] that are possible immediately after
observing α, i.e.,

B̂(α) = {s ∈ supp[LS/G] : P (s) = α and s ∈ Σ∗Σo ∪ {ε}}. (3)

We define B(α) as the set of strings in supp[LS/G] that are consistent
with observation α, i.e.,

B(α) = {s ∈ supp[LS/G] : P (s) = α}. (4)

Clearly, we know that B̂(α) ⊆ B(α), since the latter contains the unob-
servable tails while the former does not. Note that, by the definition of
the supervisor, sets B̂(α) and B(α) only depends on the control deci-
sions that have been made so far and they do not depend on the control
decisions in the future. Therefore, these two sets can also be computed
recursively, as follows: for any α ∈ Σ∗

o , σ ∈ Σo , we have

B̂(ε) = {ε} (5)

B(α) = {st ∈ supp[LG] : s ∈ B̂(α) ∧ t ∈ (Σu o ∩ supp[S(α)])∗}
(6)

B̂(ασ) = {sσ ∈ supp[LG] : s ∈ B(α) ∧ σ ∈ supp[S(α)]}. (7)

Let σ1 . . . σn ∈ P (supp[LS/G]) be a sequence of observable events.
Then, the above recursive definition essentially yields a sequence al-
ternating between B̂ and B, i.e.,

B̂(ε)
S (ε)−−→ B(ε) σ 1−→ · · · σn−→ B̂(σ1 . . . σn)

S (σ 1 . . .σ n)−−−−−−−→ B(σ1 . . . σn).

Hereafter, we refer to B(α) and B̂(α) as belief sets (or beliefs) and refer
to the above sequence as the belief evolution along σ1 . . . σn . Note
that sets B(α) and B̂(α) are both crisp and we will handle the issue of
membership degree later.

Example III.1: Let us consider the system G shown in Fig. 1(a)
and the specification language K generated by automaton H shown
in Fig. 1(b). Suppose that Σc = {c} and Σo = {a}. We consider a
supervisor S defined by S(ε)(c) = 0.5, S(a)(c) = 0.1 and S(ε)(a) =
S(a)(a) = 1. Initially, we have that B̂(ε) = {ε}. Once the first control
decision S(ε) is made, we obtain B(ε) = {ε, c} according to (6). If
a ∈ Σo is observed, then we obtain B̂(a) = {a, ca} according to (7).
By making a new control decision S(a), we move to B(a) = {ac, cac}.

B. Online Synthesis Algorithm

We present a formal procedure to synthesize a fuzzy supervisor
S : P (supp[LG]) → F(Σ) such that LS/G ⊆ K . In our approach, in-
stead of computing S directly all at once, we will recursively compute
fuzzy set S(α) ∈ F(Σ) for each observation α ∈ Σ∗

o encountered in
an online manner. This is detailed as follows.

First, let α = σ1 . . . σn ∈ Σ∗
o be the sequence of events been ob-

served. Suppose that all control decisions up to σ1 . . . σn−1 , i.e.,
S(ε), S(σ1), . . . , S(σ1 . . . σn−1), have been computed. By using the

above information, belief set B̂(α) can be effectively computed by the
recursive procedure discussed earlier. Then our goal is to determine the
next fuzzy control decision S(α) ∈ F(Σ). To this end, we take two
steps: 1) first we determine the support of S(α), denoted by Dec ∈ 2Σ ;
2) then we assign each element in Dec a degree of enablement in order
to obtain fuzzy set S(α) ∈ F(Σ).

Step-1: First, we determine the support of the control decision.
Specifically, the crisp set Dec = supp[S(α)] is chosen such that the
following conditions hold

C1 Σu c ⊆ Dec.
C2 B(α)(Σo ∩ Dec) ∩ supp[LG] ⊆ supp[K], where B(α) is the be-

lief set updated from B̂(α) and supp[S(α)] = Dec according
to (5).

C3 For any other Dec′ ∈ 2Σ such that C1 and C2 hold, we have
Dec �⊂ Dec′.

Remark III.1: Let us explain the intuition behind the above three
conditions. Condition C1 simply requires that the supervisor cannot
disable any uncontrollable event. Condition C2 requires that the super-
visor only allows strings in supp[K] before the next control decision
can be made. This condition guarantees that the closed-loop language
is safe if we assign the degree of membership properly. Finally, the last
condition C3 says that Dec is a maximal crisp set satisfying C1 and C2
in order to enable as many events as possible. In the next section, we
will prove that such a control decision satisfying C1–C3 always exists
for any α ∈ Σ∗

o encountered.
Step-2: Once the support of S(α), i.e., Dec, is determined, we need

to assign a degree of membership to each event in Dec in order to
obtain fuzzy control decision S(α). This is defined as follows: for each
event σ ∈ Dec, we have

S(α)(σ) =
{ ∧{Ξ(s, σ) : s ∈ B(α), sσ ∈ supp[LG]} if σ ∈ Σc

1 if σ ∈ Σu c

(8)
where

Ξ(s, σ) =
{K(sσ), if K(sσ) < K(s)

1, otherwise.
(9)

Remark III.2: Let us explain the intuition behind (8) and (9). For
any string s and any event σ, Ξ(s, σ) is essentially the largest degree of
membership we can enable for event σ following string s. Specifically,
for each controllable event σ ∈ Σc , if K(s) = K(sσ), then there is
no need to disable σ for any degree since we are considering max–
min system and the degree of sσ is bounded by s. On the other hand,
if K(sσ) < K(s), then we do need to disable σ with degree K(sσ)
to make sure that the closed-loop fuzzy language is still in K. The
enablement degree for σ is taken as the infimum of Ξ(s, σ) for any
string in belief B(α). The reason why we need to take the infimum
rather than the supremum is still that we need to be conservative in
order to guarantee safety.

In order to make the supervisor synthesis approach more clear, Al-
gorithm ONLINE-SYNTHESIS is proposed which essentially summarizes
the recursive procedure we discussed above. Specifically, whenever a
new event is observed, we compute the fuzzy control decision S(α)
and update our beliefs B and B̂, where α is the entire observation up
to this point. Then, we just wait for the next observable event and
repeat the above procedure. Therefore, the supervisor is essentially
implementable recursively in an online manner.

The following example illustrates the synthesis procedure.
Example III.2: Let us still consider system G and specification H

shown in Fig. 1(a) and (b), respectively, where Σc = {c} and Σo =
{a}. Initially, Algorithm ONLINE-SYNTHESIS starts with B̂(ε) = {ε}
and we go to line 5 to choose the support of S(ε). Since the only

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 25, NO. 6, DECEMBER 2017 1833

controllable event is c, we have two choices for supp[S(ε)]: {a} or
{a, c}. Note that, both decisions {a} and {a, c} satisfy conditions
C1 and C2. For example, if we choose {a}, then the next belief is
B(ε) = {ε} and we have {ε}{a} ∩ supp[LG] ⊆ supp[K]; if we choose
{a, c}, then the next belief is B(ε) = {ε, c} ⊆ supp[K] and we still have
{ε, c}{a} ∩ supp[LG] ⊆ supp[K]. Therefore, according to condition
C3, we need to choose {a, c} for supp[S(ε)], since it strictly contains
{a}. Then, in line 6, we update our belief by using this choice and
get B(ε) = {ε, c}. Next, we move to line 7 and we need to determine
the degree of membership for each element in supp[S(ε)]. For event
a ∈ Σu c , which is uncontrollable, we have that S(ε)(a) = 1. For event
c ∈ Σc , which is controllable, we have that Ξ(ε, c) = 0.5. Also, we
note that for, c ∈ B(ε), we have cc /∈ supp[LG]. Therefore, we obtain
S(ε)(c) = Ξ(ε, c) = 0.5.

Once a new event a ∈ Σo is observed, according to line 3, first
we need to update our belief to B̂(a) = {a, ca}. Then, we need to
choose the support of S(a) in line 5; we can still choose supp[S(a)] =
{a, c}. Next, in line 7, for a ∈ Σu c , we still have that S(a)(a) = 1.
For event c ∈ Σc , this time we have Ξ(a, c) = 0.5 and Ξ(ca, c) = 0.1.
Therefore, according to (8), we have S(a)(c) = Ξ(a, c) ∧ Ξ(ca, c) =
0.5 ∧ 0.1 = 0.1. Since the language in this example is finite, there will
be no further observation. In general, the while loop will not terminate
since the system may not terminate.

Remark III.3: In [22], a supervisor construction approach was pro-
vided in order to exactly achieveK whenK is fuzzy observable. Specif-
ically, the supervisor is defined by: for any α ∈ P (supp[LG]), we have

S(α)(σ) =

{∨{K(sσ) : P (s) = α}, if σ ∈ Σc ,

1, if σ ∈ Σu c .
(10)

Note that, this supervisor is valid only when K is fuzzy observable;
otherwise, the closed-loop system may not be safe. For example, if we
use this supervisor for the system in Fig. 1, then we have S(ε)(c) =
S(a)(c) = 0.5. This gives us closed-loop fuzzy languageLS/G = 1

ε
+

0 .6
a

+ 0 .5
a c

+ 0 .5
c

+ 0 .2
a c

+ 0 .2
ca c

, which is not safe. Compared with this
supervisor construction in [22], our supervisor synthesis procedure has
the following important features. First, unlike (10), where string s is
chosen from supp[K], in (8), string s is chosen from B(α). This is
because that supervisor defined by (10) aims to match K exactly and,
therefore, it knows a priori that the support of the closed-loop language
is supp[K]. However, such an information is missing in the synthesis
problem and we have to use our control decisions in history to formulate
our belief. Second, unlike (10) where the membership degree is taken
as the supremum, our membership degree is taken as the infimum; we
have to be conservative in order to guarantee the safety requirement.

IV. PROPERTIES OF THE ALGORITHM

In this section, we prove some properties of the proposed algorithm.
Given a problem and an algorithm, we say that the algorithm is sound
if its output is a solution to the problem, i.e., it never returns a wrong
answer. Also, we say that an algorithm is complete if it never returns
“no solution” when one exists. Next, we show that, unlike the supre-
mal fuzzy normal approach, which is just sound but not complete,
our synthesis algorithm is both sound and complete. Therefore, it ef-
fectively solves the fuzzy supervisor synthesis problem under partial
observation.

First of all, we show that the proposed algorithm is sound.
Lemma IV.1: Let G be the system, K be the specification, and S

be the fuzzy supervisor synthesized by Algorithm ONLINE-SYNTHESIS.
Then, we have LS/G ⊆ K.

Proof: It suffices to show that for any s ∈ supp[LS/G]: 1) s ∈
supp[K]; and 2) LS/G (s) ≤ K(s). Hereafter, we show that 1) and 2)
hold by induction on the length of P (s).

Induction Basis: For |P (s)| = 0, we know that s ∈ B(ε). By con-
dition C2, control decision S(ε) is chosen such B(ε) ⊆ supp[K].
Therefore, 1) holds. Next, we show that 2) holds by contradic-
tion. Assume that 2) does not hold for |P (s)| = 0, i.e., there ex-
ists a string s such that |P (s)| = 0 and K(s) < LS/G (s). Note that
s �= ε, since K(s) = LS/G (s) = 1 by definition. Therefore, we write
s = tσ ∈ Σ∗

u o , where σ ∈ Σu o is the last event in s. We also as-
sume without the loss of generality that ∀w ∈ t : LS/G (w) ≤ K(w);
otherwise, it suffices to choose the shortest prefix of s such that
this assumption holds. If σ ∈ Σu c , by the assumption that K is
fuzzy controllable, LS/G (tσ) ≤ K(tσ), which contradicts the assump-
tion that 2) does not hold. If σ ∈ Σc , then we know that K(tσ) <
LS/G (tσ) ≤ LS/G (t) ≤ K(t). Therefore, by (9), Ξ(t, σ) = K(tσ) <
K(t). Since t ∈ B(ε), by (8), we know that S(ε)(σ) ≤ Ξ(t, σ) =
K(tσ). Overall, we have that LS/G (tσ) = LG (tσ) ∧ LS/G (t) ∧
S(ε)(σ) ≤ LG (tσ) ∧ LS/G (t) ∧ K(tσ) = K(tσ). However, this con-
tradicts to K(tσ) < LS/G (tσ).

Induction Hypothesis: We assume that 1) and 2) hold for string s
such that |P (s)| = k.

Induction Step: To proceed, we consider two cases for string s such
that |P (s)| = k + 1.

Case 1: String s ends up with an observable event.
We write s = tσ, where σ ∈ Σo and |P (t)| = k. By the induc-

tion hypothesis, we know that t ∈ supp[K] and t ∈ B(P (t)). By
condition C2, S(P (t)) is chosen such that B(P (t))(Σo ∩ Dec) ∩
supp[LG] ⊆ supp[K], which implies that tσ ∈ supp[K], i.e., 1) holds.
For 2), if σ ∈ Σu c , by the assumption that K is fuzzy con-
trollable, we know that LS/G (tσ) ≤ K(tσ). If σ ∈ Σc , then we
still assume that K(tσ) < LS/G (tσ) for the sake of contradic-
tion. Since t ∈ B(P (t)), σ ∈ supp[S(P (t))] and the assumption that
K(tσ) < LS/G (tσ), by (8), Ξ(t, σ) = K(tσ) < K(t), which means
that S(P (t))(σ) ≤ Ξ(t, σ) = K(tσ). Similar to the induction ba-
sis, we have that LS/G (tσ) = LG (tσ) ∧ LS/G (t) ∧ S(P (t))(σ) ≤
LG (tσ) ∧ LS/G (t) ∧ K(tσ) = K(tσ). This contradicts to K(tσ) <
LS/G (tσ).

Case 2: String s ends up with an unobservable event.
We write s = tσ1wσ2 , where σ1 ∈ Σo , w ∈ Σ∗

u o , σ2 ∈ Σu o . By the
induction hypothesis, t ∈ supp[K]. Moreover, tσ1 ∈ B̂(P (t)σ1) and
tσ1wσ2 ∈ B(P (t)σ1). By condition C2, control decision S(P (t)σ1)
is chosen such that B(P (t)σ1) ⊆ supp[K], which implies that
tσ1wσ2 ∈ supp[K], i.e., 1) holds. Next, we still show that 2) holds by
contradiction. We assume that K(tσ) < LS/G (tσ). By the induction
hypothesis, LS/G (t) ≤ K(t). Moreover, we assume w.l.o.g. that
∀v ∈ tσ1w : LS/G (v) ≤ K(v); otherwise, it either suffices to choose

1834 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 25, NO. 6, DECEMBER 2017

the shortest prefix of tσ1w such that this assumption holds or reduces to
Case 1. If σ2 ∈ Σu c , by the assumption that K is fuzzy controllable, we
know that LS/G (tσ1wσ2) ≤ K(tσ1wσ2), which yields a contradic-
tion immediately. If σ2 ∈ Σc , then we still follow the same strategy we
used in the induction basis and Case 1. First, tσ1w ∈ B(P (t)σ1) and
σ2 ∈ supp[S(P (t)σ1)]. Since K(tσ1wσ2) < LS/G (tσ1wσ2), by (8),
Ξ(tσ1w, σ2) = K(tσ1wσ2) < K(tσ1w), which means that S(P (t)
σ1)(σ2) ≤ Ξ(tσ1w, σ2) = K(tσ1wσ2). Therefore, LS/G (tσ1wσ2)
= LG (tσ1wσ2) ∧ LS/G (tσ1w) ∧ S(P (t)σ1)(σ2) ≤ LG (tσ1wσ2) ∧
LS/G (tσ1w) ∧ K(tσ1wσ2) = K(tσ1wσ2). This contradicts to
K(tσ1wσ2) < LS/G (tσ1wσ2). �

Next, we show Algorithm ONLINE-SYNTHESIS is sound.
Lemma IV.2: Algorithm ONLINE-SYNTHESIS always effectively

synthesizes a supervisor under the assumption that K is fuzzy con-
trollable.

Proof: To prove this, it suffices to show that, for each belief B̂(α)
encountered in line 5 in the algorithm, there always exists a crisp
set Dec = supp[S(α)] satisfying conditions C1–C3. We show this by
induction on the length of α.

Induction Basis: Initially, we have B̂(ε) = {ε}. Let us consider
Dec = Σu c . Clearly, it satisfies C1. Since K is fuzzy controllable,
we know that {ε}Σ∗

u c ∩ supp[LG] ⊆ supp[K], i.e., Dec = Σu c also
satisfies C2. Since 2Σ is finite, there must exist a control decision
supp[S(ε)] ∈ 2Σ satisfying C1–C3.

Induction Hypothesis: We assume that ∀α ∈ Σ∗
o : |α| = k, the con-

trol decision Dec is well defined for B̂(α).
Induction Step: Let us consider string ασ ∈ Σ∗

o , where σ ∈ Σo and
|α| = k. By the induction hypothesis, all control decisions up to S(α)
are well defined. Therefore, we can effectively compute B(α) and
B̂(ασ). Moreover, by the proof of Lemma IV.1, we know that B̂(ασ) ⊆
supp[K]. Let us still consider Dec = Σu c as the support of S(ασ),
which satisfies C1. Since we have assumed that K is fuzzy controllable,
we know that B̂(ασ)Σ∗

u c ∩ supp[LG] ⊆ supp[K]. Therefore, Dec =
Σu c also satisfies C2. Still, there are only finite control decisions in 2Σ

that are strictly larger than Σu c . Therefore, there must exist a control
decision supp[S(ασ)] ∈ 2Σ satisfying C1–C3 for B̂(ασ). �

Combing Lemma IV.1 and IV.2, we obtain the following result.
Theorem IV.1: Algorithm ONLINE-SYNTHESIS is both sound and

complete, i.e., it effectively solves the fuzzy supervisor synthesis
problem.

So far, we have shown that Algorithm ONLINE-SYNTHESIS is sound
and complete. Another relevant question in the supervisory control
theory is what is the permissiveness of the supervisor. Note that, unlike
the fully observed case, in general, there does not exist a supremal
supervisor for the partially observed case. Next, we prove an important
feature of the synthesized supervisor. We show that the closed-loop
fuzzy language is locally maximal in terms of its support.

Lemma IV.3: Let G be the system, K be the specification, and
S be the fuzzy supervisor synthesized by Algorithm ONLINE-
SYNTHESIS. Then, there does not exist another safe fuzzy supervisor
S ′ : P (supp[LG]) → F(Σ) such that LS ′/G ⊆ K and supp[LS/G] ⊂
supp[LS ′/G].

Proof: By contradiction. We assume that there exists a safe
fuzzy supervisor S ′ such that supp[LS/G] ⊂ supp[LS ′/G]. This
implies that there exists a string s ∈ supp[LG] such that ∀α ∈
P (s) \ {P (s)} : supp[S(α)] = supp[S ′(α)]; and supp[S(P (s))] ⊂
supp[S ′(P (s))]. Since all decisions made by S and S ′ up to P (s) are
the same, the belief B̂(P (s)) are the same under both S and S ′. Note
that supp[S(P (s))] is chosen such that C1–C3 hold for B̂(P (s)). Since
supp[S(P (s))] ⊂ supp[S ′(P (s))], supp[S ′(P (s))] also satisfies C1.
Since LS ′/G ⊆ K and B(P (s))(Σo ∩ supp[S ′(P (s))]) ∩ supp[LG] ⊆
LS ′/G , taking S ′(P (s)) at B̂(P (s)) also satisfies C2. Recall that

Fig. 2. FEDS G for the treatment process.

supp[S ′(P (s))] strictly contains supp[S(P (s))]. This contracts
to C3. �

We have shown that the synthesis algorithm is not only sound and
complete, but the solution is also locally maximal in terms of its support.
One may also ask whether or not it is also locally maximal in terms of
the fuzzy language, i.e., there does not exist another supervisor S ′ such
that LS ′/G ⊆ K and LS/G ⊂ LS ′/G . Unfortunately, the synthesized
supervisor needs not be locally maximal in terms of the fuzzy language
in general. This is illustrated by the following example.

Example IV.1: Let us consider system language LG = 1
ε

+ 1
σ 1

+
1

σ 1 σ 2
+ 1

σ 1 σ 2 σ 1
and specification language K = 1

ε
+ 0 .3

σ 1
+ 0 .2

σ 1 σ 2
+

0 .1
σ 1 σ 2 σ 1

, where we have Σc = Σu o = {σ1 , σ2}, i.e., all events are
controllable but unobservable. Then, the supervisor just needs to
make one control decision S(ε) at the very beginning. Accord-
ing to conditions C1–C3, we have supp[S(ε)] = {σ1 , σ3}. Since
Ξ(ε, σ1) = 0.3, Ξ(σ1σ2 , σ1) = 0.1 and Ξ(σ1 , σ2) = 0.2, we have that
S(ε)(σ1) = 0.3 ∧ 0.1 = 0.1 and S(ε)(σ2) = 0.2 and the closed-loop
fuzzy language is LS/G = 1

ε
+ 0 .1

σ 1
+ 0 .1

σ 1 σ 2
+ 0 .1

σ 1 σ 2 σ 1
. However, we

can design another fuzzy supervisor S ′ defined by S ′(ε)(σ1) = 0.3
and S(ε)(σ2) = 0.1. In this case, we obtain a closed-loop language
LS ′/G = 1

ε
+ 0 .3

σ 1
+ 0 .1

σ 1 σ 2
+ 0 .1

σ 1 σ 2 σ 1
, which is strictly more permis-

sive than the synthesized one.
Remark IV.1: We explain why the synthesized supervisor may not

be maximal in terms of the fuzzy language. In (8), we choose the
degree of membership for each event based on K. Although this guar-
antees the soundness and the completeness of the algorithm, it may
be conservative, i.e., the optimality of the algorithm may be affected.
Particularly, in the above example, the membership degree of σ1σ2σ1

is changed in the closed-loop language if we decide to enable σ2 with
degree 0.1. In this case, if we enable σ2 with degree 0.1, then there is
no need to restrict σ1 with degree 0.1 since the safety for the second
σ1 has already been taken care by its predecessor event σ2 . In other
words, the best choice of membership degree for an event may depend
on the choice for other event. How to resolve this issue and improve
the permissiveness of the closed-loop fuzzy language is an interesting
future direction.

V. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the effectiveness of proposed algorithm
by an illustrative example. Specifically, we adopt the medical treatment
example from [21], [22]. In principle, our result can also be applied to
other applications, e.g., robot motion planning [9]–[12].

Suppose that a patient is infected by a disease and a physician wants
to conduct a treatment. Based on the physician’s experience, it is known
that the patient’s condition during the treatment can be represented by
fuzzy automaton G shown in Fig. 2. Specifically, event a denotes a
stage-by-stage therapy and events b1 , b2 , and b3 denote three possible
anaphylaxis, respectively. Also, state 1 denotes the patient’s initial
condition, state 2 denotes a fair condition, state 3 denotes a good
condition, states 4 and 5 denote two bad conditions with different
levels of anaphylaxis, and state 6 denotes a seriously bad condition.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 25, NO. 6, DECEMBER 2017 1835

Suppose that anaphylaxis represented by event b3 can be avoided by
using other medicine, but anaphylaxis represented by events b1 and
b2 cannot be controlled. On the other hand, only anaphylaxis b2 can
be directly monitored by the physician. Therefore, Σc = {a, b2} and
Σo = {a, b1}.

Let us consider the following requirements for the treatment. First,
we want that the patient should never be in a seriously bad condition
with any degree, i.e., anaphylaxis b3 should never occur. Second, once
anaphylaxis b1 occurs, the degree of the therapy should be decreased.
Finally, the treatment should be stopped once anaphylaxis b2 occurs.
These three requirements can be formally described by the follow-
ing specification fuzzy language K = 1

ε
+ 0 .9

a
+ 0 .7

aa
+ 0 .7

a b1
+ 0 .3

a b1 a
+

0 .1
a b1 b2

. With parameters G, K, Σc , and Σo , the decision process of the
treatment is formulated as a fuzzy supervisor synthesis problem and
our goal is to synthesize a safe fuzzy supervisor.

Note that this problem cannot be handled by any existing approach
in the literature due to the following reasons. First, the specifica-
tion language K is not fuzzy observable, since for a, ab1 ∈ supp[K]
and a ∈ Σ, we have P (a) = P (ab1) but we cannot find a num-
ber x ∈ [0, 1] such thatK(aa) = K(a) ∧ LG (aa) ∧ x and K(ab1a) =
K(ab1) ∧ LG (ab1a) ∧ x, i.e., 0.7 ∧ x = 0.3 ∧ x = 0.7 cannot be sat-
isfied. Second, the supremal fuzzy controllable and normal sublan-
guage of K is the empty fuzzy set O. This can be seen from the fact
that supremal fuzzy controllable and normal supervisor does not allow
the disablement of controllable but unobservable event. However, in
our example, event b3 ∈ Σc ∩ Σu o has to be disabled for safety pur-
pose. Therefore, the supremal fuzzy normal approach [22] also fails to
handle this synthesis problem.

However, by applying the synthesis algorithm proposed in
Section III, we obtain fuzzy supervisor S : P (supp[LG]) →
F(Σ) defined as follows: S(ε) = 0 .9

a
+ 1

b1
+ 1

b2
, S(a) = 0 .3

a
+ 1

b1
+

1
b2

, S(aa) = S(ab2) = 1
b1

+ 1
b2

. This supervisor yields the following

closed-loop fuzzy language LS/G = 1
ε

+ 0 .9
a

+ 0 .3
aa

+ 0 .7
a b1

+ 0 .3
a b1 a

+
0 .1

a b1 b2
, which is a sublanguage ofK. Therefore, the supervisor synthesis

problem is solved.

VI. CONCLUSION

In this paper, we proposed a new approach for synthesizing a safe
fuzzy supervisor for partially observed FDES. The proposed algorithm
can be implemented in an online manner by recursively computing the
belief of the system. We showed that the proposed algorithm is both
sound and complete in the sense that it always synthesizes a supervisor
when one exists. Therefore, it effectively solves the supervisor synthesis
problem for partially observed FDES.

ACKNOWLEDGMENT

The author would like to thank the anonymous reviewers for their
useful comments on improving the paper.

REFERENCES

[1] F. Lin and H. Ying, “Modeling and control of fuzzy discrete event sys-
tems,” IEEE Trans. Syst., Man, Cybern., Cybern., vol. 32, no. 4, pp. 408–
415, Aug. 2002.

[2] F. Lin et al., “Decision making in fuzzy discrete event systems,” Inf. Sci.,
vol. 177, no. 18, pp. 3749–3763, 2007.

[3] X. Du, H. Ying, and F. Lin, “Theory of extended fuzzy discrete-event
systems for handling ranges of knowledge uncertainties and subjectivity,”
IEEE Trans. Fuzzy Syst., vol. 17, no. 2, pp. 316–328, Apr. 2009.

[4] Y. Cao, G. Chen, and E. Kerre, “Bisimulations for fuzzy-transition sys-
tems,” IEEE Trans. Fuzzy Syst., vol. 19, no. 3, pp. 540–552, Jun. 2011.

[5] M. Nie and W. Tan, “Theory of generalized fuzzy discrete-event systems,”
IEEE Trans. Fuzzy Syst., vol. 23, no. 1, pp. 98–110, Feb. 2015.

[6] W. Deng and D. Qiu, “Bifuzzy discrete event systems and their supervisory
control theory,” IEEE Trans. Fuzzy Syst., vol. 23, no. 6, pp. 2107–2121,
Dec. 2015.

[7] H. Ying et al., “A fuzzy discrete event system approach to determining op-
timal HIV/AIDS treatment regimens,” IEEE Trans. Inf. Technol. Biomed.,
vol. 4, no. 10, pp. 663–676, Oct. 2006.

[8] H. Ying, “A self-learning fuzzy discrete event system for HIV/AIDS
treatment regimen selection,” IEEE Trans. Syst., Man, Cybern., Cybern.,
vol. 37, no. 4, pp. 966–979, Aug. 2007.

[9] R. Huq, G. Mann, and R. Gosine, “Distributed fuzzy discrete event system
for robotic sensory information processing,” Exp. Syst., vol. 23, no. 5,
pp. 273–289, 2006.

[10] R. Huq, G. Mann, and R. Gosine, “Behavior-modulation technique in
mobile robotics using fuzzy discrete event system,” IEEE Trans. Robot.,
vol. 22, no. 5, pp. 903–916, Oct. 2006.

[11] K. Schmidt and Y. Boutalis, “Fuzzy discrete event systems for multiob-
jective control: Framework and application to mobile robot navigation,”
IEEE Trans. Fuzzy Syst., vol. 20, no. 5, pp. 910–922, Oct. 2012.

[12] R. Liu, Y.-X. Wang, and L. Zhang, “An FDES-based shared control method
for asynchronous brain-actuated robot,” IEEE Trans. Cybern., vol. 46,
no. 6, pp. 1452–1462, Jun. 2016.

[13] E. Kilic, “Diagnosability of fuzzy discrete event systems,” Inf. Sci.,
vol. 178, no. 3, pp. 858–870, 2008.

[14] F. Liu and D. Qiu, “Diagnosability of fuzzy discrete-event systems: A
fuzzy approach,” IEEE Trans. Fuzzy Syst., vol. 17, no. 2, pp. 372–384,
Apr. 2009.

[15] M. Luo, Y. Li, F. Sun, and H. Liu, “A new algorithm for testing di-
agnosability of fuzzy discrete event systems,” Inf. Sci., vol. 185, no. 1,
pp. 100–113, 2012.

[16] F. Liu, “Safe diagnosability of fuzzy discrete-event systems and a
polynomial-time verification,” IEEE Trans. Fuzzy Syst., vol. 23, no. 5,
pp. 1534–1544, Oct. 2015.

[17] P. Ramadge and W. Wonham, “Supervisory control of a class of discrete
event processes,” SIAM J. Control Optim., vol. 25, no. 1, pp. 206–230,
1987.

[18] F. Lin and W. Wonham, “On observability of discrete-event systems,” Inf.
Sci., vol. 44, no. 3, pp. 173–198, 1988.

[19] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya, “Supervisory control
of discrete-event processes with partial observations,” IEEE Trans. Autom.
Control, vol. AC-33, no. 3, pp. 249–260, Mar. 1988.

[20] D. Qiu, “Supervisory control of fuzzy discrete event systems: A formal
approach,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 35, no. 1,
pp. 72–88, Feb. 2005.

[21] Y. Cao and M. Ying, “Supervisory control of fuzzy discrete event systems,”
IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 35, no. 2, pp. 366–371,
Feb. 2005.

[22] Y. Cao and M. Ying, “Observability and decentralized control of fuzzy
discrete-event systems,” IEEE Trans. Fuzzy Syst., vol. 14, no. 2, pp. 202–
216, Apr. 2006.

[23] Y. Cao, M. Ying, and G. Chen, “State-based control of fuzzy discrete-
event systems,” IEEE Trans. Syst., Man, Cybern., Cybern., vol. 37, no. 2,
pp. 410–424, Apr. 2007.

[24] F. Liu and D. Qiu, “Decentralized supervisory control of fuzzy dis-
crete event systems,” Eur. J. Control, vol. 14, no. 3, pp. 234–243,
2008.

[25] D. Qiu and F. Liu, “Fuzzy discrete-event systems under fuzzy observability
and a test algorithm,” IEEE Trans. Fuzzy Syst., vol. 17, no. 3, pp. 578–589,
Jun. 2009.

[26] F. Lin and H. Ying, “State-feedback control of fuzzy discrete-event sys-
tems,” IEEE Trans. Syst., Man, Cybern., Cybern., vol. 40, no. 3, pp. 951–
956, Jun. 2010.

[27] F. Wang, Z. Feng, and P. Jiang, “Reliable decentralized supervisory con-
trol of fuzzy discrete event systems,” Fuzzy Sets Syst., vol. 161, no. 12,
pp. 1657–1668, 2010.

[28] A. Jayasiri, G. Mann, and R. Gosine, “Generalizing the decentralized
control of fuzzy discrete event systems,” IEEE Trans. Fuzzy Syst., vol. 20,
no. 4, pp. 699–714, Aug. 2012.

[29] A. Jayasiri, G. Mann, and R. Gosine, “Modular supervisory control and
hierarchical supervisory control of fuzzy discrete-event systems,” IEEE
Trans. Autom. Sci. Eng., vol. 9, no. 2, pp. 353–364, Apr. 2012.

[30] H. Xing, Q. Zhang, and K. Huang, “Analysis and control of fuzzy dis-
crete event systems using bisimulation equivalence,” Theor. Comput. Sci.,
vol. 456, pp. 100–111, 2012.

1836 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 25, NO. 6, DECEMBER 2017

[31] W. Deng and D. Qiu, “Supervisory control of fuzzy discrete-event sys-
tems for simulation equivalence,” IEEE Trans. Fuzzy Syst., vol. 23, no. 1,
pp. 178–192, Feb. 2015.

[32] N. Ben Hadj-Alouane, S. Lafortune, and F. Lin, “Centralized and dis-
tributed algorithms for on-line synthesis of maximal control policies under
partial observation,” Discrete Event Dynamic Syst.: Theory Appl., vol. 6,
no. 4, pp. 379–427, 1996.

[33] X. Yin and S. Lafortune, “Synthesis of maximally permissive supervi-
sors for partially observed discrete event systems,” IEEE Trans. Autom.
Control, vol. 61, no. 5, pp. 1239–1254, May 2016.

[34] X. Yin and S. Lafortune, “A uniform approach for synthesizing property-
enforcing supervisors for partially-observed discrete-event systems,”
IEEE Trans. Autom. Control, vol. 61, no. 8, pp. 2140–2154, Aug. 2016.

[35] X. Yin, “Supervisor synthesis for mealy automata with output functions:
A model transformation approach,” IEEE Trans. Autom. Control, 2016,
doi: 10.1109/TAC.2016.2601118.

[36] C. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
2nd ed. New York, NY, USA: Springer, 2008.

[37] L. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, pp. 338–353,
1965.

http://dx.doi.org/10.1109/TAC.2016.2601118

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

