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Abstract— We investigate the problem of decentralized fault
prognosis of discrete-event systems modeled by unbounded
labeled Petri nets. We assume that the system is monitored
by a set of local agents (prognosers) with local observations
so that they can predict the occurrence of fault in the system
as a team. It is known in the literature that the notion of
coprognosability provides the necessary and sufficient condition
for the existence of a set of decentralized prognosers so that
any fault can be predicted before its occurrence without
false alarm. In this paper, we investigate the verification of
coprognosability for systems modeled by labeled Petri nets.
We show that coprognosability is decidable even when the
Petri net is unbounded. Specifically, we provide an approach
to transform the coprognosability verification problem to a
model checking problem that can be effectively solved. Our
result extends existing works on coprognosability analysis in
decentralized fault prognosis from regular languages to Petri
net languages.

I. INTRODUCTION

We investigate the fault prognosis problem for Discrete-
Event Systems (DES) modeled by labeled Petri nets. This
problem is crucial in many safety-critical systems, where
we need to predict the occurrences of faults so that some
protecting actions can be taken before a fault is encountered.
In this paper, we consider DES modeled by labeled Petri
nets, a computational model that is widely used in model-
ing cyber-physical systems with concurrency, e.g., flexible
manufacturing systems and software systems. Our goal is to
analyze a priori whether or not any fault in the system can
be successfully predicted.

In the context of DES, the problem of fault prognosis
has drawn considerable attention in the past years; see,
e.g., [6], [11], [15], [16], [19], [21], [23]–[25], [28], [30]–
[32]. This problem was initially studied in [12], [13], where
the authors consider DES modeled by finite-state automa-
ta and a language-based property called predictability (or
prognosability) was proposed. Specifically, predictability is
the necessary and sufficient condition under which there
exists a centralized prognoser that can always issue a fault
alarm before the occurrence of fault without any false alar-
m. Recently, predictability/prognosability analysis has also
been investigated for DES modeled by timed automata [9],
stochastic automata [6], [10], [11], [19] and fuzzy automata
[5]. For DES modeled by Petri nets, the authors in [1]–[3],
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[17] have investigated online fault prognosis methods for
both logical and stochastic Petri nets. Recently, it has been
shown in [27] the condition of prognosability is decidable
for unbounded Petri nets in the centralized setting.

In many large-scale systems, the information structure are
naturally decentralized. For such systems, centralized fault
prognosis algorithms cannot be directly applied due to the
information constraint and we need to develop corresponding
decentralized prognostic protocols for the purpose of fault
prognosis. Therefore, the problem of decentralized fault
prognosis has also drawn many attention in the past years;
see, e.g., [14]–[16], [22], [31], [32]. In this setting, it is
assumed that the system is monitored by a set of local
prognosers. Each local prognoser has its own observation and
can send local prognostic decision to a coordinator, where
a final global prognostic decision is issued. Particularly, in
[16], the authors investigated the decentralized fault prog-
nosis problem under the disjunctive architecture, where a
global fault alarm is issued if one local fault alarm is issued.
Moreover, the authors in [16] proposed a notion called
coprognosability as the necessary and sufficient condition
under which there exists a decentralized prognoser that can
successfully predict fault in the disjunctive architecture. In
[15] and [22], the decentralized fault prognosis problem has
been further studied in the conjunctive architecture and the
inference-based architecture, respectively.

In this paper, we study the decentralized fault prognosis
problem for (unbounded) labeled Petri nets in the disjunctive
architecture. Specifically, we are interested in verifying co-
prognosability for Petri net languages in order to determine a
priori if the fault prognostic task can be accomplished. Note
that, since the state space of a Petri net is unbounded in
general, existing approaches based on finite-state automata
cannot be applied to our problem. The main contributions of
this paper are as follows. First, we provide a necessary and
sufficient condition for coprognosability of DES modeled
by unbounded Petri nets. Then we present an effective
construction to capture this condition and show that checking
coprognosability is decidable for general unbounded labeled
Petri nets. To the best of our knowledge, existing works
on decentralized fault prognosis mentioned above assume
that the systems are modeled by finite-state automata and
the decentralized fault prognosis problem has never been
studied for systems modeled by Petri nets. Therefore, our
results extend existing works on coprognosability analysis
from regular languages to Petri nets languages.

The remaining part of the paper is organized as follows.
Section II presents necessary preliminaries. In Section III,
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coprognosability is defined for labeled Petri nets and its
relevant properties are also discussed. In Section IV, we
provide a necessary and sufficient condition for coprognos-
ability, which can be effectively checked by an existing
model checking problem. Finally, we conclude the paper in
Section V.

II. PRELIMINARIES

A (place/transition) net is a directed bipartite graph,
defined as a 4-tuple N = (P, T,A, ω), where P =
{p1, p2, . . . , pn} is the finite set of places, T =
{t1, t2, . . . , tm} is the finite set of transitions, A ⊆ (P ×
T ) ∪ (T × P ) is the set of directed arcs from places to
transitions and from transitions to places and ω : A→ N is
the weight function that assigns to each arc a non-negative
integer. We introduce the empty transition λ and we define
T+ := T ∪ {λ}. For any place p ∈ P , we denote its preset
by I(p), i.e., I(p) := {t ∈ T : (t, p) ∈ A}; we denote
its postset by O(p), i.e., O(p) := {t ∈ T : (p, t) ∈ A}.
For any transition t, we define its preset I(t) and its postset
O(t) analogously, which are sets of places. Given a net N , a
marking M is a vector M = [M(p1) M(p2) . . . M(pn)]> ∈
Nn, where M(pi) is the number of tokens in place pi ∈ P . A
Petri net is a pair 〈N ,M0〉, where N is a net and M0 ∈ Nn
is the initial markings. We say that transition t is enabled at
state M if ∀p ∈ I(t) : M(p) ≥ ω(p, t). If t is enabled at
M , then it can fire and yields a new marking M ′ defined by
∀p ∈ P : M ′(p) = M(p)− ω(p, t) + ω(t, p). We denote by
M

t−→N that transition t ∈ T is enabled at M in net N and
denote by M

t−→N M ′ that the firing of t at M yields M ′

in net N . We will also omit the subscript N when the net
is clear from the context.

Let T ∗ denote the set of all finite sequences of transitions
(or, for simplicity, sequences) including the empty transition
λ. For any σ ∈ T ∗, we have σλ = λσ = σ. A sequence
σ = t1t2 . . . tk ∈ T ∗ is said to be enabled at M if ∀i ∈
{1, . . . , k} : Mi

ti−→, where M1 = M and Mi
ti−→ Mi+1.

Analogously, we denote by M
σ−→N that σ ∈ T ∗ can be

fired at M and by M
σ−→N M ′ that firing σ yields M ′.

For a Petri net 〈N ,M0〉, L(N ,M0) denotes the set of finite
sequences which are enabled at M0, i.e., L(N ,M0) = {σ ∈
T ∗ : M0

σ−→N }. Given a sequence σ ∈ T ∗, we denote by
σ the set of prefixes of σ, i.e., σ = {σi ∈ T ∗ : ∃σj ∈
T ∗ s.t. σiσj = σ}. Finally, the length of sequence σ is
denoted by |σ|. For any sequence σ ∈ T ∗ and any transition
t ∈ T , we denote by #σ(t) the number of times t occurs in
σ.

We define Σ as a finite set of events (or alphabets). A
string is a finite sequence of events and we use Σ∗ to
denote the set of all strings including the empty string ε.
A labeled Petri net is a triple 〈N ,M0,L〉, where 〈N ,M0〉
is a Petri net and L : T → Σ ∪ {ε} is a labeling function
that assigns to each transition an event. In other words, for
any t ∈ T , L(t) indicates the event that can be observed
when t fires. Given a transition t ∈ T , we call it observable
if L(t) ∈ Σ; otherwise, t is unobservable. Therefore, T
is naturally partitioned as T = To∪̇Tuo, where To and

Tuo are the sets of observable and unobservable transitions,
respectively. The labeling function L can also be extended
from T to T ∗ recursively by:

(i) L(λ) = ε; and
(ii) ∀σ ∈ T ∗, t ∈ T : L(σt) = L(σ)L(t).

Therefore, the language generated by labeled Petri net
〈N ,M0,L〉 is a set of strings defined by L(L(N ,M0)) :=
{L(σ) : σ ∈ L(N ,M0)}.

Finally, we make the following standard assumption in the
analysis of partially-observed DES
A1 〈N ,M0〉 does not enter a deadlock, i.e., (∀σ ∈ T ∗ :

M0
σ−→M)(∃t ∈ T )[M

t−→].

III. COPROGNOSABILITY OF LABELED PETRI NETS

In the decentralized fault prognosis problem, the system
〈N ,M0〉 is monitored by a set of n local agents (or local
prognosers). We denote by I = {1, 2, . . . , n} the index
set. We assume that each agent has its own observation.
Formally, for any i ∈ I, we denote by Li : T → Σ∪ {ε} its
local labeling function and we denote by To,i and Tuo,i the
sets of observable transitions and unobservable transitions
w.r.t. Li, respectively. Therefore, a labeled Petri net in the
decentralized setting is written by 〈N ,M0, {Li}i∈I〉.

In the fault prognosis problem, we assume that the set
of transitions is further partitioned as two disjoint sets T =
TN∪TF , where TN is the set of normal transitions and TF is
the set of fault transitions. For any sequence σ = t1t2 . . . tk ∈
T ∗, with a slight abuse of notation, we denote by TF ∈ σ if
σ contains a fault transition, i.e., ∃i ∈ {1, . . . , k} : ti ∈ TF .

In order to characterize whether or not any fault in a
decentralized system can be predicted, a language-based
condition called coprognosability was proposed in [16]. This
definition is reviewed as follows in the context of Petri net
languages.

Definition 3.1 (Coprognosability): Let 〈N ,M0, {Li}i∈I〉
be a labeled Petri net with decentralized information. Then
〈N ,M0, {Li}〉 is said to be coprognosable w.r.t. TF if

(∀α ∈ L(N ,M0) : TF ∈ α)(∃β ∈ α : TF /∈ β)

(∃i ∈ I)(∀θ ∈ L(N ,M0) : Li(θ) = Li(β) ∧ TF /∈ θ)
(∃K ∈ N)(∀θγ ∈ L(N ,M0))[|γ| ≥ K ⇒ TF ∈ γ] (1)

Intuitively, coprognosability requires that for any fault
sequence, it must have a non-fault prefix such that, at least
one local prognoser knows for sure that a fault will occur in
a finite number of steps. Therefore, a local fault alarm can be
sent to the coordinator in order to issue a global fault alarm
before the fault actually occurs. It has been shown in [16]
that coprognosability provides the necessary and sufficient
condition under which there exists a set of local prognosers
that can achieve the following two requirements under the
disjunctive architecture1

• Any fault can be predicted before its occurrence; and
• A fault will occur in a finite number of steps once a

fault alarm is issued.

1In the disjunctive architecture, the coordinator issues a global alarm if
one local prognoser issues a fault alarm.
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(b) Petri net 〈N ,M0, {L1,L2}〉

Fig. 1. For each transition t, its associated label (e1, e2) means that
L1(t) = e1 and L3(t) = e2.

The reader is referred to [16] for how coprognosability
guarantees the above two conditions. In this paper, we will
focus on how to verify this condition for languages generated
by unbounded Petri nets.

First, let us illustrate the notion of coprognosability in Petri
nets by the following examples.

Example 3.1: Let us consider labeled Petri net
〈N ′,M ′0, {L′1,L′2}〉 with two local agents shown in
Figure 1(a), where To,1 = {t1, t3}, To,2 = {t1, t2, t3} and
TF = {f1}. Let Σ = {a, b},L′1(t1) = a,L′1(t3) = b and
L′2(t1) = L′2(t2) = L′2(t3) = b. Note that transition t3 has
to fire before the occurrence of fault transition f1, and once
it fires, the first agent observes event L′1(t3) = b, which can
only be generated by transition t3 through labeling function
L′1, it can issue a fault alarm unambiguously. Hence, the
system is coprognosable, although from the perspective of
L′2, all the observable transitions have the same label.

Example 3.2: Let us consider labeled Petri net
〈N ,M0, {L1,L2}〉 with two local agents shown in
Figure 1(b), where To,1 = {t1, t3}, To,2 = {t2, t3} and
TF = {f1}. Let Σ = {a, b},L1(t1) = L1(t3) = a and
L2(t2) = L2(t3) = b. This system is not coprognosable. To
reveal this, we consider fault sequence t3f1 ∈ L(N ,M0).
Then for t3 ∈ t3f1 : TF /∈ t3, we can find t1 ∈ L(N ,M0)
such that L1(t1) = L1(t3) = a and an arbitrarily long

non-fault sequence M0
t1(t1)

k

−−−−→, k ∈ N is defined. Similarly,
for t3, we can also find t2 ∈ L(N ,M0) such that
L2(t2) = L2(t3) = b and an arbitrarily long non-fault

sequence M0
t2(t2)

k

−−−−→, k ∈ N is defined. In other words,
when t3 occurs, none of the agents knows for sure that a
fault will occur in a finite number of steps. Therefore, fault
sequence t3f1 cannot be alarmed correctly, i.e., the system
is not coprognosable.

Before proceeding to the verification of coprognosability
for labeled Petri nets, we first define the notions of boundary
marking and non-indicator marking, which was originally
introduced in [27].

Definition 3.2: A marking M ∈ Nn is said to be

• a boundary marking if (∃tf ∈ TF )[M
tf−→]; and

• a non-indicator marking if (∀K ∈ N)(∃σ ∈ T ∗N : |σ| ≥

K)[M
σ−→].

Intuitively, a boundary marking is a marking from which a
fault can occur in the next step and a non-indicator marking is
a marking from which an arbitrarily long non-fault sequence
can occur. Since a marking is a vector with its elements taken
from the set of nonnegative integers, there does not exist a
strictly monotone decreasing sequence of markings. Hence,
under the deadlock-free assumption, M is a non-indicator
marking if and only if

∃σ1, σ2 ∈ T ∗N s.t. M σ1−→M1
σ2−→M2 and M1 ≤M2.

Next, we introduce the following lemma that illustrates
how to decide coprognosability according to the above two
notions.

Lemma 3.1: Labeled Petri net 〈N ,M0, {Li}i∈I〉 is not
coprognosable w.r.t. TF , if and only if, there exist n + 1
non-fault sequences σB , σ1, . . . , σn ∈ T ∗N such that

1) MB is a boundary marking, where M0
σB−−→MB ; and

2) For any i ∈ I, Mi is a non-indicator marking, where
M0

σi−→Mi; and
3) For any i ∈ I, Li(σB) = Li(σi).

IV. VERIFICATION OF COPROGNOSABILITY

In the previous section, we have discussed the definition
of coprognosability for labeled Petri nets and provided
an approach to characterize coprognosability based on the
notions of boundary markings and non-indicator markings.
In this section, we provide a verifiable necessary and suf-
ficient condition for coprognosability in order to show that
coprognosability is indeed decidable.

According to Lemma 3.1, the verification of coprognos-
ability is equivalent to checking the existence of a “leading”
sequence σB that goes to a boundary marking and n “fol-
lowing” sequences σ1, . . . , σn, each of them goes to a non-
indicator marking, such that σB and σi look the same under
the i-th observation mapping Li. To this end, we need to
construct a new net that tracks all such leading and following
sequences.

Let 〈N ,M0, {Li}i∈I〉 be the original labeled Petri net.
First, we define a new labeled Petri net

〈Ñ , M̃0, {L̃i}i∈I〉, where Ñ = (P̃ , T̃ , Ã, ω̃)

as follows:
• P̃ = P ∪ {pf}, where pf is a new place;
• T̃ = T ∪ {te,i : e ∈ Σ, i ∈ I}, where each te,i is a new

transition defined for each e ∈ Σ, i ∈ I;
• Ã and ω̃ are defined by:

– For any t ∈ TN , I(t) and O(t) are the same as inN
and ∀p ∈ P : ω̃(p, t) = ω(p, t), ω̃(t, p) = ω(t, p).

– For any t ∈ TF , I(t) is the same as in N with
∀p ∈ P : ω̃(p, t) = ω(p, t), while O(t) = {pf}
with ω̃(t, pf ) = 1.

– For any te,i, e ∈ Σ, i ∈ I, I(t) = O(t) = {pf} and
ω̃(te,i, pf ) = ω̃(pf , te,i) = 1.

• The initial marking is M̃0 = [M>0 0]>, where we
assume that the last place is pf .
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(b) 〈NN ,M0, {L1,L2}〉

Fig. 2. NN and Ñ are constructed based on the system in Figure 1(b).

• For each i ∈ I, the labeling function L̃i : T̃ → Σ∪{ε}
is defined as

L̃i(t) =


Li(t) if t ∈ TN
ε if t ∈ Tf
e if t = te,j and i = j

ε if t = te,j and i 6= j

Intuitively, Ñ is a copy of N except for new place pf and
new transitions te,i. In particular, for any non-fault sequence,
the dynamic of Ñ and the labels coincide with those of
Ñ . On the other hand, when a fault transition fires, a token
is sent to new place pf in Ñ signifying the occurrence of
fault. For each e ∈ Σ, a series of self-loop transitions te,i
are correspondingly defined at pf , so that for any non-fault
sequence whose label is e1 . . . ek under Li, there always
exists a self-loop sequence in the form of te1,i . . . tek,i that
produces the same observation under L̃i but produces empty
observation under L̃j , j 6= i. As will become clear later, such
a construction is used to find non-indicator markings.

Also, we denote byNN the normal net obtained by remov-
ing transitions in TF from N . We denote by NN,1, . . . ,NN,n
n copies of NN with disjoint places PN,i and transitions
TN,i. For example, for Petri net shown in Figure 1(b), Ñ
and NN are shown in Figures 2(a) and 2(b), respectively.

Next, we build a new (unlabeled) Petri net
〈N||,M0,||〉 which synchronizes 〈Ñ , M̃0〉 with
〈NN,1,M0〉, . . . , 〈NN,n,M0〉 so that the move in the
first component and the (i+ 1)-th component have the same
label under L̃i and Li. Formally, Petri net

〈N||,M0,||〉, where N|| = (P||, T||, A||, ω||),

is defined as follows:
• P|| = P̃ ∪ PN,1 ∪ PN,2 ∪ · · · ∪ PN,n;
• T|| ⊆ T̃+ × T+

N,1 × T
+
N,2 × · · · × T

+
N,n \ {(λ, . . . , λ)︸ ︷︷ ︸

(n+1)times

};

• A|| and ω|| are defined by:

– For any t0 ∈ T̃ , transition (t0, t1, t2, . . . , tn) ∈ T||

is defined if, for any i ∈ I, we have

[L̃i(t0) = Li(ti)] ∧ [L̃i(t0)=ε⇒ ti=λ] (2)

– For each i ∈ I, transition (t0, t1, . . . , ti, . . . , tn) ∈
T|| is defined if

[Li(ti)=ε] ∧ [ti 6=λ] ∧ [∀j≥0, j 6= i : tj=λ] (3)

– For each defined transition t‖ =
(t0, t1, t2, . . . , tn) ∈ T||, we have I(t‖) =⋃
i≥0 I(ti) and O(t‖) =

⋃
i≥0O(ti). Also,

ω||(t‖, p) =

{
ω̃(t0, p) if p ∈ P̃
ωN,i(ti, p) if p ∈ PN,i

ω||(p, t‖) =

{
ω̃(p, t0) if p ∈ P̃
ωN,i(p, ti) if p ∈ PN,i

• M0,|| = [M̃>0 M>0 M>0 . . .M>0 ]>.

Intuitively, net 〈N||,M0,||〉 consists of (n+1) components,
where the first component Ñ is used to track the “leading”
sequence that goes to a boundary marking and the (i + 1)-
th component NN,i is used to track the i-th “following”
sequence that goes to a non-indicator marking. Moreover,
for each i ∈ I, the leading sequence and the i-th following
sequence have the same observation based on the labeling
functions Li and L̃i.

More specifically, for any transition t‖ =
(t0, t1, . . . , ti, . . . , tn) ∈ T|| satisfying Equation (2),
the leading transition moves and each following
component should move accordingly if this transition
does not look as ε locally. Similarly, for any transition
t‖ = (t0, t1, . . . , ti, . . . , tn) ∈ T|| satisfying Equation (3),
each following component can execute a locally
unobservable transition without involving the leading
component and other following components. To sum up,
for any sequence σ = (σ′, σ1, σ2, . . . , σn) ∈ L(N||,M0,||)

we can conclude that L̃i(σ′) = Li(σi). On the other
hand, for any σ′ ∈ L(Ñ , M̃0), σi ∈ L(NN,i,M0)
and L̃i(σ′) = Li(σi), i ∈ I, there exists a sequence
σ ∈ L(N||,M0,||) such that it is in the form of
(σ′, σ1, σ2, . . . , σn) (possibly by inserting λ). This
construction of N|| is motivated by the so called verifier
(or twin-machine) construction for diagnosability and
prognosability analysis; see, e.g., [7], [8], [18], [20],
[29]. Here, we adopt the basic idea and extend it to the
decentralized setting for the purpose of fault prognosis with
non-trivial modifications.

The following theorem reveals how to use net 〈N||,M0,||〉
to test coprognosability for labeled Petri nets.

Theorem 4.1: Labeled Petri net 〈N ,M0, {Li}i∈I〉 is not
coprognosable w.r.t. TF , if and only if, there exists a se-
quence

M0,||
α−→N|| M1

β−→N|| M2 (4)
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in 〈N||,M0,||〉 such that

(M2 ≥M1) ∧ (
∨

t∈TF×{λ}×···×{λ}

#α(t) ≥ 1)∧ (5)

(
∧
i∈I

∨
t∈T̃+×T+

N,1×···×T
+
N,i−1×TN,i×T

+
N,i+1×···×T

+
N,n

#β(t) ≥ 1)

Let us explain the basic idea of the above theorem. Note
that, each sequence in N‖ consists of (n + 1) compo-
nents. We denote by αi−1 the i-th components in α, i.e.,
α = (α0, α1, . . . , αn); the same for β. Now, let us assume
that there exists a sequence satisfying the three conditions.
Since

∨
t∈TF×{λ}×···×{λ}#α(t) ≥ 1, we know that the

first component α0 must contain a fault transition and there
exists a prefix of α0 leading to a boundary marking. Also,
the last condition implies that β1, β2, . . . , βn are all non-λ.
This together with M2 ≥ M1 guarantees that any marking
reached by a prefix of α1, α2, . . . , αn is a non-indicator
marking, since each βi can be fired for an arbitrary number of
times. Thus, the conditions in Theorem 4.1 essentially ensure
that there exist a leading sequence that goes to a boundary
marking and n following sequences, each of them goes to
a non-indicator marking, such that the leading sequence
and each following sequence are locally observationally
equivalent, which disproves coprognosability. On the other
hand, if the labeled Petri net is not coprognosable, i.e.,
there exists a sequence α such that M0,||

α−→N|| M1 =

[M>B M>1,1 M
>
1,2 . . .M

>
1,n]>, where MB is a boundary mark-

ing and M1,1,M1,2, . . . ,M1,n are n non-indicator markings.
As all fault transitions are unobservable in L̃, we have
M1

(tf ,λ,...,λ)−−−−−−−→N|| M2 for some tf ∈ TF . Such an M2 can
be extended to a covering since the self-loops in the form of
te,i in Ñ can track any sequence that forms a covering for
each component.

In the above theorem, we have shown that checking non-
coprognosability is equivalent to checking the existence of
a specific sequence in net 〈N‖,M0,‖〉. This condition is
actually verifiable as a special case of Petri nets model
checking problem called the Yen’s problem [26]. This leads
to the decidability of coprognosability.

Theorem 4.2: Checking coprognosability is decidable for
label Petri nets. Moreover, it is in EXPSPACE.

Proof: The decidability comes from the fact that the ex-
istence of a sequence satisfying the Equation (5) is expressed
by a logic called Yen’s formula [4], [26], whose satisfiability
is decidable. Specifically, Yen’s result allows us to test the
existence of a sequence M0

σ1−→ M1
σ2−→ · · ·Mk−1

σk−→
Mk such that a predicate φ(M1, . . . ,Mk, σ1, . . . , σk) holds,
where φ(M1, . . . ,Mk, σ1, . . . , σk) is a marking and transi-
tion predicate obtained by conjunctions and disjunctions of
the terms in the form of Mi(p) = Mj(p

′), Mi(p) > Mj(p
′),

#σi(t) ≤ c, #σi(t) ≥ c and #σi(t) ≤ #σj (t
′), where

t, t′ ∈ T , p, p′ ∈ P and c is an arbitrary constant. For
more detail on Yen’s logic, the reader is referred to the
literature [26]. Moreover, it has been shown in [4] that the
Yen’s problem can be decided in EXPSPACE if M1 ≤ Mk

and there is no transition predicate. Clearly, our condition

in Theorem 4.1 satisfies the Yen’s formula and M1 ≤ M2.
Note that transitions predicates can be replaced by marking
predicates. Moreover, the size of our condition is polynomial
in the number of transitions and number of places in the
original net (but is exponential in the number of local agents).
Therefore, we conclude that checking coprognosability is
decidable and it can be solved in EXPSPACE in the size
of the original net when the number of local agents is fixed.

Finally, we show how to use Theorem 4.1 to verify
coprognosability by the following example.

Example 4.1: Let us again consider labeled Petri net
〈N ,M0, {L1,L2}〉 shown in Figure 1(b), where To,1 =
{t1, t3}, To,2 = {t2, t3} and TF = {f1}. Its correspond-
ing net 〈N||,M0,||〉 is depicted in Figure 3. For the sake
of clarity, we use super-script Ni for each transition and
place that correspond to ÑN,i. For example, transition is
defined (t1, t

N1
1 , λ) in defined in N||, since L1(t1) = a and

L2(t1) = ε, i.e., Equation (2) is fulfilled. Similarly, transition
(λ, λ, tN2

1 ) is also defined since L2(t1) = ε; this is the
situation described in Equation (3).

As we discussed in Example 3.2, the system is not coprog-
nosable. Next we show this using Theorem 4.1. Specifically,
we have the following sequence in 〈N||,M0,||〉:

1
0
0
1
0
1
0


︸︷︷︸

=:M0,||

=:α︷ ︸︸ ︷
(t3, t

N1
1 , t

N2
2 )(f1, λ, λ)

−−−−−−−−−−−−−−−−−−−→



0
0
1
1
0
1
0


︸︷︷︸
=:M1

=:β1︷ ︸︸ ︷
(ta,1, t

N1
1 , λ)

−−−−−−−−−−−→



0
0
1
1
0
1
0


=:β2︷ ︸︸ ︷

(tb,2, λ, t
N2
2 )

−−−−−−−−−−−→



0
0
1
1
0
1
0


︸︷︷︸
=:M2

where places in each marking are ordered by
{p1, p2, pf , pN1

1 , pN1
2 , pN2

1 , pN2
2 }. This sequence satisfies

the condition in Equation (5). First, we have
(f1, λ, λ) ∈ TF×{λ}×{λ} and #α((f1, λ, λ)) = 1. Second,
for β := β1β2, we have (ta,1, t

N1
1 , λ) ∈ T̃+ × TN,1 × T+

N,2,
(tb,2, λ, t

N2
2 ) ∈ T̃+ × T+

N,1 × TN,2 and #β((ta,1, t
N1
1 , λ)) =

#β((tb,2, λ, t
N2
2 )) = 1. Also, it is clear that M2 = M1.

Therefore, the system is not coprognosable according to
Theorem 4.1.

V. CONCLUSION

In this paper, we solve the problem of verifying coprog-
nosability for decentralized labeled Petri nets. We show that
this problem is decidable by providing a verifiable necessary
and sufficient condition. Our result extends existing results
on coprognosability analysis from regular languages to Petri
net languages. Note that coprognosability is a condition that
determines a priori whether or not any fault can be predicted.
How to develop efficient online prognostic algorithms for
decentralized Petri nets is an important future direction.
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