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Abstract— In this paper, we revisit the verification of robust
diagnosability and robust prognosability in the context of
partially-observed discrete-event systems. In these problems, we
assume that the actual system belongs to a set of possible models
and the system is said to be robustly diagnosable (respectively,
prognosable) if we can successfully detect (respectively, predict)
the occurrences of fault events even if we do not know the
actual model a priori. Previous algorithms for the verification
of these two conditions require exponential complexity in the
number of possible models. In the paper, we show that both
robust diagnosability and robust prognosability can be tested in
a pairwise manner. This observation leads to new approaches for
the verification of these two conditions, which are polynomial in
both the number of states and the number of possible models.

I. INTRODUCTION

This paper is concerned with the problems of fault diag-

nosis and fault prognosis of Discrete-Event Systems (DES).

In the fault diagnosis problem, the goal is to detect and

isolate certain significant behaviors based on model-based

inferencing driven by run-time observations, while in the

fault prognosis problem, the goal is to predict certain fault

behaviors and issue alarms before their occurrences. Due

to their importance in many large-scale automated systems,

these two problems have drawn considerable attention in the

DES literature in the past years; see, e.g., some recent works

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],

[14], [15], [16], [17], [18], [19] and a comprehensive survey

on fault diagnosis [20].

To handle uncertainty in real-world systems, in the anal-

ysis of DES, several different notions of robustness have

been proposed. For example, in [21], [22], robustness under

sensor failures was investigated. In [23], [24], the problem of

fault diagnosis with incomplete model was studied. In [25],

[26], [27], the reliability issue in decentralized fault diagnosis

and prognosis was investigated. A more widely investigated

source of uncertainty in DES is the model uncertainty. The

model uncertainty issue was originally studied in the context

of robust supervisory control [28], [29], [30], [31], [32]. In

the context of fault diagnosis, in [33], the authors investigated

the robust fault diagnosis problem in the presence of model

uncertainty. In [34], a framework of robust fault prognosis

was proposed in order to handle model uncertainty in the

fault prognosis problem.
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In this paper, we investigate the robust fault diagnosis and

prognosis problems under model uncertainty in the frame-

work of [33], [34], where it is assumed that we do not know

precisely the actual system model and it belongs to a set of

possible models. The goal is to detect (or predict) the occur-

rences of fault behaviors correctly no matter which model is

true. It has been shown that the notion of robust diagnosabil-

ity serves as the necessary and sufficient condition for the

existence of a robust diagnoser against model uncertainty

[33]. Similarly, the notion of robust prognosability was also

proposed in [34] as the necessary and sufficient condition for

the existence of a robust prognoser. Verification algorithms

for robust diagnosability and robust prognosability were also

provided in [33] and [34], respectively; both of them are

polynomial in the number of states, but are exponential in

the number of possible models as the product space of all

possible models needs to be explored.

In this paper, we revisit the verification of robust diagnos-

ability and robust prognosability in the framework of [33],

[34]. The main contribution of this paper is to show that

both of these two conditions can be verified in polynomial-

time, not only in the number of states, but also in the

number of all possible models. This result comes from a

simple but very useful observation that both of these two

conditions can be verified in a pairwise manner, rather than

exploring the entire product space of all possible models.

That is, to test whether or not a set of possible models

is robustly diagnosable (respectively, robust prognosable), if

suffices to test, for all pairs of models, whether or not a set

of two possible models is robustly diagnosable (respectively,

robust prognosable). Our results considerably improve the

verification complexity of robust diagnosability and robust

prognosability, in particular, when the number of possible

models is relatively large.

The rest of this paper is organized as follows. In Section II,

we present some necessary preliminaries and review the

definitions of robust diagnosability and robust prognosability.

Section III presents the main results of this paper, i.e.,

both robust diagnosability and robust prognosability can be

verified in a pairwise manner. An illustrative example is

provided in Section IV. Finally, we conclude the paper in

Section V.

II. PRELIMINARY

A. System Model

Let Σ be a finite set of events. We denote by Σ∗ the

set of all finite strings over Σ including the empty string

ε. We define Σε = Σ ∪ {ε}. A language L ⊆ Σ∗ is a set
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of strings. For any string s ∈ L, |s| denotes its length; we

define L/s := {t ∈ Σ∗ : st ∈ L}.

A DES is modeled by a finite-state automaton

G = (Q,Σ, δ, q0) (1)

where Q is a finite set of states, Σ is a finite set of events,

δ : Q×Σ → Q is the partial deterministic transition function

and q0 is the initial state. Function δ is extended to Q×Σ∗ in

the usual manner [35]. For the sake of simplicity, hereafter,

we write δ(q0, s) by δ(s), i.e., δ(s) is the state reached by

string s from the initial state. The language generated by G is

L(G) = {s ∈ Σ∗ : δ(s)!}, where “!” means “is defined”. We

also assume that G is live, i.e., ∀q ∈ Q, ∃σ ∈ Σ : δ(q, σ)!.
The event set Σ is partitioned into two disjoint sets Σ =

Σo∪̇Σuo, where Σo is the set of observable events and Σuo

is the set of unobservable events. The natural projection P :
Σ∗ → Σ∗

o is defined recursively by:

P (ε) = ε and P (sσ) =

{
P (s)σ if σ ∈ Σo

P (s) if σ ∈ Σuo
(2)

Natural projection is also extended to P : 2Σ
∗

→ 2Σ
∗
o by:

for any L ⊆ Σ∗ : P (L) = {t ∈ Σ∗
o : ∃s ∈ L s.t. P (s) = t}.

In the fault diagnosis/prognosis problem, the system is

subject to fault. Specifically, we assume that the nor-

mal behavior of G is modeled by an automaton GN =
(QN ,Σ, δN , qN0 ) such that L(GN ) ⊆ L(G), i.e., any string

in L(G) \ L(GN ) is a fault string and any string in L(GN )
is a non-fault string. For the sake of simplicity and without

loss of generality, we assume that GN is a sub-automaton

of G [35]. Under this assumption, for any string s ∈ L(G),
s is a fault string if and only if δ(s) /∈ QN ⊆ Q.

For any state q ∈ QN , we say that q is a boundary state if

∃σ ∈ Σ : δ(q, σ) /∈ QN , i.e., a fault can occur from this state.

We denote by ∂(GN ) ⊆ QN the set of boundary states in

GN . We say that q is a non-indicator state if ∀K ∈ N, ∃s ∈
L(GN , q) : |s| ≥ K, i.e., an arbitrary long non-fault behavior

can occur from this state. We denote by Υ(GN ) ⊆ QN the

set of non-indicator states in GN .

B. Robust Fault Diagnosis and Prognosis

In the context of robust fault diagnosis and prognosis, we

do not know the system model precisely. Instead, we assume

that the actual system belongs to a set of n possible models

G = {G1, G2, . . . , Gn} (3)

where Gi = (Qi,Σ, δi, q0,i), i = 1, . . . , n. We denote by

I = {1, 2, . . . , n} the index set. For each model Gi, i ∈ I,

it has its own normal model GN
i = (QN

i ,Σ, δNi , qN0,i).
In [33] (respectively, [34]), the condition of robust di-

agnosability (respectively, prognosability) was proposed as

the necessary and sufficient condition for the existence of

a robust diagnoser (respectively, prognoser) under model

uncertainty. We recall these two conditions as follows.

Definition 1: (Robust Diagnosability [33]). The set of pos-

sible models {Gi : i ∈ I} is said to be robustly diagnosable

if

(∀i ∈ I)(∃K ∈ N)(∀s ∈ L(Gi) \ L(G
N
i ))(∀t ∈ L(Gi)/s)

s.t. [|t| ≥ K] ⇒ [∀j ∈ I, ∀w ∈ L(GN
j ) : P (w) 
= P (st)]

(4)
Intuitively, robust diagnosability requires that no matter what

the actual model is, any fault string can be distinguished,

in a finite number of steps, from any non-fault strings

in any possible models; hence the fault can be detected

unambiguously.

Definition 2: (Robust Prognosability [34]). The set of pos-

sible models {Gi : i ∈ I} is said to be robustly prognosable

if

(∀i ∈ I)(∀s ∈ L(GN
i ) : δi(s) ∈ ∂(GN

i ))

(∀j ∈ I)(∀t ∈ L(GN
j ) : δj(t) ∈ Υ(GN

j ))[P (w) 
= P (s)]
(5)

Intuitively, robust prognosability requires that no matter what

the true model is, a string that leads to a boundary state can

always be distinguished from any strings leading to non-

indicator states in any possible models; hence a fault alarm

can be issued unambiguously.

In [33], the verification of robust diagnosability has been

studied. Under the assumption that GN
i is a sub-automaton

of Gi and the use of natural projection, the complexity of

the existing verification algorithm is

O(n · |Σ| ·

(∑
i∈I

|Qi|

)
·

(∏
i∈I

|QN
i |

)
)

which is polynomial in the number of states in each model

but is exponential in the number of all possible models

due to the presence of the “
∏

” term. The verification of

robust prognosability has also been investigated in [34]; the

complexity of the verification algorithm is

O(n · |Σ| ·

(∑
i∈I

|QN
i |

)
·

(∏
i∈I

|QN
i |

)
)

, which is still exponential in the number of all possible

models. In the next section, we will show how to improve

the verification complexity by removing the “
∏

” term.

III. MAIN RESULTS

In this section, we present the main results of this paper.

That is, both robust diagnosability and robust prognosability

can be verified in a pairwise manner. Specifically, we show

that to verify robust diagnosability (or robust prognosability)

for the set of all possible models, it suffices to verify this

condition for all pairs of two models.

A. Pairwise Verification of Robust Prognosability

We start by showing that robust prognosability can be

verified in a pairwise manner as this notion is easier to

deal with compared with robust diagnosability. We have the

following main result.

Theorem 1: The set of all possible models {Gi : i ∈ I}
is robustly prognosable, if and only if, for any i, j ∈ I, the

set of two models {Gi, Gj} is robustly prognosable.
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Proof: (⇒) By contraposition. Suppose that there exist

i, j ∈ I such that {Gi, Gj} is not robustly prognosable. This

implies that

(∃i′ ∈ {i, j})(∃s ∈ L(GN
i′ ) : δi′(s) ∈ ∂(GN

i′ ))

(∃j′ ∈ {i, j})(∃t ∈ L(GN
j′ )) : δj′(t) ∈ Υ(GN

j′ )) (6)

[P (w) = P (s)]

Since {i, j} ⊆ I, then we know immediately that {Gi : i ∈
I} is not robustly prognosable.

(⇐) By contraposition. Suppose that {Gi : i ∈ I} is not

robustly prognosable, i.e.,

(∃i ∈ I)(∃s ∈ L(GN
i ) : δi(s) ∈ ∂(GN

i ))

(∃j ∈ I)(∃t ∈ L(GN
j )) : δj(t) ∈ Υ(GN

j ))[P (w) = P (s)]
(7)

Let i and j be two models satisfying Equation (7). Since the

first four quantifiers in Equation (7) are all existential, we

can replace I in Equation (7) by {i, j}. Therefore, we know

that {Gi, Gj} is not robustly prognosable.

Theorem 1 suggests immediately an improved approach

for the verification of robust prognosability. That is, we

consider all possible sets of two models {Gi, Gj} (including

the case of i = j) and verify whether or not {Gi, Gj} is

robustly prognosable by the algorithm in [34]. If there exists

such a pair of models that is not robustly prognosable, then

the set of all models is not robustly prognosable; otherwise,

by Theorem 1, the set of all models is robustly prognosable.

This approach is summarized as Algorithm 1.

Algorithm 1 Polynomial Test for Robust Prognosability

1: for all i = 1, . . . , n do

2: for all j = i, . . . , n do

3: Test whether or not {Gi, Gj} is not robustly

prognosable by the algorithm in [34]

4: if {Gi, Gj} is not robustly prognosable then

5: return “{Gi : i∈I} is not robustly prognos-

able”

6: end if

7: end for

8: end for

9: return “{Gi : i ∈ I} is robustly prognosable”

For a set of two possible models {Gi, Gj}, recall that

verifying robust prognosability by the algorithm in [34]

requires

O(|Σ| · |QN
i | · |QN

j | ·
(
|QN

i |+ |QN
j |

)
)

Moreover, we only need to repeat this procedure for n(n+
1)/2 times. Therefore, the overall complexity of Algorithm 1

is

O(|Σ| ·
∑
i,j∈I

(
|QN

i | · |QN
j | ·

(
|QN

i |+ |QN
j |

))
)

which is polynomial not only in the number of states, but

also in the number of all possible models.

B. Pairwise Verification of Robust Diagnosability

Hereafter, we show that robust diagnosability can also

be verified in such a pairwise manner. However, showing

this result is a little bit more difficult than the case of

prognosability. As we can see in Equation (4), for any

model i ∈ I, the choice of model j that violates robust

diagnosability may depend on the choice of integer K ∈ N.

To handle this technique issue, we first present a lemma that

helps us to estimate the upper bound of K when the system

is robustly diagnosable.

Lemma 1: Let Gi and Gj be two models. Let s ∈ L(Gi)\
L(GN

i ) be a faulty string in Gi and t ∈ L(Gi)/s be its

continuation such that |t| ≥ |Qi| · |Qj |. If there exists a

string w ∈ L(GN
j ) such that P (w) = P (st), then for any

K ∈ N,

(∃t′ ∈ L(Gi)/s : |t
′| ≥ K)(∃w′ ∈ L(GN

j ))[P (w′) = P (st′)]
(8)

Proof: Since P (w) = P (st), for string w ∈ L(Gj),
we can write it by w = w1w2 such that P (w1) = P (s) and

P (w2) = P (t). Therefore, there exists a string of pairs of

events

(α1
1, α

2
1)(α

1
2, α

2
2) . . . (α

1
m, α2

m)︸ ︷︷ ︸
=:α

(β1
1 , β

2
1)(β

1
2 , β

2
2) . . . (β

1
l , β

2
l )︸ ︷︷ ︸

=:β

∈ (Σε × Σε)
∗ (9)

such that

s=α1
1 . . . α

1
m, w1=α2

1 . . . α
2
m, t=β1

1 . . . β
1
l , w2=β2

1 . . . β
2
l

(10)

and

[∀k ≤ m : P (α1
k) = P (α2

k)] ∧ [∀k ≤ l : P (β1
k) = P (β2

k)]
(11)

Essentially, α and β are strings of event paris that are

obtained by inserting ε in s, t, w1 and w2. This is similar

to the well-known twin-machine construction.

For any k = 1, . . . , l, we define

q1k := δi(sβ
1
1 . . . β

1
k) ∈ Qi

and

q2k := δj(w1β
2
1 . . . β

2
k) ∈ Qj

Let 0 ≤ θ1 < θ2 < · · · < θ|t| ≤ l be the indices such that

∀k = 1, . . . , |t| : β1
θk


= ε. We know that there are |t| such

indices since |β1
1 . . . β

1
l | = |t|. Let us consider the follow

multi-set

S = {(q1θ1 , q
2
θ1
), (q1θ2 , q

2
θ2
), . . . , (q1θ|t| , q

2
θ|t|

)} (12)

Since |t| ≥ |Qi| · |Qj |, we know that there are two repeated

states in S , say (q1θa , q
2
θa
) = (q1θb , q

2
θb
), where 1 ≤ a < b ≤

|t|.
Therefore, we know that, for any K ∈ N, the following

strings are well-defined

sβ1
1 . . . β

1
θa
(β1

θa+1 . . . β
1
θb
)K ∈ L(Gi)

w1β
2
1 . . . β

2
θa
(β2

θa+1 . . . β
2
θb
)K ∈ L(GN

j )
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Recall that ∀k ≤ l : P (β1
k) = P (β2

k). Therefore, we have

(∃β1
1 . . . β

1
θa
(β1

θa+1 . . . β
1
θb
)K︸ ︷︷ ︸

=:t′

∈ L(Gi)/s : |t
′| ≥ K)

(∃w1β
1
2 . . . β

2
θa
(β2

θa+1 . . . β
2
θb
)K︸ ︷︷ ︸

=:w′

∈ L(GN
j )) (13)

s.t. [P (w′) = P (st′)]

Note that, |t′| ≥ K comes from the fact that β1
θb


= ε.
With the help of Lemma 1, we are now ready to show

that robust diagnosability can also be tested in a pairwise

manner.

Theorem 2: The set of all possible models {Gi : i ∈ I}
is robustly diagnosable, if and only if, for any i, j ∈ I, the

set of two models {Gi, Gj} is robustly diagnosable.

Proof: (⇒) By contraposition. Suppose that there exist

i, j ∈ I such that {Gi, Gj} is not robustly diagnosable. This

implies that

(∃i′ ∈ {i, j})(∀K ∈ N)(∃s ∈ L(Gi′) \ L(G
N
i′ ))

(∃t ∈ L(Gi′)/s) (14)

s.t. [|t| ≥ K] ∧ [∃j′ ∈ {i, j}, ∃w ∈ L(GN
j′ ) : P (st) = P (w)]

Since {i, j} ⊆ I, then we know immediately that {Gi : i ∈
I} is not robustly diagnosable.

(⇐) By contraposition. Suppose that {Gi : i ∈ I} is not

robustly diagnosable, i.e.,

(∃i ∈ I)(∀K ∈ N)(∃s ∈ L(Gi) \ L(G
N
i ))(∃t ∈ L(Gi)/s)

s.t. [|t| ≥ K] ∧ [∃j ∈ I, ∃w ∈ L(GN
j ) : P (st) = P (w)]

(15)

Let i ∈ I be a model such that Equation (15) is satisfied.

Let us choose K such that

K ≥ |Qi| ·max
j∈I

{|Qj |} (16)

Then, for the above K, there exist sK ∈ L(Gi)\L(G
N
i ) and

tK ∈ L(Gi)/sK such that |tK | ≥ K and there exists j ∈ I
such that ∃w ∈ L(GN

j ) : P (sKtK) = P (w).
Let us consider the above string sK and model j ∈ I.

Next, we show that {Gi, Gj} is not robustly diagnosable.

Since |tK | ≥ K ≥ |Qi| · |Qj |, by Lemma 1, we know that

(∀K ′ ∈ N)(∃t′ ∈ L(Gi)/sK : |t′| ≥ K ′)(∃w′ ∈ L(GN
j ))

s.t. [P (w′) = P (sKt′)] (17)

Therefore, we have that

(∃i ∈ {i, j})(∀K ′ ∈ N)(∃sK ∈ L(Gi) \ L(G
N
i ))

(∃t′ ∈ L(Gi)/sK) (18)

s.t. [|t′|≥K ′]∧[∃j∈{i, j}, ∃w′∈L(GN
j ) : P (w′)=P (sKt′)]

That is, {Gi, Gj} is not robustly diagnosable.

Similar to the case of robust prognosability, Theorem 2 al-

so suggests a direct way to improve the verification complex-

ity of robust diagnosability. That is, we consider all possible

sets of two models {Gi, Gj} (including the case of i = j)

and verify whether or not {Gi, Gj} is robustly diagnosable

using the algorithms in [33]. Then, by Theorem 2, the set of

all models is not robustly prognosable if and only if one such

a pair of models is not robustly diagnosable. This approach

is summarized as Algorithm 2.

Algorithm 2 Polynomial Test for Robust Diagnosability

1: for all i = 1, . . . , n do

2: for all j = i, . . . , n do

3: Test whether or not is {Gi, Gj} is robustly di-

agonsable by the algorithm in [33]

4: if {Gi, Gj} is not robustly diagonsable then

5: return “{Gi : i∈I} is not robustly diagons-

able”

6: end if

7: end for

8: end for

9: return “{Gi : i ∈ I} is robustly diagonsable”

Recall that, for a set of two possible models {Gi, Gj},

verifying robust diagnosability by the algorithm in [33]

requires

O(|Σ| · |QN
i | · |QN

j | · (|Qi|+ |Qj |))

Also, we only need to repeat this procedure for n(n+ 1)/2
times. Therefore, the complexity of Algorithm 2 is

O(|Σ| ·
∑
i,j∈I

(
|QN

i | · |QN
j | · (|Qi|+ |Qj |)

)
)

which is polynomial in both the number of states and the

number of all possible models.

IV. ILLUSTRATIVE EXAMPLE

In this section, we illustrate our main results by an

example adopted from [1], [34].

Dependency graph (DG) is a technique used in operation

systems that records the commands issued via a log file. In

a DG, there are two types of states, PROCESSES and FILES,

and transitions between states define the dependencies of the

command issued. Let us consider an operation system with

three possible dependency graphs G1, G2 and G3 shown in

Figures 1(a), 1(b) and 1(c), respectively. In each system,

events a, b, c, d, e represent CREATE, WRITE, READ, DELETE

and BUSY, respectively. We require that, for each possible

model, event d representing DELETE should not happen

immediately after the occurrence of event c representing

READ. Therefore, the normal behaviors GN
1 , GN

2 and GN
3 are

shown in Figures 1(d), 1(e) and 1(f), respectively. Note that

each GN
i is a sub-automaton of Gi. Moreover, we assume

that Σo = {b, c, e} is the set of observable events. Then we

are interested in whether or not {G1, G2, G3} is robustly

prognosable. To see this, let us consider models G1 and G2

first. We can verify according to the algorithm in [34] that

{G1, G2} is robustly prognosable. However, if we consider

models G2 and G3, then we have δ2(aad) = FILE 2 ∈
Υ(GN

2 ) δ3(aad) = FILE 2 ∈ ∂(GN
2 ) and P (aad) = P (aad).
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Fig. 1: Three possible dependency graphs for an operation system.

Therefore, we know that {G2, G3} is not robustly prognos-

able and by Theorem 1, we know that the entire system

{G1, G2, G3} is not robustly prognosable.

V. DISCUSSION AND CONCLUSION

There are some other problems in the literature whose

parameter structures are similar to the robust diagno-

sis/prognosis problem. One related problem is the decentral-

ized diagnosis/prognosis problem [36], [4], where a set of

local agents is involved. However, it has been shown that

testing codiagnosability (or coprognosability) is PSPACE-

hard in the number of local agents [6]. Another related

problem is the modular diagnosis/prognosis problem [37],

where the monolithic model is composed by a set of local

modules. It has also been shown that testing diagnosability

(or prognosability) for the monolithic model is PSPACE-hard

in the number of modules [38].

As in the robust diagnosis and prognosis problems, the

number of possible models is also a parameter, it is natural

to ask whether or not these two problems are also PSPACE-

hard or they have polynomial-time algorithms. Our paper

provides positive answer to the above question. The positive

results come from the fact that both robust diagnosability

and robust prognosability can be verified in a pairwise
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manner, which allows us to leverage existing algorithms

to develop polynomial-time algorithms for verifying these

two conditions. In the future, we will extend our results to

supervisor control problem [39], [40], [41], [42], [43].
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