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Abstract—The objective of drift counteraction optimal con-
trol (DCOC) problem is to compute an optimal control law
that maximizes the expected time of violating specified system
constraints. In this paper, we reformulate the DCOC problem as
a reinforcement learning (RL) one, removing the requirements
of disturbance measurements and prior knowledge of the dis-
turbance evolution. The optimal control policy for the DCOC
is then trained with RL algorithms. As an example, we treat
the problem of adaptive cruise control, where the objective is to
maintain desired distance headway and time headway from the
lead vehicle, while the acceleration and speed of the host vehicle
are constrained based on safety, comfort, and fuel economy
considerations. An informed approximate Q-learning algorithm
is developed with efficient training, fast convergence, and good
performance. The control performance is compared with a
heuristic driver model in simulation and superior performance
is demonstrated.

Index  Terms— Adaptive cruise control, approximate
Q-learning, drift counteraction control, reinforcement learning

I. INTRODUCTION

HE objective of the drift counteraction optimal control
T(DCOC) is to find a control law such that the expected
time before system constraint violations occur is maximized.
Such a control law can be often interpreted as providing drift
counteraction which explains its name — drift counteraction
optimal control [1]. Numerous DCOC applications have been
previously reported, including satellite control [2], glider flight
management [3], and hybrid electric vehicle energy manage-
ment [4].

Variants of value iteration methods have been previously
exploited in the literature to solve the DCOC problem [1]-[4],
where two prerequisites are needed. Firstly, the disturbance
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needs to be measured at each time step. Secondly, the dis-
turbance is typically modeled as a Markov chain and the
transition probabilities are assumed to be known. Both the
assumptions of measured disturbance and known transition
probabilities are limiting in view of potential applications of
these techniques to practical systems.

To address the above issues, we reformulate the DCOC
as a reinforcement learning (RL) problem. RL is a compu-
tational approach to get the agent to act so as to maximize
its expected cumulative rewards through iterative interaction
with an unknown, complex, and uncertain environment. This
reformulation provides several advantages. Firstly, the RL
does not require the disturbance measurements; only state
information is needed. Secondly, RL is able to obtain an
optimal policy through trial-and-error learning without prior
knowledge of the transition probability of the Markov chain. In
addition, the explicit form of the model may also be unknown.
Furthermore, a rich set of algorithms have been developed to
solve RL problems.

Among numerous RL algorithms developed in the past
few decades, Q-learning [5] is arguably the most well-
known model-free RL algorithm. It iteratively learns and
updates the optimal action-value functions based on received
costs. By virtue of guaranteed convergence and ease of
implementation, Q-learning has found great success in many
applications [6]-[9]. However, it is noteworthy that Q-learning
only works for Markov Decision Processes (MDPs) with
discrete state space and discrete action space [10]. For sys-
tems with large or continuous state space, an action value
function estimator needs to be exploited to avoid information
loss and curse of dimensionality caused by state/action dis-
cretization. In practice, the linear function based approximate
Q-learning (AQL) [11] is frequently used due to its simplicity
and fast convergence [12]-[14]. See Section II for a more
detailed introduction on RL.

As a case study, we apply RL to the development of an
Adaptive Cruise Control (ACC) system, which automatically
adjusts a car’s speed to maintain a safe following distance.
Extensive studies on ACC control designs have been reported
in the literature to control a car to follow a desired equi-
librium speed-gap condition, including Proportional Integral
and Derivative control [15], Fuzzy Logic [16], and Model
Predictive Control [17], [18]. In this paper, we design the
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ACC control in a DCOC framework [19], that is, we aim to
maximize the expected time before system constraints (due to
safety, comfort, and fuel economy) are violated. Note although
distance to the lead vehicle can be measured at current step,
the lead vehicle speed change at next step is unknown, which
poses a great challenge to maintain the ego/host vehicle within
the desired system constraints. This motivates the use of
RL that can iteratively learn the lead vehicle dynamics by
interacting with the environment and improve the control
policy adaptively.

In this study, we first reformulate the DCOC ACC problem
as a RL one. By exploitation of system dynamics, the feature
space, stage cost, and action selection are carefully designed
and a model-based Informed Approximate Q-learning (IAQL)
algorithm is developed with efficient exploitation and fast
convergence. Unlike conventional model-free Approximate
Q-Learning (AQL), the proposed IAQL exploits the system
dynamics in the feature design and control space construction
to guide the training. As we show in the paper, the proposed
TIAQL converges whereas the conventional AQL may not.
We train the TAQL algorithm in simulation, and a hybrid
Markov process is used to model the lead vehicle dynam-
ics. The RL control performance is then compared with a
benchmark and its enhanced variant. Superior performance is
demonstrated.

The contributions of this paper include the following.
Firstly, we demonstrate how the DCOC problem can be
reformulated as a RL problem, removing the requirements of
prior knowledge of disturbance measurements and transition
probabilities. Secondly, the ACC problem is treated and the
TAQL algorithm is developed to train the control law efficiently
and effectively by exploitation of system model whereas
conventional AQL does not converge in this ACC problem.
The control performance is compared with a benchmark and
superior performance is demonstrated.

The rest of the paper is organized as follows. Section II
presents a background introduction on RL. The reformulation
of a DCOC as a RL one and the ACC problem formulation are
presented in Section III. In Section IV, the IAQL algorithm
is developed to optimize the ACC. In Section V, a heuristic
driver model is introduced as a benchmark, with which the
RL control performance is compared. Conclusions are drawn
in Section VI.

II. BACKGROUND ON REINFORCEMENT LEARNING

Reinforcement learning (RL) is a trial-and-error learning
algorithm that optimizes the agent’s actions to minimize
accumulated costs (or maximize accumulated rewards) during
its interaction with the environment. At each discrete time
step ¢, the agent receives an observation x; € R+, takes a real-
valued action u;' € R™ and receives a scalar cost (or reward)
rr+1 € R at time r + 1.2 The entire history of observation
and action is an information state, s; = (X1, U1, ..., Us—1, X;).

'In most publications, the action is denoted by a. However, in the adaptive
cruise control example, we thus use a to denote the acceleration. To avoid
confusions, we use u to represent the action.

2In some publications, the reward is assigned at time step ¢. In this study,
we follow the notation convention from [20].
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We assume a Markovian environment and redefine information
state as s; = x;.

The stochastic environment E is modeled as a Markov
decision process (MDP), M = {S,U,R,P,y}, where
S C R™ represents the state space; U C R™ is the action
space; R : (S,U) — R is the scalar cost function and
RY = E[Ri1lS: = s,U; = ul; P represents the state
transition map and P¥, = Pr[S;1 = s'|S; = 5, U; = ul;
y €[0, 1) is a discounting factor.

A policy, 7 : § — Pr(l{), is a mapping from states to a
probability distribution over the actions and it describes the
agent’s behavior. Note that the probability of a deterministic
policy is one for the chosen action and zero for all other
actions. Applying a policy 7 to the MDP defines a Markov
chain and we use E [-] to denote expectations over this chain.
The return G, is the total discounted cost from time-step ¢,

o
Gi=Rip1 +yRa+...= O " Regur. (1)
k=0

The goal of the RL is to learn an optimal policy 7 * which
minimizes the expected return from the start state, i.e.,

" = argmin E,[G,]. 2)
T
The state value function v(s) under policy 7 is defined as
the expected return starting from state s,

ljir(s) =Ez[G/|S = s]. (3)

Compared to the state value, the action value function is
more commonly used in RL. It is defined as the expected
return after taking an action u; at state s; and following policy
7 thereafter,

O" (s, ur) = Ex[Ge|St = 51, Ur = uy]. 4)
If we are able to find the optimal action-value function,
Q*(s1,ur) = rr}rin Ez [Q7 (¢, ur)l,
then the optimal policy can be obtained by

¥ (s) = argmin Q*(s, u). 5)
ueld

Numerous RL algorithms have been developed in the past
few decades. Depending on whether the MDP model is explic-
itly learnt, RL algorithms fall into two categories: model-based
and model-free. Model-based methods first/simultaneoursly
learn the MDP and traditional optimization methods such
as policy iteration and value iteration can then be applied
to solve the MDP efficiently. On the other hand, model-
free RL methods directly learn optimal value functions
or optimal policy without explicitly learning the MDP,
avoiding requirements on disturbance measurements or prior
knowledge of model transition probabilities.

Q-learning [5] is arguably the most well-known model-free
RL algorithm. It iteratively learns and updates the optimal
action-value functions based on received costs. Specifically, at
each time step ¢ the agent selects an action u; based on the
state s;, and receives a cost r;41 and leads to a new state ;41
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at time 7 + 1. Then the value function for Q(s;, u;) is updated
as

OGsr,ur) <= Qe up)+alri1+y nbin O (se1, u)— Q (s, ur)l,
(6)

where a € (0, 1] is the learning rate and y € [0, 1) is the
discount factor. The Q-learning is in essence an iterative learn-
ing method where the values are updated from the difference
between the learnt value r;41 + y min, Q(s;+1, u) and the old
value Q(sy, uy). It is proved in [21] that if the learning rate «
satisfies some appropriate conditions, then the action functions
converge to the true values.

By virtue of guaranteed convergence and ease of imple-
mentation, Q-learning has found great success in numerous
applications [6]-[9]. However, it is noteworthy that Q-learning
only works for MDPs with discrete state space and discrete
action space [10].

For systems with large or continuous state space, value table
lookup methods used in Q-learning are not feasible. One can
discretize the state space but it leads to information loss and
may have curse of dimensionality. An alternative is to exploit
a function estimator to estimate the action value function, i.e.,

0(S,U,0) ~ 0, (S, U), (7)

where @ is the vector of parameters to be identified. The
optimal parameters # can be obtained by minimising the mean-
squared error between approximated action-value function
Q(S , A, 0) and true action-value function Q (S, A), that is,

J(0) = E[(Q(S,U) — O(S, U, 0))*]. (8)

Stochastic gradient descent can be used to update the
parameters to find a local minimum,

AG = —%a vo J(0)
~ a(Qx(S,U) — O(S,U,0)) vo O(S,U,6), (9

where o > 0 is the step size. The true action value function
0, (S,U) can be approximated using Monte Carlo or Tem-
poral Difference method [20], and the function approximation
Q(S, U,0) and the resulting gradient veO(S, U, 0) are
evaluated with the parameters @ in the current iteration.

It is a common practice to represent state and action by a
feature vector,

¢1(S,U)
¢(S,U) = :

#n(S,U)

The approximation function can then be described using the

feature vector and parameters, 0(S, U, 0) = f(¢(S,U),0).

A variety of differentiable functions f(-) can be exploited,

from simple linear function [14] to deep neural networks [10].

The linear function based approximate Q-learning (AQL) is

frequently used in applications, in which a linear Q-function

Qo (s, u) =0T ¢ (s, u) is defined, where 0 is the weight vector,

and ¢ is the feature vector extracted from the state-control pair
as in (10). Given the Q-function, the best control is,

(10)

Y

u; € argmin Qg (s, u).
ueld
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For online AQL update, we estimate the one-step ahead
Q-function 7 Qg (s;, u;) as:
TQQ(Stauf):rf+l +VHSZE{1 QH(S{+1,M), (12)
u
where 7 is called the dynamic programming operator. Then

we can update the weight vector using the stochastic gradient
descent,

0 (—G—GAQH’tqs(St,Mt), (13)

where a is the learning rate that controls the updating step
size, and A Qg ; is the temporal difference [20]:

AQ@,t = (Qg — T Qo) (51, us)

Note that the afore-mentioned value-based RL algorithms
need to evaluate the best action based on the action-value
function as in (5). This evaluation itself can be impractical
for systems with large or continuous action space. For these
systems, we can instead directly parameterize the policy, i.e.,

(14)

oy = Prluls, 0], (15)

where 6 are some parameters that control the probability
distribution of a policy. One example of the policy distribution
function is the Gaussian policy. Let ¢ (s) be the state features;
then we can sample our action from a Gaussian distribution,
u~ N(u(s),c?), where u(s) = ¢(s)T0 is a linear combina-
tion of the features parameterized by #. The variance o2 can
be either fixed or also parameterized.

The goal is to find the optimal parameter 0* to maximize
the average value

J©O) =D d™(s)V™(s),

seS

(16)

where d” (s) is the stationary distribution of the Markov chain
with policy 7y and V7 (s) is the state value function of s with
policy my. Stochastic gradient descent can be used to update
the parameters. This method is referred to as policy gradient
RL [22].

III. FRoM DCOC 1O RL: AN ADAPTIVE CRUISE
CONTROL (ACC) EXAMPLE

The ACC system can automatically adjust the ego vehicle
speed to maintain a safe distance from the lead vehicle; it has
become an increasingly popular feature in modern vehicles.
The ACC involves a vehicle following problem illustrated in
Figure 1. The relative motion dynamics can be described as:

d=uv—0v I
Of =u, 17)
where d represents the longitudinal distance (often referred to
as the range) between the lead vehicle (right) and the ego/host
vehicle (left). The variables v; and vy are the longitudinal
speed of the lead vehicle and the ego vehicle, respectively; The
control u is the longitudinal acceleration of the ego vehicle.
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Fig. 1. Schematic diagram of the vehicle-follow dynamics.

The following constraints are considered to ensure comfort,
safety, and acceptable fuel economy:

Umin = U = Umax, (13)
0=< Vf = 0fmax, (19)
Th,min = Th = Th,max, (20)
d > dmin, 21

where umax and upi, are, respectively, the maximum and
minimum acceleration limits for good ride comfort and fuel
economy; v f,max represents the maximum speed due to speed
limit; 7, £ Di is referred to as time headway, which is
constrained between 7j min and 7, max for safety and comfort
considerations; dpyi, designates the minimum distance the
vehicle should maintain from the lead vehicle.
With a sampling time A, (17) can be discretized as

diy1 =di + (Ul,t - Uf,t) A,

Ofi+1 = Vfr + Uy - A. (22)
By defining x; = [d;, vf,t]T and w; = vy, we have
Xi+1 = Ax; + Bu; + Bywy, (23)

1 —A 0 A
where A = |:O 1 :| B = |:Ai|, and B, = I:O:|

The DCOC formulation [19] of the problem is to determine
a control policy, u(x, w), that maximizes the time duration till
any constraint from (18)-(21) is violated, i.e.,
max T(XO, wo, I/t(', ))’
u(-,)
st. upelU, x; e X, Ve =1,2,---,7 —1,

and x; ¢ X, 24)

where U = [Umin, Umax], and
X = {(d» vf)ld € [dmin, Thmax - 0 f,max], vf € [0, Uf,max]}~

The DCOC problem (24) can be solved using a variant of
value iteration developed in [1]. However, two items are
needed for implementation. Firstly, the lead vehicle speed,
v;, needs to be measured, which requires a radar, a camera
or V2V communications, and signal processing. Secondly,
the lead vehicle speed v; is modeled as a Markov chain
and the transition probabilities need to be known a priori.
While online learning algorithms [23] can be used, value
iterations are too complex to be performed onboard; hence
the implementation may require a bank of policies computed
for several transition probability matrices as well as non-trivial
interpolation techniques.

To develop a simpler solution, we reformulate the DCOC
problem (24) as a RL one, removing the requirements on
the measurement of lead vehicle speed and its transition
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probabilities. To implement a RL algorithm, we first model
the system dynamics as an MDP with

o S ={d, vs}:is the set of states including the range and
speed of the ego vehicle.

o U=|—tmax Umax]: is the set of permissive accelera-
tions.

o P is a state transition matrix and P, = P[S;+1 =
s'|S; = s, U; = u]. Note that this matrix need not be
known a priori for RL implementations.

e R is a cost/reward function, RY = E[R;41]S; = s,
U; = u]. We assign a cost of one for each step that
constraints (18)-(21) are violated and zero vice versa.

e 7y € (0,1) is a discount factor that differentiates the
importance of future costs and present costs. This is the
necessary condition for the convergence of RL.

The objective of the RL ACC is to define a policy 7™ :
S — Pr(U), such that

¥ = argmin E;[G1], (25)
T

where G is the return function defined in (1). We next develop

a RL algorithm to efficiently find 7 *.

Remark 1: Although the dynamics (22) is a simple linear
system, the DCOC ACC problem (24) is still challenging due to
the uncertainty of the lead vehicle dynamics. Sudden velocity
change of the lead vehicle can quickly lead to violations of
system constraints (19)-(21). This motivates the use of RL to
iteratively learn the dynamics of the lead vehicle and improves
its control policy.

IV. INFORMED APPROXIMATE Q-LEARNING

In real-world applications, the underlying transition
probability P is most likely unobservable. Fortunately, as
long as the underlying dynamics are stationary [24], RL
algorithms can be used to learn the Q-value functions from
the transition history, {s;, u;, r¢+1, St+1, Ur+1, - . .}. If the state
space is continuous or large, function approximations are
needed to fit the Q-value function, based on the state-action
features. This class of Q-learning algorithms is referred
to as approximate Q-learning. However, approximate
Q-learning algorithms typically have no guaranteed
convergence properties, that is, the approximated Q-value
function may not converge to the true value function. As far
as the authors are aware, the only known convergence result,
proved in [14], is for linear approximation functions under
rather restrictive conditions on the sample distribution of the
transition data.

Nonetheless, a careful design of stage costs and features
can improve the convergence of the RL algorithm. Since the
distance and speed states in the ACC problem are continuous,
a function approximation is needed to avoid information
loss caused by discretization. To deal with the convergence
challenges, we develop an informed approximate Q-learning
(IAQL) algorithm, with good learning performance and fast
convergence for the ACC problem. Specifically, we exploit
appropriate stage cost to promote obtaining information useful
for learning, design appropriate feature vector to capture the
Q-function shape, and make efficient action selections for fast
convergence.
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Fig. 2. Informed training stage cost over the first 5 training episodes. The
dotted vertical lines indicate T min and T} max. For the first 4 episodes,
a piecewise linear stage cost that captures the closeness to the boundary of
time headway constraint is used to facilitate training. From episode 5, the
zero/one stage cost is used to ensure the convergence to the true action value.

A. Stage Cost Engineering

A natural choice of stage cost for DCOC ACC is a
“zero/one” function so that a penalty is charged whenever the
time headway constraint is violated

0, it T,(1) [Th,min> Th,max]

. (26)
1, otherwise.

r(t) =
However, this “zero/one” stage cost is sparsely distributed
and it is always zero whenever the constraint is satisfied.
Therefore the RL agent can hardly obtain useful information
from most transition data, resulting in unnecessary exploration
and inefficient learning. For example, even if the current
headway is close to the lower boundary, the RL agent cannot
get this information immediately. Rather, it performs random
exploration at the beginning until it violates the constraints.
As a result, it is not able to learn to decelerate until the
penalty effect is passed along from the boundary state after
a considerable number of updating steps.

In order to improve the learning efficiency, we utilize the
information feedback given to the RL agent through the stage
cost to avoid unnecessary exploration. In particular, instead
of using the “zero/one” indicator function, we use a piece-
wise linear function to highlight the eligibility of 7} (¢) in the
early training episodes. In the ACC problem, an episode is
defined as the time when the constraint is violated or after
a fixed duration. To better utilize the information during the
exploration stage, for the first five training episodes, we use
the following stage cost

7(t) = min (5, max (0, (5 — k)/5)r'(t) + min(1, k/5)r(t)),
(27)

for episode k =1, 2, ..., where

Th,min + (Th,min — Th(t))

Th,min + (Th (t) - Th,max)

ITh(t) - O-S(Th,min + Th,max)|
_0~5(Th,max - Th,min)

if T,(1) < T, min>
r/(t) _ if T (1) > Th max,

otherwise.
(28)
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Fig. 3. Cumulative average weight (sum of absolute value of the weights
divided by number of weights) over 10 training episodes using preliminary
features.

In other words, r'(¢) is a penalty reflecting how far the
current time headway T7p(f) is away from the constraint
boundaries. Note that 7(¢) uses the combined function of r/ ()
and r(r) for the first five episodes to maximize the information
feedback, and smoothly transfers to the “zero/one” indication
function r(¢) afterwards to ensure convergence. Also, 7(¢) is
clipped to 5 to avoid aggressive updating during the early stage
exploration.

Figure 2 illustrates the change of the stage cost function,
7(t), as a function of episode number. After 5 episodes, the
stage cost function becomes identical to the cost function r(¢).

B. Feature Engineering

We apply a parameterized learning model to approximate
the Q-value function as Qg (s, u), with § being the parameters
to be identified. The typical choices include:

o Linear Regression (LR) model: Qg (s, u) = 0T ¢ (s, u).

« Artificial Neural Network (ANN) model: Qg (s, u) = b+

wl o (We (s, u) + a), where ¢ is the activation function,
and 6 = {W, a, w, b}.

In this paper, we choose the LR model due to its simplicity
and better convergence properties. Note the design of an
appropriate feature mapping function ¢ : S x U — R”
is critical to the learning performance and the convergence
properties. A preliminary choice of the feature is a collection
of the states and actions, i.e., ¢(s,u) = [d, vy, u]T. The
training results (see next Section for the simulation setup) with
the above features are shown in Figure 3 and Figure 4. It can
be seen that the parameters do not converge and the control
performance does not improve over time.

The reason is that our stage cost is a non-linear function
of states and action. Therefore using the linear features may
have the risk of divergence since Qg (s, u) = 0T ¢ (s, u) can
hardly capture the stage cost and the Q-function.

As an alternative, we define the informed feature vector as:

F(t, 1)
7(t,0)
7:h,min - Th(t +1, 5)
Th(t + 19 5) - Th,min

P(s(1), u(®)) = (29)
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Fig. 4. Total cost vs. training episode during the training procedure of AQL
using preliminary features.

The cost 7(t, 0) = |fh(t +1,6) — %(Th,min + Th.max)| repre-
sents the distance between the predicted time headway and
center of the time headway constraint range with J being
the assumed lead vehicle speed change. The predicted time
headway T}, (t +1, d) is computed as follows. First the distance
is approximated as

d(t+1) =d() + (it — 1) — v (1)A,

using the lead vehicle speed at step t — 1 to approximate the
one at step 7. Note that the lead vehicle speed at  — 1 can be
computed at step ¢t from (22):

(30)

ot —1) =0t — 1)+ %(d(t) —d@—1). 31

Since ¢ represents the assumed speed change, we have

0t +1) =0t —1)+0. (32)

Note in (32) we use v;(r — 1) instead of v;(¢) for prediction
because at time #, v;(t — 1) can be computed using (31)
while the knowledge of v;(f) would require vehicle-to-vehicle
communications. In the implementation, we choose ¢ to be 1,
0, and -1 since it can represent the increase, no change, and
decrease, respectively. Other choices of J can also be used.
As a result, the predicted time headway at time ¢ + 1 is

dit+1)  d6)+ @ —1) —vp0)A

1) 1,0) = =
Wt +1,0) =507 ni—1)+o

(33)

Note that the selected features reflect the estimated stage
cost 7 in a predicted manner and can thus enhance training
efficiency as well as improve the convergence.

C. Action Selection

With the Q-value function weights updating at each step,
the agent can pick the best action (acceleration) as

u*(t) € argmin Qg (s(t), u(t)). (34)

ueld

However, due to the constraint (19) on the ego vehicle
speed, the best control in (34) may end up violating the
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TABLE I
SIMULATION PARAMETERS

Vf mazx (m/s) Umin (N) Umax (N) Th,min (’S) Th,max (S)
33 -5 5 2 6
dmin (M) ~ [ A (s) €1
5 0.9 Se-6 1 0.9

constraint and unnecessarily end the training. To address this
issue, we explicitly consider the constraint (19) in the action
selection, i.e., require

Ofvf(t)+u(t)A = U f,max; (35)

leading to u(t) € [ — v (t), % (v f;max — v£(t))]. Therefore,
we use a time-varying action space for search:

- 1 1
Ui) = [Mmin, umax] N [ - va(t), Z(Uf,max - Df(t))]a
(36)

which guarantees the satisfaction of constraints (18) and (19).

Furthermore, the RL agent needs to consider the exploration
and exploitation dilemma for action selection. Exploration
finds more information about the environment while exploita-
tion exploits known information to minimize costs. It is
therefore important to explore as well as to exploit. As such,
we discretize the action space U(¢) into 100 points and apply
the following e-greedy method to pick the action:

Pr(uls) = €j/mu+1—¢ if u*=argmax, ;. O(s,u)
€j/Nnu otherwise
(37)

where n, is the number of actions (100 in our formulation),
€j, j=1,2,--- is a positive scalar such that the agent takes
the greedy action with probability 1 —¢€; +€;/n, and chooses
an action at random with probability €; /n,,. It is a simple idea
to ensure continual exploration. The value €; typically decays
as time and the number of episodes increases to guarantee the
exploitation of the optimal policy eventually.

D. IAQL

With the choices of stage cost, feature representation, and
action selection made, we now present our JAQL algorithm
for the ACC problem as Algorithm 1. The parameters of
Algorithm 1 include the discount factor y, episode time
duration 7', number of episodes M, learning rate a, e-greedy
action selection parameter {e j}y: _01, and system constraint
parameters Tj min, Th,max> 0 f,max> Ymins> Ymax, and dmin from
constraints (18)-(21). The episode number M can be infinity
if the agent continuously interacts with the environment.

The parameter vector # is set to a zero vector at the
beginning. For each episode, the agent takes measurements
of the range d, range rate d and the speed of the follow
vehicle vy, and the clock is reset to zero as in Lines 3 and 4
of Algorithm 1. The e—greedy strategy (37) is exploited to
choose the action u based on the approximated Q-function as
shown in Lines 6-11. The agent then applies the control u,
observes the new states and cost, and computes the stage cost
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Lead vehicle speed modeling as a hybrid Markov process. Three outer modes are used to model different driving styles (aggressive, moderate,

conservative) and transitions between these modes can capture a lane change or vehicle cut-in. Within each mode, a Markov chain is used to characterize

speed change dynamics for the corresponding driving style.

as shown in Line 12. Stochastic Gradient descent is then used
to update 8 and the clock time is incremented as shown in
Lines 13 and 14.

V. SIMULATION AND PERFORMANCE COMPARISON
A. Simulation Setup

In this section, we train the IAQL algorithm using simula-
tions. Specifically, we use a hybrid Markov process to model
the lead vehicle dynamics as in Figure 5.

The outer three modes represent three different driving
styles: aggressive, moderate, and conservative. When there is
a lane change or a vehicle cut-in between the lead vehicle
and the follow vehicle, the driving style of the lead vehicle
may change. For example, from Figure 5, if the current
lead vehicle is driving aggressively, there is a probability
of 0.8 that the lead vehicle does not change so the driving
style is still aggressive; there is a probability of 0.1 that the
lead vehicle changes but the new lead vehicle also drives
aggressively. In addition, the probability of changing to follow
a moderate-driving vehicle and a conservative-driving vehicle
are 0.05 and 0.04, respectively.

Inside each driving mode, there are three states representing
the possible speed change. For example, inside the conser-
vative driving mode, if there is no speed change from the
last step, there is a probability of 0.8 that the speed remains
constant while there is a probability of 0.1 that the speed will
increase or decrease by 2 m/s. In this study, the transition
probabilities in the hybrid model are specified empirically.

However, we note that real-world driving data can be used
to estimate the transition probabilities.

We run simulations with the parameters specified in Table I
for 10 episodes where each episode has a duration
of 200 seconds. The initial conditions are set as a;(0) = 0,
07(0) = 20, v7(0) = 20, d(0) = 75, and the driving style of
the lead vehicle is aggressive, where «;(0) represents the initial
acceleration/speed change of the lead vehicle. The exploration
rate €; decreases from 0.9 to 0.1 linearly over the ten training
episodes, and each episode has T = 200 steps.

Note that when there is a lead vehicle change according to
the Markov chain, we reset ;(t7) = 0, v;(t7) = v;(¢), and
d(tT) = d(t). Whenever there is a constraint violation, we
initialize the simulation using the above parameters to continue
the training.

With our TAQL algorithm implementation, the training
weights and control performance are shown in Figure 6 and
Figure 7, respectively. It can be seen that the weights converge
and the TAQL algorithm can enable the ACC system with near
zero constraint violations.

Remark 2: Unlike conventional model-free AQL, the pro-
posed IAQL exploits the system dynamics in the feature
design (29) and action space reconstruction (36) to guide
the AQL training. This leads to improved performance, as
compared in Figure 4 and Figure 7. Moreover, the proposed
IAQL converges while the conventional AQL does not as
compared in Figure 3 and Figure 6. We presume this is due to
that our feature vector (29) and stage cost (27) are appropri-
ately designed so that the true Q-function (which is a linear
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Algorithm 1 Informed Approximated Q-Learning (IAQL)

1 Parameters: y, T, M, a, {ej}?’[:_ol, Th,min, Th,max,
U f,max> Umin> Umax, dmin.

2 Result: 0*.

3 initialize 6 < 0;

4for j=0—- M —1do

5 | Measure v (0),d(0), d(0);
6 | initialize r =0 ;
7 | whiletr < T do
/* acting step */
8 sample random variable e ~ U ((0, 1]);
9 if ¢ < ¢; then
10 | sample random action u(t) ~ U(U(1));
11 else
12 calculate action
u(t) € argmin g4y Qo (s(t), u);
13 end
/* interacting step x/
14 perform u(t) , observe
ar(t+1),0p(+1),d(t+1), r,11, and calculate
F(t) using (27) ;
/* learning step */
15 update 0 using Equation (13) ;
16 update r <t + 1;
17 | end
18 end
19 return 4
«» 0.0045
()
©
3 0.0040
s
3 0.0035
€
£ 0.0030
=
“;’ 0.0025
(V]
8 0.0020
[
& 0.0015
[
2 0.0010
©
g 0.0005
35 H H H H
© 0.0000 R : L R
500 1000 1500 2000
Simulation time steps
Fig. 6. Cumulative average weight magnitudes (sum of absolute value of

the weights divided by the number of weights) over 10 training episodes of
TAQL.

combination of zero/one costs) can be actually approximated
as a linear combination of given features. As a result, the
stationary global optimal policy can be found by using linear
regression on Q-values.

Furthermore, our IAQL algorithm also demonstrates a novel
sample-efficient RL training strategy. Unlike most existing
works that focus on the improvement of exploration strategy
and data sampling [25], we develop a surrogate training cost
function to guide the gradient updating step size instead.
This approach is efficient and does not have side effects
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Fig. 7. Total cost vs. training episode during the training procedure of TAQL.

such as making the MDP non-stationary. This idea can be
used in many control applications with any learning models
(especially useful for data-consuming models such as deep
neural networks).

B. Benchmark Comparison: Optimal Velocity Model

We use a widely used car-following model, the optimal
velocity model (OVM) [26]-[29], as a benchmark to compare
with our TAQL control. Specifically, the driver is modeled as:

d=v —vy,
v =a(Vdit —1)) —vs(t —1))
+ it —1) —vs(t — 1)),

where a represents the driver gain to match the actual velocity
to a distance-dependent reference velocity, while f is the
driver gain to match the velocity to that of the lead vehicle. The
variable 7 represents human reaction time, ranging from 0.4
to 1 sec [26]. The function V(d) is a velocity policy mapping
from distance headway to reference velocity. In particular, the
following monotonically increasing function is adopted:

(38)

0 if d < dy
V(d) = { gomax[1 = cos(m - Z=C)] if dyy < d < dgo
Vmax if d > dgo

(39)

The function V(d) describes the desired speed as a function
the distance headway. Specifically, when the distance headway
is smaller than dy;, the vehicle is expected to stop; while
for large distance headway d > dg,, it is expected to travel
with the maximum speed; the desired speed monotonically
increases with the headway when between dy; and dg,.

In this paper, we use v = 1 and the discretized model with
A =1 becomes

dt =d+ (v —0f),
v}f =vr+a(V(d({t—1)—opt—1))
+ Bt = 1) —vyp@ — 1)), (40)

In the simulation, we use the optimized parameters reported
in [27], dsy =10 m, dgo = 40 m, Omax =30 m/s, a =1, and
S = 1.05.
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TABLE II
PERFORMANCE STATISTICS OF DIFFERENT CONTROL METHODS

Control method | Aggressive | Moderate | Conservative | Total
OVM 101 74 44 219
Adaptive OVM 31 19 20 70
TAQL 5 6 3 14
8 . ‘
— OVM
r — Adaptive OVM
2 — IJAQL

Cumulative violations

50 100 150
Simulation time steps

Fig. 8. Performance evaluation of different control policies. The curve shows
the mean value and the shade shows the standard deviation of the cumulative
cost.

Since the constraints are more towards time headway, to
improve the OVM performance, we make d;, and dg, adaptive
as:

ds (1) = Td,minvf(t)’

To make the comparison, we use our trained IAQL con-
troller and run the 200-second episode 40 times, together with
the OVM and the adaptive OVM. Table II shows the number
of constraint violations classified by the lead vehicle driving
mode. Each cell records the number of constraint violations.
Note the total step number is 8000. It can be seen that our
TAQL algorithm clearly outperforms the other two.

The mean and standard deviation of cumulative number
of violations over the episodes for the three policies are
illustrated in Figure 8. The IAQL algorithm clearly performs
better than the heuristic control strategy, as well as its adaptive
version. This demonstrates the capability of the proposed
IAQL approach when dealing with a fairly complex lead
vehicle dynamics (hybrid Markov chain). Although real-world
training related safety issues need to be carefully addressed,
the developed TAQL system is very applicable to the ACC
system.

dgo(t) = Td,maxvf(t)- (41)

VI. CONCLUSIONS

In this paper, we showed that the drift counteraction optimal
control (DCOC) problem can be tackled using reinforcement
learning (RL) algorithms, removing requirements of
disturbance measurement and knowledge of the disturbance
transition. Specifically, we handle the problem of adaptive
cruise control with a DCOC formulation. An informed
approximate Q-learning algorithm (IAQL) algorithm is

2911

developed and the control performance is compared with the
optimal vehicle model (OVM) as a benchmark. We show that
the IAQL clearly outperforms the benchmarks.
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