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a b s t r a c t

We investigate the trajectory estimation problem for partially-observed discrete event systems. In some
applications, only knowing the current state of the system may be insufficient, and knowing which
trajectory the system takes to reach the current state could be important. This requires more precise
knowledge about the system. In this paper, a language-based framework is proposed in order to tackle
this problem. Two new notions of detectability, called trajectory detectability and periodic trajectory
detectability, are proposed to capture different requirements in the aforementioned trajectory estimation
problem. Effective verification algorithms are also provided. Our results extend the theory on detectability
of discrete event systems from state estimation problem to trajectory estimation problem.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Systemestimation is one of the central problems in systems and
control theory. In many applications, we do not have full access
to the system’s internal state and need to perform state estima-
tion. The state estimation problem becomes particularly important
when one wants to make decisions based on the limited system
information. In this paper, we investigate the state estimation
problem for partially-observed Discrete-Event Systems (DES).

The problem of state estimation has drawn considerable atten-
tions in the DES literature due to its importance; see, e.g., [1–6].
This problemwas initiated in [1,2], where the notion of observabil-
ity was defined.1 Recently, the state estimation problem has been
studied more systematically in the framework of detectability;
see, e.g., [4,5,8–14]. Particularly, in [4], the authors define four
types of detectability in order to capture different requirements in
practice. These notions of detectability have been further general-
ized by [5,8]. For example, [8] defines a generalized detectability
based on the state disambiguation problem [3,6]. Detectability has
also been studied in the framework of stochastic DES by [9,11].
When the original system is not detectable, several approaches
have been proposed in order to enforce detectability, e.g., by sen-
sor activations [15,16] and by supervisory control [17,18]. State
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partial-observation supervisor can correctly make control decisions.

estimation problem has also been investigated in the context of
colored graph [19].

All of the aforementioned works on detectability are state-
based. Namely, one wants to estimate the current state of the
system based on a given model. However, in some applications,
knowing the current state of the system is not sufficient. For
example, in the application of location-based services (LBS) [20], a
DES is usually used to represent the connective of a region and each
state in it corresponds to a location. Sometimes, however, simply
knowing the current location may not be sufficient, for instance, if
wewant to know bywhich path this location is reached. Therefore,
instead of estimating the state of the system, one may also be
interested in estimating the trajectory of the system.

In this paper, we systematically study the trajectory estimation
problem in the context of partially-observed DES. Specifically, this
paper has the following contributions. First, we define the notions
of trajectory detectability and periodic trajectory detectability.
These two notions provide the conditions for determining a priori if
the trajectory of a given system can be determined after a bounded
delay or be determined periodically. Second, for regular languages,
i.e., languages that can be marked by finite-state automata, we
provide effective algorithms to verify these two conditions. In
particular, the verification algorithm for trajectory detectability re-
quires polynomial-times using a twin-machine-like construction.
On the other hand, the algorithm for verifying periodic trajectory
detectability requires exponential complexity.

Note that, although the study of trajectory detectability is moti-
vated by state detectability [4], their verifications are quite differ-
ent. In general, we can always refine an automaton by expanding
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its state space such that each state carries more information. How-
ever, the domain of language is infinite and onemay not always be
able to use finite states to precisely capture the (infinite) trajectory
information. Our framework is fully language-based and it does
not depend on the automaton realizing the language. Moreover,
we show that infinite language information can still be effectively
verified by using its underlying automaton. In particular, we only
exploit the standard twin-machine construction [21,22], which is
different from the detector construction proposed in [8]. We show
that the phenomenon of information merge plays an important role
in the trajectory estimation problem. This issue also does not exist
in the state-based framework for detectability.

We also would like to remark that our paper is not the first one
investigating the trajectory estimation problem in DES. In [23], the
authors investigate a similar problem and the notion of invertibility
is proposed. Our work is different from [23] due to the following
reasons. First, we systematically investigate both trajectory de-
tectability and periodic trajectory detectability; both of these two
notions are different from invertibility. Specially, invertibility only
requires to recover the last n events but detectability requires to
recover the precise trajectory executed by the system. Second, we
provide a language-based framework for studying this problem,
while the result in [23] is state dependent. Finally, invertibility
is defined only for prefix-closed languages, while trajectory de-
tectability is defined for non-prefix-closed languages.

2. Preliminaries

Let Σ be a finite set of events. A string s = σ1 . . . σn is finite
sequence of events and we denote by |s| the length of s. We use
ϵ to denote the empty string with |ϵ| = 0. We denote by Σ∗

the set of all strings including ϵ. A language L ⊆ Σ∗ is a set of
strings. The prefix-closure of language L is defined as L := {w ∈

Σ∗
: ∃v ∈ Σ∗ s.t. wv ∈ L}. We say that L is prefix-closed if

L = L. We denote by L/s the post-language of L after string s,
i.e., L/s := {t ∈ Σ∗

: st ∈ L}. We denote by Card[L] the cardinality
of L, which is the number of strings in L. For two strings s, t ∈ Σ∗,
we write s ≤ t if s ∈ {t}.

A deterministic finite-state automaton (DFA) is a 5-tuple G =

(Q , Σ, δ, q0,Qm), where Q is the finite set of states, Σ is the finite
set of events, q0 is the initial state, Qm is the set of marked states
and δ : Q × Σ → Q is the partial transition function, where
δ(q, σ ) = q′ means that there exists a transition labeledwith event
σ from state q to state q′. The transition function is also extended to
Q × Σ∗ in the usual manner; see, e.g., [24]. We denote by L(G) the
language generated by G, i.e., L(G) = {s ∈ Σ∗

: δ(q0, s)!}, where !

means ‘‘is defined’’. We denoted by Lm(G) the languagemarked by
G, i.e., L(G) = {s ∈ Σ∗

: δ(q0, s) ∈ Qm}. We say that a language
L ⊆ Σ∗ is regular if there exists a DFA G such that Lm(G) = L.

In many cases, the event generated by the system cannot be
observed perfectly. Therefore, we assume that the event set Σ is
partitioned into two disjoint sets Σ = Σo∪̇Σuo, where Σo is the
set of observable events and Σuo denotes the set of unobservable
events. Then P : Σ∗

→ Σ∗
o denotes the natural projection that

erases event in Σuo from a string; this can be defined by

P(ϵ) = ϵ and P(sσ ) =

{
P(s)σ if σ ∈ Σo
P(s) if σ ∈ Σuo

(1)

The natural projection is also extended to 2Σ∗

by P(L) = {s ∈ Σ∗
o :

∃t ∈ L s.t. P(t) = s}. We denote by P−1 the inverse projection.
Given a DFA G and a set of states I ⊆ Q , we denote by AccG(I)

the set of states accessible from some state in I , i.e.,

AccG(I) = {q ∈ Q : ∃q′
∈ I, ∃s ∈ Σ∗ s.t. δ(q′, s) = q}. (2)

Fig. 1. For both G1 and G2: Σo = {o} and Σuo = {a, b}.

Let q ∈ Q be a state in G. We denote by InG(q) the set of events
entering q, i.e.,

InG(q) = {σ ∈ Σ : ∃q′
∈ Q s.t. δ(q′, σ ) = q}. (3)

Finally, let s ∈ P(L(G)), we denote by RG(s) the set of states that can
be reached by observing s, i.e.,

RG(s) = {q ∈ Q : ∃t ∈ Σ∗ s.t. δ(q0, t) = q ∧ P(t) = s}. (4)

3. State-Based detectability and trajectory-based detectability

Due to measurement uncertainty, one may not always have a
perfect knowledge about the current status of the system. In [4],
the notion of (strongly) detectability was introduced in order to
capture whether or not we can eventually have a perfect knowl-
edge about the system after finite delay. In this paper, we refer to
detectability defined in [4] as state detectability. First, we recall its
definition.

Definition 1. A DFA G = (Q , Σ, δ, q0,Qm) is said to be state
detectablew.r.t. Σo if

(∃n ∈ N)(∀s ∈ L)[|P(s)| ≥ n ⇒ |RG(P(s))| = 1] (5)

Example 1. Let us consider system G1 shown in Fig. 1(a), where
Σo = {o}. Clearly, this system is state detectable since RG(on) = {5}
for any n ≥ 2. However, system G2 shown in Fig. 1(b) is not state
detectable. To see this, for any n ≥ 2, we can find on such that
RG(on) = {5, 6}, i.e., we can never determine the current state of
the system precisely.

Intuitively, state detectability says that, after a finite delay, we
will know exactly the current state of the system andmaintain this
ability in the future. However, in some applications, this require-
ment may be too strong. Therefore, in [4], the notion of periodic
state detectability was also proposed, which only requires that we
can detect the state of the system periodically.

Definition 2. A DFA G = (Q , Σ, δ, q0,Qm) is said to be periodically
state detectable w.r.t. Σo if

(∃n ∈ N)(∀s ∈ L)(∀t ∈ L/s : |P(t)| ≥ n)
(∃t ′ ≤ t)[|RG(P(st ′))| = 1] (6)

Example 2. Let us consider system G3 shown in Fig. 1(c) with
Σo = {o}. This system is not state detectable, since we cannot
distinguish states 4 and 5 after observing oo(ooo)n for any n ≥ 0.
However, it is periodically state detectable, since we always know
for sure that the current state is 0 after observing (ooo)n for any
n ≥ 0.

Remark 1. Note that the system automaton G considered in [4]
hasmultiple initial states; say Q0 ⊆ Q . In the above definitions, we
only consider the case where the initial state is unique. However,
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this setting is just for the sake of simplicity and is without loss
of generality, since we can add a new single initial state and add
unobservable transitions from this new initial state to each state in
Q0, which essentially simulates the case of multiple initial states.

In Example 1, we see that, although G1 is state detectable but
G2 is not, they generate the same language, i.e., L(G1) = L(G2).
In other words, a system, which is originally state detectable, may
becomenon-detectable after refining its state-space and vice versa.
In fact, a state in an automaton only tells the system’s status about
potential future behaviors. However, some information about the
history is lost. In some cases, this history information is also very
important. For example, in Fig. 1(a), even though we know for
sure that the system is at state 5 after observing oo, we still
cannot determine how state 5 is reached, since both aoo and boo
are potential trajectories. Motivated by the above discussion, we
define the notion of trajectory detectability.

Definition 3. A language L is said to be trajectory detectable
w.r.t. Σo if

(∃n ∈ N)(∀s ∈ L)[|P(s)| ≥ n ⇒ Card[P−1P(s) ∩ L] = 1] (7)

Definition 4. A language L is said to be periodically trajectory
detectablew.r.t. Σo if

(∃n ∈ N)(∀s ∈ L)(∀t ∈ L/s : |P(t)| ≥ n)

(∃t ′ ≤ t)[Card[P−1P(st ′) ∩ L] = 1] (8)

Intuitively, trajectory detectability requires that, after a finite
delay, we are able to precisely recover the trajectory that leads to
the current state and maintain this ability in the future. Similarly,
periodic trajectory detectability requires that, we are able to pre-
cisely recover the trajectory of the system periodically.

Note that language L in the definition does not need to be prefix-
closed. In fact, we consider non-prefix-closed language since it is
more general than the prefix-closed case and using non-prefix-
closed languages provides us more flexibility to describe the sys-
tem’s behavior of interest. This point is illustrated by the following
example.

Example 3. Let us consider the DFA shown in Fig. 2(a) with
Σo = {o}. Note that G4 is neither state detectable nor L(G4) is tra-
jectory detectable. However, non-prefix-closed language Lm(G4)
is trajectory detectable. Clearly, by observing o2k+1, k ≤ 0, we
know that the only possible string in Lm(G) is ao2k+1. Similarly,
by observing o2k, k ≤ 1, we know that the only possible string in
Lm(G4) is bo2k+1. This non-prefix-closed language can be used to
model the case, where we are only interested in strings in Lm(G)
and do not care whether or not a wrong estimation is made for
strings in L(G) \ Lm(G). For instance, here we are only interested
in distinguishing strings leading to state 2 and strings leading to
state 3. Similarly, for G5 shown in Fig. 2(b), we know that Lm(G5) is
periodically trajectory detectable but L(G5) is not. These examples
justify our early assertion that using non-prefix-closed languages
provides us more flexibility to describe the system’s behavior of
interest.

The following two results establish some relationships between
state detectability and trajectory detectability. Their proofs are
omitted, since the results follow directly from the definitions.

Proposition 1. Let G be a DFA andΣo be a set of observable events. If
G is not (periodically) state detectable, then L(G) is not (periodically)
trajectory detectable.

Fig. 2. Lm(G) is trajectory detectable but L(G) is not trajectory detectable, where
Σo = {o} and Σuo = {a, b, c}.

Remark 2. Note that the opposite direction of the above statement
is not true in general; an example has been provided in Fig. 1(a).
Moreover, when the language under consideration is non-prefix-
closed, (periodic) trajectory detectability is no longer stronger than
(periodic) state detectability in general; this issue has already been
discussed in Example 3.

Given a DFA G, we say that G is a tree if ∀s, t ∈ L(G) : s ̸= t ⇒

δ(q0, s) ̸= δ(q0, t). The following result reveals that (periodic) state
detectability and prefix-closed (periodic) trajectory detectability
coincide when G is a tree.

Proposition 2. Let G be a tree and Σo be a set of observable
events. Then G is (periodically) state detectable if and only if L(G) is
(periodically) trajectory detectable.

Remark 3. Intuitively, if G is a tree, then states and trajectories
carry the same information. Clearly, if a language is finite, or equiv-
alently, G is acyclic, thenwe can always refine G as a tree andmake
sure that each state in G uniquely carries the corresponding tra-
jectory information. However, if we consider the general case, the
following difficulties arise. First, we need to deal with non-prefix-
closed languages. As we discuss earlier, trajectory detectability
for the non-prefix-closed case is incomparable with either state
detectability or its prefix-closed case.More importantly, in general,
the language under consideration is infinite, i.e., G is not acyclic.
Consequently, refining G as a tree or another structure requires
infinite memory and it is not clear whether or not this trajectory
information can be effectively verified. Therefore, we need new
methods to handle these difficulties.

Remark 4. The definition of trajectory detectability is related
to several language-based properties in the literature, e.g., opac-
ity [25], diagnosability [26] and normality [7]. In [25], a secu-
rity property called opacity was defined. Particularly, given two
languages K , L ⊆ L(G), we say that (L, K ) is weakly opaque if
∃s ∈ L, ∃t ∈ K : P(s) = P(t). This definition is similar to
the negation of trajectory detectability. However, they have the
following main differences. First, weak opacity is a indistinguish-
able property that should hold for one specific string s. However,
non-trajectory-detectability is a indistinguishable property that
should hold eventually for all continuation strings starting from a
sufficiently long point. Moreover, for weak opacity, language K to
be distinguished from is static in the sense that it does not depend
on the string considered in L. However, for trajectory detectability,
for each string s ∈ Lm(G), we need to distinguish it from strings
in Lm(G) \ {s}. Therefore, the language to be distinguished from is
‘‘dynamic’’ in the sense that it depends on the string considered
in Lm(G). Trajectory detectability is also related to diagnosabil-
ity [26] since both of them require some information ambiguity
after a finite delay. Particular, diagnosability requires to distinguish
fault strings from non-fault strings after some delays, where the
language to be distinguished from is still ‘‘static’’. This situation is
the same for normality [7], where we still need to distinguish two
‘‘static’’ languages.
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4. Verification of trajectory detectability for regular languages

In this section, we investigate the verification of trajectory
detectability for the casewhere the language L under consideration
is regular. Therefore, we denote by G = (Q , Σ, δ, q0,Qm) the
DFA accepting L, i.e., Lm(G) = L. We also make the following
assumptions:

A-1 L(G) is live; and
A-2 G does not contain an unobservable cycle; and
A-3 L(G) = Lm(G), i.e., G is non-blocking.

Assumptions A-1 and A-2 are standard assumptions in the anal-
ysis of partially-observed DES in order to avoid trivial result. We
make assumption A-3 just to simplify the technical development
and it is without of loss generality, since we can take the trim part
of G, i.e., removing all states that cannot reach a mark state from G,
if L(G) ̸= Lm(G).

4.1. Twin-Machine and information merge

In order to verify trajectory detectability, we construct a new
verification DFA V = (XV , ΣV , fV , x0,V , Xm,V ), where

• XV ⊆ Q × Q is the set of states;
• Σv = (Σo × Σo) ∪ (Σuo × {ϵ}) ∪ ({ϵ} × Σuo) is the set of

events;
• x0,V = (q0, q0) is the initial state;
• Xm,V = Qm × Qm is the set of marked states;
• fV : XV × Σv → XV is the partial transition function defined

by: for any state (x1, x2) ∈ XV and an event σ ∈ Σ , we have

(a) If σ ∈ Σo, then the following transition is defined:

fV ((x1, x2), (σ , σ )) = (δ(x1, σ ), δ(x2, σ )) (9)

(b) If σ ∈ Σuo, then the following transitions are defined:

fV ((x1, x2), (σ , ϵ)) = (δ(x1, σ ), x2) (10)
fV ((x1, x2), (ϵ, σ )) = (x1, δ(x2, σ )) (11)

Hereafter, we only consider the reachable part of V .

Remark 5. The construction of DFA V essentially follows the idea
of the well-known twin-machine (or verifier) construction used in
the literature for the verification of diagnosability; see, e.g., [21,22].
Roughly speaking, V tracks all pairs of observational equivalent
strings in G. Specifically, if s1, s2 ∈ L(G) are two strings in G such
that P(s1) = P(s2), then there exists a string s ∈ L(V ) in V such
that its first and second components are s1 are s2, respectively,
i.e., fV (x0,V , s) = (δ(q0, s1), δ(q0, s2)). On the other hand, for any
string s = (s1, s2) ∈ L(V ) in V , we have that P(s1) = P(s2).

Before we show how to use DFA V to verify trajectory de-
tectability, let us consider the following scenario. Suppose that
there exist two different strings s1, s2 ∈ L(G) such that P(s1) =

P(s2) and δ(q0, s1) = δ(q0, s2). Since these two strings lead to
the same state, we know that they have the same continuations.
Moreover, since s1 and s2 are observational equivalent, we know
that we cannot distinguish any continuations of these two strings
from this state. We call such a phenomenon information merge.
Clearly, if the information merge phenomenon occurs, then Lm(G)
becomes non-detectable. Therefore, we need to check whether or
not the information merge phenomenon occurs as the first step
towards the verification of trajectory detectability. To the end, we
first introduce the notion of merging state.

Definition 5. A state x = (x1, x2) ∈ XV is said to be amerging state
if

[x1 ̸= x2] ∧ [∃σ ∈ Σo : δ(x1, σ ) = δ(x2, σ )] (12)

or[
InV (x) ∩ (Σo × Σo) ̸= ∅ ∨ x = x0,V

]
(13)

∧
[
∃e1, e2 ∈Σ∗

uo : [δ(x1, e1)=δ(x2, e1)] ∧ [x1 =x2 ⇒ e1 ̸=e2]
]

We denote by Xmerge ⊆ XV the set of merging states.

Intuitively, a merging state (x1, x2) is either the initial state x0,V
or a state reached immediately after a pair of observable events
such that x1 and x2 can reach a same state unobservably or via
a single common observable event. Moreover, the strings from
x1 and x2 to the same state should be different if x1 ̸= x2. The
following result reveals that the information merge phenomenon
will not happen in G if and only if V does not contain a merging
state.

Theorem 1. There exist two different strings s1, s2 ∈ L(G) such that
P(s1) = P(s2) and δ(q0, s1) = δ(q0, s2) if and only if Xmerge ̸= ∅.

Proof. (⇐) Suppose that Xmerge ̸= ∅. This means that there exists a
state (x1, x2) ∈ XV such that either Eq. (12) holds or Eq. (13) holds.
Let s = (s1, s2) be a string such that fV (x0,V , s) = (x1, x2), where
we know that P(s1) = P(s2) and s1, s2 ∈ L(G). We define two new
strings s′1 and s′2 such that

s′i =

{
siσ0 if Eq. (12) holds
siei if Eq. (13) holds (14)

where i = 1,2, σ0 is an event satisfying Eq. (12) and e1, e2 ∈ Σ∗
uo

are strings satisfying Eq. (13). Clearly, if Eq. (12) holds, we know
that P(s′1) = P(s1)σ0 = P(s2)σ0 = P(s′2). Similarly, if Eq. (13)
holds, we also have that P(s′1) = P(s1) = P(s2) = P(s′2). Moreover,
since either x1 ̸= x2 or e1 ̸= e2, we know that s′1 ̸= s′2, i.e., they
are two different strings. Overall, we know that P(s′1) = P(s′2) and
δ(q0, s′1) = δ(q0, s′2).

(⇒) Suppose that there exist two different strings s1, s2 ∈ L(G)
such that P(s1) = P(s2) and δ(q0, s1) = δ(q0, s2). We denote by
l1 ≤ s1 the shortest prefix of s1 such that

∃l′ ≤ s2 : P(l1)=P(l′) ∧ l1 ̸= l′ ∧ δ(q0, l1)=δ(q0, l′) (15)

Note that l1 is well-defined, since Eq. (15) always holds by taking
l1 = s1 and l′ = s2. We denote by l2 a string satisfying Eq. (15) for
l1. Also, we know that l1 ̸= ϵ; otherwise, it implies that there exists
an unobservable cycle at q0 inG, which contradicts the assumption.
Similarly, we know that l2 ̸= ϵ. Therefore, we write l1 = l̂1σ1
and l2 = l̂2σ2, where σ1 and σ2 are the last events in l1 and
l2, respectively. Then we consider the following four cases for σ1
and σ2:

Case 1: σ1, σ2 ∈ Σo.
In this case, first, we know that σ1 = σ2; otherwise, P(l1) ̸=

P(l2). Second, we know that δ(q0, l̂1) ̸= δ(q0, l̂2); otherwise l̂1 will
be the shortest prefix of s1 satisfying Eq. (15). Therefore, since
P(l̂1) = P(l̂2), we know that state x := (δ(q0, l̂1), δ(q0, l̂2)) is
reachable in V . Hence, state x and event σ := σ1 = σ2 satisfy
Eq. (12), i.e., x ∈ Xmerge ̸= ∅.

Case 2: σ1 ∈ Σo and σ2 ∈ Σuo.
In this case, we know that the last observable event in l̂2 must

be σ1; otherwise, P(l1) ̸= P(l2). Therefore, we can write l2 by
l2 = w2σ1ξ2, where ξ2 ∈ Σ∗

uo. Also, we know that δ(q0, l̂1σ1) ̸=

δ(q0, w2σ1); otherwise, ξ2 yields an unobservable cycle at
δ(q0, w2σ1). Since P(l̂1σ1) = P(w2σ1), we know that x :=

(δ(q0, l̂1σ1), δ(q0, w2σ1)) is reachable in V . Moreover, (σ1, σ1)
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∈ InV (x), i.e., InV (x)∩(Σo×Σo) ̸= ∅. Hence, state x satisfies Eq. (13)
by taking e1 = ϵ and e2 = ξ2 and we know that x ∈ Xmerge ̸= ∅.

Case 3: σ1 ∈ Σuo and σ2 ∈ Σo.
This case is analogous to Case 2 and we still can show that

Xmerge = ∅.
Case 4: σ1 ∈ Σuo and σ2 ∈ Σuo.
First, suppose that P(l1) = P(l2) = ϵ. Then we can take

(q0, q0) = x0,V and we know that δ(q0, l1) = δ(q0, l2) and l1 ̸= l2,
i.e., Eq. (13) is satisfied. Next, suppose that P(l1) = P(l2) ̸= ϵ.
Let σ be the last observable event in l1 and l2 and we write l1 =

w1σξ1 and l2 = w2σξ2, where ξ1, ξ2 ∈ Σ∗
uo. First, we know

that δ(q0, w1σ ) ̸= δ(q0, w2σ ); otherwise w1σ will be the shortest
prefix of s1 satisfying Eq. (15). Since P(w1σ ) = P(w2σ ), we know
that state x = (δ(q0, w1σ ), δ(q0, w2σ )) is reachable in V . Moreover,
(σ , σ ) ∈ InV (x), i.e., InV (x) ∩ (Σo × Σo) ̸= ∅. Therefore, by taking
x = (δ(q0, w1σ ), δ(q0, w2σ )), e1 = ξ1 and e2 = ξ2, we know
that Eq. (13) is satisfied, i.e., x ∈ Xmerge ̸= ∅. □

4.2. Verification of trajectory detectability

Let x ∈ XV be a state in V . We say that x is in a cycle of V if there
exists a non-empty string s ∈ Σ∗

V such that fV (x, s) = x. We denote
by CV ⊆ XV the set of states in some cycle of V .

Now, we are ready to show how to verify trajectory detectabil-
ity by using DFA V .

Theorem 2. Let G = (Q , Σ, δ, q0,Qm) be a DFA and V be the DFA
constructed fromG. ThenLm(G) is trajectory detectablew.r.t.Σo if and
only if Xmerge = ∅ and

AccV (CV ) ∩ (Xm,V \ {(q, q) : q ∈ Qm}) = ∅ (16)

That is, V does not contain a merging state and any cycle in V cannot
reach amarked state in which the first and the second components are
not identical.

Proof. (⇒) By contraposition. First, suppose that Eq. (16) does not
hold. Let x = (x1, x2) be a state in AccV (CV ) ∩ (Xm,V \ {(q, q) : q ∈

Qm}). Since x ∈ AccV (CV ), we know that there exists a string

σ0σ1 . . . σp  
=:s

σp+1 . . . σp+m  
=:w

σp+m+1 . . . σp+m+k  
=:t

∈ L(V )

such that

1. fV (x0,V , swnt) = x for any n ∈ N; and
2. ∃i = 1, . . . ,m : σp+i ∈ Σ × Σ .

The first condition says that string w forms a cycle and the sec-
ond condition says that w must contain an event in the form of
(σ , σ ), σ ∈ Σo. This comes from Assumption A-2, since we know
that a state in CV can never reach itself by a string in ((Σuo ×

{ϵ}) ∪ ({ϵ} × Σuo))∗; otherwise, it implies that there exists an
unobservable cycle in G. For strings s, w and t , we denote by si,
wi and ti, i = 1,2 their ith components, respectively, i.e., swt =

(s1, s2)(w1, w2)(t1, t2). We know that P(s1) = P(s2), P(w1) = P(w2)
and P(t1) = P(t2). Moreover, we know that |P(w1)| = |P(w2)| ≥ 1.
Since x ∈ Xm \ {(q, q) : q ∈ Qm}, we know that siwn

i ti ∈

Lm(G), ∀i = 1, 2, ∀n ∈ N and s1wn
1t1 ̸= s2wn

2t2, ∀n ∈ N. Therefore,
for any n ∈ N, we can find a string s1wn

1t1 ∈ Lm(G) such that
|P(s1wn

1t1)| ≥ |P(wn
1)| ≥ 1 and P−1P(s1wn

1t1) ⊇ {s1wn
1t1, s2w

n
2t2},

i.e., Card[P−1P(s1wn
1t1)∩Lm(G)] > 1. This implies thatLm(G) is not

trajectory detectable.
Next, we suppose that Xmerge ̸= ∅. By Theorem 1, we know that

there exist two different strings s1, s2 ∈ L(G) such that P(s1) =

P(s2) and δ(q0, s1) = δ(q0, s2) =: q. Therefore, for any n ∈ N, we
can choose a string w defined at q, such that δ(q, w) ∈ Xm, |w| ≥ n
and |P(w)| ≥ n. Such a string w is well-defined since we assume

Fig. 3. Examples of the verification DFA V .

that G is live and non-blocking and there is no unobservable cycle
in G. For the above s1, s2 and w, we know that s1w, s2w ∈ Lm(G)
and P(s1w) = P(s2w), i.e., Card[P−1P(s1w) ∩ Lm(G)] > 1. This
implies that Lm(G) is not trajectory detectable.

(⇐) Still by contraposition. Suppose thatLm(G) is not trajectory
detectable. This implies that there exist two different arbitrar-
ily long strings in Lm(G) having the same projection. Since the
state-space of G is finite, any arbitrarily long string must be con-
tributed by some cycle. Therefore, we can find strings ti, wi, vi ∈

Σ∗, i = 1, 2 such that P(t1) = P(t2), P(w1) = P(w2), P(v1) =

P(v2) and δ(q0, t1wn
1v1), δ(q0, t2wn

2v2) ∈ Xm for any n ∈ N,
i.e., t1wn

1v1, t2wn
2v2 ∈ Lm(G). Next, we consider two cases:

Case 1: δ(q0, t1w1v1) ̸= δ(q0, t2w2v2);
Case 2: δ(q0, t1w1v1) = δ(q0, t2w2v2).

First, assume that Case 1 holds. Let us consider the state reached
by sw := (s1, s2)(w1, w2) in V , say xw . Since swn

∈ L(V ) for any n ∈

N, we know that xw ∈ CV . Since xv := (δ(q0, t1w1v1), δ(q0, t2w2v2))
∈ Xm,V and δ(q0, t1w1v1) ̸= δ(q0, t2w2v2), we know that xv ∈

Xm \ {(q, q) : q ∈ Qm}. Moreover, since state xw can reach state xv

via string v = (v1, v2), we know that xv ∈ AccV (CV )∩ (Xm \ {(q, q) :

q ∈ Qm}) ̸= ∅. Second, we assume that Case 2 holds. Then, since
t1w1v1 ̸= t2w2v2, P(t1w1v1) = P(t2w2v2) and δ(q0, t1w1v1) =

δ(q0, t2w2v2), by Theorem1,weknow immediately thatXmerge ̸= ∅.
This completes the contraposition proof. □

Let us illustrate how to use Theorem 2 to verify trajectory
detectability by the following example.

Example 4. First, let us consider language L(G1) generated by DFA
G1 shown in Fig. 1(a). Note that, since the definition of trajectory
detectability considers marked languages, we need to mark all
states in G1 such that Lm(G1) = L(G1). Therefore, all states in V
are also marked states. Then part of the verification DFA V for G1 is
shown in Fig. 3(a). Note that the self-loop at state (5, 5) ∈ Xm,V does
not violate Eq. (16), since the first and the second components in
(5, 5) are the same. However, state (3, 4) is amerging state, since (i)
it is entered by (o, o) ∈ Σo × Σo, i.e., InV ((3, 4)) ∩ (Σo × Σo) ̸= ∅;
and (ii) state 3 and 4 are different states; and (iii) event (o, o) ∈

Σo × Σo is defined at (3, 4) and it leads to state (5, 5) whose two
components are the same state. Therefore, we know that L(G1) is
not trajectory detectable. Note that, since trajectory detectability
does not depend on the DFA generating the language, one can also
construct the verification DFA V based on G2 shown in Fig. 1(b),
which will give the same result.

Next, let us consider language L(G4) marked by DFA G4 shown
in Fig. 2(a). The complete verification DFA V for G4 is shown in
Fig. 3(b). First, we can easily check that there is no merging state
in V , i.e., Xmerge = ∅. Second, for states that can be reached from
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a cycle in V , i.e., states (1, 1), (3, 3), (1, 2), (3, 4), (2, 2) and (4, 4),
they are either unmarked states or marked states but in the form
of (q, q). Therefore, we know that Lm(G4) is trajectory detectable.
However, if we want to consider the language generated by G4,
i.e., L(G4), then we need to mark all states in G4. In this case,
states (1, 2) and (3, 4) become marked states and they are still in
a cycle. Therefore, we know that the generated language L(G4) is
not trajectory detectable. □

Remark 6. Let us explain the intuition behind Theorem 2. First, the
condition in Eq. (16) requires that, for anymarked state that can be
reached froma cycle inV , itmust be in the formof {(q, q) : q ∈ Qm}.
Otherwise, suppose that a state (q1, q2) ∈ Qm × Qm, q1 ̸= q2 is
reached from a cycle. Thenwe know that there exist two arbitrarily
long strings in Lm(G) leading to q1 and q2, respectively, such that
they have the same observation. Moreover, s1 ̸= s2 since q1 ̸= q2.
However, only requiring this condition is not sufficient to recover
the trajectory, since it is possible that all states in some cycle are in
the form of {(q, q) : q ∈ Qm} but two strings may merge to a same
state before they enter some cycle. If such a scenario occurs, then
we can identify the current state of the system restricting to Qm,
but we fail to identify the precise trajectory leading to this state.
This is why we need that Xmerge ̸= ∅ in addition to Eq. (16). □

Remark 7. We discuss the complexity for verifying trajectory
detectability by using Theorem 2. Let G = (Q , Σ, δ, q0,Qm) be
the DFA for which we want to verify whether or not Lm(G) is
trajectory detectable. First, we need to construct the verification
DFA V , which takes O(|Σ ||Q |

2), since there are at most |Q |
2 states

and 3|Σ ||Q |
2 transitions in V . Then for each state in V , it takes

|Σ ||Q | to determinewhether it is amerging state or not. Therefore,
it takes O(|Σ |

2
|Q |

3) to check whether or not Xmerge = ∅. Finally,
we need to check whether or not there exists a state violating
Eq. (16). To this end, we can first compute CV , which can be done in
O(|Σ ||Q |

2) by usingKosaraju’s algorithm; see, e.g., [27]. Computing
the reachable set AccV (CV ) still requires O(|Σ ||Q |

2). Overall, the
total complexity of the verification of trajectory detectability is
O(|Σ |

2
|Q |

3), which is polynomial w.r.t. the size of G. □

4.3. Verification of periodic trajectory detectability

Now, let us investigate the verification of periodic trajectory de-
tectability. In contrast to the verification of trajectory detectability,
we cannot use the verification DFA V to verify periodic trajectory
detectability. Instead, we use the observer structure [24].

Let G = (Q , Σ, δ, q0,Qm) be a DFA. The observer of G w.r.t. Σo
is a DFA Obs(G) = (Xobs, Σo, fobs, x0,obs), where Xobs ⊆ 2Q , x0,obs =

RG(ϵ) and fobs : Xobs × Σo → Xobs such that, by extending it to
Xobs × Σ∗

o , we have fobs(x0,obs, s) = RG(s) for any s ∈ P(L(G)).
Let x ∈ Xobs be a state in the observer. We say that x is

• a certain state if ∃q ∈ x : q ∈ Qm ∧ x \ {q} ⊆ Q \ Qm;
• an uncertain state if ∃q1, q2 ∈ x : q1, q2 ∈Qm ∧ q1 ̸=q2.

We denote by X ct
obs and Xuc

obs the set of certain states and the set
of uncertain states, respectively. Intuitively, a certain state only
contains one marked state and a uncertain state contains some
different marked states. Also, we say that a set of distinct states
{x1, . . . , xn} ⊆ Xobs is a cycle in Obs(G) if we can find a sequence of
events σ1, . . . , σn such that fobs(xi, σi) = xi+1, ∀i = 1, . . . , n, where
xn+1 := x1.

The following result reveals how to use the observer to verify
periodic trajectory detectability.

Theorem 3. Let G = (Q , Σ, δ, q0,Qm) be a DFA and Obs(G) be
the observer w.r.t. Σo. Then L(G) is periodically trajectory detectable
w.r.t. Σo if and only if

(i) Xmerge = ∅; and
(ii) for any cycle C ⊆ Xobs in Obs(G), if C ∩X ct

obs = ∅, then any state
in C cannot reach a state in Xuc

obs through states in Xobs \ X ct
obs.

Proof. (⇒) By contraposition. Suppose that Xmerge ̸= ∅. We know
that there exist two strings s1, s2 ∈ L(G) such that P(s1) = P(s2)
and δ(q0, s1) = δ(q0, s2) =: q. Let ŝ1 ≤ s1 be the longest prefix
of s1 such that ŝ1 ∈ Lm(G) and we write s1 = ŝ1s′1. Let w be an
arbitrarily long string from q to amarked state. Then for any n ∈ N,
there exists a string ŝ1 ∈ Lm(G) and a continuation s′1w ∈ Lm(G)/ŝ1
such that |P(s′1w)| ≥ n. Moreover, for any w′

≤ w : ŝs′1w ∈ Lm(G),
we have Card[P−1P(ŝ1s′1w

′) ∩ Lm] > 1, since s2w′
̸= ŝ1s′1w

′ and
P(ŝ1s′1w

′) = P(s1w′) = P(s2w′). This implies that Lm(G) is not
periodically trajectory detectable.

Now, let us suppose that there exists a cycle C such that C ∩

X ct
obs = ∅ and a state in it can reach a state in Xuc

obs through states
in Xobs \ X ct

obs. Let x ∈ C be such a state in the cycle. Let so ∈ Σ∗
o

be a string that reaches x from x0,obs. Let wo ∈ Σ∗
o be a string

such that fobs(x, wo) = x and it only visits all states in C . Let
to ∈ Σ∗

o be a string that reaches a state in Xuc
obs from x through

states in Xobs \ X ct
obs. Formally, we have that fobs(x, to) ∈ Xuc

obs and
∀t ′o ≤ to : fobs(x, t ′o) ̸∈ X ct

obs. By the property of the observer, we
know that, for any n ∈ N, there exists a string swnt ∈ P−1(sown

o to)
such that P(s) = so, P(w) = wo, P(t) = to and δ(q0, swnt) ∈

Qm. Still, we denote by ŝ ≤ s the longest prefix of s such that
ŝ ∈ Lm(G) and write s = ŝs′. Then for any n ∈ N, there exists a
string ŝ ∈ Lm(G) and a continuation s′wnt ∈ Lm(G)/ŝ such that
|P(s′wnt)| ≥ n. Moreover, for any w′

≤ wnt : ŝs′w′
∈ Lm(G), we

have Card[P−1P(ŝs′w′) ∩ Lm(G)] > 1, since fobs(x0,obs, P(ŝ1s′w′)) is
always not a certain state.

(⇐) Still by contraposition. Suppose that Lm(G) is not period-
ically trajectory detectable. This implies that there exists a string
s ∈ Lm(G) and an arbitrarily long continuation u ∈ Lm(G)/s such
that ∀u′

≤ u : su′
∈ Lm(G), we have that Card[P−1P(su′) ∩

Lm(G)] > 1. Since the state-spaces of G and Obs(G) are both finite,
any arbitrarily long string and its projection must be contributed
by some cycle in G and some cycle in Obs(G), respectively. There-
fore, we can find string swt such that ∀n ∈ N, δ(q0, swnt) ∈

Lm(G), fobs(x0,obs, P(s)P(w)nP(t))! and (∀w′
≤ wnt : sw′

∈

Lm(G))[Card[P−1P(sw′) ∩ Lm(G)] > 1].
Next, we consider the following two cases. First, assume that

(∃w′
≤ wt : sw′

∈ Lm(G))(∃s2 ∈ Lm(G)) (17)
[s2 ̸= sw′

∧ P(sw′) = P(s2) ∧ δ(q0, sw′) = δ(q0, s2)]

Then, by Theorem1,we know that Xmerge ̸= ∅. Therefore, hereafter,
we assume that

(∀w′
≤ wt : sw′

∈ Lm(G))(∀s2 ∈ Lm(G)) s.t. (18)
[s2 ̸= sw′

∧ P(sw′) = P(s2)] ⇒ [δ(q0, sw′) ̸= δ(q0, s2)]

Let xsw := fobs(x0,obs, P(sw)) and xswt := fobs(x0,obs, P(swt)). First, by
Card[P−1P(swt) ∩ Lm(G)] > 1 and Eq. (18), we know that xswt ∈

Xuc
obs. Moreover, for anyw′

≤ wt , we know that fobs(x0,obs, P(sw′)) ̸∈

X ct
obs, since if it contains one state in Qm, then it must contain a dis-

tinct state in Qm. Therefore, we know that xsw is in a cycle that does
not contain a certain state and xsw can reach uncertain state xswt
without reaching certain states. This completes the contrapositive
proof. □

Example 5. Let us consider Lm(G5) marked by DFA G5 shown in
Fig. 2(b) with Σo = {o}. First, we can show that Xmerge = ∅.
Then the observer Obs(G5) is shown in Fig. 4(a). We know that
state {4, 5, 6} is a certain state and state {1, 2, 3} is an uncertain
state. However, these two states form the only cycle inObs(G5) and
one of which is a certain state. Therefore, we know that Lm(G5) is
periodically trajectory detectable. Note that, if we consider L(G5),
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Fig. 4. Examples of the verification DFA V .

i.e, we need tomark all states in G5, then both {1, 2, 3} and {4, 5, 6}
are uncertain states, which means that the generated language
L(G5) is not periodically trajectory detectable. □

Remark 8. Note that, in the worst case, the size of the observer
is exponential in the size of G. To implement Theorem 3, first, we
need to check whether or not Xmerge = ∅. This can still be done by
using the verification DFA V and it takes O(|Σ |

2
|Q |

3). Determining
whether or not there exists a cycle that does not contain a certain
state can be done in O(|Xobs||Σo|). Checking whether or not there
exists a state in such a cycle that can reach an uncertain state
without visiting certain states can still be done in O(|Xobs||Σo|)
by a depth-first search. Therefore, the complexity for verifying
periodic trajectory detectability is O(|Σ |2|Q |

+ |Σ |
2
|Q |

3), which is
exponential in the size of G.

Remark 9. Let us explain why DFA V cannot be used to check
periodic trajectory detectability. Let us consider again the system
G5 studied in Example 5 and we construct part of the verification
DFA V shown in Fig. 4(b). However, we cannot determine the ‘‘cer-
tainty’’ of a trajectory based on V . For example, state (4, 5), where
5 is amarked state, corresponds to certain state {4, 5, 6} inObs(G5).
However, state (1, 2), which also only contains a single marked
state, corresponds to uncertain state {1, 2, 3} in Obs(G5). This is
because, although state (1, 2) looks like ‘‘certain’’ in the leftmost
cycle, the marked state in it can be confused with other marked
state in a different cycle, e.g., the rightmost cycle in Fig. 4(b).
Therefore, exponential complexity arises when this combination
is considered. One interesting future direction is to identify the
precise complexity class for the verification of periodic trajectory
detectability.

5. Conclusion

We investigated the trajectory estimationproblem for partially-
observedDES. A language-based frameworkwas proposed to study
this problem. The notions of trajectory detectability and periodic
trajectory detectability were proposed in order to capture differ-
ent requirements in practice. We provided effective algorithms to
verify these notions when the system language is regular.

There are several future directions for the proposed frame-
work. First, in this paper, we only consider to verify a priori if
the trajectory of a system can be detected. Investigating effective
online detection mechanism is also an important future direction.
Second, it is important to investigate the decidability of trajectory
detectability for other classes of languages, e.g. Petri nets lan-
guages [28]. Finally, the observation mapping considered in this
paper is static. Extending the proposed framework to the dynamic
observation setting [29,30] or the non-deterministic observation
setting [31–33] is also an interesting direction.
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