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On the Decidability and Complexity of Diagnosability
for Labeled Petri Nets
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Abstract—In this paper, we investigate the decidability and com-
plexity of the fault diagnosis problem in unbounded labeled Petri
nets. First, we show that checking diagnosability for unbounded
Petri nets is decidable. We present a new necessary and suffi-
cient condition for diagnosability, which can be reduced to a model
checking problem for unbounded Petri nets. Then, we show that
checking diagnosability for unbounded Petri nets is EXPSPACE-
complete. This complexity result is further extended to various
subclasses of Petri nets. To the best of our knowledge, this is the
first paper that establishes decidability and complexity results for
diagnosability of unbounded Petri nets.

Index Terms—Computational complexity, discrete event sys-
tems, fault diagnosis, model checking, Petri nets.

I. INTRODUCTION

Fault diagnosis is an important task in large-scale complex systems.
In this paper, we investigate the problem of fault diagnosis in a discrete
event systems (DES) formalism. The framework of language-based
fault diagnosis of DES was initially studied in [1], where the system’s
behavior is modeled by a finite-state automaton. The notion of diag-
nosability was proposed in order to determine a priori if any fault
occurrence in the system can be diagnosed online during the operation
of the system. Since then, many different approaches for diagnosis us-
ing automata models have been investigated; see, e.g., the recent survey
[2] and the references therein.

Petri nets are widely used to model many classes of concurrent
systems, e.g., manufacturing systems, software programs, and com-
munication networks. Compared with finite-state automata, using Petri
nets may have several advantages. First, Petri nets provide a com-
pact representation of a system without enumerating the entire state
space. Second, Petri net languages are more expressive than regular
languages. Consequently, Petri nets can represent some systems that
cannot be represented by finite-state automata. Due to these benefits,
the problem of fault diagnosis using Petri nets has received consid-
erable attention in the literature; see, e.g., [3]–[20]. In particular, fol-
lowing the language-based diagnosis framework of [1], diagnosability
of unbounded labeled Petri nets was investigated in [17]. Specifically,
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reference [17] provides a necessary and sufficient condition for diag-
nosability based on the coverability graph (CG) of a special Petri net
called the verifier net. However, although a necessary and sufficient
condition for diagnosability is provided, the approach proposed in [17]
for checking this condition is only sufficient. In other words, the decid-
ability of the diagnosability verification problem for unbounded Petri
nets is still open.

In this paper, we revisit the diagnosability verification problem for
unbounded Petri nets. Compared with previous works, the contributions
of this paper are twofold.

1) First, we show that the diagnosability verification problem for
unbounded labeled Petri nets is decidable. To this end, we provide
a new necessary and sufficient condition for diagnosability that ef-
fectively reduces the diagnosability verification problem to a model
checking problem for unbounded Petri nets called the “satisfiability
problem of Yen’s formula” [21]. In contrast to [17], our new neces-
sary and sufficient condition is presented without using the CG of the
Petri net, which allows us to show that the verification problem can
be solved with exponential space. Moreover, we relax the previous as-
sumption that the subnet induced by unobservable transitions is acyclic.
In other words, the existence of unobservable cycles in the system is
allowed.

2) The second contribution of this paper is that, in addition to the
decidability result, we establish the precise complexity of the fault diag-
nosis problem for unbounded Petri nets. It is known that the verification
of diagnosability for finite-state automata has polynomial-time com-
plexity [22], [23]. Also, it has been shown that checking diagnosability
for timed automata and for pushdown automata are PSPACE-complete
[24] and undecidable [25], [26] problems, respectively. However, to the
best of our knowledge, the complexity of checking diagnosability for
Petri nets is still open. In this paper, we show that checking diagnos-
ability for unbounded Petri nets is EXPSPACE-complete. Moreover,
we further investigate some restrictive classes of Petri nets, e.g., free-
choice Petri nets and 1-safe Petri nets, and establish the complexity
results for these special cases. We show that, even for some very re-
strictive class of Petri nets, the diagnosability verification problem is
still computationally intractable.

II. PRELIMINARIES

A. Petri Nets

A place/transition net is defined as a four-tuple N =
(P, T, A, w), where P = {p1 , p2 , . . . , p|P |} is the set of places, T =
{t1 , t2 , . . . , t|T |} is the set of transitions, A ⊆ (P × T ) ∪ (T × P ) is
the set of arcs (or flow relation), and w : A → N is the weight function
that assigns to each arc a non-negative integer. For any place p ∈ P ,
its preset •p is defined by •p = {t ∈ T : (t, p) ∈ A} and its postset p•

is defined by p• = {t ∈ T : (p, t) ∈ A}. The preset •t and the postset
t• for a transition t ∈ T are defined analogously.

A marking M of a net N is a vector M =
[M (p1 ) M (p2 ) . . . M (p|P |)]� ∈ N |P | that assigns to each
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place p ∈ P a number of tokens. A Petri net is a two-tuple 〈N , M0 〉,
where N is a net and M0 is the initial marking. Given a transi-
tion t ∈ T and a marking M , we say that t is enabled at M if
∀p ∈ t : M (p) ≥ w(p, t). If t is enabled, then it may fire and yield a

new marking M ′ = M − w(·, t) + w(t, ·). We denote by M
t−→ that

transition t ∈ T is enabled at M and by M
t−→ M ′ that firing t yields

M ′. We denote by R(N , M0 ) the set of reachable markings from M0 ,
i.e., R(N , M0 ) = {M : ∃σ ∈ T ∗ s.t. M0

σ−→ M}.
Let T ∗ be the set of all finite sequences of transitions. We say a

sequence of transitions σ = t1 t2 . . . tk ∈ T ∗ is enabled at M if ∀i ∈
{1, . . . , k} : Mi

ti−→, where M1 = M and Mi+1 = Mi − w(·, ti ) +
w(ti , ·). Similarly, we denote by M

σ−→ that σ ∈ T ∗ is enabled at M
and by M

σ−→ M ′ that firing σ yields M ′. Given a Petri net 〈N , M0 〉,
we denote by L(N , M0 ) the set of finite sequences generated by
〈N , M0 〉, i.e., L(N , M0 ) = {σ ∈ T ∗ : M0

σ−→}. We denote by λ the
empty transition, i.e., for any σ ∈ T ∗, we have σλ = λσ = σ. Let
σ ∈ T ∗ be a sequence of transitions and t ∈ T be a transition. We de-
note by #σ (t) the number of occurrence of transition t in sequence
σ. For any sequences σ1 , σ2 , we say that σ1 is a prefix of σ2 , de-
noted by σ1 ≤ σ2 , if σ1σ

′ = σ2 for some σ′ ∈ T ∗; we also denote by
σ1 < σ2 if σ1 ≤ σ2 and σ1 �= σ2 . For any sequence σ ∈ T ∗, we define
L(N , M0 )/σ := {σ′ ∈T ∗ : σσ′ ∈L(N , M0 )}.

Let Σ be a finite set of events and Σε = Σ ∪ {ε}, where ε is the empty
string. A labeled Petri net is a triple 〈N , M0 ,L〉, where 〈N , M0 〉 is
a Petri net and L : T → Σε is a labeling function. We say a transition
t ∈ T is observable if L(t) ∈ Σ and unobservable if L(t) = ε. We
denote by To and Tuo the set of observable transitions and the set of
unobservable transitions, respectively. The labeling function L is also
extended to T ∗ recursively by L(λ) = ε and L(σt) = L(σ)L(t). The
language generated by 〈N , M0 ,L〉 is L(L(N , M0 )) := {L(σ) : σ ∈
L(N , M0 )}.

Given a netN = (P, T, A, w) and a subset of transitions T ′ ⊆ T , the
T ′-induced subnet of N is defined as the new net N′ = (P, T ′, A′, w′),
where A′ and w′ are the restriction of A and w to (P × T ′) ∪ (T ′ × P ),
respectively.

B. Review of Computational Complexity

We briefly review some concepts and results from the theory of
computation. We refer the reader to [27] for more details.

We say that a problem is in class PTIME if it can be solved in
polynomial time by a deterministic turing machine. A problem is in
class NP if it can be solved in polynomial time by a nondeterministic
turing machine. Similarly, EXPTIME and NPEXPTIME are the classes
of problems that can be solved in exponential time by deterministic
turing machines and nondeterministic turing machines, respectively. In
addition to time complexity, in many cases, we are also interested in
how much memory is required in order to solve a problem. PSPACE
and EXPSPACE are the classes of problems that can be solved by
deterministic turing machines using polynomial space and exponential
space, respectively. It is known that

NP ⊆ PSPACE ⊆ EXPTIME ⊆ NPEXPTIME ⊆ EXPSPACE. (1)

We say that a problem is EXPSPACE-complete if 1) it is in EX-
PSPACE and 2) any problem in EXPSPACE can be reduced to this
problem in polynomial time. We say that a problem is EXPSPACE-
hard if there exists a EXPSPACE-complete problem that can be re-
duced to it in polynomial time. The notions of PSPACE-complete and
PSPACE-hard are defined analogously. According to (1), we know
that EXPSPACE-complete problems are much more difficult than NP-

complete or PSPACE-complete problems, which are already considered
as intractable problems.

III. FAULT DIAGNOSIS OF LABELED PETRI NETS

In this section, we review the fault diagnosis problem for labeled Petri
nets, as formulated in [17]. In this problem, the goal is to diagnose any
fault occurrence unambiguously within a finite delay. To this end, we
partition the set of unobservable transitions into two disjoint sets Tuo =
Tf ∪̇Treg, where Tf denotes the set of fault transitions. We denote by
NN the (To ∪ Treg)-induced subnet ofN , i.e.,NN models the nonfaulty
behavior of N . We define Ψ(Tf ) = {σt ∈ L(N , M0 ) : t ∈ Tf } to be
the set of sequences that end with a fault transition. For any sequence
σ = t1 t2 . . . tn ∈ T ∗, with a slight abuse of notation, we write that
Tf ∈ σ if a fault transition occurs in σ, i.e., ∃i ∈ {1, . . . , n} : ti ∈ Tf .
We make the following standard assumption in the literature.
A1 〈N , M0 〉 does not enter a deadlock after a fault transition, i.e.,

(∀σ∈Ψ(Tf ))(∀σ′ ∈T ∗ : M0
σ σ ′−−→ M )(∃t∈T )[M t−→].

Now, we recall the definition of diagnosability of unbounded Petri
nets from [17].

Definition III.1: (Diagnosability). Let 〈N , M0 ,L〉 be a labeled
Petri net. We say that 〈N , M0 ,L〉 is diagnosable w.r.t. Tf if

(∀s ∈ Ψ(Tf ))(∃n ∈ N)(∀v ∈ L(N , M0 )/s)[|v| ≥ n ⇒ D] (2)

where the diagnosability condition D is

(∀w ∈ L(N , M0 ))[L(w) = L(sv) ⇒ Tf ∈ w]. (3)

Remark III.1: In the above definition, diagnosability is referred to
as uniformly bounded diagnosability if the universal quantifier term
“∀s∈Ψ(Tf )” and the existential quantifier term “∃n∈N” are swapped.
It is known that diagnosability and uniformly bounded diagnosability
are equivalent when the system is modeled as a finite-state automaton,
namely the system’s behavior is a regular language [28]. However,
when we consider Petri nets languages, diagnosability is strictly weaker
than uniformly bounded diagnosability; an example is provided in [17].
In other words, the diagnosis delay depends on the specific fault string
and there does not exist an upper bound for delay in general. For
unbounded Petri nets, an effective algorithm for checking uniformly
bounded diagnosability was provided in [17] while the decidability of
diagnosability is still open. �

IV. DECIDABILITY OF DIAGNOSABILITY

In this section, we first provide a new necessary and sufficient con-
dition for diagnosability in terms of a special formula. Then we show
that checking diagnosability for Petri nets is decidable by using a result
from [21].

A. Necessary and Sufficient Condition

First, we define the parallel composition of two labeled Petri nets,
which is similar to the unlabeled case; see, e.g., [29].

Definition IV.1 (Parallel Composition): Let N1 = 〈N1 , M0 ,1 ,L1 〉
and N2 = 〈N2 , M0 ,2 ,L2 〉 be two labeled Petri nets, where Ni =
(Pi , Ti , Ai , wi ) and Li : Ti → Σε

i for i = 1, 2. Their parallel com-
position, denoted by N1‖N2 , is defined as the new labeled Petri net
N12 = 〈N12 , M0 ,12 ,L12 〉, N12 = 〈P12 , T12 , A12 , w12 〉, where
1) P12 = P1 ∪ P2 ;
2) T12 ⊆ (T1 ∪ {λ}) × (T2 ∪ {λ});
3) A12 and w12 are defined by

a) For any t1 ∈ T1 and t2 ∈ T2 such that L1 (t1 ) = L2 (t2 ) ∈
Σ1 ∩ Σ2 , we have that (t1 , t2 ) ∈ T12 with •(t1 , t2 ) =• t1 ∪•
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t2 and (t1 , t2 )• = t•1 ∪ t•2 . Also

w12 ((t1 , t2 ), p) =

{
w1 (t1 , p) if p ∈ P1

w2 (t2 , p) if p ∈ P2
(4)

w12 (p, (t1 , t2 )) =

{
w1 (p, t1 ) if p ∈ P1

w2 (p, t2 ) if p ∈ P2
(5)

b) For any t1 ∈ T1 such that L1 (t1 ) ∈ (Σ1 \ Σ2) ∪ {ε},
we have (t1 , λ) ∈ T12 with •(t1 , λ) =•t1 and (t1 , λ)• =
t•1 . For any p ∈ P1 , w12 ((t1 , λ), p)=w1 (t1 , p) and
w12 (p, (t1 , λ))=w1 (p, t1 ).

c) For any t2 ∈ T2 such that L2 (t2 ) ∈ (Σ2 \ Σ1) ∪ {ε},
we have (λ, t2 ) ∈ T12 with •(λ, t2 ) =•t2 and (λ, t2 )• =
t•2 . For any p ∈ P2 , w12 ((λ, t2 ), p)=w2 (t2 , p) and
w12 (p, (λ, t2 ))=w2 (p, t2 ).

4) M0 ,12 =
[
M�

0 ,1 M�
0 ,2

]�
;

5) L12 : T12 → Σε
1 × Σε

2 is defined by for any (t1 , t2 ) ∈ T12 ,
L12 ((t1 , t2 )) = (L1 (t1 ),L2 (t2 )).

Remark IV.1: The above-defined parallel composition essentially
synchronizes two labeled Petri nets in the following manner. If a
transition in one net with event label in Σ1 ∩ Σ2 is fired, then a
transition in the other net with the same label must be fired simul-
taneously. For each net i = 1, 2, if a transition has an event label in
Σi \ Σj , j ∈ {1, 2} \ {i}, or if it is an unobservable transition (i.e.,
its label is ε), then this transition can be freely fired in this net with-
out involving the other net. Note that a sequence in N12 is a tuple
of sequences in N1 and N2 . For any sequence σ ∈ L(N12 , M0 ,12 ),
we denote by σ1 ∈ L(N1 , M0 ,1 ) (respectively, σ2 ∈ L(N2 , M0 ,2 ))
the first (respectively, the second) component of σ by absorbing all
λ. Then by the definition of parallel composition, we know that,
for any σ ∈ L(N12 , M0 ,12 ), PΣ1 ∩Σ2 (L1 (σ1 )) = PΣ1 ∩Σ2 (L2 (σ2 )),
where PΣ1 ∩Σ2 is the natural projection PΣ1 ∩Σ2 : (Σ1 ∪ Σ2)∗ →
(Σ1 ∩ Σ2)∗. Also, for any two sequences σ1 ∈ L(N1 , M0 ,1 ) and
σ2 ∈ L(N2 , M0 ,2 ), if PΣ1 ∩Σ2 (L1 (σ1 )) = PΣ1 ∩Σ2 (L2 (σ2 )), then we
know that there exists a sequence σ ∈ L(N12 , M0 ,12 ) such that the
first component of σ is σ1 and the second component of σ is σ2 (by
absorbing all λ). �

Hereafter, we will consider the parallel composition of Petri net
〈NN , M0 ,L〉, which models the behavior without faults, with the entire
Petri net 〈N , M0 ,L〉, which contains the nonfaulty and the faulty be-
havior. Since the places of NN and N have the same name, for the sake
of clarity, we rename the nonfaulty netNN = 〈P, To ∪ Treg, A, w〉, M0

and L using distinct symbols by NN = 〈PN , TN , AN , wN 〉, M0 ,N ,
and LN , respectively. We still use N = 〈P, T, A, w〉 to denote the
entire net. We denote by 〈N‖, M0 ,‖,L‖〉 the parallel composition
of 〈NN , M0 ,N ,LN 〉 and 〈N , M0 ,L〉, where N‖ = 〈P‖, T‖, A‖, w‖〉,
P‖ = PN ∪ P , and T‖ ⊆ (TN × T ) ∪ (TN × {λ}) ∪ ({λ} × T ). One
can easily verify that the parallel-composed net N‖ is the same as the
verifier net defined in [17].

The following theorem establishes a necessary and sufficient condi-
tion for diagnosability. Its proof is provided in the Appendix.

Theorem IV.1: Labeled Petri net 〈N , M0 ,L〉 is not diagnosable
w.r.t. Tf , if and only if, there exist an ordered subset of places S =
{pk 1 , pk 2 , . . . , pk |S | } ⊆ P‖ in N‖, an integer m ∈ {0, 1, . . . , |S|} and
a sequence

M0 ,‖
σ ′

0−→ M1
σ 1−→ M ′

1

σ ′
1−→ · · · σ ′

m −1−−−→ Mm
σm−−→ M ′

m

σ ′
m−−→ · · · (6)

σ ′
|S |−1−−−−→ M|S |

σ |S |−−→ M ′
|S |

σ ′
|S |−−→ M|S |+1

σ |S |+ 1−−−−→ M ′
|S |+1

in N‖ such that the following formulas hold simultaneously

∧
p∈P ‖\S

M ′
|S |+1 (p) ≥ M|S |+1 (p) (7)

∧
i :1≤i≤|S |

(
[M ′

i (pk i
) > Mi (pk i

)]∧[∧
p∈P ‖\{pk 1 , . . . ,p k i

} M ′
i (p) ≥ Mi (p)

]) (8)

∧
i :1≤i≤m

∧
t∈(TN ∪{λ})×T

#σ i
(t) = 0 (9)

∨
t∈{λ}×Tf

#σ ′
m

(t) ≥ 1 (10)

∨
t∈(TN ∪{λ})×T

#σ |S |+ 1 (t) ≥ 1. (11)

Remark IV.2: The intuition of Theorem IV.1 is explained as follows.
By Definition III.1, the system is not diagnosable if there exists a
fault sequence v1 ∈ Ψ(Tf ) such that we can find an arbitrarily long
continuation of v1 , say v2 , such that v1v2 looks the same as some
nonfault sequence u ∈ L(NN , M0 ,N ). That is, for any n ∈ N, there
exists a sequence in 〈N‖, M0 ,‖〉 such that its first component is u,
its second component is v1v2 and |v2 | ≥ n. Observe that, to fire a
sequence σ for an arbitrary number of times, which gives an arbitrarily
long sequence, we need to make sure that there are enough tokens
in places whose tokens are consumed by firing σ. The sequence in (6)
essentially captures this observation. Specifically, S are places in which
we need to “store” tokens such that σ|S |+1 can be fired for an arbitrary
given number of times from M|S |+1 . Formula (7) says that we do not
need to “store” tokens for any place in P‖ \ S since firing σ|S |+1 will not
consume tokens in these places. Formula (8) essentially encodes that
tokens in S can be “stored” by suitably firing each σi , i = 1, . . . , |S|
for a certain number of times. Integer m denotes the instant where the
fault transition occurs. Therefore, Formula (10) simply says that σ′

m

contains a fault transition of interest. Formula (11) guarantees that the
second component of σ|S |+1 is not λ, i.e., firing σ|S |+1 for an arbitrary
number of times can yield an arbitrarily long continuation of the fault
sequence. Finally, if we need to fire σi to “store” tokens in place pk i

before the fault transition, i.e., i ≤ m, then the second component of
σi must be λ; otherwise it will change the fault sequence v1 of interest.
This requirement is captured by Formula (9).

Note that the necessary and sufficient condition in Theorem IV.1
includes the case of S = ∅ and m = 0. In this case, since there does
not exist an integer i such that 1 ≤ i ≤ 0, Formulas (8) and (9) always
hold. Therefore, we just need to check the existence of a sequence

M0 ,‖
σ ′

0−→ M1
σ 1−→ M ′

1 such that Formulas (7), (10), and (11) hold.
This situation actually corresponds to the case where σ|S |+1 can be
fired for an arbitrary given number of times directly without “storing”
tokens in any place.

Let us illustrate Theorem IV.1 by the following example.
Example IV.1: Let us consider the labeled Petri net 〈N , M0 ,L〉

shown in Fig. 1 (a), where To = {t1 , t2 , t3}, Treg = {ε1}, and Tf =
{f1}. Also, let L(t1 ) = a and L(t2 ) = L(t3 ) = b. Its (To ∪ Treg)-
induced net 〈NN , M0 ,N ,LN 〉 is shown in Fig. 1(b). For the sake of
clarity, we use pN

i and tN
i to denote a place and a transition

in NN , respectively. We do not depict place pN
5 and transition

tN
3 in NN since they are not involved in NN after removing

tf . Then the parallel-composed labeled Petri net 〈N‖, M0 ,‖,L‖〉 =
〈NN ,M0 ,N ,LN 〉‖〈N , M0 ,L〉 is shown in Fig. 1(c). Note that the paral-
lel composition does not depend on the initial marking and we omit pN

5
and tN

3 here just for this specific verification problem. This system is not
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Fig. 1. To = {t1 , t2 , t3}, Treg = {ε1}, and Tf = {f1}. (a) 〈N , M0 ,L〉.
(b) 〈NN , M0 ,N ,LN 〉. (c) 〈N‖, M0 ,‖,L‖〉= 〈NN ,M0 ,N ,LN 〉‖〈N , M0 ,L〉.

diagnosable, since for fault sequence t1 tf ∈ Ψ(Tf ), for any integer n ∈
N, we can find sequences (ε1 )n t1 (t2 )n ∈ L(NN , M0 ,N ) and (t3 )n ∈
L(N , M0 )/t1 tf such that L((ε1 )n t1 (t2 )n ) = L(t1 tf (t3 )n ) = abn .

Now, let us show the system is not diagnosable using Theorem IV.1.
We choose the following sequence that can be fired from the initial
marking:

M0 ,‖

:= σ ′
0︷ ︸︸ ︷

(εN
1 , λ)−−−−−→ M1

:= σ 1︷ ︸︸ ︷
(εN

1 , λ)−−−−−→ M ′
1

:= σ ′
1︷ ︸︸ ︷

(tN
1 , t1 )(λ, f1 )−−−−−−−−−−→ M2

:= σ 2︷ ︸︸ ︷
(tN

2 , t3 )−−−−−→ M ′
2

where the places in each marking are ordered by
{pN

1 , pN
2 , pN

3 , pN
4 , p1 , p2 , p3 , p4 , p5} and

M1 = [ 1 1 0 0 1 0 0 0 0 ]�

M ′
1 = [ 1 2 0 0 1 0 0 0 0 ]�

M2 = [ 0 2 1 1 0 0 1 0 1 ]�

M ′
2 = [ 0 1 1 1 0 0 1 0 1 ]�.

Let us choose S = {pN
2 } and m = 1. First, Formula (7) holds for

the above sequence, since ∀p ∈ P‖ \ {pN
2 } : M2 (p)′ ≥ M2 (p). Also,

we have M ′
1 ≥ M1 and M ′

1 (pN
2 ) > M1 (pN

2 ), i.e., Formula (8) holds.
Moreover, Formula (9) holds since σ1 = (εN

1 , λ), which does not
contain a transition in (TN ∪ {λ}) × T . Formula (10) also holds
since σ′

m = σ′
1 = (tN

1 , t1 )(λ, f1 ), which contains a transition in
{λ} × Tf . Finally, Formula (11) holds since σ|S |+1 = σ2 = (tN

2 , t3 ),
which contains a transition in (TN ∪ {λ}) × T . Since all formulas in
Theorem IV.1 hold, we know that the system is not diagnosable. �

Remark IV.3: In the above example, we see that sequence (tN
2 , t3 )

consumes a token from place pN
2 . However, it can be fired for an arbi-

trary number of times if we “store” enough tokens in pN
2 by (silently)

firing sequence (εN
1 , λ) for an arbitrary number of times. Moreover,

firing (εN
1 , λ) will not affect the fault sequence of interest since it only

contributes λ to the second component. This example suggests the fol-
lowing phenomenon in Petri nets. By Definition III.1, the system is not
diagnosable if there exists a fault sequence v1 ∈ Ψ(Tf ) such that, for
any n ∈ N, there exist v2 ∈ L(N , M0 )/v1 and u1u2 ∈ L(NN , M0 ,‖)
such that L(v1 ) = L(u1 ) and L(v2 ) = L(u2 ). However, u1 may not
be fixed for a given v1 and it may depend on which v2 we choose. Due
to the presence of an arbitrarily long sequence that only consists of
transitions in Tuo, u1 can be arbitrarily long without changing its fixed
observation. This issue does not exist in automata since we can always
remove unobservable cycles in a sequence. However, the unobservable

sequence in u1 cannot be removed arbitrarily, since we may need to
“store” tokens by firing this sequence. This phenomenon makes the
verification problem much more challenging when the Tuo -induced
net is not acyclic.

Remark IV.4: Note that the parallel composition of the nonfaulty
net NN and the entire net N is the same as the verifier net defined in
[17]. However, compared with [17], our new necessary and sufficient
condition has the following important features. First, our necessary
and sufficient condition does not rely on the assumption that the Tuo-
induced net is acyclic, which is required in [17]. In other words, the
existence of unobservable cycles, which is more difficult to handle in
Petri nets, is allowed. Second, our necessary and sufficient condition
is stated in terms of a special formula. We will show later that this
allows the necessary and sufficient condition to be effectively checked,
while the linear programming approach proposed in [17] can only
verify the sufficiency part of the necessary and sufficient condition
therein. Finally, in contrast to [17], the statement of our necessary and
sufficient condition does not rely on the CG of the Petri net. It is known
that the complexity of the CG is not even in primitive recursive space
[30], [31], which implies that constructing the CG requires even more
than exponential space. However, our condition avoids using the CG.
As we will discuss later, this further allows us to establish the two
results that 1) checking diagnosability is decidable and that 2) it has an
exponential-space upper bound for its complexity. �

B. Checking the Necessary and Sufficient Condition

Now, let us discuss how to check the existence or the nonexistence
of the sequence in Theorem IV.1. Specifically, we show that checking
the necessary and sufficient condition is essentially a special case of a
model checking problem studied by Yen [21].

In [21], Yen studied the model checking problem of a class of for-
mulas for unbounded Petri nets. The problem is formulated as follows.

Definition IV.2 (Yen’s Problem): Given a general unbounded Petri
net 〈N , M0 〉, decide whether or not there exists a sequence

M0
σ 1−→ M1

σ 2−→ . . . Mk−1
σk−→ Mk (12)

such that a formula F (M1 , . . . , Mk , σ1 , . . . , σk ) holds. More specif-
ically, F (M1 , . . . , Mk , σ1 , . . . , σk ) is a formula obtained from the
following syntax:1

S-1 For any markings Mi, Mj , constant c and places p, p′ ∈ P ,
Mi (p)≥c, Mi (p)>c, Mi (p)=Mj (p′), Mi (p)>Mj (p′), and
Mi (p)<Mj (p′) are formulas.

S-2 For any sequences σi , σj , constant c and transitions t, t′ ∈ T ,
#σ i

(t)≤c, #σ i
(t)≥c and #σ i

(t)≤#σ j
(t′) are formulas.

S-3 For any formulas F1 and F2 , F1 ∧ F2 , and F1 ∨ F2 are formulas.
It was shown in [21] that 1) the above problem is decidable; and 2)

solving this problem requires exponential space in the size of N . In
fact, Yen’s formula is very powerful, since many well-known problems
can be reformulated in terms of Definition IV.2; one such example is
the coverability problem. Note that the general Petri net reachability
problem cannot be solved by Yen’s result, since Mi (p) = c is not a
valid formula.

Let us return to the diagnosability verification problem. Clearly, the
necessary and sufficient condition presented in Theorem IV.1 is a valid
formula in Definition IV.2. Moreover, the size of the composed net
N‖ is polynomial in the size of the original net N . Also, given an
ordered subset S and an integer m, the size of the formula is also
polynomial in the size of N‖. Since Yen’s problem can be solved
in exponential space, checking the formulas in Theorem for given S
and m can be done in exponential space. To check diagnosability, it

1The original syntax in [21] is a bit more general.
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suffices to enumerate all possible S and m, i.e., we need to repeat the

above EXPSPACE procedure for
∑|P ‖|

k=0 (k + 1)!
(|P ‖|

k

)
times, which

still requires exponential space. Overall, we have the following result.
Theorem IV.2: Checking diagnosability for labeled Petri nets is de-

cidable. Moreover, it is in EXPSPACE.
Remark IV.5: How to solve Yen’s problem is beyond the scope of

this paper, since our goal is to show that diagnosability of unbounded
Petri nets is decidable. However, it may be useful to discuss the general
idea of Yen’s solution approach. In fact, Yen’s approach is a generaliza-
tion of the results of Rackoff in [31], which show that the coverability
problem for unbounded Petri nets is EXPSPACE-complete. Specifi-
cally, Yen showed that, if a formula in the form in Definition IV.2 is
satisfiable, then there must exist a sequence whose length is bounded
by O(22D ×N ×l o g N ) such that the formula is satisfied, where D is a
constant and N denotes the size of the net and the formula. In other
words, in order to check whether F is satisfiable or not, it suffices to
search a bounded reachable set, rather than the entire unbounded set of
reachable markings. Moreover, such a search can be implemented in
a nondeterministic manner, which only requires O(2N ×log N ) space,
i.e., this problem is in EXPSPACE. A similar approach is also used
in [32] in order to study the complexity of the linear temporal logic
(LTL) model checking problem for vector addition systems with states,
a model known to be equivalent to Petri nets. We refer the reader to
the very comprehensive survey [33] for more details on this issue. The
only results we need for our purposes in this paper are: 1) checking
the condition in Definition IV.2 is decidable; and 2) it can be done by
using exponential space. �

V. EXPSPACE-COMPLETENESS OF DIAGNOSABILITY

In the preceding section, we have shown that checking diagnosability
for labeled Petri nets can be mapped to an instance of the satisfiability
problem of Yen’s formula, which can be solved by using exponential
space. One may ask whether or not this complexity can be further
improved. In this section, we will answer this question. Specifically, we
show that checking diagnosability for labeled Petri nets is EXPSPACE-
complete. In other words, this extremely high complexity seems to be
unavoidable.

A. General Case

In the analysis of unbounded Petri nets, one of the biggest challenges
is the well-known exponential space lower bound proved by Lipton
[34], which results in the EXPSPACE-hardness of many fundamental
problems in Petri nets. Here, we recall a well-known EXPSPACE-
complete problem for unbounded Petri nets [31], [34].

Coverability Problem
1) INSTANCE: A Petri net 〈N , M0 〉 and a marking M .
2) QUESTION: Whether or not there exists a reachable marking

M ′ ∈ R(N , M0 ) such that M ≤ M ′.
We use the coverability problem to show that checking diagnosability

for unbounded Petri nets is EXPSPACE-complete.
Theorem V.1: Checking diagnosability for labeled Petri nets is

EXPSPACE-complete.
Proof: We have already shown that this problem is in EXPSPACE.

Hereafter, we show that it is EXPSPACE-hard by reducing the cover-
ability problem to the diagnosability verification problem.

Let 〈N = (P, T, A, w), M0 〉 and M be the instance of the cov-
erability problem. Then we construct a labeled Petri net 〈N̂ =
(P̂ , T̂ , Â, ŵ), M̂0 , L̂〉 from 〈N , M0 〉 and M as follows.
1) P̂ = P ∪ {pf }, where pf /∈ P is a new fault place;
2) T̂ = T ∪ {tf , tuo}, where tf , tuo /∈ T are two new transitions;
3) Â and ŵ are obtained from A and w by adding the following arcs

and weights

Fig. 2. Conceptual illustration of how to construct 〈N̂ , M0 , L̂〉 from
〈N , M0 〉, where we are interested in whether or not marking M =
[0 0 2 0 1]� is covered in N . Since M is the initial marking of 〈N , M0 〉,
we know that it is covered immediately. Therefore, 〈N̂ , M0 , L̂〉 is not
diagnsoable.

a) An arc from each place p ∈ P , where M (p) �= 0, to the
fault transition tf with ŵ(p, tf ) = M (p);

b) An arc from the fault transition tf to the fault place pf with
ŵ(tf , pf ) = 1;

c) An unobservable self-loop transition tuo at the fault
place pf ∈ P̂ , i.e., two arcs (tuo, pf ) and (pf , tuo) with
ŵ(tuo, pf ) = ŵ(pf , tuo) = 1.

4) M̂0 = [M�
0 0]�; 2

5) The labeling function L̂ : T̂ → Σε is defined by L̂(t) = a if t ∈ T
and L̂(t) = ε if t ∈ {tf , tuo}, where Σ = {a} is the set of events.
In other words, T̂o = T and T̂uo = {tf , tuo}.

By the above construction, M is reachable in N if and only if
[M� 0]� is reachable in N̂ . Moreover, the self-loop at pf guaran-
tees that N̂ will not reach a deadlock marking after the fault transition,
which implies that diagnosability for 〈N̂ , M̂0 , L̂〉 is well defined. Fig. 2
provides a conceptual illustration showing how N̂ is constructed from
N . Clearly, constructing N̂ is linear in the size of N . By our construc-
tion, the fault transition can occur if M can be covered. Moreover, once
the fault occurs, we cannot diagnose it. Therefore, 〈N , M0 〉 covers M
if and only if 〈N̂ , M̂0 , L̂〉 is not diagnosable w.r.t. Tf := {tf }, which
is proved as follows.

(⇒) Suppose that 〈N , M0 〉 covers M , which implies that 〈N̂ , M̂0 〉
covers [M� 0]�. Let σ ∈ L(N̂ , M̂0 ) be a sequence such that Tf /∈
σ, M̂0

σ−→ M1 and [M� 0]� ≤ M1 . By construction, we have that ∀p ∈
•̃tf : M1 (p) ≥ M (p) = ŵ(p, tf ), which implies that tf is enabled at
M . Moreover, unobservable transition tuo can be fired at any reachable
marking for an arbitrary number of times. Therefore, we have that

(∃σtf ∈ Ψ(Tf ))(∀n ∈ N)(∃tn
uo ∈ L(N̂ , M̂0 )/(σtf )) (13)

[|tn
uo| ≥ n ∧ (∃σ ∈ L(N̂ , M̂0 ))[L̂(σ) = L̂(σtf tn

uo) ∧ Tf �∈ σ].

Therefore, we know that 〈N̂ , M̂0 , L̂〉 is not diagnosable.
(⇐) By contraposition. Suppose that 〈N , M0 〉 does not cover

M , i.e., 〈N ′, M0 〉 does not cover M . Then we know that ∀M ′ ∈
R(N̂ , M̂0 ) : [M� 0]� �≤ M ′. By the construction of N̂ , we know that
transition tf cannot be fired in 〈N̂ , M̂0 〉, which implies that ∀σ ∈
L(N̂ , M̂0 ) : tf �∈ σ. Therefore, 〈N̂ , M̂0 , L̂〉 is clearly diagnosable. �

B. Special Cases

In the development of the preceding EXPSPACE-completeness re-
sult, we reduced the coverability problem to the diagnosability verifi-
cation problem. This reduction is applicable to any class of Petri nets.

2We assume that the place order in N̂ is the same as the place order in N
except for the last place pf .
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Based on this observation, we establish complexity results for certain
special classes of Petri nets. First, we recall some standard definitions.

Definition V.1: A net 〈N , M0 〉 is said to be
1) free-choice, if ∀a ∈ A : w(a) = 1 and ∀p ∈ P : |p•| ≤ 1 or

•(p•) = {p};
2) 1-safe, if ∀M ∈ R(N , M0 ), ∀p ∈ P : M (p) ≤ 1;
3) conflict-free, if ∀p ∈ P : |p•| > 1 ⇒ p• ⊆ •p;
4) a state-machine net, if ∀a ∈ A : w(a) = 1 and ∀t ∈ T : |•t| =

|t•| = 1.
5) a marked graph, if ∀a∈A :w(a)=1 and ∀p∈P : |•p|= |p•|=1;

It was shown in [35] that the coverability problem for free-choice
Petri nets, a relatively restrictive class of Petri nets, is still EXPSPACE-
complete, although checking liveness for free-choice Petri nets is NP-
complete. Therefore, we know that checking diagnosability for labeled
free-choice Petri nets is EXPSPACE-complete. Another important class
of Petri nets is that of 1-safe Petri nets. It is known that the coverability
problem is still PSPACE-complete for 1-safe Petri nets [35]. Hence,
we know that checking diagnosability for labeled 1-safe Petri nets is
PSPACE-hard.

One may ask whether or not there exist restricted classes of Petri
nets for which diagnosability can be checked in polynomial time. The
answer is positive. For example, it was shown in [33] that, if the Petri
net is both 1-safe and conflict-free, then Yen’s problem can be effi-
ciently solved in polynomial time. Therefore, checking diagnosability
for labeled 1-safe conflict-free Petri nets is in PTIME. Another class
of Petri nets for which this result holds is that of state-machine nets,
which are equivalent to finite-state automata. In this case, the known
results developed for regular languages [22], [23] apply and we can
state that checking diagnosability for state-machine nets is in PTIME.
One interesting future direction on this topic is to show whether or not
diagnosability of marked graphs can be checked in polynomial time.

VI. CONCLUSION

In this paper, we showed that checking diagnosability of unbounded
Petri nets is decidable. Moreover, we showed that this problem is
EXPSPACE-complete. This result reveals that although Petri nets pro-
vide a compact way for modeling systems, in order to analyze diagnos-
ability of a Petri net, an extremely high computational complexity still
seems to be unavoidable. This computational intractability result also
suggests the following future research directions. First, one may be
interested in finding more subclasses of Petri nets for which checking
diagnosability is tractable. Finding sufficient conditions for diagnos-
ability of general Petri nets by using structural analysis may also be an
interesting topic for future investigations.
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APPENDIX

A. Proof of Theorem IV.1

First, we prove the sufficiency of Theorem IV.1.
Proof: (The Sufficiency of Theorem IV.1) Suppose that there exists

a sequence in (6) satisfying Formulas (7)–(11) simultaneously.
Based on the sequence in (6), we construct the following new

sequence in 〈N‖, M0 ,‖〉

M0 ,‖
σ ′

0−→M̂1
(σ 1 )n 1−−−−→M̂ ′

1

σ ′
1−→· · · σ ′

m −1−−−→M̂m
(σm )n m−−−−−→M̂ ′

m

σ ′
m−→

· · ·
σ ′
|S |−1−−−→M̂|S |

(σ |S |)
n |S |

−−−−−−→M̂ ′
|S |

σ ′
|S |−−→M̂|S |+1

(σ |S |+ 1 )
n

−−−−−−→M̂ ′
|S |+1 . (14)

We claim that, for any n ∈ N, the above sequence is well-defined in
N‖ for some positive integers n1 , . . . , n|S | ∈ N. To see this, we pro-
ceed inductively as follows. By Formula (8), we know that M1 ≤ M ′

1

and M1 (pk 1 ) < M ′
1 (pk 1 ). Therefore, sequence M0 ,‖

σ ′
0 (σ 1 )n 1 σ ′

1−−−−−−−→ is
well-defined for any n1 . Moreover, we can make M̂2 (pk 1 ) arbitrar-
ily large by choosing n1 to be sufficiently large. For sequence σ2 ,
still by Formula (8), we know that ∀p ∈ P‖ \ {pk 1 } : M2 (p) ≤ M ′

2 (p)
and M2 (pk 2 ) < M ′

2 (pk 2 ). Note that, it is possible that M ′
2 (pk 1 ) <

M2 (pk 1 ), i.e., firing σ2 may consume tokens in place pk 1 . How-
ever, we can “store” enough tokens in pk 1 by taking a suffi-
ciently large n1 before (σ2 )n 2 is fired. Therefore, we can choose

n1 and n2 such that 1) M0 ,‖
σ ′

0 (σ 1 )n 1 σ ′
1 (σ 2 )n 2 σ ′

2−−−−−−−−−−−−−−→ is well-defined;
2) ∀p ∈ P‖ \ {pk 1 , pk 2 } : M3 (p) ≤ M̂3 (p); and 3) both M̂3 (pk 1 )
and M̂3 (pk 2 ) can be arbitrarily large. By inductively applying the
above argument, we know that we can choose n1 , . . . , n|S |, such
that ∀p ∈ S : M̂|S |+1 (p) ≥ n × (M|S |+1 (p) − M ′

|S |+1 (p)) and ∀p ∈
P‖ \ S : M̂|S |+1 (p) ≥ M|S |+1 (p). Recall that, by Formula (7), we have
∀p ∈ P‖ \ S : M|S |+1 (p) ≤ M ′

|S |+1 (p). Therefore, (σ|S |+1 )n can be

fired from M̂|S |+1 , i.e., for any n ∈ N, we can choose n1 , . . . , n|S |
such that the sequence in (14) is well-defined.

Recall that each sequence in (6) or (14) is a tuple. For each σi ,
we still denote by σi,1 its first component and by σi,2 its second
component, where σi,1 ∈ T ∗

N and σi,2 ∈ T ∗; the same notation for
σ′

i . By Formula (10), we know that Tf ∈ σ′
m ,2 . We write σ′

m ,2 =
σ′

m ,F σ′
m ,C such that the last transition of σm ,F is in Tf . For the sake

of simplicity, we define

α := σ′
0 ,2 (σ1 ,2 )n 1 σ′

1 ,2 . . . σ′
m −1 ,2 (σm ,2 )

n m σ′
m ,F

β := σ′
m ,C (σm +1 ,2 )

n m + 1 . . . σ′
|S |−1 ,2

(
σ|S |,2

)n |S | σ′
|S |,2

(
σ|S |+1 ,2

)n

γ := σ′
0 ,1 (σ1 ,1 )

n 1 σ′
1 ,1 . . . σ′

|S |−1 ,1

(
σ|S |,21

)n |S | σ′
|S |,21

(
σ|S |+1 ,1

)n
.

By the definition of parallel composition, we know that L(αβ) =
L(γ) for any n1 , . . . , n|S |. Moreover, by Formula (9), we know
that σ1 , . . . , σm ∈ (TN × {λ})∗, i.e., σ1 ,2 = σ2 ,2 = · · · = σm ,2 = λ.
Therefore, α = σ′

0 ,2σ
′
1 ,2 . . . σ′

m −1 ,2σ
′
m ,2 for any n1 , . . . , nm . That is,

the choice of ni does not change the fault transition α ∈ Ψ(Tf ); how-
ever, β and γ may be changed by choosing different ni .

Recall that the sequence in (14) is defined for any n ∈ N. Therefore,
we know that

(∃α ∈ Ψ(Tf ))(∀n ∈ N)(∃β ∈ L(N , M0 )/α)

s.t. |β| ≥ n and (∃γ ∈ L(NN , M0 ))[L(αβ) = L(γ)].

Note that |β| ≥ n comes from Formula (11), i.e., σ|S |+1 ,2 �= λ. There-
fore, |β| ≥ n × |σ|S |+1 ,2 | ≥ n. Overall, we know that 〈N , M0 ,L〉 is
not diagnosable. �

To prove the necessity, we need to use a modified version of the
coverability tree/graph for the parallel composed net 〈N‖, M0 ,‖〉. Fol-
lowing the standard notation, we denote by ω “infinity” such that for
any n ∈ N, ω > n, ω ± n = ω, and ω ≥ ω. Let σ ∈ T ∗ be a sequence
in the original net 〈N , M0 〉. Then the modified coverability tree for
〈N‖, M0 ,‖〉 w.r.t. σ, denoted by CTM (N‖, M0 ,‖, σ), is constructed ac-
cording to Algorithm 1. For each node q, Ξ(q) is used to track the
second component of the sequence that leads to q in the tree. Intu-
itively, the modified coverability tree follows the same construction
rules of the standard coverability tree [36] except the following con-
straint: “ω cannot be added to any place in P ⊂ P‖ = PN ∪ P if
the second component is a prefix of σ.” In other words, if σ has not
been fully executed in the second component of the sequence, then
we will keep adding the integer in any place in P rather than intro-
ducing ω even if we have a covering. By Dickson’s Lemma [37], we
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know that CTM (N‖, M0 ,‖, σ) is also finite for any finite σ. Essentially,
the modified coverability tree “unfolds” the standard coverability tree
along the sequence whose second component is σ. By taking σ = λ,
CTM (N‖, M0 ,‖, λ) is the standard coverability tree. We define the
modified CG for 〈N‖, M0 ,‖〉 w.r.t. σ as the graph obtained by merging
each duplicated node with the untagged node that has the same label
and denote it by CGM (N‖, M0 ,‖, σ).

Now we are ready to complete the proof of Theorem IV.1.
Proof: (The Necessity of Theorem IV.1) Suppose that 〈N , M0 ,L〉

is not diagnosable. Then we know that, there exists v1 tf ∈ L(N , M0 ),
where tf ∈ Tf , such that, for any n ∈ N, there exist v1 tf v2 ∈
L(N , M0 ) and u ∈ L(NN , M0 ) such that: 1) |v2 | ≥ n; and 2) L(u) =
L(v1 tf v2 ).

Let CGM (N‖, M0 ,‖, v1 tf ) be the modified CG for 〈N‖, M0 ,‖〉
w.r.t. v1 tf . Then we choose n = |CGM (N‖, M0 ,‖, v1 tf )| + 1, which
is greater than the number of nodes in the modified CG. For the
above sequence v1 tf and n, let v2 and u be the sequences such that
|v2 | ≥ n and L(u) = L(v1 tf v2 ). By the definition of parallel com-
position, we know that there exists a sequence αβ ∈ L(N‖, M0 ,‖)
such that α1β1 = u, α2 = v1 tf and β2 = v2 , where α1 and α2 de-
note the first and the second components of α, respectively, and the
same for β. We write αβ = t1 t2 . . . t|α |t|α |+1 t|α |+2 . . . t|α |+ |β |, where
ti ∈ T‖ ⊆ (TN ∪ {λ}) × (T ∪ {λ}). Let

M0 ,‖, M1 , M2 , . . . , M|α |, M|α |+1 , M|α |+2 , . . . , M|α |+ |β | (15)

be the marking labels of the nodes reached long
t1 . . . t|α |t|α |+1 . . . t|α |+ |β | in CGM (N‖, M0 ,‖, v1 tf ). Note that

Mi may contain ω. Let

M|α |+ θ1 , M|α |+ θ2 , . . . , M|α |+ θ |v 2 | , 1≤θ1 < · · ·<θ|v 2 | ≤|β| (16)

be the nodes in M|α |+1 , . . . , M|α |+ |β | that are reached immediately after
transitions in (TN ∪ {λ}) × T , i.e., transitions whose second (fault)
component is not λ. We know there are |v2 | number of these nodes
from M|α |+1 to M|α |+ |β | since β2 = v2 . Moreover, since v2 is chosen
such that |v2 | ≥ n = |CGM (N‖, M0 ,‖, v1 tf )| + 1, we know that there
exist two nodes M|α |+ θ i

and M|α |+ θj
, where 1 ≤ θi < θj ≤ |β|, such

that M|α |+ θ i
= M|α |+ θj

.
Let S := {p ∈ P‖ : M|α |+ θ i

(p) = ω} be the set of places which are
ω in M|α |+ θ i

or M|α |+ θj
. First, we assume that S �= ∅. For each p ∈ S,

we denote by μ[p] the instant at which ω in place p is obtained, i.e.,
Mμ [p ]−1 (p) �= ω and Mμ [p ] (p) = ω. We also denote by μ̃[p], where
μ̃[p] < μ[p], the instant such that Mμ̃ [p ] < Mμ [p ] . We order places in
S by S = {pk 1 , . . . , pk |S | } such that

1 ≤ μ[pk 1 ] ≤ μ[pk 2 ] ≤ · · · ≤ μ[pk |S | ] ≤ |α| + θi . (17)

For each ti , 1≤ i≤|α| + |β|, we denote by ti,1 (respectively, ti,2 ) the
first (respectively, the second) component of ti . We choose m = 0 if
v1 tf ≤ t1 ,2 . . . tμ [pk 1 ],2 , i.e., if tf occurs no late than instant μ[pk 1 ].
Otherwise, we choose m ∈ {1, . . . , |S|} be the index s.t.

t1 ,2 . . . tμ [pk m ],2 < v1 tf ≤ t1 ,2 . . . tμ [pk m ],2 . . . tμ [pk m + 1 ],2 . (18)

That is, μ[pkm ] is the latest instant in μ[pk 1 ], . . . , μ[pk |S | ] before the
occurrence of the fault transition tf .

Now, let us consider the sequence in (19) shown at the bottom of this
page, where n1 , . . . , n|S | are some non-negative integers. We claim
that this sequence is well-defined for some n1 , . . . , n|S |. To see this,
we proceed as follows. To fire sequence tμ̃ [pk 2 ]+1 . . . tμ [pk 2 ] from M̃2

for n2 times, it suffices to have enough tokens in place pk 1 ; this can be
obtained by choosing n1 to be sufficiently large, since Mμ̃ [1 ] < Mμ [1 ]

implies that firing tμ̃ [pk 1 ]+1 . . . tμ [pk 1 ] strictly increases the number of
tokens in place pk 1 . Analogously, to fire sequence tμ [pk |S | ]+ 1 . . . t|α |+ θj

from M̃ ′
|S | we just need to choose n|S | to sufficiently large, which can

again be obtained by choosing n|S |−1 to be sufficiently large and so
forth.

Now, suppose that n1 , . . . , n|S | are chosen such that the sequence in
(19) is well-defined. Next, we show that it is indeed a sequence satisfy-
ing the formulas in Theorem IV.1, where each (tμ̃ [pk i

]+ 1 . . . tμ [pk i
] )n i

in (19) corresponds to σi in (6), each tμ [pk i
]+ 1 . . . tμ [pk i + 1 ] in (19)

corresponds to σ′
i in (6), and t|α |+ θ i +1 . . . t|α |+ θj

in (19) corresponds
to σ|S |+1 in (6). We proceed by checking each formula.

Formula (7): Since M|α |+ θ i
= M|α |+ θj

and S is chosen such
that ∀P‖ \ S : M|α |+ θ i

(p) = M|α |+ θj
(p) �= ω, we know that sequence

t|α |+ θ i +1 . . . t|α |+ θj
does not cause token change for any place in

P‖ \ S, i.e., ∀p ∈ P‖ \ S : M̃|S |+1 (p) = M̃ ′
|S |+1 (p). Therefore, this

formula holds.
Formula (8): Recall that, for each pk i

∈ S, μ[pk i
] is the instant when

ω in place pk i
is obtained. This implies the followings:

M0 ,‖
t1 . . . tμ [p k 1

]−−−−−−−→ M̃1

(
t μ̃ [p k 1

]+ 1 . . . tμ [p k 1
]

)n 1

−−−−−−−−−−−−−−−−→ M̃ ′
1

tμ [p k 1
]+ 1 . . . tμ [p k 2

]−−−−−−−−−−−−→ · · ·
tμ [p k m −1

] . . . tμ [p k m
]

−−−−−−−−−−−−−→ M̃m

(
t μ̃ [p k m

]+ 1 . . . tμ [p k m
]

)n m

−−−−−−−−−−−−−−−−−→ M̃ ′
m

tμ [p k m
]+ 1 . . . tμ [p k m + 1

]

−−−−−−−−−−−−−−−→ · · ·

tμ [p k |S |−1
] . . . tμ [p k |S | ]−−−−−−−−−−−−−→ M̃|S |

(
t μ̃ [p k |S | ]+ 1 . . . tμ [p k |S | ]

)n |S |

−−−−−−−−−−−−−−−−−−−→ M̃ ′
|S |

tμ [p k |S | ]+ 1 . . . t |α |+ θ i−−−−−−−−−−−−−→ M̃|S |+1

t |α |+ θ i + 1 . . . t |α |+ θ j−−−−−−−−−−−−→ M̃ ′
|S |+1 (19)
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1) Mμ̃ [pk i
] (pk i

) < Mμ [pk i
] (pk i

); and
2) ∀p ∈ P‖ \ {pk 1 , . . . , pk i

} : Mμ̃ [pk i
] (p) ≤ Mμ [pk i

] (p).
Note that we do not need to consider the token change for places

pk 1 , . . . , pk i−1 , since ω has been obtained in these places. Therefore,
sequence (tμ̃ [pk i

]+ 1 . . . tμ [pk i
] )n i strictly increases the number of to-

kens in pk i
and does not decrease the number of tokens in any place in

P‖ \ {pk 1 , . . . , pk i
}. Therefore, this formula holds for the sequence in

(19) by setting σi = (tμ̃ [pk i
]+ 1 . . . tμ [pk i

] )n i .
Formula (9): If m = 0, there is no need to consider this formula.

When m > 0, recall that m is chosen such that the second compo-
nent of sequence t1 t2 . . . tμ [pk m ] is a prefix of v1 tf . Therefore, ac-
cording to the construction of the modified coverability tree, we have
tμ̃ [pk i

]+ 1 . . . tμ [pk i
] ∈ (TN × {λ})∗ for any i ≤ m. That is, for any

i ∈ {1, . . . , m}, (tμ̃ [pk i
]+ 1 . . . tμ [pk i

] )n i does not contain a transition
in (TN ∪ {λ}) × T . Therefore, this formula holds.

Formula (10): If m = 0, then we know that (λ, tf ) ∈ {λ} × Tf must
occur in σ′

0 = t1 . . . tμ [pk 1 ] . If m > 0, by (18), we know that transition
(λ, tf ) ∈ {λ} × Tf must occur in σ′

m = tμ [pk m ] . . . tμ [pk m + 1 ] . There-
fore, this formula also holds.

Formula (11): By our choice, M|α |+ θj
is reached immediately after a

transitions in (TN ∪ {λ}) × T , i.e., t|α |+ θj
∈ (TN ∪ {λ}) × T . There-

fore, this formula holds by choosing σ|S |+1 = t|α |+ θ i +1 . . . t|α |+ θj
.

Overall, all formulas in Theorem IV.1 hold for the sequence in (19).
Note that the above proof is based on the assumption that S = {p ∈

P‖ : M|α |+ θ i
(p) = ω} �= ∅. When S = ∅, we just need to replace the

sequence in (19) by M0 ,‖
t1 . . . t |α |+ θ i−−−−−−−→ M̃1

t |α |+ θ i + 1 . . . t |α |+ θ j−−−−−−−−−−−−→ M̃ ′
1 . We

can show by the same arguments that all formulas in Theorem IV.1 still
hold for this sequence. This completes the proof of necessity. �
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