
0018-9286 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2756096, IEEE
Transactions on Automatic Control

1

Verification of Prognosability for Labeled Petri Nets
Xiang Yin, Member, IEEE

Abstract—This technical note is concerned with the fault prognosis
problem for partially-observed discrete-event systems modeled by un-
bounded labeled Petri nets. The goal of this problem is to predict
the occurrence of each fault before its occurrence. The condition of
prognosability provides the necessary and sufficient condition under
which any fault can be predicted with no missed detection and no false
alarm. In this technical note, we investigate the verification of prognos-
ability for unbounded labeled Petri nets. First, we show that checking
prognosability is decidable for Petri net languages. Our approach is
based on a reduction from this verification problem to an existing Petri
nets model checking problem. Then we show that the complexity of this
problem is EXPSPACE-complete. Our results extend previous works on
the verification of language-based prognosability from regular languages
to Petri net languages.

Index Terms—Discrete Event Systems, Petri Nets, Fault Prognosis,
Computational Complexity

I. INTRODUCTION

Fault prognosis is an important task in many safety-critical cyber-
physical systems. In this problem, we want to predict the occurrences
of faults and to generate corresponding fault alarms in order to protect
the system. In this technical note, we are concerned with the problem
of fault prognosis of discrete-event systems (DES) [9].

In the context of DES, model-based fault prognosis was initially
studied in [15], [16], where a language-based condition called prog-
nosability (or predictability) was proposed. Specifically, prognosabil-
ity is proposed to determine a priori whether or not a fault prognoser
can be designed such that: (i) no false alarm, i.e., a fault is guaranteed
to occur within a finite number of steps whenever a fault alarm is
generated; and (ii) no missed detection, i.e., any fault will be alarmed
before its occurrence. Since then, fault prognosis of DES has drawn
consideration attention in the DES literature; see, e.g., [6], [12], [18],
[19], [24], [28], [29], [31], [32], [34], [36], [37]. For example, the
notion of prognosability has been extended to decentralized systems,
where the notion of co-prognosability was proposed [18], [19], [36],
[37]. The fault prognosis problem has also been studied in the
distributed setting [29], [31], [32]. In [34], the authors investigated
the enforcement of prognosability by sensor activation. The robust
fault prognosis problem was studied in [28]. Finally, prognosability
analysis has also been studied in timed systems [11] and stochastic
systems [6], [12], [24].

Most of the existing works on fault prognosis of DES are based on
finite-state automata models. In many concurrent systems, however,
Petri nets provide a more compact and natural way for modeling
DES without explicitly enumerating the entire state-space. Moreover,
it is well-known that Petri net languages are strictly more expressive
than regular languages, languages generated by finite-state automata.
Therefore, Petri nets can model some infinite-state systems that
cannot be represented by finite-state automata, e.g, manufacturing
systems with infinite buffers. Due to these advantages, in the context
of Petri nets, many works have been done on the fault diagnosis
problem, a problem related to the fault prognosis problem; see, e.g.,
[3]–[5], [7], [8], [14], [17], [21], [23], [26], [27]. Recently, there have
been works on fault prognosis based on Petri nets [1], [20], where
procedures for online prognosis were provided.

In this technical note, we investigate the verification of prognos-
ability in unbounded labeled Petri nets. Specifically, we follow the

X. Yin is with the Department of Automation, Shanghai Jiao Tong Univer-
sity, Shanghai 200240, China. E-mail: xiangyin@umich.edu.

language-based definition of prognosability in [15], [19] to determine
a priori whether or not a fault can be predicted with no missed
detection and with no false alarm. The main contributions of this
technical note are as follows. First, we show that prognosability is
decidable for labeled Petri nets by effectively reducing the prognos-
ability verification to a model checking problem for Petri nets. In
the context of unbounded Petri nets, several (un)decidability results
have been established for related notions. For example, it has been
shown that the verification of diagnosability is decidable [35], while
the verification of opacity is shown to be undecidable [30]. To the
best of our knowledge, the decidability status of prognosability is
still open and our result provides positive answer to this question.
Second, we establish the precise computational complexity for the
prognosability verification problem. Specifically, we show that check-
ing prognosability for unbounded Petri nets is EXPSPACE-complete,
i.e., exponential memory is required for this verification problem.

II. PRELIMINARIES

A. Petri Nets

A place/transition net is defined as a 4-tuple N = (P, T,A,w),
where P = {p1, p2, . . . , pn} is the set of n places, T =
{t1, t2, . . . , tm} is the set of m transitions, A ⊆ (P ×T)∪ (T ×P)
is the set of arcs, and w : A → N is the weight function that
assigns to each arc a non-negative integer. For any place p ∈ P ,
we denote by •p its preset, i.e., •p = {t ∈ T : (t, p) ∈ A};
we denote by p• its postset, i.e., p• = {t ∈ T : (p, t) ∈ A}.
For a transition t ∈ T , its preset •t and its postset t• are defined
analogously, which are sets of places. Given a net N , a marking
M is a vector M = [M(p1) M(p2) . . . M(pn)]> ∈ Nn, where
M(p) is the number of tokens in place p ∈ P . A Petri net is a
2-tuple 〈N ,M0〉, where N is a net and M0 ∈ Nn is the initial
marking. We say that transition t ∈ T is enabled at marking M if
∀p ∈ •t : M(p) ≥ w(p, t). If t is enabled, then it may fire and yield
a new marking determined by M ′ = M − w(·, t) + w(t, ·). We use
M

t−→N to denote that transition t ∈ T is enabled at M in net N
and M t−→N M ′ means that firing t yields M ′ in net N . Hereafter,
we will also omit the subscript N when it is clear from the context.

Let T ∗ be the set of all finite sequences of transitions including
the empty transition λ, which means that no transition is fired, and,
for any σ ∈ T ∗, we have σλ = λσ = σ. We say that a sequence
of transitions (or, for simplicity, a sequence) σ = t1t2 . . . tk ∈ T ∗

is enabled at M if ∀i ∈ {1, . . . , k} : Mi
ti−→, where M1 = M and

Mi
ti−→ Mi+1, ∀i ≥ 1. Similarly, we denote by M σ−→ that σ ∈ T ∗

is enabled at M and by M σ−→ M ′ that firing σ yields M ′. Given
a Petri net 〈N ,M0〉, L(N ,M0) denotes the set of finite sequences
that can be fired from M0, i.e., L(N ,M0) = {σ ∈ T ∗ : M0

σ−→}.
For any sequence σ ∈ T ∗, we denote by σ the set of prefixes of σ,
i.e., σ = {σ1 ∈ T ∗ : ∃σ2 ∈ T ∗ s.t. σ1σ2 = σ}. Finally, we denote
by |σ| the length of sequence σ.

Let Σ be a finite set of alphabets (or events). A string is a finite
sequence of events and we denote by Σ∗ the set of all strings includ-
ing the empty string ε. A labeled Petri net is a triple 〈N ,M0,L〉,
where 〈N ,M0〉 is a Petri net and L : T → Σ ∪ {ε} is a labeling
function. That is, for any t ∈ T , L(t) specifies the event that can be
observed when t fires. For any transition t ∈ T , if L(t) ∈ Σ, then
we say that transition t is observable; otherwise, t is unobservable.
Therefore, T is partitioned as T = To∪̇Tuo, where To and Tuo are the

0018-9286 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2756096, IEEE
Transactions on Automatic Control

2

set of observable transitions and the set of unobservable transitions,
respectively. Function L is also extended from T to T ∗ recursively
by: (i) L(λ) = ε ; and (ii) ∀σ ∈ T ∗, t ∈ T : L(σt) = L(σ)L(t).
Then the language generated by labeled Petri net 〈N ,M0,L〉 is a
set of strings L(L(N ,M0)) := {L(σ) : σ ∈ L(N ,M0)}.

B. Yen’s Problem

In this paper, we will leverage an existing path logic model
checking problem for unbounded Petri nets in the literature originally
studied by Yen [33]. For any sequence σ ∈ T ∗ and transition t ∈ T ,
We denote by #σ(t) the number of times t occurs in σ. Then Yen’s
problem is formulated as follows.

Definition II.1. (Yen’s Problem). Given a Petri net 〈N ,M0〉, decide
whether or not there exists a sequence

M0
σ1−→M1

σ2−→ . . .Mk−1
σk−−→Mk (1)

such that a predicate F (M1, . . . ,Mk, σ1, . . . , σk) holds, where
F (M1, . . . ,Mk, σ1, . . . , σk) is a predicate obtained from the fol-
lowing syntax:

(i) The followings are predicates: Mi(p) ≥ c, Mi(p) ≤ Mj(p
′),

#σi(t)≤ c, #σi(t)≥ c and #σi(t)≤#σj (t
′), where c is an

arbitrary constant.
(ii) For any predicates F1 and F2, F1 ∧ F2 and F1 ∨ F2 are also

predicates.

In general, Yen’s problem is decidable and it is as hard as the reach-
ability problem1. Furthermore, it has been shown in [2] that, when the
predicate satisfies the constraint that F (M1, . . . ,Mk, σ1, . . . , σk)⇒
M1 ≤Mk, this problem can be solved in EXPSPACE. Hereafter, we
will only use the fact that this problem is decidable and the restricted
case can be solved with exponential space in the size of N and the
size of the predicate. Details on how to solve this problem can be
found in [2], [33].

III. PROGNOSABILITY OF LABELED PETRI NETS

In the fault prognosis problem, we assume that the set of transitions
is partitioned into two disjoint sets T = TF ∪̇TN , where TF denotes
the set of fault transitions and TN denotes the set of non-fault
transitions. For any sequence σ = t1t2 . . . tk ∈ T ∗, with a slight
abuse of notation,we write that TF ∈ σ if a fault transition occurs in
σ, i.e., ∃i ∈ {1, . . . , k} : ti ∈ TF .

As we mentioned earlier, the main purpose of the fault prognosis
problem is to predict any fault correctly before its occurrence, where
“correctly” means that

(i) any fault should be alarmed before it occurs, i.e., no missed
detection; and

(ii) once a fault alarm is generated, a fault is guaranteed to occur
within a finite number of steps, i.e., no false alarm.

In [15], [19], the notion of prognosability (or predictability) was
proposed as the necessary and sufficient condition under which there
exists a prognosis mechanism such that the above two requirements
can be achieved. Although [15], [19] only study the verification of
prognosability for regular languages, the definition of prognosability
itself is applicable to any class of languages. Here, we present the
definition of prognosability for Petri net languages.

1In the original paper [33], it is claimed that the general case is in
EXPSPACE, which is not correct as pointed out by [2].

𝑓1

𝑡2 𝑝1
 𝑝2

𝑎

𝑡1

𝑏

𝑓1

𝑡2 𝑝1
 𝑝2

𝑎

𝑡1

𝑎

𝑡2
𝑁

 𝑝1

𝑁

 𝑝2

𝑁

𝑎

𝑡1
𝑁

𝑎

𝑓1
 𝑡2 𝑝1 𝑝2

𝑎

𝑡1

𝑎

𝑝𝑓𝑎𝑢𝑙𝑡
 𝑡𝑎

𝑎

𝑝1
 𝑝2

𝑝𝑓𝑎𝑢𝑙𝑡

(𝑡2
𝑁, 𝑡2)

𝑝2
𝑁

(𝑡1
𝑁, 𝑡1) (𝑡2

𝑁, 𝑡𝑎) (𝜆, 𝑓1)

(𝑡1
𝑁, 𝑡2)

(𝑡2
𝑁, 𝑡1)

(𝑡1
𝑁, 𝑡𝑎)

𝑝1
𝑁

(a) A prognosable system.

𝑓1

𝑡2 𝑝1
 𝑝2

𝑎

𝑡1

𝑏

𝑓1

𝑡2 𝑝1
 𝑝2

𝑎

𝑡1

𝑎

𝑡2
𝑁

 𝑝1

𝑁

 𝑝2

𝑁

𝑎

𝑡1
𝑁

𝑎

𝑓1
 𝑡2 𝑝1 𝑝2

𝑎

𝑡1

𝑎

𝑝𝑓𝑎𝑢𝑙𝑡
 𝑡𝑎

𝑎

𝑝1
 𝑝2

𝑝𝑓𝑎𝑢𝑙𝑡

(𝑡2
𝑁, 𝑡2)

𝑝2
𝑁

(𝑡1
𝑁, 𝑡1) (𝑡2

𝑁, 𝑡𝑎) (𝜆, 𝑓1)

(𝑡1
𝑁, 𝑡2)

(𝑡2
𝑁, 𝑡1)

(𝑡1
𝑁, 𝑡𝑎)

𝑝1
𝑁

(b) A non-prognosable system.

Fig. 1: Examples of prognosability, where for each system, tf is
the unique fault transition. Bold lines are used to denote observable
transitions and the event associated with each observable transition
denotes its observation label.

Definition III.1. (Prognosability). Let 〈N ,M0,L〉 be a labeled Petri
net. We say that 〈N ,M0,L〉 is prognosable w.r.t. TF if

(∀α ∈ L(N ,M0) : TF ∈ α)(∃β ∈ α : TF /∈ β)

(∀θ ∈ L(N ,M0) : L(θ) = L(β) ∧ TF /∈ θ)
(∃K ∈ N)(∀θγ ∈ L(N ,M0))[|γ| ≥ K ⇒ TF ∈ γ]

Intuitively, prognosability can be used to determine a priori if
any fault occurrence in the system can be correctly predicted. More
specifically, it requires that, for any fault sequence, it must has a
non-fault prefix for which we know for sure that a fault is guaranteed
to occur within a finite number of steps, i.e., a fault alarm can be
correctly issued. In other words, if the system is not prognosable, then
it implies that there must exist a fault sequence for which we cannot
claim that the fault will occur unambiguously along its non-fault
prefixes. Therefore, any fault prognosis mechanism cannot correctly
predict this fault before it occurs.

Remark III.1. Note that here we do not assume that TF ⊆ Tuo,
which is the (non-trivial) case for the fault diagnosis problem. This
is because that, in the fault prognosis problem, we are mainly
interested in the behavior of the system before the occurrences of
faults. Therefore, even if a fault transition is observable and can be
distinguished from other non-fault transitions, it is still possible that
a fault alarm cannot be issued unambiguously before it occurs.

We illustrate the notion of prognosability in Petri nets by the
following examples.

Example III.1. Let us consider labeled Petri net 〈N ,M0,L〉 shown
in Figure 1(a), where To = {t1, t2} and TF = {f1}. Also, let Σ =
{a, b},L(t1) = b and L(t2) = a. This system is prognosable, since
transition t2 has to occur before the occurrence of fault transition f1,
and once t2 occurs, the token in place p1 will be consumed, i.e., the
only transition can occur next is the fault transition f1. Therefore,
once we observe event L(t2) = a, which can only be generated by
transition t2 in this example, we can claim unambiguously that the
fault will occur within one step.

Example III.2. Let us consider labeled Petri net 〈N ,M0,L〉 shown
in Figure 1(b), where we have To = {t1, t2}, TF = {f1} and Σ =
{a}. We consider a labeling function defined by L(t1) = L(t2) = a.
This system is not prognosable. To see this, let us consider fault
sequence t2f1 ∈ L(N ,M0). Then for t2 ∈ t2f1 : TF /∈ t2, we can
find t1 ∈ L(N ,M0) such that L(t1) = L(t2) = a and for any K ∈
N, a non-fault sequence t1(t1)K is defined in 〈N ,M0〉. Intuitively,
the non-prognosability here can also be explained as follows. To avoid
missed detection, we have to issue a fault alarm upon the occurrence
of t2, i.e., by observing event a. However, sequences t1 and t2 are
indistinguishable and an arbitrarily long non-fault behavior can still
occur after t1. Therefore, this fault alarm cannot guarantee a fault to
occur within a finite number of steps, i.e., it may be a false alarm.

Next, we will provide a characterization of prognosability for
labeled Petri nets. First, motivated by relevant notions in [19] for

0018-9286 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2756096, IEEE
Transactions on Automatic Control

3

finite-state automata, we introduce the notions of boundary marking
and non-indicator marking.

Definition III.2. A marking M ∈ Nn is said to be

• a Boundary Marking if (∃tf ∈ TF)[M
tf−→]; and

• a Non-Indicator Marking if (∀K ∈ N)(∃σ ∈ T ∗N)[M
σ−→

∧|σ| ≥ K].

Intuitively, a boundary marking is a marking from which a fault
transition can occur immediately and a non-indicator marking is a
marking from which an arbitrarily long non-fault sequence can occur.
Note that, since vectors of integers form a well quasi-ordering [13],
for any M1, there does not exists an infinite sequence of vectors
M1,M2,M3, . . . such that Mi 6≤ Mj for any i < j. Therefore,
M is a non-indicator marking if and only if (∃σ, σ′ ∈ T ∗N)[M

σ−→
M ′

σ′
−→M ′′ ∧M ′ ≤M ′′].

The following result provides a characterization of prognosability
in terms of boundary markings and non-indicator markings.

Lemma III.1. Labeled Petri net 〈N ,M0,L〉 is not prognosable w.r.t.
TF , if and only if, there exist two non-fault sequences σ1, σ2 ∈ T ∗N
such that

(i) M1 is a non-indicator marking, where M0
σ1−→M1; and

(ii) M2 is a boundary marking, where M0
σ2−→M2; and

(iii) L(σ1) = L(σ2).

Proof. (⇐) Suppose that there exist two non-fault sequences
σ1, σ2 ∈ T ∗N such that the above conditions hold. Since M0

σ2−→
M2 and M2 is a boundary marking, we know that there exists
tf ∈ TF such that M0

σ2tf−−−→. Then, for any non-fault prefix of
σ2tf , say β ∈ σ2, since L(σ1) = L(σ2), we know that there
exists a prefix of σ1, say θ ∈ σ1 such that L(θ) = L(β).

Since M0
θ(σ1/θ)−−−−−→ M1 and M1 is a non-indicator marking, where

(σ1/θ) is the sequence such that θ(σ1/θ) = σ1, we know that

(∀K ∈ N)(∃σ ∈ T ∗N)[M0
θ(σ1/θ)σ−−−−−−→ ∧|σ| ≥ K]. Overall, we have

(∃σ2tf ∈ L(N ,M0) : TF ∈ σ2tf)(∀β ∈ σ2 : TF /∈ β)

(∃θ ∈ L(N ,M0) : L(θ) = L(β) ∧ TF /∈ θ) (2)

(∀K ∈ N)(∃θ(σ1/θ)σ ∈ L(N ,M0))[|γ| ≥ K ∧ TF /∈ γ]

where γ = (σ1/θ)σ. That is, the system is not prognosable.
(⇒) Suppose that the system is not prognosable, i.e.,

(∃α ∈ L(N ,M0) : TF ∈ α)(∀β ∈ α : TF /∈ β)

(∃θ ∈ L(N ,M0) : L(θ) = L(β) ∧ TF /∈ θ) (3)

(∀K ∈ N)(∃θγ ∈ L(N ,M0))[|γ| ≥ K ∧ TF /∈ γ]

Let α be a string satisfying Equation (3). We take β as the longest
prefix of α such that TF /∈ β, i.e., βtf ∈ α for some tf ∈ TF . We
know that M2 is a boundary marking, where M0

β−→M2. Let θ be a
non-faulty sequence such that L(θ) = L(β) and (∀K ∈ N)(∃θγ ∈
L(N ,M0))[|γ| ≥ K ∧ TF /∈ γ]. By definition, we know that M1

is a non-indicator marking, where M0
θ−→ M1. Therefore, by taking

σ1 = θ and σ2 = β, all conditions in the lemma hold.

Finally, we denote by 〈NN ,M0,L〉 the labeled Petri net obtained
by removing transitions in TF from 〈N ,M0,L〉. Specifically, NN =
(PN , TN , AN , wN), where PN = P , AN is obtained by restricting A
to domain (P ×TN)∪(TN×P) and wN is obtained by restricting w
to domain AN . This net is also referred to as the normal net hereafter.
For example, for labeled Petri net 〈N ,M0,L〉 shown in Figure 1(b),
its normal net 〈NN ,M0,L〉 is shown in Figure 2(a). For the sake
of clarity, we add superscript N for each transition and each place
in the normal net in order to distinguish them from transitions and
places in the original net.

𝑓1

𝑡2 𝑝1 𝑝2

𝑎

𝑡1

𝑏

𝑓1

𝑡2 𝑝1
 𝑝2

𝑎

𝑡1

𝑎

𝑡2
𝑁

 𝑝1

𝑁

 𝑝2

𝑁

𝑎

𝑡1
𝑁

𝑎

𝑓1
 𝑡2 𝑝1 𝑝2

𝑎

𝑡1

𝑎

𝑝𝑓𝑎𝑢𝑙𝑡
 𝑡𝑎

𝑎

𝑝1
 𝑝2

𝑝𝑓𝑎𝑢𝑙𝑡

(𝑡2
𝑁, 𝑡2)

𝑝2
𝑁

(𝑡1
𝑁, 𝑡1) (𝑡2

𝑁, 𝑡𝑎) (𝜆, 𝑓1)

(𝑡1
𝑁, 𝑡2)

(𝑡2
𝑁, 𝑡1)

(𝑡1
𝑁, 𝑡𝑎)

𝑝1
𝑁

(a) Petri net
〈NN ,M0,L〉

𝑓1

𝑡2 𝑝1 𝑝2

𝑎

𝑡1

𝑏

𝑓1

𝑡2 𝑝1
 𝑝2

𝑎

𝑡1

𝑎

𝑡2
𝑁

 𝑝1

𝑁

 𝑝2

𝑁

𝑎

𝑡1
𝑁

𝑎

𝑓1
 𝑡2 𝑝1 𝑝2

𝑎

𝑡1

𝑎

𝑝𝑓𝑎𝑢𝑙𝑡
 𝑡𝑎

𝑎

𝑝1
 𝑝2

𝑝𝑓𝑎𝑢𝑙𝑡

(𝑡2
𝑁, 𝑡2)

𝑝2
𝑁

(𝑡1
𝑁, 𝑡1) (𝑡2

𝑁, 𝑡𝑎) (𝜆, 𝑓1)

(𝑡1
𝑁, 𝑡2)

(𝑡2
𝑁, 𝑡1)

(𝑡1
𝑁, 𝑡𝑎)

𝑝1
𝑁

(b) Petri net 〈Ñ , M̃0〉

Fig. 2: Petr nets 〈NN ,M0〉 and 〈Ñ , M̃0, L̃〉 for the Petri net shown
in Figure 1(b).

IV. VERIFICATION OF PROGNOSABILITY

In this section, we first provide a necessary and sufficient condition
for prognosability in terms of a formula satisfying the syntax in the
Yen’s problem. Then we show that the verification of prognosability
is decidable and it is in EXPSPACE.

By Lemma III.1, to verify prognosability, it suffices to verify the
existence of two observationally equivalent sequences such that one
goes to a boundary marking and the other goes to a non-indicator
marking. Similarly result can also be found in the fault diagnosis
problem; see, e.g., [7], [10]. The basic idea to verify this is to use a
twin-plant-like approach in order to track all pairs of sequences that
look the same. However, to implement this idea, the following dif-
ficulty arises. For boundary markings, it is straightforward to obtain
a closed-form representation; however, obtaining such a closed-form
representation for non-indicator markings seems to be difficult. To
resolve this technique challenge, we first define a new net 〈Ñ ,M0, L̃〉
and then use this net together with the normal net for the twin-plant
construction.

Let 〈N ,M0,L〉 be the labeled Petri net under consideration. We
define a new labeled Petri net 〈Ñ , M̃0, L̃〉, where Ñ = (P̃ , T̃ , Ã, w̃),
as follows:

• P̃ = P ∪ {pfault}, where pfault is a new place;
• T̃ = T ∪ {te : e ∈ Σ}, where each te is a new transition;
• Ã and w̃ are defined by:

– For any t ∈ TN , •t and t• are the same in N and ∀p ∈ P :
w̃(p, t) = w(p, t), w̃(t, p) = w(t, p).

– For any t ∈ TF , •t is the same inN and ∀p ∈ P : w̃(p, t) =
w(p, t), while t• = {pfault} with w̃(t, pfault) = 1.

– For any te, e ∈ Σ, we have •te = t•e = {pfault} and
w̃(te, pfault) = w̃(pfault, te) = 1.

The initial marking is M̃0 = [M>0 0]> (we assume the last place is
pfault). The labeling function L̃ : T̃ → Σ ∪ {ε} is defined by

L̃(t) =

L(t) if t ∈ TN
ε if t ∈ Tf
e if t = te

(4)

Intuitively, for any non-fault transition, the dynamic of Ñ is
consistent with N . However, for any fault transition, Ñ will send
a token to a new place pfault, which denotes the occurrence of fault.
For each event e ∈ Σ, a self-loop transition te labeled with e is
defined at pfault. For example, let us still consider labeled Petri
net 〈N ,M0,L〉 shown in Figure 1(b). Then its corresponding net
〈Ñ , M̃0, L̃〉 is shown in Figure 2(b).

Next, we define a new (unlabeled) Petri net 〈N‖,M0,‖〉 that
“synchronizes” 〈NN ,M0,L〉 and 〈Ñ , M̃0, L̃〉 based on their labeling
functions. Specifically, 〈N‖,M0,‖〉, where N‖ = (P‖, T‖, A‖, w‖),
is defined as follows:

• P‖ = PN ∪ P̃ ;
• T‖ ⊆ (TN ∪ {λ})× (T̃ ∪ {λ}) \ {(λ, λ)};
• A‖ and w‖ are defined by

0018-9286 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2756096, IEEE
Transactions on Automatic Control

4

– For any t1 ∈ TN and t2 ∈ T̃ such that L(t1) = L̃(t2) ∈ Σ,
we have that (t1, t2) ∈ T‖ with •(t1, t2) =• t1 ∪• t2 and
(t1, t2)• = t•1 ∪ t•2. Also,

w‖((t1, t2), p) =

{
wN (t1, p) if p ∈ PN
w̃(t2, p) if p ∈ P̃ (5)

w‖(p, (t1, t2)) =

{
wN (p, t1) if p ∈ PN
w̃(p, t2) if p ∈ P̃ (6)

– For any t1 ∈ TN such that L(t1) = ε, we have (t1, λ) ∈ T‖
with •(t1, λ) =•t1 and (t1, λ)• = t•1. Then for any p ∈ PN ,
w‖((t1, λ), p)=wN (t1, p) and w‖(p, (t1, λ))=wN (p, t1).

– For any t2 ∈ T̃ such that L̃(t2) = ε, we have (λ, t2)∈T‖
with •(λ, t2) =•t2 and (λ, t2)• = t•2. Then for any p ∈ P̃ ,
w‖((λ, t2), p)= w̃(t2, p) and w‖(p, (λ, t2))= w̃(p, t2).

• M0,‖ =
[
M>0 M̃>0

]>
.

Remark IV.1. The construction of 〈N‖,M0,‖〉 follows the idea of
twin-plant (or verifier net) that is used in the literature for the
verification of diagnosability; see, e.g., [7], [23], [35]. However,
the difference here is that we need to modified one net before
the construction in order capture the feature of the fault prognosis
problem. Intuitively, 〈N‖,M0,‖〉 tracks and only tracks all pairs of
two sequences, one in NN and the other one in Ñ , that have the same
observation. For any transition (t1, t2) ∈ T‖, if ti = λ for some i,
then it means that its corresponding net stays silently when the other
net fires an unobservable transition; if t1, t2 6= λ, then it means that
two nets are moved simultaneously by firing observable transitions
with a same label. Then for any sequence σ ∈ L(N‖,M0,‖), we
denote by σ1 and σ2 its first and second components, respectively.
Then we know that L(σ1) = L̃(σ2). Similarly, for any two sequences
σ1 ∈ L(NN ,M0) and σ2 ∈ L(Ñ , M̃0), such that L(σ1) = L̃(σ2),
then there exists a sequence σ ∈ L(N‖,M0,‖) such that its first and
second components are σ1 and σ2, respectively.

Based on net 〈N‖,M0,‖〉, we are now ready to present a necessary
and sufficient condition for prognosability.

Theorem IV.1. Labeled Petri net 〈N ,M0,L〉 is not prognosable
w.r.t. TF , if and only if, there exists a sequence

M0,‖
α−→N‖ M1

β−→N‖ M2 (7)

in 〈N‖ = (P‖, T‖, A‖, w‖),M0,‖〉, such that

(M2 ≥M1)∧ (
∨

t∈{λ}×TF

#α(t) ≥ 1)∧ (
∨

t∈TN×(T̃∪{λ})

#β(t) ≥ 1) (8)

Remark IV.2. Before we formally prove the above theorem, let us
first explain intuitively how it works. For a sequence in Equation (7),
since

∨
t∈{λ}×TF

#α(t) ≥ 1, we know that a boundary marking can
be reached by a prefix of the second component of α. Moreover, the
last condition guarantees that β is non-λ for its first component. This
condition together with M2 ≥ M1 ensure that any marking reached
by a prefix of the first component of α is a non-indicator marking.
Therefore, the conditions in Equation (8) essentially guarantee that
there are two observationally equivalent sequences that can reach a
non-indicator marking and a boundary marking, respectively, which
disproves prognosability. On the other hand, suppose that the system
is not prognosable, i.e., there exist a non-indicator marking M ′1,1
and a boundary marking M ′1,2 that can be reached by α1 and α2,
respectively, such that α1 and α2 look the same. Then we know
that M0,‖

α−→N‖ M ′1 =
[
M ′>1,1 M ′>1,2

]>
for some α whose first

and second components are α1 and α2, respetively. Since M ′1,2 is a
boundary marking and any fault transition is unobservable in L̃, we

know that M ′1
(λ,tf)−−−−→N‖

[
M>1,1 M>1,2

]>
for some tf ∈ TF . Since

M ′1,1 = M1,1 is a non-indicator marking, we know that β1 can be
extended from M1,1 to obtain a covering for places in PN . Moreover,
M1,2 contains a token in pfault. Therefore, the self-loops in the form
of te can “track” the sequence, which contributes to the covering in
NN , without changing markings in P̃ . This yields a covering for all
places in P‖ that satisfies Equation (8). This is also the reason why
we add such self-loop transitions at place pfault in Ñ .

With the above explained intuition, we are now ready to formally
prove Theorem IV.1.

Proof. (⇐) Let M0,‖
α−→N‖ M1

β−→N‖ M2 be a sequence satisfying
the conditions in Equation (8). We denote by α1 and α2 the first and
the second components of α, respectively. The same for notations β1
and β2.

Let us consider the longest non-fault prefix of α2, say α′2 ∈ α2,
i.e., α′2 ∈ T ∗N and α′2tf ∈ L(N ,M0) for some tf ∈ TF . This

means that M ′1,2 is a boundary marking, where M0
α′
2−−→N M ′1,2.

By the construction of 〈N‖,M0,‖〉, we know that L(α1) = L̃(α2).
Moreover, since α′2 ∈ T ∗N , we know that L̃(α′2) = L(α′2). Therefore,
L(α1) = L(α2). Then for α′2, there exists a non-fault sequence
α′1 ∈ α1 such that L(α′1) = L(α′2). Moreover, since M1 ≤ M2,

we know that M1,1 ≤ M2,1, where M0
α′
1−−→NN M ′1,1

(α/α′
1)−−−−→NN

M1,1
β1−→NN M2,1. Therefore, M ′1,1 is a non-indicator marking. By

Lemma III.1, we know that the system is not prognosable.
(⇒) Suppose that system is not prognosable. By Lemma III.1, we

know that there exist two non-fault sequences σ1, σ2 ∈ TN such that
(i) M0

σ1−→M1, M1 is a non-indicator marking; and (ii) M0
σ2−→M2,

M2 is a boundary marking; and (iii) L(σ1) = L(σ2).
First, since σ1 only contains non-fault transitions, by the definition

of Ñ , we know that σ1 ∈ L(Ñ , M̃0). Moreover, by the definition
of L̃, we know that L(σ1) = L̃(σ2). Therefore, by the property of
〈N‖,M0,‖〉, we know that there exists a sequence α ∈ L(N‖,M0,‖)
such that its first component is σ1 and its second component is σ2.
Moreover, since M2 is a boundary marking, we know that σ2tf ∈
L(N ,M0) for some tf ∈ TF . By the definition of L̃, we know
that L̃(tf) = ε. Therefore, by the definition of N‖, we know that
α(ε, tf) ∈ L(N‖,M0,‖).

Also, recall that M1 is a non-indicator marking. Therefore, there
exists a non-fault sequence v ∈ T ∗N , where v = v1v2 . . . v|v|, and an
integer k < |v|, such that

M1
v1...vk−−−−→NN M ′1

vk+1...v|v|−−−−−−−→NN M ′′1 and M ′1 ≤M ′′1

Then we define a sequence in N‖

β := (v1, v
′
1)(v2, v

′
2) . . . (v|v|, v

′
|v|) (9)

where for each 1 ≤ i ≤ |v|, we have

v′i =

{
te if L(vi) = e ∈ Σ
λ if L(vi) = ε

(10)

Next, we show that α(ε, tf)β is a well-defined sequence in
〈N‖,M0,‖〉. Note that, since we have shown that α(ε, tf) ∈
L(N‖,M0,‖), it suffices to show that Mαtf

β−→N‖ , where Mαtf =

[M>1 M̃>2]>, M0
σ2−→Ñ M2

tf−→Ñ M̃2. We proceed by induction on
the length of β.

Induction Basis: Since v1 ∈ L(NN ,M1), it suffices to show that
v′1 ∈ L(Ñ , M̃2) and L(v1) = L̃(v′1). We consider the following
two cases: (i) v1 ∈ To; and (ii) v1 ∈ Tuo. For Case (i), we have
v′1 = te, where e = L(v1). Therefore, by the definition of L̃, we
have L̃(te) = L(v′1) = σ. Moreover, since M̃2 is reached after
firing a fault transition tf , we know that pfault contains a token,
which implies that te ∈ L(Ñ , M̃2). For Case (ii), we have v′1 = λ.

0018-9286 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2756096, IEEE
Transactions on Automatic Control

5

𝑓1

𝑡2 𝑝1 𝑝2

𝑎

𝑡1

𝑏

𝑓1

𝑡2 𝑝1
 𝑝2

𝑎

𝑡1

𝑎

𝑡2
𝑁

 𝑝1

𝑁

 𝑝2

𝑁

𝑎

𝑡1
𝑁

𝑎

𝑓1
 𝑡2 𝑝1 𝑝2

𝑎

𝑡1

𝑎

𝑝𝑓𝑎𝑢𝑙𝑡
 𝑡𝑎

𝑎

𝑝1
 𝑝2

𝑝𝑓𝑎𝑢𝑙𝑡

(𝑡2
𝑁, 𝑡2)

𝑝2
𝑁

(𝑡1
𝑁, 𝑡1) (𝑡2

𝑁, 𝑡𝑎) (𝜆, 𝑓1)

(𝑡1
𝑁, 𝑡2)

(𝑡2
𝑁, 𝑡1)

(𝑡1
𝑁, 𝑡𝑎)

𝑝1
𝑁

Fig. 3: Petri net 〈N‖,M0,‖〉 .

Therefore, L̃(v1) = L(v′1) = ε and λ ∈ L(Ñ , M̃2). Overall, we
have α(ε, tf)(v1, v

′
1) ∈ L(N‖,M0,‖), i.e., the induction basis holds.

Induction Step: We assume that Mαtf

(v1,v
′
1)...(vi,v

′
i)−−−−−−−−−−→N‖ and

we want to show that Mαtf

(v1,v
′
1)...(vi,v

′
i)(vi+1,v

′
i+1)−−−−−−−−−−−−−−−−−−→N‖ Since

v1 . . . vivi+1 ∈ L(NN ,M1), it suffices to show that v′1 . . . v′iv
′
i+1 ∈

L(Ñ , M̃2) and L(vi+1) = L̃(v′i+1). Note that in marking Mαtf ,
place pfault contains a token and v′1 . . . v′i does not consume token
in pfault. Therefore, following the same reason in the induction basis,
we have α(ε, tf)(v1, v

′
1) . . . (vi, v

′
i)(vi+1, v

′
i+1) ∈ L(N‖,M0,‖).

Let M ′β = [M ′>1 M̃ ′>β]> and Mβ = [M ′′>1 M̃>β]> be markings
such that

Mαtf

(v1,v
′
1)...(vk,v

′
k)−−−−−−−−−−→N‖ M

′
β

(vk+1,v
′
k+1)...(v|v|,v

′
|v|)−−−−−−−−−−−−−−−−→N‖ Mβ

Since v′i is either a self-loop transition in the form of te or a λ-
transition, we know that M̃2 = M̃ ′β = M̃β . This together with the
fact that M ′1 ≤M ′′1 imply that M ′β ≤Mβ . Also, we know that∨

t∈TN×(T̃∪{λ})

#(vk+1,v
′
k+1

)...(v|v|,v
′
|v|)

(t) = |v| − k ≥ 1

Overall, we have the following sequence in 〈N‖,M0,‖〉

M0,‖
α(λ,tf)(v1,v

′
1)...(vk,v

′
k)−−−−−−−−−−−−−−−→N‖ M

′
β

(vk+1,v
′
k+1)...(v|v|,v

′
|v|)−−−−−−−−−−−−−−−−→N‖ Mβ (11)

satisfying the condition in the theorem.

Let us show how to use Theorem IV.1 to verify prognosability by
the following example.

Example IV.1. Again, let us consider labeled Petri net 〈N ,M0,L〉
shown in Figure 1(b), where To = {t1, t2} and TF = {f1}. Its
corresponding net 〈N‖,M0,‖〉 is shown in Figure 3. As we discussed
in Example III.2, this system is not prognosable; hereafter we show
this using Theorem IV.1.

Let us consider the following sequence in 〈N‖,M0,‖〉:
1
0
1
0
0

=:α︷ ︸︸ ︷

(tN1 , t2)(λ, f1)
−−−−−−−−−−→

1
0
0
0
1

︸︷︷︸
=:M1

=:β︷ ︸︸ ︷
(tN1 , ta)
−−−−−−→

1
0
0
0
1

︸︷︷︸
=:M2

(12)

where the places in each marking are ordered by
{pN1 , pN2 , p1, p2, pfault}. Now, let us check that the above sequence
satisfies Equation (8). Clearly, we have M4 = M3. Also, we know
that (λ, f1) ∈ {λ}× TF and #α((λ, f1)) = 1. For β, we know that
(tN1 , ta) ∈ TN × (T̃ ∪ {λ}) and #β((tN1 , ta)) = 1. Therefore, we
know that the sequence in Equation (12) satisfies the conditions in
Equation (8), i.e., the system is not prognosable.

𝓝
𝑎

𝑎

𝜖1

𝜖2

𝑡𝑓

𝑡𝑙𝑜𝑜𝑝

𝓝

𝑎

𝑎

𝑝𝑛𝑒𝑤,2

𝑝𝑛𝑒𝑤,1

𝑀

Fig. 4: Suppose that, in N , we are interested in whether or not a
marking M , in which each place in the red cycle contains the depicted
number of tokens, can be covered. Then a conceptual illustration of
〈N̂ ,M0, L̂〉 is shown in the figure.

Note that the conditions in Equation (8) is a valid formula in Defi-
nition II.1. Moreover, it satisfies the constraint that F ⇒M1 ≤Mk.
Since the length of the formula in Equation (8) is a constant, by
Theorem IV.1 and [2] we have the following result immediately.

Theorem IV.2. Checking prognosability for labeled Petri nets is
decidable. Moreover, it is in EXPSPACE.

V. EXPSPACE-COMPLETENESS OF PROGNOSABILITY

In the preceding section, we have shown that the verification of
prognosability for unbounded Petri nets can be done in EXPSPACE.
However, this is still an extremely high complexity and one may
ask whether or not this complexity can be further improved. In
this section, we show that this complexity is actually tight, i.e., the
verification of prognosability is EXPSPACE-complete.

For unbounded Petri nets, it is well-known that the coverability
problem, stated as follows, is EXPSPACE-complete [22], [25].
• GIVEN: A Petri net 〈N ,M0〉 and a marking M .
• TO DECIDE: Whether or not there exists M0

σ−→ M ′ such that
M ≤M ′.

Next, we show that checking prognosability is EXPSPACE-hard by
reducing the coverability problem to the prognosability verification
problem.

Theorem V.1. Checking prognosability for unbounded labeled Petri
nets is EXPSPACE-complete.

Proof. In Theorem IV.2, we have shown that this problem is in
EXPSPACE. Therefore, it remains to show that it is also EXPSPACE-
hard. To this end, we use the coverability problem for the purpose
of reduction.

Let 〈N = (P, T,A,w),M0〉 and M be the instance of the
coverability problem. We construct a new labeled Petri net 〈N̂ =
(P̂ , T̂ , Â, ŵ), M̂0, L̂〉 as follows. First, P̂ is obtained by adding two
new places, pnew,1 and pnew,2, to P ; T̂ is obtained by adding four
new transitions, ε1, ε2, tf and tloop, to T . For any t ∈ T and p ∈ P ,
Â and ŵ are the same as A and w. However, for the newly added
transitions and places, we have the followings:

- For each i = 1, 2, •εi = {p ∈ P : M(p) 6= 0} with ∀p ∈ P :
ŵ(p, εi) = M(p); and ε•i = {pnew,i} with ŵ(εi, pnew,i) = 1;

- •tf = {pnew,1} and t•f = {pnew,2} with ŵ(pnew,1, tf) =
ŵ(tf , pnew,2) = 1;

- •tloop = t•loop = {pnew,2} with ŵ(pnew,2, tloop) =
ŵ(tloop, pnew,2) = 1.

The initial marking M̂0 = [M>0 0 0]> (we assume newly added
places pnew,1 and pnew,2 are the last two places in the marking).
Finally, the labeling function L̂ is defined by: (i) the only two
unobservable transitions are ε1 and ε; (ii) all other transitions are
observable with the same label a. A conceptual illustration showing

0018-9286 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2756096, IEEE
Transactions on Automatic Control

6

the construction of N̂ is provided in Figure 4. Intuitively, transitions
ε1 and ε2 can be fired iff marking M is covered in 〈N ,M0〉.

For the above constructed 〈N̂ , M̂0, L̂〉, now, let us assume that
tf is the only fault transition we want to predict. Next, we show
that M can be covered in 〈N ,M0〉 if and only if 〈N̂ , M̂0, L̂〉 is not
prognosable w.r.t. TF = {tf}.

The “if” part is straightforward. Suppose that M cannot be covered
in 〈N ,M0〉. Then by the construction of 〈N̂ , M̂0, L̂〉, we know that
the only fault transition tf can never fire in 〈N̂ , M̂0, L̂〉. Therefore,
〈N̂ , M̂0, L̂〉 is prognosable immediately.

To see the “only if” part, we assume that M can be covered in
〈N ,M0〉. Let σ ∈ L(N ,M0) be a sequence such that M0

σ−→N M ′,
where M ′ ≥ M . By the construction of 〈N̂ , M̂0, L̂〉, we know that
M̂0

σ−→N̂ [M ′> 0 0]>. Therefore, we know that M̂0
σε1−−→N̂ M1

and M̂0
σε2−−→N̂ M2, where M1(pnew,1) = 1 and M2(pnew,2) = 1.

Since M1

tf−→N̂ , we know that M1 is a boundary marking. Since

M2

(tloop)
K

−−−−−→N̂ for any K ∈ N, we know that M2 is a non-indicator
marking. Moreover, L̂(σε1) = L̂(σε2) = a|σ|. By Lemma III.1, we
know that 〈N̂ , M̂0, L̂〉 is not prognosable w.r.t. {tf}.

VI. CONCLUSION

In this technical note, we presented new results for prognosabil-
ity analysis of partially-observed DES. A necessary and sufficient
condition of prognosability for unbounded Petri nets was presented.
In particular, this condition is stated in terms of a special class
of formulas that can be effectively checked by existing model
checking techniques. Moreover, we showed that the complexity of
verifying prognosability for Petri nets is EXPSPACE-complete. This
result reveals that extremely high computation complexity seems
to be unavoidable in this verification problem. To mitigate the
computational challenges, one possible direction is to find simple
but sufficient conditions for prognosability using structural analysis.
Another potential direction is to identify sub-classes of Petri nets for
which the necessary and sufficient condition for prognosability can
be verified more efficiently.

Note that the main purpose of verifying prognosability is to deter-
mine a priori if fault can be correctly predicted. When prognosability
holds, how to design an efficient online prognosis mechanism is also
an interesting and important problem. In fact, some works have been
done on this direction; see, e.g., [1], [20]. Another future direction is
to extend our results to the decentralized setting by considering the
verification of co-prognosability; see., e.g., [18], [19], [36] for the
case of finite-state automata.

ACKNOWLEDGMENTS

The author would like to thank an anonymous reviewer for bringing
[2] to our attention.

REFERENCES

[1] R. Ammour, E. Leclercq, E. Sanlaville, and D. Lefebvre. Faults
prognosis using partially observed stochastic Petri nets. In 13th Int.
Workshop on Discrete Event Systems, pages 472–477, 2016.

[2] M. Atig and P. Habermehl. On Yen’s path logic for Petri nets.
Reachability Problems, pages 51–63, 2009.

[3] F. Basile, M.P. Cabasino, and C. Seatzu. State estimation and fault
diagnosis of labeled time Petri net systems with unobservable transitions.
IEEE Trans. Automatic Control, 60(4):997–1009, 2015.

[4] F. Basile, P. Chiacchio, and G. De Tommasi. On K-diagnosability of
Petri nets via integer linear programming. Automatica, 48(9):2047–2058,
2012.

[5] A. Benveniste, E. Fabre, S. Haar, and C. Jard. Diagnosis of asynchronous
discrete-event systems: a net unfolding approach. IEEE Trans. Automatic
Control, 48(5):714–727, 2003.

[6] N. Bertrand, S. Haddad, and E. Lefaucheux. Foundation of diagnosis
and predictability in probabilistic systems. In 34th IARCS Annual Conf.
FSTTCS, pages 417–429, 2014.

[7] M.P. Cabasino, A. Giua, S. Lafortune, and C. Seatzu. A new approach
for diagnosability analysis of Petri nets using verifier nets. IEEE Trans.
Automatic Control, 57(12):3104–3117, 2012.

[8] M.P. Cabasino, A. Giua, and C. Seatzu. Fault detection for discrete
event systems using Petri nets with unobservable transitions. Automatica,
46(9):1531–1539, 2010.

[9] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems. Springer, 2nd edition, 2008.

[10] F. Cassez. A note on fault diagnosis algorithms. In 48th IEEE Conf.
Decision and Control, pages 6941–6946, 2009.

[11] F. Cassez and A. Grastien. Predictability of event occurrences in timed
systems. In Formal Mod. Anal. Timed Syst., pages 62–76. 2013.

[12] J. Chen and R. Kumar. Stochastic failure prognosability of discrete event
systems. IEEE Trans. Autom. Contr., 60(6):1570–1581, 2015.

[13] L. Dickson. Finiteness of the odd perfect and primitive abundant
numbers with n distinct prime factors. American J. Mathematics,
35(4):413–422, 1913.

[14] M. Dotoli, M.P. Fanti, A.M. Mangini, and W. Ukovich. On-line fault
detection in discrete event systems by Petri nets and integer linear
programming. Automatica, 45(11):2665–2672, 2009.

[15] S. Genc and S. Lafortune. Predictability of event occurrences in partially-
observed discrete-event systems. Automatica, 45(2):301–311, 2009.

[16] T. Jéron, H. Marchand, S. Genc, and S. Lafortune. Predictability of
sequence patterns in discrete event systems. In Proc. 17th IFAC World
Congress, pages 537–543, 2008.

[17] G. Jiroveanu and R.K. Boel. The diagnosability of Petri net models
using minimal explanations. IEEE TAC, 55(7):1663–1668, 2010.

[18] A. Khoumsi and H. Chakib. Conjunctive and disjunctive architectures
for decentralized prognosis of failures in discrete-event systems. IEEE
Trans. Autom. Sci. Engin., 9(2):412–417, 2012.

[19] R. Kumar and S. Takai. Decentralized prognosis of failures in discrete
event systems. IEEE Trans. Autom. Contr., 55(1):48–59, 2010.

[20] D. Lefebvre. Fault diagnosis and prognosis with partially observed Petri
nets. IEEE Trans. S.M.C.: Syst., 44(10):1413–1424, 2014.

[21] D. Lefebvre. On-line fault diagnosis with partially observed Petri nets.
IEEE Trans. Automatic Control, 59(7):1919–1924, 2014.

[22] R. Lipton. The reachability problem requires exponential space. Re-
search Report 62, Dep. Comput. Sci., Yale Univ., 1976.

[23] A. Madalinski, F. Nouioua, and P. Dague. Diagnosability verification
with Petri net unfoldings. Int. J. Knowledge-Based and Intelligent
Engineering Syst., 14(2):49–55, 2010.

[24] F. Nouioua, P. Dague, and L. Ye. Predictability in probabilistic discrete
event systems. In Soft Methods for Data Sci., pages 381–389. 2017.

[25] C. Rackoff. The covering and boundedness problems for vector addition
systems. Theoretical Computer Sci., 6(2):223–231, 1978.

[26] A. Ramírez-Treviño, E. Ruiz-Beltrán, I. Rivera-Rangel, and E. López-
Mellado. Online fault diagnosis of discrete event systems. a Petri net-
based approach. IEEE Trans. Autom. Sci. Engin., 4(1):31–39, 2007.

[27] Y. Ru and C.N. Hadjicostis. Fault diagnosis in discrete event systems
modeled by partially observed Petri nets. Discrete Event Dynamic Syst.:
Theo. & Appl., 19(4):551–575, 2009.

[28] S. Takai. Robust prognosability for a set of partially observed discrete
event systems. Automatica, 51:123–130, 2015.

[29] S. Takai and R. Kumar. Distributed failure prognosis of discrete event
systems with bounded-delay communications. IEEE Trans. Autom.
Contr., 57(5):1259–1265, 2012.

[30] Y. Tong, Z. Li, C. Seatzu, and A. Giua. Decidability of opacity
verification problems in labeled Petri net systems. Automatica, 80:48–
53, 2017.

[31] L. Ye, P. Dague, and F. Nouioua. Predictability analysis of distributed
discrete event systems. In 52nd CDC, pages 5009–5015, 2013.

[32] L. Ye, P. Dague, and F. Nouioua. A predictability algorithm for
distributed discrete event systems. In International Conference on
Formal Engineering Methods, pages 201–216. Springer, 2015.

[33] H.-C. Yen. A unified approach for deciding the existence of certain Petri
net paths. Inform. Computation, 96(1):119–137, 1992.

[34] X. Yin and S. Lafortune. A general approach for solving dynamic sensor
activation problems for a class of properties. In 54th IEEE Conference
on Decision and Control, pages 3610–3615, 2015.

[35] X. Yin and S. Lafortune. On the decidability and complexity of
diagnosability for labeled Petri nets. IEEE Trans. Autom. Contr., 2017.

[36] X. Yin and Z.-J. Li. Decentralized fault prognosis of discrete event
systems with guaranteed performance bound. Automatica, 69:375–379,
2016.

[37] X. Yin and Z.-J. Li. Reliable decentralized fault prognosis of discrete-
event systems. IEEE Trans. S.M.C.: Syst., 49(10), 2016.

