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Verification of Prognosability for Labeled Petri Nets
Xiang Yin , Member, IEEE

Abstract—This technical note is concerned with the fault prog-
nosis problem for partially observed discrete-event systems mod-
eled by unbounded labeled Petri nets. The goal of this problem is
to predict the occurrence of each fault before its occurrence. The
condition of prognosability provides the necessary and sufficient
condition under which any fault can be predicted with no missed
detection and no false alarm. In this technical note, we investigate
the verification of prognosability for unbounded labeled Petri nets.
First, we show that checking prognosability is decidable for Petri
net languages. Our approach is based on a reduction from this ver-
ification problem to an existing Petri nets model checking problem.
Then, we show that the complexity of this problem is EXPSPACE-
complete. Our results extend previous works on the verification of
language-based prognosability from regular languages to Petri net
languages.

Index Terms—Computational complexity, discrete-event sys-
tems (DES), fault prognosis, Petri nets.

I. INTRODUCTION

Fault prognosis is an important task in many safety-critical cyber-
physical systems. In this problem, we want to predict the occurrences
of faults and to generate corresponding fault alarms in order to protect
the system. In this technical note, we are concerned with the problem
of fault prognosis of discrete-event systems (DES) [9].

In the context of DES, model-based fault prognosis was initially
studied in [15] and [16], where a language-based condition called prog-
nosability (or predictability) was proposed. Specifically, prognosability
is proposed to determine a priori whether or not a fault prognoser can
be designed such that 1) no false alarm, i.e., a fault is guaranteed to
occur within a finite number of steps whenever a fault alarm is gener-
ated; and 2) no missed detection, i.e., any fault will be alarmed before
its occurrence. Since then, fault prognosis of DES has drawn consid-
eration attention in the DES literature (see, e.g., [6], [12], [18], [19],
[24], [28], [29], [31], [32], [34], [36], [37]). For example, the notion
of prognosability has been extended to decentralized systems, where
the notion of coprognosability was proposed [18], [19], [36], [37]. The
fault prognosis problem has also been studied in the distributed setting
[29], [31], [32]. In [34], the authors investigated the enforcement of
prognosability by sensor activation. The robust fault prognosis prob-
lem was studied in [28]. Finally, prognosability analysis has also been
studied in timed systems [11] and stochastic systems [6], [12], [24].

Most of the existing works on fault prognosis of DES are based on
finite-state automata models. In many concurrent systems, however,
Petri nets provide a more compact and natural way for modeling DES
without explicitly enumerating the entire state space. Moreover, it is
well known that Petri net languages are strictly more expressive than
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regular languages, languages generated by finite-state automata. There-
fore, Petri nets can model some infinite-state systems that cannot be
represented by finite-state automata, e.g, manufacturing systems with
infinite buffers. Due to these advantages, in the context of Petri nets,
many works have been done on the fault diagnosis problem, a problem
related to the fault prognosis problem (see, e.g., [3]–[5], [7], [8], [14],
[17], [21], [23], [26], [27]). Recently, there have been works on fault
prognosis based on Petri nets [1], [20], where procedures for online
prognosis were provided.

In this technical note, we investigate the verification of prognos-
ability in unbounded labeled Petri nets. Specifically, we follow the
language-based definition of prognosability in [15] and [19] to deter-
mine a priori whether or not a fault can be predicted with no missed
detection and with no false alarm. The main contributions of this tech-
nical note are as follows. First, we show that prognosability is decidable
for labeled Petri nets by effectively reducing the prognosability veri-
fication to a model checking problem for Petri nets. In the context of
unbounded Petri nets, several (un)decidability results have been es-
tablished for related notions. For example, it has been shown that the
verification of diagnosability is decidable [35], while the verification of
opacity is shown to be undecidable [30]. To the best of our knowledge,
the decidability status of prognosability is still open and our result pro-
vides positive answer to this question. Second, we establish the precise
computational complexity for the prognosability verification problem.
Specifically, we show that checking prognosability for unbounded Petri
nets is EXPSPACE-complete, i.e., exponential memory is required for
this verification problem.

II. PRELIMINARIES

A. Petri Nets

A place/transition net is defined as a 4-tuple N = (P, T, A, w),
where P = {p1 , p2 , . . . , pn } is the set of n places, T = {t1 , t2 , . . . ,
tm } is the set of m transitions, A ⊆ (P × T ) ∪ (T × P ) is the set
of arcs, and w : A → N is the weight function that assigns to each
arc a nonnegative integer. For any place p ∈ P , we denote by •p its
preset, i.e., •p = {t ∈ T : (t, p) ∈ A}; we denote by p• its postset, i.e.,
p• = {t ∈ T : (p, t) ∈ A}. For a transition t ∈ T , its preset •t and its
postset t• are defined analogously, which are sets of places. Given a net
N , a marking M is a vector M = [M (p1 )M (p2 ) · · · M (pn )]� ∈ Nn ,
where M (p) is the number of tokens in place p ∈ P . A Petri net is
a 2-tuple 〈N , M0 〉, where N is a net and M0 ∈ Nn is the initial
marking. We say that transition t ∈ T is enabled at marking M if
∀p ∈• t : M (p) ≥ w(p, t). If t is enabled, then it may fire and yield
a new marking determined by M ′ = M − w(·, t) + w(t, ·). We use

M
t−→N to denote that transition t ∈ T is enabled at M in net N and

M
t−→N M ′ means that firing t yields M ′ in net N . Hereafter, we will

also omit the subscript N when it is clear from the context.
Let T ∗ be the set of all finite sequences of transitions including the

empty transition λ, which means that no transition is fired, and, for any
σ ∈ T ∗, we have σλ = λσ = σ. We say that a sequence of transitions
(or, for simplicity, a sequence) σ = t1 t2 · · · tk ∈ T ∗ is enabled at M
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if ∀i ∈ {1, . . . , k} : Mi
ti−→, where M1 = M and Mi

ti−→ Mi+1 , ∀i ≥
1. Similarly, we denote by M

σ−→ that σ ∈ T ∗ is enabled at M and
by M

σ−→ M ′ that firing σ yields M ′. Given a Petri net 〈N , M0 〉,
L(N , M0 ) denotes the set of finite sequences that can be fired from
M0 , i.e., L(N , M0 ) = {σ ∈ T ∗ : M0

σ−→}. For any sequence σ ∈ T ∗,
we denote by σ the set of prefixes of σ, i.e., σ = {σ1 ∈ T ∗ : ∃σ2 ∈
T ∗ s.t. σ1σ2 = σ}. Finally, we denote by |σ| the length of sequence σ.

Let Σ be a finite set of alphabets (or events). A string is a finite
sequence of events and we denote by Σ∗ the set of all strings including
the empty string ε. A labeled Petri net is a triple 〈N , M0 ,L〉, where
〈N , M0 〉 is a Petri net andL : T → Σ ∪ {ε} is a labeling function. That
is, for any t ∈ T , L(t) specifies the event that can be observed when t
fires. For any transition t ∈ T , if L(t) ∈ Σ, then we say that transition t
is observable; otherwise, t is unobservable. Therefore, T is partitioned
as T = To ∪̇Tuo , where To and Tuo are the set of observable transi-
tions and the set of unobservable transitions, respectively. Function
L is also extended from T to T ∗ recursively by (i) L(λ) = ε ; and
(ii) ∀σ ∈ T ∗, t ∈ T : L(σt) = L(σ)L(t). Then, the language gen-
erated by labeled Petri net 〈N , M0 ,L〉 is a set of strings
L(L(N , M0 )) := {L(σ) : σ ∈ L(N , M0 )}.

B. Yen’s Problem

In this paper, we will leverage an existing path logic model checking
problem for unbounded Petri nets in the literature originally studied by
Yen [33]. For any sequence σ ∈ T ∗ and transition t ∈ T , we denote
by #σ (t) the number of times t occurs in σ. Then, Yen’s problem is
formulated as follows.

Definition II.1 (Yen’s Problem): Given a Petri net 〈N , M0 〉, decide
whether or not there exists a sequence

M0
σ 1−→ M1

σ 2−→ . . . Mk−1
σk−→ Mk (1)

such that a predicate F (M1 , . . . , Mk , σ1 , . . . , σk ) holds, where F (M1 ,
. . . , Mk , σ1 , . . . , σk ) is a predicate obtained from the following syntax.
1) The following are predicates: Mi (p) ≥ c, Mi (p) ≤ Mj (p′), #σ i

(t) ≤ c, #σ i
(t) ≥ c, and #σ i

(t) ≤ #σ j
(t′), where c is an arbi-

trary constant.
2) For any predicates F1 and F2 , F1 ∧ F2 and F1 ∨ F2 are also pred-

icates.
In general, Yen’s problem is decidable and it is as hard as the reach-

ability problem.1 Furthermore, it has been shown in [2] that, when the
predicate satisfies the constraint that F (M1 , . . . , Mk , σ1 , . . . , σk ) ⇒
M1 ≤ Mk , this problem can be solved in EXPSPACE. Hereafter, we
will only use the fact that this problem is decidable and the restricted
case can be solved with exponential space in the size of N and the size
of the predicate. Details on how to solve this problem can be found in
[2] and [33].

III. PROGNOSABILITY OF LABELED PETRI NETS

In the fault prognosis problem, we assume that the set of transitions
is partitioned into two disjoint sets T = TF ∪̇TN , where TF denotes the
set of fault transitions and TN denotes the set of nonfault transitions. For
any sequence σ = t1 t2 · · · tk ∈ T ∗, with a slight abuse of notation, we
write that TF ∈ σ if a fault transition occurs in σ, i.e., ∃i ∈ {1, . . . , k} :
ti ∈ TF .

As we mentioned earlier, the main purpose of the fault prognosis
problem is to predict any fault correctly before its occurrence, where
“correctly” means that

1In the original paper [33], it is claimed that the general case is in EXPSPACE,
which is not correct as pointed out by [2].

Fig. 1. Examples of prognosability, where for each system, tf is the
unique fault transition. Bold lines are used to denote observable transi-
tions and the event associated with each observable transition denotes
its observation label. (a) Prognosable system. (b) Nonprognosable sys-
tem.

1) any fault should be alarmed before it occurs, i.e., no missed detec-
tion; and

2) once a fault alarm is generated, a fault is guaranteed to occur within
a finite number of steps, i.e., no false alarm.

In [15] and [19], the notion of prognosability (or predictability) was
proposed as the necessary and sufficient condition under which there
exists a prognosis mechanism such that the above two requirements
can be achieved. Although [15], [19] only study the verification of
prognosability for regular languages, the definition of prognosability
itself is applicable to any class of languages. Here, we present the
definition of prognosability for Petri net languages.

Definition III.1 (Prognosability): Let 〈N , M0 ,L〉 be a labeled
Petri net. We say that 〈N , M0 ,L〉 is prognosable w.r.t. TF if

(∀α ∈ L(N , M0 ) : TF ∈ α)(∃β ∈ α : TF /∈ β)

(∀θ ∈ L(N , M0 ) : L(θ) = L(β) ∧ TF /∈ θ)

(∃K ∈ N)(∀θγ ∈ L(N , M0 ))[|γ| ≥ K ⇒ TF ∈ γ].

Intuitively, prognosability can be used to determine a priori if any
fault occurrence in the system can be correctly predicted. More specif-
ically, it requires that, for any fault sequence, it must has a nonfault
prefix for which we know for sure that a fault is guaranteed to occur
within a finite number of steps, i.e., a fault alarm can be correctly is-
sued. In other words, if the system is not prognosable, then it implies
that there must exist a fault sequence for which we cannot claim that
the fault will occur unambiguously along its nonfault prefixes. There-
fore, any fault prognosis mechanism cannot correctly predict this fault
before it occurs.

Remark III.1: Note that here we do not assume that TF ⊆ Tuo ,
which is the (nontrivial) case for the fault diagnosis problem. This is
because that, in the fault prognosis problem, we are mainly interested in
the behavior of the system before the occurrences of faults. Therefore,
even if a fault transition is observable and can be distinguished from
other nonfault transitions, it is still possible that a fault alarm cannot
be issued unambiguously before it occurs.

We illustrate the notion of prognosability in Petri nets by the follow-
ing examples.

Example III.1: Let us consider labeled Petri net 〈N , M0 ,L〉 shown
in Fig. 1(a), where To = {t1 , t2} and TF = {f1}. Also, let Σ =
{a, b},L(t1 ) = b and L(t2 ) = a. This system is prognosable, since
transition t2 has to occur before the occurrence of fault transition f1 ,
and once t2 occurs, the token in place p1 will be consumed, i.e., the
only transition can occur next is the fault transition f1 . Therefore, once
we observe event L(t2 ) = a, which can only be generated by transi-
tion t2 in this example, we can claim unambiguously that the fault will
occur within one step.

Example III.2: Let us consider labeled Petri net 〈N , M0 ,L〉 shown
in Fig. 1(b), where we have To = {t1 , t2}, TF = {f1}, and Σ = {a}.
We consider a labeling function defined by L(t1 ) = L(t2 ) = a. This
system is not prognosable. To see this, let us consider fault se-
quence t2f1 ∈ L(N , M0 ). Then, for t2 ∈ t2f1 : TF /∈ t2 , we can find
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t1 ∈ L(N , M0 ) such that L(t1 ) = L(t2 ) = a and for any K ∈ N, a
nonfault sequence t1 (t1 )K is defined in 〈N , M0 〉. Intuitively, the non-
prognosability here can also be explained as follows. To avoid missed
detection, we have to issue a fault alarm upon the occurrence of t2 , i.e.,
by observing event a. However, sequences t1 and t2 are indistinguish-
able and an arbitrarily long nonfault behavior can still occur after t1 .
Therefore, this fault alarm cannot guarantee a fault to occur within a
finite number of steps, i.e., it may be a false alarm.

Next, we will provide a characterization of prognosability for labeled
Petri nets. First, motivated by relevant notions in [19] for finite-state
automata, we introduce the notions of boundary marking and nonindi-
cator marking.

Definition III.2: A marking M ∈ Nn is said to be

1) a Boundary Marking if (∃tf ∈ TF )[M
tf−→]; and

2) a NonIndicator Marking if (∀K ∈ N)(∃σ ∈ T ∗
N )[M σ−→ ∧|σ| ≥

K ].
Intuitively, a boundary marking is a marking from which a fault tran-

sition can occur immediately and a nonindicator marking is a marking
from which an arbitrarily long nonfault sequence can occur. Note that,
since vectors of integers form a well quasi-ordering [13], for any M1 ,
there does not exists an infinite sequence of vectors M1 , M2 , M3 , . . .
such that Mi �≤ Mj for any i < j. Therefore, M is a nonindicator

marking if and only if (∃σ, σ′ ∈ T ∗
N )[M σ−→ M ′ σ ′−→ M ′′ ∧ M ′ ≤ M ′′].

The following result provides a characterization of prognosability in
terms of boundary markings and nonindicator markings.

Lemma III.1: Labeled Petri net 〈N , M0 ,L〉 is not prognosable
w.r.t. TF , if and only if, there exist two nonfault sequences σ1 , σ2 ∈ T ∗

N

such that
1) M1 is a nonindicator marking, where M0

σ 1−→ M1 ;
2) M2 is a boundary marking, where M0

σ 2−→ M2 ; and
3) L(σ1 ) = L(σ2 ).

Proof: (⇐) Suppose that there exist two nonfault sequences
σ1 , σ2 ∈ T ∗

N such that the above-mentioned conditions hold. Since
M0

σ 2−→ M2 and M2 is a boundary marking, we know that there exists

tf ∈ TF such that M0
σ 2 t f−−−→. Then, for any nonfault prefix of σ2 tf ,

say β ∈ σ2 , since L(σ1 ) = L(σ2 ), we know that there exists a pre-

fix of σ1 , say θ ∈ σ1 such that L(θ) = L(β). Since M0
θ (σ 1 /θ )−−−−−→ M1

and M1 is a nonindicator marking, where (σ1/θ) is the sequence such

that θ(σ1/θ) = σ1 , we know that (∀K ∈ N)(∃σ ∈ T ∗
N )[M0

θ (σ 1 /θ )σ−−−−−−→
∧|σ| ≥ K ]. Overall, we have

(∃σ2 tf ∈ L(N , M0 ) : TF ∈ σ2 tf ) (∀β ∈ σ2 : TF /∈ β)

(∃θ ∈ L(N , M0 ) : L(θ) = L(β) ∧ TF /∈ θ)

(∀K ∈ N) (∃θ(σ1/θ)σ ∈ L(N , M0 )) [|γ| ≥ K ∧ TF /∈ γ] (2)

where γ = (σ1/θ)σ. That is, the system is not prognosable.
(⇒) Suppose that the system is not prognosable, i.e.,

(∃α ∈ L(N , M0 ) : TF ∈ α) (∀β ∈ α : TF /∈ β)

(∃θ ∈ L(N , M0 ) : L(θ) = L(β) ∧ TF /∈ θ)

(∀K ∈ N) (∃θγ ∈ L(N , M0 )) [|γ| ≥ K ∧ TF /∈ γ] . (3)

Let α be a string satisfying (3). We take β as the longest prefix of
α such that TF /∈ β, i.e., βtf ∈ α for some tf ∈ TF . We know that

M2 is a boundary marking, where M0
β−→ M2 . Let θ be a nonfaulty

sequence such that L(θ) = L(β) and (∀K ∈ N)(∃θγ ∈ L(N , M0 ))
[|γ| ≥ K ∧ TF /∈ γ]. By definition, we know that M1 is a nonindicator

marking, where M0
θ−→ M1 . Therefore, by taking σ1 = θ and σ2 = β,

all conditions in the lemma hold. �

Fig. 2. Petri nets 〈NN , M0 〉 and 〈Ñ , M̃0 , L̃〉 for the Petri net shown in
Fig. 1(b). (a) Petri net 〈NN , M0 ,L〉. (b) Petri net 〈Ñ , M̃0 〉.

Finally, we denote by 〈NN , M0 ,L〉 the labeled Petri net obtained
by removing transitions in TF from 〈N , M0 ,L〉. Specifically, NN =
(PN , TN , AN , wN ), where PN = P , AN is obtained by restricting A
to domain (P × TN ) ∪ (TN × P ) and wN is obtained by restricting w
to domain AN . This net is also referred to as the normal net hereafter.
For example, for labeled Petri net 〈N , M0 ,L〉 shown in Fig. 1(b), its
normal net 〈NN , M0 ,L〉 is shown in Fig. 2(a). For the sake of clarity,
we add superscript N for each transition and each place in the normal
net in order to distinguish them from transitions and places in the
original net.

IV. VERIFICATION OF PROGNOSABILITY

In this section, we first provide a necessary and sufficient condi-
tion for prognosability in terms of a formula satisfying the syntax in
Yen’s problem. Then, we show that the verification of prognosability
is decidable and it is in EXPSPACE.

By Lemma III.1, to verify prognosability, it suffices to verify the
existence of two observationally equivalent sequences such that one
goes to a boundary marking and the other goes to a nonindicator mark-
ing. Similarly result can also be found in the fault diagnosis problem
(see, e.g., [7], [10]). The basic idea to verify this is to use a twin-plant-
like approach in order to track all pairs of sequences that look the same.
However, to implement this idea, the following difficulty arises. For
boundary markings, it is straightforward to obtain a closed-form rep-
resentation; however, obtaining such a closed-form representation for
nonindicator markings seems to be difficult. To resolve this technique
challenge, we first define a new net 〈Ñ , M0 , L̃〉 and then use this net
together with the normal net for the twin-plant construction.

Let 〈N , M0 ,L〉 be the labeled Petri net under consideration. We
define a new labeled Petri net 〈Ñ , M̃0 , L̃〉, where Ñ = (P̃ , T̃ , Ã, w̃),
as follows:
1) P̃ = P ∪ {pfault}, where pfault is a new place;
2) T̃ = T ∪ {te : e ∈ Σ}, where each te is a new transition;
3) Ã and w̃ are defined by the following.

a) For any t ∈ TN , •t and t• are the same in N and ∀p ∈ P :
w̃(p, t) = w(p, t), w̃(t, p) = w(t, p).

b) For any t ∈ TF , •t is the same inN and ∀p ∈ P : w̃(p, t) =
w(p, t), while t• = {pfault} with w̃(t, pfault) = 1.

c) For any te , e ∈ Σ, we have •te = t•e = {pfault} and w̃(te ,
pfault) = w̃(pfault, te ) = 1.

The initial marking is M̃0 = [M�
0 0]� (we assume that the last place

is pfault). The labeling function L̃ : T̃ → Σ ∪ {ε} is defined by

L̃(t) =

⎧
⎪⎨

⎪⎩

L(t) if t ∈ TN

ε if t ∈ Tf

e if t = te

. (4)

Intuitively, for any nonfault transition, the dynamic of Ñ is consistent
with N . However, for any fault transition, Ñ will send a token to a
new place pfault, which denotes the occurrence of fault. For each event
e ∈ Σ, a self-loop transition te labeled with e is defined at pfault. For
example, let us still consider labeled Petri net 〈N , M0 ,L〉 shown in
Fig. 1(b). Then, its corresponding net 〈Ñ , M̃0 , L̃〉 is shown in Fig. 2(b).
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Next, we define a new (unlabeled) Petri net 〈N‖, M0 ,‖〉 that “synchro-
nizes” 〈NN , M0 ,L〉 and 〈Ñ , M̃0 , L̃〉 based on their labeling functions.
Specifically, 〈N‖, M0 ,‖〉, where N‖ = (P‖, T‖, A‖, w‖), is defined as
follows:
1) P‖ = PN ∪ P̃ ;
2) T‖ ⊆ (TN ∪ {λ}) × (T̃ ∪ {λ}) \ {(λ, λ)};
3) A‖ and w‖ are defined by the following.

a) For any t1 ∈ TN and t2 ∈ T̃ such that L(t1 ) = L̃(t2 ) ∈ Σ,
we have that (t1 , t2 ) ∈ T‖ with •(t1 , t2 ) =• t1 ∪• t2 and
(t1 , t2 )• = t•1 ∪ t•2 . Also,

w‖((t1 , t2 ), p) =

{
wN (t1 , p) if p ∈ PN

w̃(t2 , p) if p ∈ P̃
(5)

w‖(p, (t1 , t2 )) =

{
wN (p, t1 ) if p ∈ PN

w̃(p, t2 ) if p ∈ P̃
. (6)

b) For any t1 ∈ TN such that L(t1 ) = ε, we have (t1 , λ) ∈
T‖ with •(t1 , λ) =• t1 and (t1 , λ)• = t•1 . Then, for any
p ∈ PN , w‖((t1 , λ), p) = wN (t1 , p), and w‖(p, (t1 , λ)) =
wN (p, t1 ).

c) For any t2 ∈ T̃ such that L̃(t2 ) = ε, we have (λ, t2 ) ∈ T‖
with •(λ, t2 ) =• t2 and (λ, t2 )• = t•2 . Then, for any p ∈ P̃ ,
w‖((λ, t2 ), p) = w̃(t2 , p), and w‖(p, (λ, t2 )) = w̃(p, t2 ).

4) M0 ,‖ =
[
M�

0 M̃�
0

]�
.

Remark IV.1: The construction of 〈N‖, M0 ,‖〉 follows the idea of
twin-plant (or verifier net) that is used in the literature for the ver-
ification of diagnosability (see, e.g., [7], [23], [35]). However, the
difference here is that we need to modified one net before the con-
struction in order capture the feature of the fault prognosis problem.
Intuitively, 〈N‖, M0 ,‖〉 tracks and only tracks all pairs of two sequences,
one in NN and the other one in Ñ , that have the same observation.
For any transition (t1 , t2 ) ∈ T‖, if ti = λ for some i, then it means
that its corresponding net stays silently when the other net fires an
unobservable transition; if t1 , t2 �= λ, then it means that two nets are
moved simultaneously by firing observable transitions with a same la-
bel. Then, for any sequence σ ∈ L(N‖, M0 ,‖), we denote by σ1 and
σ2 its first and second components, respectively. Then, we know that
L(σ1 ) = L̃(σ2 ). Similarly, for any two sequences σ1 ∈ L(NN , M0 )
and σ2 ∈ L(Ñ , M̃0 ), such that L(σ1 ) = L̃(σ2 ), then there exists a se-
quence σ ∈ L(N‖, M0 ,‖) such that its first and second components are
σ1 and σ2 , respectively.

Based on net 〈N‖, M0 ,‖〉, we are now ready to present a necessary
and sufficient condition for prognosability.

Theorem IV.1: Labeled Petri net 〈N , M0 ,L〉 is not prognosable
w.r.t. TF , if and only if, there exists a sequence

M0 ,‖
α−→N‖ M1

β−→N‖ M2 (7)

in 〈N‖ = (P‖, T‖, A‖, w‖), M0 ,‖〉, such that

(M2 ≥ M1 ) ∧
⎛

⎝
∨

t∈{λ}×TF

#α (t) ≥ 1

⎞

⎠ ∧
⎛

⎝
∨

t∈TN ×( T̃ ∪{λ})
#β (t) ≥ 1

⎞

⎠.

(8)
Remark IV.2: Before we formally prove the above theorem, let us

first explain intuitively how it works. For a sequence in (7), since
∨

t∈{λ}×TF
#α (t) ≥ 1, we know that a boundary marking can be

reached by a prefix of the second component of α. Moreover, the last
condition guarantees that β is non-λ for its first component. This con-
dition together with M2 ≥ M1 ensures that any marking reached by a
prefix of the first component of α is a nonindicator marking. Therefore,

the conditions in (8) essentially guarantee that there are two observa-
tionally equivalent sequences that can reach a nonindicator marking
and a boundary marking, respectively, which disproves prognosability.
On the other hand, suppose that the system is not prognosable, i.e., there
exist a nonindicator marking M ′

1 ,1 and a boundary marking M ′
1 ,2 that

can be reached by α1 and α2 , respectively, such that α1 and α2 look

the same. Then, we know that M0 ,‖
α−→N‖ M ′

1 =
[
M ′�

1 ,1 M ′�
1 ,2

]�
for

some α whose first and second components are α1 and α2 , respec-
tively. Since M ′

1 ,2 is a boundary marking and any fault transition is un-

observable in L̃, we know that M ′
1

(λ, t f )−−−→N‖
[
M�

1 ,1 M�
1 ,2

]�
for some

tf ∈ TF . Since M ′
1 ,1 = M1 ,1 is a nonindicator marking, we know that

β1 can be extended from M1 ,1 to obtain a covering for places in PN .
Moreover, M1 ,2 contains a token in pfault. Therefore, the self-loops in
the form of te can “track” the sequence, which contributes to the cov-
ering in NN , without changing markings in P̃ . This yields a covering
for all places in P‖ that satisfies (8). This is also the reason why we add
such self-loop transitions at place pfault in Ñ .

With the above-explained intuition, we are now ready to formally
prove Theorem IV.1.

Proof: (⇐) Let M0 ,‖
α−→N‖ M1

β−→N‖ M2 be a sequence satisfying
the conditions in (8). We denote by α1 and α2 the first and the second
components of α, respectively. The same for notations β1 and β2 .

Let us consider the longest nonfault prefix of α2 , say α′
2 ∈ α2 , i.e.,

α′
2 ∈ T ∗

N and α′
2 tf ∈ L(N , M0 ) for some tf ∈ TF . This means that

M ′
1 ,2 is a boundary marking, where M0

α ′
2−→N M ′

1 ,2 . By the construc-

tion of 〈N‖, M0 ,‖〉, we know that L(α1 ) = L̃(α2 ). Moreover, since
α′

2 ∈ T ∗
N , we know that L̃(α′

2 ) = L(α′
2 ). Therefore, L(α1 ) = L(α2 ).

Then, for α′
2 , there exists a nonfault sequence α′

1 ∈ α1 such that
L(α′

1 ) = L(α′
2 ). Moreover, since M1 ≤ M2 , we know that M1 ,1 ≤

M2 ,1 , where M0
α ′

1−→NN
M ′

1 ,1

(α/α ′
1 )−−−−→NN

M1 ,1
β 1−→NN

M2 ,1 . There-
fore, M ′

1 ,1 is a nonindicator marking. By Lemma III.1, we know that
the system is not prognosable.

(⇒) Suppose that system is not prognosable. By Lemma III.1, we
know that there exist two nonfault sequences σ1 , σ2 ∈ TN such that (i)
M0

σ 1−→ M1 , M1 is a nonindicator marking; and (ii) M0
σ 2−→ M2 , M2

is a boundary marking; and (iii) L(σ1 ) = L(σ2 ).
First, since σ1 only contains nonfault transitions, by the definition of

Ñ , we know that σ1 ∈ L(Ñ , M̃0 ). Moreover, by the definition of L̃, we
know that L(σ1 ) = L̃(σ2 ). Therefore, by the property of 〈N‖, M0 ,‖〉,
we know that there exists a sequence α ∈ L(N‖, M0 ,‖) such that its
first component is σ1 and its second component is σ2 . Moreover, since
M2 is a boundary marking, we know that σ2 tf ∈ L(N , M0 ) for some
tf ∈ TF . By the definition of L̃, we know that L̃(tf ) = ε. Therefore,
by the definition of N‖, we know that α(ε, tf ) ∈ L(N‖, M0 ,‖).

Also, recall that M1 is a nonindicator marking. Therefore, there
exists a nonfault sequence v ∈ T ∗

N , where v = v1v2 · · · v|v |, and an
integer k < |v|, such that

M1
v 1 . . .v k−−−−→NN

M ′
1

v k + 1 . . .v |v |−−−−−−→NN
M ′′

1 and M ′
1 ≤ M ′′

1 .

Then, we define a sequence in N‖

β := (v1 , v
′
1 ) (v2 , v

′
2 ) . . .

(
v|v |, v′

|v |
)

(9)

where for each 1 ≤ i ≤ |v|, we have

v′
i =

{
te if L(vi ) = e ∈ Σ

λ if L(vi ) = ε
. (10)

Next, we show that α(ε, tf )β is a well-defined sequence in 〈N‖, M0 ,‖〉.
Note that, since we have shown that α(ε, tf ) ∈ L(N‖, M0 ,‖), it suf-
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Fig. 3. Petri net 〈N‖, M0 ,‖〉 .

fices to show that Mαtf

β−→N‖ , where Mαtf
= [M�

1 M̃�
2 ]�, M0

σ 2−→Ñ

M2
t f−→Ñ M̃2 . We proceed by induction on the length of β.

Induction Basis: Since v1 ∈ L(NN , M1 ), it suffices to show that
v′

1 ∈ L(Ñ , M̃2 ) and L(v1 ) = L̃(v′
1 ). We consider the following two

cases: 1) v1 ∈ To ; and 2) v1 ∈ Tuo . For Case 1), we have v′
1 = te ,

where e = L(v1 ). Therefore, by the definition of L̃, we have L̃(te ) =
L(v′

1 ) = σ. Moreover, since M̃2 is reached after firing a fault tran-
sition tf , we know that pfault contains a token, which implies that
te ∈ L(Ñ , M̃2 ). For Case 2), we have v′

1 = λ. Therefore, L̃(v1 ) =
L(v′

1 ) = ε and λ ∈ L(Ñ , M̃2 ). Overall, we have α(ε, tf )(v1 , v
′
1 ) ∈

L(N‖, M0 ,‖), i.e., the induction basis holds.

Induction Step: We assume that Mαtf

(v 1 ,v ′
1 ) ···(v i ,v ′

i
)−−−−−−−−−−→N‖ and we

want to show that Mαtf

(v 1 ,v ′
1 ) ···(v i ,v ′

i
)(v i + 1 ,v ′

i + 1 )
−−−−−−−−−−−−−−−−−→N‖ Since v1 · · · vi

vi+1 ∈ L(NN , M1 ), it suffices to show that v′
1 · · · v′

i v
′
i+1 ∈ L(Ñ , M̃2 )

and L(vi+1 ) = L̃(v′
i+1 ). Note that in marking Mαtf

, place pfault con-
tains a token and v′

1 · · · v′
i does not consume token in pfault. There-

fore, following the same reason in the induction basis, we have
α(ε, tf )(v1 , v

′
1 ) · · · (vi , v

′
i )(vi+1 , v

′
i+1 ) ∈ L(N‖, M0 ,‖).

Let M ′
β = [M ′�

1 M̃ ′�
β ]� and Mβ = [M ′′�

1 M̃�
β ]� be markings such

that

Mαtf

(v 1 ,v ′
1 ). . .(v k ,v ′

k )−−−−−−−−−−−→N‖ M ′
β

(
v k + 1 ,v ′

k + 1

)
. . .

(
v |v |,v ′

|v |
)

−−−−−−−−−−−−−−−−−→N‖ Mβ .

Since v′
i is either a self-loop transition in the form of te or a λ-transition,

we know that M̃2 = M̃ ′
β = M̃β . This together with the fact that M ′

1 ≤
M ′′

1 imply that M ′
β ≤ Mβ . Also, we know that

∨

t∈TN ×(T̃ ∪{λ})
#(

v k + 1 ,v ′
k + 1

)
. . .

(
v |v |,v ′

|v |
)(t) = |v| − k ≥ 1.

Overall, we have the following sequence in 〈N‖, M0 ,‖〉:

M0 ,‖
α(λ, t f )(v 1 ,v ′

1 ). . .(v k ,v ′
k )−−−−−−−−−−−−−−−−→N‖ M ′

β

(
v k + 1 ,v ′

k + 1

)
. . .

(
v |v |,v ′

|v |
)

−−−−−−−−−−−−−−−−−→N‖ Mβ (11)

satisfying the condition in the theorem. �
Let us show how to use Theorem IV.1 to verify prognosability by

the following example.
Example IV.1: Again, let us consider labeled Petri net 〈N , M0 ,L〉

shown in Fig. 1(b), where To = {t1 , t2} and TF = {f1}. Its cor-
responding net 〈N‖, M0 ,‖〉 is shown in Fig. 3. As we discussed in
Example III.2, this system is not prognosable; hereafter, we show this
using Theorem IV.1.

Let us consider the following sequence in 〈N‖, M0 ,‖〉:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

1

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= :α
︷ ︸︸ ︷(
tN
1 , t2

)
(λ, f1 )−−−−−−−−−−−→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

0

0

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
=:M 1

= :β
︷ ︸︸ ︷(
tN
1 , ta

)

−−−−−−→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

0

0

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
=:M 2

(12)

where the places in each marking are ordered by {pN
1 , pN

2 , p1 , p2 ,
pfault}. Now, let us check that the above-mentioned sequence satisfies
(8). Clearly, we have M4 = M3 . Also, we know that (λ, f1 ) ∈ {λ} ×
TF and #α ((λ, f1 )) = 1. For β, we know that (tN

1 , ta ) ∈ TN × (T̃ ∪
{λ}) and #β ((tN

1 , ta )) = 1. Therefore, we know that the sequence in
(12) satisfies the conditions in (8), i.e., the system is not prognosable.

Note that the conditions in (8) is a valid formula in Definition II.1.
Moreover, it satisfies the constraint that F ⇒ M1 ≤ Mk . Since the
length of the formula in (8) is a constant, by Theorem IV.1 and [2] we
have the following result immediately.

Theorem IV.2: Checking prognosability for labeled Petri nets is
decidable. Moreover, it is in EXPSPACE.

V. EXPSPACE-COMPLETENESS OF PROGNOSABILITY

In the previous section, we have shown that the verification of prog-
nosability for unbounded Petri nets can be done in EXPSPACE. How-
ever, this is still an extremely high complexity and one may ask whether
or not this complexity can be further improved. In this section, we show
that this complexity is actually tight, i.e., the verification of prognos-
ability is EXPSPACE-complete.

For unbounded Petri nets, it is well known that the coverability
problem, stated as follows, is EXPSPACE-complete [22], [25].
1) GIVEN: A Petri net 〈N , M0 〉 and a marking M .
2) TO DECIDE: Whether or not there exists M0

σ−→ M ′ such that M ≤
M ′.

Next, we show that checking prognosability is EXPSPACE-hard by
reducing the coverability problem to the prognosability verification
problem.

Theorem V.1: Checking prognosability for unbounded labeled Petri
nets is EXPSPACE-complete.

Proof: In Theorem IV.2, we have shown that this problem is in
EXPSPACE. Therefore, it remains to show that it is also EXPSPACE-
hard. To this end, we use the coverability problem for the purpose of
reduction.

Let 〈N = (P, T, A, w), M0 〉 and M be the instance of the cov-
erability problem. We construct a new labeled Petri net 〈N̂ =
(P̂ , T̂ , Â, ŵ), M̂0 , L̂〉 as follows. First, P̂ is obtained by adding two
new places, pnew,1 and pnew,2 , to P ; T̂ is obtained by adding four new
transitions, ε1 , ε2 , tf , and tloop, to T . For any t ∈ T and p ∈ P , Â and
ŵ are the same as A and w. However, for the newly added transitions
and places, we have the following:
1) for each i = 1, 2, •εi = {p ∈ P : M (p) �= 0} with ∀p ∈ P :

ŵ(p, εi ) = M (p); and ε•i = {pnew, i} with ŵ(εi , pnew, i ) = 1;
2) •tf = {pnew,1} and t•f = {pnew,2} with ŵ(pnew,1 , tf ) = ŵ(tf ,

pnew,2 ) = 1;
3) •tloop = t•loop = {pnew,2} with ŵ(pnew,2 , tloop) = ŵ(tloop, pnew,2 ) =

1.
The initial marking M̂0 = [M�

0 0 0]� (we assume newly added
places pnew,1 and pnew,2 are the last two places in the marking). Finally,
the labeling function L̂ is defined by the following: 1) the only two un-
observable transitions are ε1 and ε; 2) all other transitions are observable
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Fig. 4. Suppose that, in N , we are interested in whether or not a
marking M , in which each place in the red cycle contains the depicted
number of tokens, can be covered. Then, a conceptual illustration of
〈N̂ , M0 , L̂〉 is shown in the figure.

with the same label a. A conceptual illustration showing the construc-
tion of N̂ is provided in Fig. 4. Intuitively, transitions ε1 and ε2 can be
fired iff marking M is covered in 〈N , M0 〉.

For the above-constructed 〈N̂ , M̂0 , L̂〉, now, let us assume that tf is
the only fault transition we want to predict. Next, we show that M can
be covered in 〈N , M0 〉 if and only if 〈N̂ , M̂0 , L̂〉 is not prognosable
w.r.t. TF = {tf }.

The “if” part is straightforward. Suppose that M cannot be covered
in 〈N , M0 〉. Then, by the construction of 〈N̂ , M̂0 , L̂〉, we know that
the only fault transition tf can never fire in 〈N̂ , M̂0 , L̂〉. Therefore,
〈N̂ , M̂0 , L̂〉 is prognosable immediately.

To see the “only if” part, we assume that M can be covered
in 〈N , M0 〉. Let σ ∈ L(N , M0 ) be a sequence such that M0

σ−→N
M ′, where M ′ ≥ M . By the construction of 〈N̂ , M̂0 , L̂〉, we know
that M̂0

σ−→N̂ [M ′� 0 0]�. Therefore, we know that M̂0
σ ε1−−→N̂ M1

and M̂0
σ ε2−−→N̂ M2 , where M1 (pnew,1 ) = 1 and M2 (pnew,2 ) = 1.

Since M1
t f−→N̂ , we know that M1 is a boundary marking. Since

M2
(t loop)K

−−−−−→N̂ for any K ∈ N, we know that M2 is a nonindicator
marking. Moreover, L̂(σε1 ) = L̂(σε2 ) = a|σ |. By Lemma III.1, we
know that 〈N̂ , M̂0 , L̂〉 is not prognosable w.r.t. {tf }. �

VI. CONCLUSION

In this technical note, we presented new results for prognosability
analysis of partially observed DES. A necessary and sufficient condition
of prognosability for unbounded Petri nets was presented. In particular,
this condition is stated in terms of a special class of formulas that can
be effectively checked by existing model checking techniques. More-
over, we showed that the complexity of verifying prognosability for
Petri nets is EXPSPACE-complete. This result reveals that extremely
high computation complexity seems to be unavoidable in this verifica-
tion problem. To mitigate the computational challenges, one possible
direction is to find simple but sufficient conditions for prognosability
using structural analysis. Another potential direction is to identify sub-
classes of Petri nets for which the necessary and sufficient condition
for prognosability can be verified more efficiently.

Note that the main purpose of verifying prognosability is to deter-
mine a priori if fault can be correctly predicted. When prognosability
holds, how to design an efficient online prognosis mechanism is also
an interesting and important problem. In fact, some works have been
done on this direction (see, e.g., [1], [20]). Another future direction
is to extend our results to the decentralized setting by considering the
verification of coprognosability (see., e.g., [18], [19], [36] for the case
of finite-state automata).
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