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Synthesis of Maximally Permissive Nonblocking Supervisors for the
Lower Bound Containment Problem
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Abstract—In this paper, we investigate the nonblocking super-
visor synthesis problem for centralized partially observed discrete
event systems. The goal is to synthesize a maximally permissive
nonblocking supervisor that not only satisfies a class of proper-
ties, e.g., safety, but also contains a given lower bound behavior
described by a regular language. We show that this synthesis prob-
lem can be effectively reduced to a synthesis problem that has been
solved in the literature. A new notion, called R-compatibility, is pro-
posed for the purpose of reduction. Our result generalizes existing
algorithms for supervisory synthesis of partially observed discrete
event systems. This also leads to solutions of several synthesis
problems that were open previously, e.g., the nonblocking range
control problem.

Index Terms—Discrete event systems, lower bound containment,
non-blockingness, partial observation, supervisory control.

I. INTRODUCTION

In this paper, we investigate the supervisor synthesis problem for
partially observed discrete event systems (DESs) in the supervisory
control framework [16]. The goal is to synthesize a supervisor that
restricts the system’s behavior such that the closed-loop system satis-
fies some properties. In the standard supervisory control problem [16],
the properties considered are safety and nonblockingness, where non-
blockingness means that the system does not contain a deadlock or a
livelock, while safety requires that all strings executed by the system
are legal.

In our recent work, a uniform framework for synthesizing property-
enforcing supervisors is proposed [22]–[24]. Instead of considering
only safety, a wide class of properties, called information-state-based
(IS-based) properties, are considered. These properties include, but
are not restricted to, safety, opacity [10], diagnosability [28], and de-
tectability [18]. A finite structure called the nonblocking all enforce-
ment structure (NB-AES) that embeds all solutions is proposed, and
based on the NB-AES, we have shown how to synthesize a max-
imally permissive nonblocking supervisor that satisfies an IS-based
property.
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In general, maximally permissive supervisors are not unique in the
partially observation setting; there may exist several incomparable lo-
cally maximal supervisors. In order to select a “good” locally maxi-
mally permissive supervisor, one approach is to impose a lower bound
constraint and require that the closed-loop behavior of the synthesized
supervisor must contain the given lower bound, which is described by
a regular language. This leads to the lower bound containment prob-
lem. The lower bound requirement can be used to model the desired
behavior the system must achieve; see, e.g., [13], [15] for applications
of the lower bound requirement.

In [25], we have investigated a special lower bound containment
problem, called the range control problem. Specifically, it only consid-
ers safety, which can be described by an upper bound language, rather
than the general class of IS-based properties. Also, [25] only considers
the prefix-closed case and the supervisor synthesized may be blocking.
The approach taken in [25] cannot be extended to the nonprefix-closed
case or to arbitrary IS-based properties as it strictly depends on the
prefix-closed assumption and the safety specification considered; see
Section V-C for a more detailed discussion. Therefore, a new method-
ology is needed to solve the general lower bound containment problem
for both nonblockingness and IS-based properties.

In this paper, we tackle the lower bound containment problem in a
more general setting. Specifically, instead of considering a safety spec-
ification (upper bound), we consider an arbitrary IS-based property.
Moreover, we require that the supervisor synthesized must be non-
blocking. Our approach is to effectively reduce this synthesis problem
to the supervisor synthesis problem for nonblockingness and IS-based
properties without a lower bound requirement, which has been solved
in [22]–[24]. The general idea of our approach is to first locally check
whether or not the lower bound behavior can be fulfilled, and then
iteratively remove bad states to guarantee that the lower bound be-
havior can be fulfilled globally. To this end, a new concept called the
R-compatibility is proposed for the purpose of reduction and a new
structure called the R-compatible nonblocking all enforcement struc-
ture (R-compatible NB-AES) is defined. One of the difficulties in this
problem is that we need to handle, simultaneously, the lower bound
requirement and the nonblockingness requirement, which may be cou-
pled in general. However, our result reveals that these two require-
ments are actually independent, and we can first restrict the solution
space by considering the lower bound requirement before enforcing
nonblockingness. Also, we identify that the notion of strict subau-
tomaton plays a crucial role in the correctness of reduction. To the
best of our knowledge, there is no algorithm for finding an arbitrary
nonblocking safe supervisor that contains a given lower bound lan-
guage. Our paper solves this problem in a more general setting as
we are able to find a maximally permissive nonblocking supervisor
that contains a given lower bound language subject to any IS-based
property.

The rest of this paper is organized as follows. In Section II, we present
necessary preliminaries and formulate the lower bound containment
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problem. Section III reviews the uniform framework for supervisory
control under partial observation proposed in our recent work. The
main result of this paper is presented in Section IV. Specifically, a new
notion called the R-compatibility is proposed, and we show how to
leverage an existing algorithm to solve the lower bound containment
problem by using this notion. In Section V, we further compare our
new result with existing results in the literature. Finally, we conclude
the paper in Section VI.

II. PROBLEM FORMULATION

A. Preliminaries

Throughout the paper, we use Σ to denote a finite set of events and
Σ∗ is the set of finite strings over Σ including the empty string ε. For any
string s ∈ Σ∗, |s| denotes its length with |ε| = 0. A language L ⊆ Σ∗

is a set of strings. Notation L denotes the prefix-closure of language L,
i.e., L = {u ∈ Σ∗ : ∃v ∈ Σ∗ s.t. uv ∈ L}.

We consider a DES modeled as a finite-state automaton G =
(X, Σ, δ, x0 , Xm ), where X is the finite set of states, Σ is the fi-
nite set of events, δ : X × Σ→ X is the partial transition function,
x0 ∈ X is the initial state, and Xm ⊆ X is the set of marked states
(Xm can be omitted when marking is not considered). The transi-
tion function δ is extended to X × Σ∗ recursively by the following:
For any s ∈ Σ∗, σ ∈ Σ, δ(x, sσ) = δ(δ(x, s), σ). For brevity, we will
also write δ(x, s) as δ(s) if x = x0 . The language generated by G is
L(G) := {s ∈ Σ∗ : δ(x0 , s)!}, where “!” means “defined”; the lan-
guage marked by G is Lm (G) := {s ∈ Σ∗ : δ(x0 , s) ∈ Xm }. Let
A=(XA , Σ, δA , xA ,0 ) and B=(XB , Σ, δB , xB ,0 ) be two automata.
We say that A is a strict subautomaton of B, denoted by A � B, if
(i) ∀s∈L(A) : δA (s)=δB (s); and (ii) ∀s∈L(B) \ L(A) : δB (s) /∈
XA . The first condition implies that A is a “subgraph” of B, while
the second condition implies that once a string leaves the state-space
of A, it should never come back. Note that, if L(A) ⊆ L(B), then
we can always refine the state spaces of A and B such that A
� B [7].

In the supervisory control framework [16], the event set Σ is
partitioned as follows: (i) Σ = Σc ∪̇Σu c , where Σc and Σu c are
the sets of controllable and uncontrollable events, respectively; and
(ii) Σ = Σo ∪̇Σu o , where Σo and Σu o are the sets of observable
and unobservable events, respectively. We assume that the supervi-
sor cannot disable uncontrollable events. Therefore, we denote by
Γ := {γ ∈ 2Σ : Σu c ⊆ γ} the set of all control decisions. Also, we
assume that the supervisor can only observe the occurrences of ob-
servable events [8], [12]. To this end, we define the natural projection
P : Σ∗ → Σ∗o by

P (ε) = ε and P (sσ) =

{
P (s)σ if σ ∈ Σo

P (s) if σ ∈ Σu o

. (1)

The projection P is extended to 2Σ ∗ by P (L) = {t ∈ Σ∗o : ∃s∈
L s.t. t=P (s)} and P −1 denotes the inverse projection.

A supervisor is a function S : P (L(G))→ Γ that disables events
dynamically based on its observations. We denote by L(S/G) the
language generated by the closed-loop system under control, which
can be computed recursively by
1) ε ∈ L(S/G); and
2) sσ∈L(S/G)⇔s∈L(S/G)∧sσ∈L(G)∧σ∈S(P (s)).

We define Lm (S/G) := L(S/G) ∩ Lm (G). We say that supervi-
sor S is nonblocking if Lm (S/G) = L(S/G).

B. Problem Formulation

Since we consider partially observed systems, we define an informa-
tion state as a set of states and denote by I = 2X the set of information
states. Let S be a supervisor and s ∈ P (L(S/G)) be an observable
string. We define

ES (s) := {x ∈ X : ∃t ∈ L(S/G) s.t. δ(t) = x ∧ P (t) = s}
as the state-estimate upon the occurrence of s, which is the set of states
the system could be in by observing s.

The goal of the supervisor is to restrict the system’s behavior such
that some specification (or property) is satisfied. In this paper, we
consider a general class of properties called IS-based properties defined
in [24].

Definition 1: ([24]) An IS-based property is a predicate ϕ : I →
{0, 1}. We say that supervisor S enforces ϕ w.r.t. G, denoted by
S |=G ϕ, if ∀s ∈ P (L(S/G)) : ϕ(ES (s)) = 1, i.e., the state-estimate
of the system should always satisfy the predicate.

Remark 1: It was shown in [24] that many important properties in
the literature, e.g., safety, opacity, and K-diagnosability, can be formu-
lated as IS-based properties. Therefore, for the sake of generality, we
investigate this general class of properties rather than studying a spe-
cific property. For example, suppose that Xbad is a set of illegal states
and the control objective is to avoid reaching illegal states; this is the
safety specification in the standard supervisory control problem [6]. To
enforce safety, it suffices to enforce an IS-based property ϕsafe defined
by ∀i ∈ I : ϕsafe (i) = 1⇔ i ∩Xbad = ∅. Throughout the paper, we
will use safety as an example of the IS-based property. The reader
is referred to [24] for how to formulate more properties in terms of
IS-based properties.

In [23] and [24], we have shown how to synthesize a maximally per-
missive (in terms of set inclusion) nonblocking supervisor that enforces
an IS-based property ϕ. In general, such a supervisor is not unique,
i.e., there may exist two maximally permissive, nonblocking, and ϕ-
enforcing supervisors whose closed-loop languages are incomparable.
In order to select a ‘meaningful’ maximally permissive supervisor, one
approach is to impose a lower bound language [25] and to require that
the closed-loop behavior under control has to contain the given lower
bound, which is a prefix-close language R = R ⊆ L(G). This leads
to the maximally permissive nonblocking lower bound containment
problem for the IS-based property (MPLCP-NBIS).

Problem 1: (MPLCP-NBIS). Given system G, an IS-based prop-
erty ϕ : I → {0, 1} and lower bound language R ⊆ L(G), synthesize
a nonblocking and ϕ-enforcing supervisor S∗ such that
1) R ⊆ L(S∗/G); and
2) for any nonblocking and ϕ-enforcing supervisor S ′ satisfying (i),

we have L(S∗/G) �⊂ L(S ′/G), i.e., S∗ is maximally permissive.
Hereafter, we use R = (XR , Σ, δR , x0 ,R ) to denote the automaton

generating R. We assume, without loss of generality, that R � G.
This assumption is needed for technical reasons; it will become clear
in Section IV.

III. ALL ENFORCEMENT STRUCTURE

In this section, we review the structure of Bipartite Transition System
(BTS) and its variants from our recent work [23], [24]. First, we define
the following operators. For any i ∈ I , γ ∈ Γ, and σ ∈ Σo

URγ (i) = {x ∈ X : ∃y∈ i, ∃s ∈ (Σu o ∩ γ)∗ s.t. x = δ(y, s)} (2)

Nextσ (i) = {x ∈ X : ∃y ∈ i s.t. x = δ(y, σ)}. (3)

Now, we recall the notion of BTS from [23].
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Fig. 1. System with Σc = {c1 , c2} and Σo = {o}. (a) G. (b) R.

Definition 2: A BTS T w.r.t. G is a 7-tuple

T = (QT
Y , QT

Z , hT
Y Z , hT

Z Y , Σo , Γ, y0 ) (4)

where QT
Y ⊆ I is the set of Y -states, QT

Z ⊆ I × Γ is the set of Z-states,
and I(z) and Γ(z) denote, respectively, the information state and the
control decision components of a Z-state z, so that z = (I(z), Γ(z));
hT

Y Z : QT
Y × Γ→ QT

Z is the partial transition function from Y - to Z-
states, which satisfies the following constraint: For any y ∈ QT

Y , z ∈
QT

Z , and γ ∈ Γ, we have

hT
Y Z (y, γ) = z ⇒ [I(z)=URγ (y)] ∧ [Γ(z) = γ] (5)

hT
Z Y : QT

Z × Σo → QT
Y is the partial transition function from Z- to Y -

states, which satisfies the following constraint: For any y ∈ QT
Y , z ∈

QT
Z , and σ ∈ Σo , we have

hT
Z Y (z, σ) = y ⇔ [σ∈Γ(z)] ∧ [y=Nextσ (I(z))] (6)

Σo is the set of observable events of G, Γ is the set of control decisions
of G, and y0 ∈ QT

Y is the initial Y -state, where y0 = {x0}.
Let T be a BTS, for each Y -state y ∈ QT

Y , we denote by CT (y) :=
{γ ∈ Γ : hT

Y Z (y, γ)!} the set of control decisions defined at y. We
say that T is complete, if ∀y ∈ QT

Y : CT (y) �= ∅; we say that T is
deterministic, if ∀y ∈ QT

Y : |CT (y)| = 1. When T is deterministic, we
also use notation cT (y) to denote the unique control decision defined at
y ∈ QT

Y . For simplicity, we also write y
γ−→T z if z = hT

Y Z (y, γ) and
z

σ−→T y if y = hT
Z Y (z, σ); we will drop subscript T when it is clear.

We call γ0σ1γ1σ2 . . . σn γn a run, where γi ∈ Γ, σi ∈ Σo . A run also
induces a sequence

y0
γ 0−→ z0

σ 1−→ y1
γ 1−→ · · · γn −1−−−→ zn−1

σn−→ yn
γn−→ zn .

We say that a run is generated by T if its induced sequence is defined
in T .

Let S : P (L(G))→ Γ be a supervisor and s = σ1 , . . . , σn ∈
P (L(S/G)) be an observed string. Then, the execution of s induces a
well-defined sequence

y0
S (ε )−−→ z0

σ 1−→ y1
S (σ 1 )−−−→ · · · σn−→ yn

S (σ 1 , . . . ,σ n )−−−−−−−−→ zn .

We denote by ISY
S (s) and ISZ

S (s) the last Y - and Z-states
in y0z0y1z2 . . . zn−1yn zn , respectively, i.e., ISY

S (s) = yn and
ISZ

S (s) = zn . In particular, we have that I(ISZ
S (s)) = ES (s), i.e.,

the information component of I(ISZ
S (s)) is exactly the state-estimate

by observing s under supervisor S.
With the above-mentioned notions, we can “decode” supervisors

from a BTS as explained in the following definition.
Definition 3: A supervisor S is said to be included in a BTS T if

for any s ∈ P (L(S/G)), the control decision made by S is defined at
the corresponding Y -state, i.e., S(P (s)) ∈ CT (ISY

S (s)). We denote
by S(T ) the set of supervisors included in T .

Example 1: Let us consider system G shown in Fig. 1 (a), where
Σc = {c1 , c2}, Σo = {o} and marked states are denoted by double
circles. This example will be used as the running example throughout
the paper. Suppose that we consider an IS-based property ϕ defined

Fig. 2. R-compatible NB-AES. (a) AESϕ (G). (b) AESR
ϕ (G).

by ∀i ∈ I : ϕ(i) = 1⇔ i ∩ {13} = ∅, i.e., ϕ is a safety specification
and 13 is the unique illegal state. Then, Fig. 2 (a) shows an example
of a complete BTS for G. From the initial Y -state {1}, there are two
control decisions defined, i.e., the BTS is not deterministic. If control
decision {c1} is made,1 then we move to Z-state ({1, 2}, {c1}), where
{1, 2} is the set of states the system could be in before the occurrence
of the next observable event and {c1} is a copy of the control decision
leading to this state. For ({1, 2}, {c1}), observable event o can occur
and we move to Y -state {3, 4}, which is the set of states the system
could be in immediately after observing o, and so forth. For example,
let us consider a supervisor S defined by

S(ε) = {c1} and S(o) = Σu c . (7)

Then, we know that S is included in the BTS shown in Fig. 2(a), and
we have ISY

S (ε) = {1}, ISZ
S (ε) = ({1, 2}, {c1}), ISY

S (o) = {3, 4},
and ISZ

S (o) = ({3, 4}, ∅).
Definition 4: Given a BTS T , we say that a Y -state y is live in T

if, for any x ∈ y, there exist a string s = ξ1σ1ξ2 , . . . , σn−1ξn , where
ξi ∈ Σ∗u o , σi ∈ Σo , and a sequence y

γ 1−→T z1
σ 1−→T y1

γ 2−→T · · · σn −1−−−→T

yn
γn−→T zn such that δ(x, s)∈Xm and ∀i ≤ n : ξi ∈γ∗i .
Definition 5: A Z-state z is said to be deadlock-free if for all

x ∈ I(z) we have either (i) ∃s ∈ (Γ(z) ∩ Σu o )∗ : δ(x, s) ∈ Xm ; or
(ii)∃s ∈ (Γ(z) ∩ Σu o )∗(Γ(z) ∩ Σo ) : δ(x, s)!. Otherwise, z is said to
be a deadlock Z-state.

Definition 6: A BTS T is said to be nonblocking if all Y -states in it
are live and all Z-states in it are deadlock-free. We say that T satisfies
ϕ if ∀z ∈ QT

Z : ϕ(I(z)) = 1.
Intuitively, a Y -state is live if any state in it can reach a marked

state under some control decision string allowed by the BTS. Also, a
Z-state is deadlock-free if any state in it can either unobservably reach
a marked state or can go outside of this Z-state. Nonlive Y -states and
deadlock Z-states are states that should be avoided, since both of them
cause blocking.

Definition 7: NB-AES for G and ϕ, denoted by AESϕ (G) =
(QA E S

Y , QA E S
Z , hA E S

Y Z , hA E S
Z Y , Σo , Γ, y0 ), is defined as the largest (in

terms of graph-merger) complete and nonblocking BTS satisfying ϕ.
Example 2: Let us return to the running example. In fact, the BTS

shown in Fig. 2(a) is the NB-AES for G. For example, Y -state {8, 9}
is live, since state 8 can reach marked state 10 under control decision
{c2} and state 9 can reach marked state 11 under control decision {c1}.
Also, all Z-states in it are deadlock-free. SinceAESϕ (G) is the largest
complete and nonblocking BTS satisfying ϕ, no control decision can be
added at any Y -state. For example, at Y -state {3, 4}, we cannot make

1For the sake of simplicity, in the figure, we omit uncontrollable events in
each control decision, which are always enabled. Also, we omit events that are
not feasible in each control decision at the current Y -state. For example, we
do not consider decisions {c2} and {c1 , c2} at Y -state {1} as event c2 is not
feasible within the unobservable reach.
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Fig. 3. Closed-loop languages under control. (a) L(S∗/G). (b)
L(S/G).

control decision {c2}; otherwise the system may be blocked at state
12. Also, at Y -state {8, 9}, we cannot make control decision {c1 , c2};
otherwise the system may unobservably reach illegal state 13, which
will violate ϕ.

The following result says that we can always synthesize a maximally
permissive nonblocking supervisor satisfying ϕ when there exists a
complete and nonblocking BTS T satisfying ϕ.

Theorem 1: ([22]) For any complete and nonblocking BTS T that
satisfies ϕ, there always exists a maximally permissive, nonblocking,
and ϕ-enforcing supervisor S ∈ S(T ) included in it, where maximal-
permissiveness means that there does not exist another nonblocking and
ϕ-enforcing supervisor S ′ ∈ S(T ) such that L(S/G) ⊂ L(S ′/G).
Moreover, such a supervisor S can be effectively synthesized by Algo-
rithm NB-SOLU in [22].2

To synthesize an arbitrary maximally permissive, nonblocking, and
ϕ-enforcing supervisor, one can use the NB-AES as the input of Al-
gorithm NB-SOLU. However, this does not guarantee the containment
of R. In this paper, we will only invoke Algorithm NB-SOLU from
[22] in order to extract a maximally permissive, nonblocking, and
ϕ-enforcing supervisor from a complete and nonblocking BTS that
satisfies ϕ. Algorithm NB-SOLU has been implemented in the soft-
ware tool DPO-SYN3 [26]. The algorithm itself is rather technical and
is beyond the scope of this paper; the reader is referred to [22] for more
details on this algorithm.

IV. HANDLING THE LOWER BOUND

Although Algorithm NB-SOLU in [22] can find a maximally permis-
sive, nonblocking, and ϕ-enforcing supervisor, it cannot guarantee that
the supervisor synthesized contains the desired lower bound language
R = L(R). For example, supervisor S defined in (7) is a maximally
permissive nonblocking supervisor for system G shown in Fig. 1(a);
its closed-loop language under control L(S/G) is shown in Fig. 3(b).
In fact, this is the supervisor returned by Algorithm NB-SOLU in [22]
when we use the NB-AES as its input. However, suppose that we
consider the lower bound language R shown in Fig. 1(b), then this
supervisor fails to achieve this lower bound behavior. In this section,
we show how to leverage Algorithm NB-SOLU in [22] to synthesize
a maximally permissive, nonblocking, and ϕ-enforcing supervisor that
provably contains the given lower bound language.

A. R-Compatible NB-AES

Recall that R = (XR , Σ, δR , x0 ,R ) is the automaton generating R,
which is assumed to be a strict subautomaton of G. Let i ∈ I be an
information state. First, we define

ΓR (i) = {σ ∈ Σ : ∃x ∈ i ∩XR , ∃w ∈ Σ∗u o s.t. δR (x, wσ)!} (8)

2Algorithm NB-SOLU was originally presented in [23] for the case of safety
specifications only. The new Algorithm NB-SOLU in [22] generalized the orig-
inal one by combining it with the general IS-based framework proposed in
[24].

3https://gitlab.eecs.umich.edu/M-DES-tools/DPO-SYNT

Algorithm 1:
input : G, R, and ϕ
output: AESR

ϕ (G)
1 Construct AESϕ (G) by the algorithm in [22];
2 AESR

ϕ (G)← AESϕ (G);
3 for all Y -state y ∈ QR

Z do
4 if ∃γ ∈ CAESR

ϕ (G ) (y) : ΓR (y) �⊆ γ then
5 Delete γ from CAESR

ϕ (G ) (y) by removing its
associated transition;

6 while AESR
ϕ (G) is not nonblockingdo

7 for all Y -state y ∈ QR
Z do

8 if y is not live in AESR
ϕ (G)then

9 Delete y and all its predecessor Z-states and
the associated transitions;

10 if y0 ∈ QN B
Z then

11 return AESR
ϕ (G) ;

else
12 return “R-compatible NB-AES does not exist”;

as the set of events defined at some state that can be reached unobserv-
ably from some state in i.

Then, we introduce the notion of R-compatibility.
Definition 8: We say that a BTS T is R-compatible if

∀y ∈ QY
T , ∀γ ∈ CT (y) : ΓR (y) ⊆ γ. (9)

Intuitively, R-compatibility requires that, for any Y -state y, any
control decision defined at this Y -state should contain events that are
feasible unobservably from a state x ∈ y in R. Clearly, if two BTSs
are R-compatible, then their union (in terms of graph merger) is still
R-compatible. Therefore, the largest complete, nonblocking, and R-
compatible BTS satisfying ϕ is well defined, and we term it as the
R-compatible NB-AES.

Definition 9: The R-compatible NB-AES for G, R, and ϕ,
denoted by AESR

ϕ (G) = (QR
Y , QR

Z , hR
Y Z , hR

Z Y , Σo , Γ, y0 ), is de-
fined as the largest complete, nonblocking, and R-compatible BTS
satisfying ϕ.

Algorithm 1 shows how to construct the R-compatible NB-AES
AESR

ϕ (G). First, we need to construct the NB-AES AESϕ (G) as
AESR

ϕ (G) is a subsystem of AESϕ (G) by definition. Then, for
each Y -state, we need to remove all control decisions that violate R-
compatibility; this is implemented by lines 3–5. However, by removing
such control decisions, the remaining BTS may not be nonblocking as
it is possible that some state in a Y -state may not be able to reach a
marked state. Therefore, we need to remove all Y -states that are not
live in the new structure and then remove their predecessor Z-states to
guarantee the completeness of the structure, and repeat this procedure
until the structure is nonblocking and complete. This is implemented
by the while-loop from line 6 to line 9.

Let us illustrate the construction of the R-compatible NB-AES by
the following example.

Example 3: Let us return to our running example. The NB-AES
for G is shown in Fig. 2(a). However,AESϕ (G) is not R-compatible.
For example, for Y -states {3} and {3, 4}, we have ΓR ({3}) =
ΓR ({3, 4}) = {c2}. However, control decision ∅ is defined at both
Y -states and {c2} �⊆ ∅. Therefore, we need to remove control decision
∅ from {3} and {3, 4}. Since the only control decision is removed from
{3, 4}, this Y -state becomes nonlive. Therefore, we need to again re-
move {3, 4} and its predecessor Z-state ({1, 2}, {c1}). This results in

https://gitlab.eecs.umich.edu/M-DES-tools/DPO-SYNT
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the structure shown in Fig. 2(b). Note that Y -state {3} does not need to
be removed as control decision {c2}, which makes it live, is still defined
at this state. Since the structure shown in Fig. 2(b) is nonblocking, we
terminate the while loop and this structure is indeed the R-compatible
NB-AES (which will be formally proved next).

Theorem 2: Algorithm 1 correctly constructs the R-compatible
NB-AES.

Proof: Let T be the BTS returned by Algorithm 1. First, we know
that T is a complete BTS, since |CAESR

ϕ (G ) (y)| �= ∅ by construction,
and whenever a Y -state is removed, its predecessor Z-states are re-
moved. Second, we know that T satisfies ϕ since its state-space is a
subset of that of the NB-AES, which satisfies ϕ. Also, T is nonblock-
ing: (i) any Y -state in it is live by construction; and (ii) any Z-state in
it is deadlock-free since it is also in the state-space of the NB-AES and
none of its successor Y -states are removed according to line 9. Finally,
we know that T is R-compatible since at any Y -state, any control de-
cision violating this requirement is removed. Therefore, it remains to
show that T is the largest BTS with the above properties. Next, we
show this by contradiction.

Let us assume that there exists another complete, nonblocking, and
R-compatible T ′ satisfying ϕ, and T ′ is strictly larger than T . Let us
consider what happens when the “while” loop is executed for the first
time. Since T ′ is a subsystem ofAESϕ (G) and T ′ is nonblocking, then
we know that any Y -state in T ′ is also live in AESϕ (G). Also, since
T ′ is a complete and R-compatible, for any Y -state y in T ′ we have
that (i) |CAESR

ϕ (G ) (y)| ≥ 1, and (ii) ∀γ ∈ CAESR
ϕ (G ) (y) : ΓR (y) ⊆ γ.

Therefore, we know that no control decision at any Y -state in T ′ will be
removed. Moreover, since T ′ is complete, we know that any Z-state in
T ′ can only reach Y -states in T ′. Since no Y -state in T ′ is removed, we
know that no Z-state in T ′ will be removed. Overall, the first execution
of the “while” loop can only remove states and transitions outside of T ′,
which means that T ′ is still a subsystem of the resulting BTS with state
removal. Therefore, by the same reason, we know that for the second
time the “while” loop is executed, no state in T ′ will be removed, and
so forth. Overall, we know that the “while” loop will converge to a BTS
that at least contains T ′. This contradicts the fact that T is returned by
the algorithm. �

B. Properties of the R-compatible NB-AES

Now, we show how the R-compatible NB-AES can be combined with
Algorithm NB-SOLU to solve the lower bound containment problem.
First, we show that any supervisor included in AESR

ϕ (G) contains R.
Lemma 1: Let T be an R-compatible BTS. Then, for any S ∈ S(T ),

we have R ⊆ L(S/G).
Proof: It suffices to show that ∀s ∈ R : s ∈ L(S/G). We prove

this by induction on the length of s.
For |s| = 0, we know that ε ∈ L(S/G) by definition. Let us assume

that for any s ∈ R such that |s| = k, we have s ∈ L(S/G). We need
to show that for any sσ ∈ R, where σ ∈ Σ and |s| = k, we still have
sσ ∈ L(S/G). Let y = ISY

S (P (s)) be the Y -state reached by P (s)
under S. Since S ∈ S(T ), we know that S(P (S)) ∈ CT (ISY

S (P (s))).
Since T is R-compatible, we know that ΓR (y) ⊆ S(P (s)). We write
string s in the form of s = s′w, where s′ ends with an observable
event and w ∈ Σ∗u o . Then, we know that δ(s′) ∈ y. Moreover, since
s′ ∈ R, we know that δ(s′) ∈ XR . Since δR (δ(s′), wσ)!, we know
that σ ∈ ΓR (y) ⊆ S(P (s)). Recall that, by the induction hypothesis,
s ∈ L(S/G). This together with σ ∈ S(P (s)) and sσ ∈ R ⊆ L(G)
implies that sσ ∈ L(S/G), which completes the induction step. �

Next, we show that the existence of the R-compatible BTS is nec-
essary for the existence of a nonblocking and ϕ-enforcing supervisor
that contains R.

Lemma 2: Suppose that there exists a nonblocking and ϕ-enforcing
supervisor S such that R ⊆ L(S/G). Then, there must exist a non-
blocking and R-compatible BTS T satisfying ϕ.

Proof: Let S be a nonblocking and ϕ-enforcing supervisor such
that R ⊆ L(S/G). Then, we construct a complete BTS T as follows:
1) QT

Y := {y ∈ I : ∃s ∈ P (L(S/G)) s.t. y = ISY
S (s)}

2) QT
Z := {z ∈ I×Γ : ∃s ∈ P (L(S/G)) s.t. z = ISZ

S (s)}
3) For any y ∈ QT

Y , CT (y) := {γ ∈ Γ : ∃s ∈ P (L(S/G)) s.t. y =
ISY

S (s) ∧ γ = S(s)}.
By construction, we have S ∈ S(T ). Note that T need not be de-

terministic since the control decision of S need not depend on the
information-state encountered. Next, we show that, under the assump-
tion that R � G, T is a nonblocking and R-compatible BTS satisfying
ϕ.

By the definition of ϕ-enforcing supervisor, we know that ∀s ∈
P (L(S/G)) : ϕ(I(ISZ

S (s))) = 1. Therefore, by the construction of
T , we have ∀z ∈ Q : ϕ(I(z)) = 1, i.e., T satisfies ϕ.

To show that T is nonblocking, we need to show that ∀y ∈ QT
Y : y is

live and ∀z ∈ QT
Z : z is deadlock-free. First, let us consider an arbitrary

y ∈ QT
Y and an arbitrary x ∈ y. Then, we know that there exists a string

s ∈ L(S/G) such that δ(s) = x. Since S is a nonblocking supervisor,
we know that there exists a string t such that st ∈ L(S/G) and δ(st) ∈
Xm . Then, let P (t) = σ1 , . . . , σ|P (t) |, then

y
S (P (s))−−−−−→T z1

σ 1−→T y1
S (P (s)σ 1 )−−−−−−→T · · · σn−→T yn

S (P (st))−−−−−→T zn

(10)

yields a sequence that satisfies liveness, i.e., any y ∈ QT
Y is live. Next,

let us consider an arbitrary z ∈ QT
Z and x ∈ I(z). Still, we know that

there exists a string s ∈ L(S/G) such that δ(s) = x and ISZ
S (P (s)) =

z. Since S is a nonblocking supervisor, we know that there exists a string
t such that st ∈ L(S/G) and δ(st) ∈ Xm . If t ∈ Σ∗u o , then we know
that t ∈ S(P (s))∗ = Γ(z)∗ and condition (i) in Definition 5 is satisfied.
If t /∈ Σ∗u o , then we know that it must be in the form of t = wσw′,
where w ∈ Σ∗u o and σ ∈ Σo , and wσ ∈ S(P (s))∗ = Γ(z)∗. Therefore,
condition (ii) in Definition 5 is satisfied. Overall, we know that any Z-
state in T is deadlock-free, which together with the fact that all Y -states
are live imply that T is nonblocking.

Finally, we show that T is R-compatible. Let us consider an arbitrary
Y -state y ∈ QY

T and an arbitrary control decision γ ∈ CT (y) defined at
y. By the definition of T , we know that there exists a string s ∈ L(S/G)
such that ISY

S (P (s)) = y and S(P (s)) = γ. Now, let us assume for
the sake of contradiction that ΓR (y) �⊆ γ. Let σ ∈ ΓR (y) \ γ. Then,
we know that there exist x ∈ y ∩XR , w ∈ Σ∗u o such that δR (x, wσ)!.
For this x, there exists t ∈ L(S/G) such that P (s) = P (t) and δ(t) =
x. Since x ∈ XR and R � G, we know that t ∈ L(R). However,
since R ⊆ L(S/G), we know that σ ∈ S(P (t)); otherwise twσ /∈
L(S/G). This contradicts the fact that σ /∈ γ = S(P (s)) = S(P (t)).
Therefore, we know that ∀y ∈ QY

T , ∀γ ∈ CT (y) : ΓR (y) ⊆ γ, i.e., T
is R-compatible. �

Based on Lemmas 1 and 2, Algorithm 2 is proposed to solve MPLCP-
NBIS. First, we need to construct the R-compatible NB-AES. If the
R-compatible NB-AES does not exist, then by Lemma 2, we know
that MPLCP-NBIS does not have a solution, i.e., there does not exist a
nonblocking and ϕ-enforcing supervisor whose closed-loop language
contains R. When the R-compatible NB-AESAESR

ϕ (G) exists, since
AESR

ϕ (G) is a complete and nonblocking BTS, by Theorem 1, we
can effectively synthesize a maximally permissive nonblocking su-
pervisor included in it. Moreover, since AESR

ϕ (G) is R-compatible,
by Lemma 1, we know that any supervisor synthesized based on
AESR

ϕ (G) always achieves the lower bound language R. Therefore,
Algorithm 2 effectively solves MPLCP-NBIS in the sense that it is
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Algorithm 2:
input: G, R and ϕ
output: S

1 Construct AESR
ϕ (G) by Algorithm 1;

2 if R-compatible NB-AES does not existthen
3 return MPRCP-NBIS has no solution ;

else
4 Use Algorithm NB-SOLU in [22] to synthesize a

maximally-permissive nonblocking supervisor
S∗ ∈ AESR

ϕ (G) included in the R-compatible
NB-AES;

5 return S∗ as the solution to MPRCP-NBIS;

both sound and complete. Moreover, the existence of the R-compatible
NB-AES provides the necessary and sufficient condition for the solv-
ability of the lower bound containment problem. The correctness of
Algorithm 2 is formally stated in the following theorem.

Theorem 3: Algorithm 2 effectively solves MPLCP-NBIS.
Proof: First, Algorithm 2 is sound, i.e., the nonblocking and ϕ-

enforcing supervisor S∗ returned by Algorithm NB-SOLU based on
AESR

ϕ (G) is indeed a solution to MPRCP-NBIS. Note that Algo-
rithm NB-SOLU already guarantees that S∗ is nonblocking and ϕ-
enforcing. SinceAESR

ϕ (G) is R-compatible and S∗ ∈ S(AESR
ϕ (G)),

by Lemma 1, we know that R ⊆ L(S∗/G). It remains to show that S∗

is also maximally permissive. To this end, we assume, for the sake of
contradiction, that there exists another nonblocking and ϕ-enforcing
supervisor S ′ such that
1) R ⊆ L(S ′/G); and
2) L(S∗/G) ⊆ L(S ′/G).

By Lemma 2, (i) implies that S ′ ∈ S(AESR
ϕ (G)). However, this

together with (ii) implies that S∗ is not a maximally permissive super-
visor included inAESR

ϕ (G), which violates the property of Algorithm
NB-SOLU.

Next, we show that Algorithm 2 is complete. Suppose that MPRCP-
NBIS has a solution. Then, by Lemma 2, we know that there exists
a nonblocking and R-compatible BTS T satisfying ϕ. Therefore, the
R-compatible NB-AES exists and Algorithm 2 will not return “no
solution” when a solution exists �

Remark 2: As we claimed earlier, the assumption that R � G is
crucial to guarantee the correctness of Algorithm 2. In particular, this
assumption is used in the proof of Lemma 2 to show the existence of
the R-compatible NB-AES when a solution to MPRCP-NBIS exists.
Therefore, we have to preprocess automata G and R to fulfill this
assumption before we use Algorithm 2. Otherwise, the synthesis algo-
rithm is only sound but may not be complete, i.e., it may return “no
solution” even when a solution exists.

Let us illustrate Algorithm 2 by the following example.
Example 4: Let us still consider system G shown in Fig. 1(a) and

the lower bound language shown in Fig. 1(b), where we have R � G.
Its R-compatible NB-AES is shown in Fig. 2(b). By applying Algo-
rithm NB-SOLU with AESR

ϕ (G) as its input, we obtain the following
supervisor:

S∗(s) =

⎧⎪⎨
⎪⎩
∅ if s = ε

{c2} if s = o2k+1 , k ≥ 0
{c1} if s = o2k , k ≥ 1

(11)

which results in closed-loop language L(S∗/G) shown in Fig. 3(a).
Intuitively, S∗ enables c1 when it visits Y -state {8, 9} for 2k + 1
times and it enables c2 when it visits Y -state {8, 9} for 2k times,
k ∈ N. Clearly, we see that the lower bound language R is contained

TABLE I
STANDARD SUPERVISORY CONTROL UNDER PARTIAL OBSERVATION

in L(S∗/G). Moreover, by Theorem 3, S∗ is indeed a maximally
permissive, nonblocking, and ϕ-enforcing supervisor that achieves R.
Recall that supervisor S defined in (7) is also a maximally permissive
supervisor, which results in closed-loop language shown in Fig. 3(b).
These two supervisors are incomparable. However, S does not contain
the lower bound language R, while the synthesized supervisor S∗

includes R.
Remark 3: We conclude this section by discussing the complexity

of the proposed synthesis algorithm. To construct the R-compatible
NB-AES, Algorithm 1 requires quadratic complexity in the size of
the NB-AES, which contains at most 2|X | + 2|X |+ |Σ c | states and (1 +
|Σo |)2|X |+ |Σ c | transitions. Algorithm NB-SOLU in [22] is polynomial
in the size of the input BTS. However, the input BTS here,AESR

ϕ (G),
also contains at most 2|X | + 2|X |+ |Σ c | states and (1 + |Σo |)2|X |+ |Σ c |

transitions. Hence, its size is exponential in the size of the original
system G, and the overall complexity of Algorithm 2 is exponential in
the size of G. This exponential complexity is, in general, unavoidable
to synthesize a supervisor under the partial-observation setting [21].

V. DISCUSSION AND COMPARISONS

In this section, we discuss and compare our result with existing
results in the literature.

A. Standard Supervisory Control Under Partial Observation

In the standard supervisory control of partially observed DESs, the
following problems have been investigated in the literature [8], [12]. Let
R and K be two prefix-closed languages such that R ⊆ K ⊆ L(G).
Find a supervisor S that satisfies
1) the safety requirement: L(S/G) ⊆ K ; or
2) the range requirement: R ⊆ L(S/G) ⊆ K .

Note that the safety requirement is a special case of the IS-based
property in this paper, since we can assume w.l.o.g. that language K is
realizes by a strict subautomaton of G, and therefore, transforming the
safety requirement to an illegal state avoidance requirement discussed
in Remark 1.

For both the safety and the range requirements, one can further re-
quire that the supervisor synthesized is maximally permissive or non-
blocking or both; existing results on all their combinations are listed
in Table I. For example, to synthesize an arbitrary safe supervisor, it
suffices to compute language Σ∗u c ∩ L(G), i.e., we disable all events,
and test whether or not this language is in K . To synthesize an ar-
bitrary supervisor satisfying the range requirement (which could be
blocking), it suffices to compute language R↓C O , the infimal prefix-
closed controllable of observable superlanguage, and test whether or
not this language is in K . As we can see in Table I, how to synthesize a
(maximally permissive) safe and nonblocking supervisor that contains
a given lower bound was an open problem. Now, this problem can be
solved by the new result in this paper.

B. Comparison With Other Methods

There are many other approaches in the literature for synthesizing
safe and nonblocking supervisors under the partial-observation set-
ting (without the lower bound constraint), e.g., the supermal normal
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solution [3], [7], [11], [14], the supremal weak normal solution [19], the
supremal relatively observable solution [1], [4], [5], and the solutions in
[9], [20]. For the nonprefix-closed case, none of the above-mentioned
approaches result, in general, a maximally permissive supervisor and
it may return “no solution” when a solution does exist.

In fact, for any solution synthesized by any of the above-mentioned
methods, we can set it as the lower bound language R in MPRCP-NBIS.
Therefore, solving MPRCP-NBIS provides a maximally permissive
and nonblocking solution that strictly contains the original solution.
For example, we can synthesize a nonblocking supervisor that strictly
contains the supremal controllable and normal sublanguage [7] or the
supremal controllable and relatively observable sublanguage [4] by
setting these languages as the lower bound languages. In other words,
the results in this paper can improve existing methods in the literature
in general (unless they are already maximally permissive, which is not
always guaranteed).

C. Comparison With the Technique in [25]

In [25], we investigated how to synthesize a maximally permissive
safe supervisor that contains a given lower bound. However, the ap-
proach in [25] can only handle safety rather the general class of IS-based
properties. Moreover, nonblockingness is not guaranteed. In fact, the
approach [25] takes advantage from the restrictive setting. Specifically,
it uses the fact that there exists a unique infimal safe (but potentially
blocking) supervisor that contains R (if one exists). Therefore, we can
compare NB-AES with the BTS that realizes the unique infimal super-
visor via a formal relationship called the control simulation relation
(CSR). However, this nice property no longer holds when nonblock-
ingness or another IS-based property than safety is considered.

In this paper, we do not try to compare the NB-AES with the infimal
supervisor (which does not even exist in general). We “compare” the
NB-AES structure directly with the lower bound automaton R via the
new notion of the R-compatibility. Essentially, the R-compatibility
captures the computational essence of the CSR, i.e., the iterative com-
putation of the R-compatible NB-AES in Algorithm 1 essentially
simulates the fixed-point computation in [25] for the maximal CSR.
However, our new approach gets rid of the issue of nonexistence of
the infimal supervisor. Moreover, it is conceptually simpler than the
method in [25]: It only requires a problem reduction and an existing
algorithm in [22] can be leveraged thereafter.

VI. CONCLUSION

We presented new results on supervisor synthesis for partially ob-
served DESs. A new supervisor synthesis algorithm is proposed to find
a maximally permissive nonblocking supervisor that satisfies an arbi-
trary IS-based property. Moreover, the supervisor synthesized provably
contains a given lower bound language. To this end, a new notion called
R-compatibility was proposed in order to effectively reduce this prob-
lem to a problem previously solved in the literature. Our results further
generalize the uniform framework of supervisory control in [23]–[25]
by allowing the simultaneous enforcement of the lower bound contain-
ment, nonblockingness, and IS-based property.

REFERENCES

[1] M. V. S. Alves, L. K. Carvalho, and J. C. Basilio, “New algorithms for ver-
ification of relative observability and computation of supremal relatively
observable sublanguage,” IEEE Trans. Automat. Control, vol. 62, no. 11,
pp. 5902–5908, Nov. 2017.

[2] N. Ben Hadj-Alouane, S. Lafortune, and F. Lin, “Centralized and dis-
tributed algorithms for on-line synthesis of maximal control policies under
partial observation,” Discrete Event Dyn. Syst., Theory Appl., vol. 6, no. 4,
pp. 379–427, 1996.

[3] R. Brandt, V. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M. Won-
ham, “Formulas for calculating supremal controllable and normal sublan-
guages,” Syst. Contr. Lett., vol. 15, no. 2, pp. 111–117, 1990.

[4] K. Cai, R. Zhang, and W. M. Wonham, “Relative observability of discrete-
event systems and its supremal sublanguages,” IEEE Trans. Automat.
Control, vol. 60, no. 3, pp. 659–670, Mar. 2015.

[5] K. Cai, R. Zhang, and W. M. Wonham, “Characterizations and effective
computation of supremal relatively observable sublanguages,” Discrete
Event Dyn. Syst., Theory Appl., 2017, doi: 10.1007/s10626-017-0250-0.

[6] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
2nd ed. Berlin, Germany: Springer, 2008.

[7] H. Cho and S. I. Marcus, “On supremal languages of classes of sublan-
guages that arise in supervisor synthesis problems with partial observa-
tion,” Math. Contr. Sig. Syst., vol. 2, no. 1, pp. 47–69, 1989.

[8] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya, “Supervisory con-
trol of discrete-event processes with partial observations,” IEEE Trans.
Automat. Control, vol. 33, no. 3, pp. 249–260, Mar. 1988.

[9] M. Heymann and F. Lin, “On-line control of partially observed discrete
event systems,” Discrete Event Dyn. Syst., Theory Appl., vol. 4, no. 3,
pp. 221–236, 1994.

[10] R. Jacob, J.-J. Lesage, and J.-M. Faure, “Overview of discrete event sys-
tems opacity: Models, validation, and quantification,” Annu. Rev. Control,
vol. 41, pp. 135–146, 2016.

[11] J. Komenda, T. Masopust, and J. H. Van Schuppen, “Synthesis of control-
lable and normal sublanguages for discrete-event systems using a coordi-
nator,” Syst. Control Lett., vol. 60, no. 7, pp. 492–502, 2011.

[12] F. Lin and W. M. Wonham, “On observability of discrete-event systems,”
Inf. Sci., vol. 44, no. 3, pp. 173–198, 1988.

[13] F. Lin and W. M. Wonham, “Decentralized control and coordination of
discrete-event systems with partial observation,” IEEE Trans. Automat.
Control, vol. 35, no. 12, pp. 1330–1337, Dec. 1990.

[14] T. Moor, C. Baier, T.-S. Yoo, F. Lin, and S. Lafortune, “On the computation
of supremal sublanguages relevant to supervisory control,” in Proc. 11th
IFAC WODES, 2012, pp. 175–180.

[15] T. Moor and K. W. Schmidt, “Fault-tolerant control of discrete-event
systems with lower-bound specifications,” in Proc. 5th Int. Workshop
DCDS, 2015, pp. 161–166.

[16] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM J. Control Opt., vol. 25, no. 1, pp. 206–
230, 1987.

[17] K. Rudie and W. M. Wonham, “The infimal prefix-closed and observable
superlanguange of a given language,” Syst. Control Lett., vol. 15, no. 5,
pp. 361–371, 1990.

[18] S. Shu, F. Lin, and H. Ying, “Detectability of discrete event systems,”
IEEE Trans. Automat. Control, vol. 52, no. 12, pp. 2356–2359, Dec.
2007.

[19] S. Takai and T. Ushio, “A modified normality condition for decentralized
supervisory control of discrete event systems,” Automatica, vol. 38, no. 1,
pp. 185–189, 2002.

[20] S. Takai and T. Ushio, “Effective computation of an Lm (G)-closed, con-
trollable, and observable sublanguage arising in supervisory control,” Syst.
Control Lett., vol. 49, no. 3, pp. 191–200, 2003.

[21] J. N. Tsitsiklis, “On the control of discrete-event dynamical systems,”
Math. Control, Signals Syst., vol. 2, no. 2, pp. 95–107, 1989.

[22] X. Yin, “Property Enforcement for Partially-Observed Discrete-Event
Systems,” Ph.D. thesis, Dept. EECS, Univ. Michigan, 2017. [Online].
Available: http://www-personal.umich.edu/ xiangyin/thesis.pdf

[23] X. Yin and S. Lafortune, “Synthesis of maximally permissive supervi-
sors for partially observed discrete event systems,” IEEE Trans. Automat.
Control, vol. 61, no. 5, pp. 1239–1254, May 2016.

[24] X. Yin and S. Lafortune, “A uniform approach for synthesizing property-
enforcing supervisors for partially-observed discrete-event systems,”
IEEE Trans. Automat. Control, vol. 61, no. 8, pp. 2140–2154, Aug. 2016.

[25] X. Yin and S. Lafortune, “Synthesis of maximally-permissive supervisors
for the range control problem,” IEEE Trans. Automat. Control, vol. 62,
no. 8, pp. 3914–3929, Aug. 2017.

[26] X. Yin, M. Morrison, S.-Y. Sheng, and S. Lafortune, “DPO-SYNT: Dis-
crete control synthesis for partially-observed systems,” in Proc. 20th IFAC
World Congr., 2017, pp. 6026–6029.

[27] T.-S. Yoo and S. Lafortune, “Solvability of centralized supervisory con-
trol under partial observation,” Discrete Event Dyn. Syst., Theory Appl.,
vol. 16, no. 4, pp. 527–553, 2006.

[28] J. Zaytoon and S. Lafortune, “Overview of fault diagnosis methods for
discrete event systems,” Annu. Rev. Control, vol. 37, no. 2, pp. 308–320,
2013.

http://dx.doi.org/10.1007/s10626-017-0250-0


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


