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Abstract— In this paper, we investigate the initial-state de-
tection problem in the context of partially-observed discrete-
event systems. Specifically, we study the verification of two
properties called weak I-detectability and strong I-detectability.
Weak detectability captures whether or not the initial-state
of the system can be detected via some path, while strong
detectability captures whether or not the initial-state of the
system can always be detected within a finite delay. In this
paper, we provide new verification algorithms for checking these
two properties. The idea is to use the reversed dynamic of the
system to efficiently estimate the initial-state information. We
show that our new results improve the complexity of existing
verification algorithms for both properties. We illustrate our
results by simple examples.

I. INTRODUCTION

Discrete-event systems (DES) are dynamic systems with
discrete state-spaces and event-driven dynamics. DES can be
used to model both logic systems that are inherently event-
driven and symbolic abstractions of continuous dynamic
systems. In many problems, e.g., supervisory control and
fault diagnosis, the state information of the system is usually
crucial in order to make correct decisions. However, in
many real world applications, we do not usually have perfect
knowledge of the system due to measurement uncertainties.
Therefore, state estimation and detection are important issues
in the analysis and design of partially-observed DES.

In the context of DES, the problem of state estimation
dates back to the study of the property of observability; see,
e.g., [8], [13], [14]. In this problem, it is assumed that the
system’s behavior is only partially-known and we want to
infer the system’s “state” based on the imperfect information.
The state estimation problem is closely related to many prac-
tical problems, including fault diagnosis problem [29], [31],
[37], fault prognosis problem [24], [28] state disambiguation
problem [16], [25], [33], [34], and information-flow security
problem [4], [7], [36].

Recently, the state estimation of DES has been inves-
tigated in a more systematic manner in the context of
detectability. The concept of detectability was first proposed
by Shu and Lin in [22], where several different notions of
detectability, e.g., strong (periodic) detectability and weak
(periodic) detectability, are defined. Specifically, the authors
of [22] considered DES modeled as finite-state automata
with unobservable events. Then strong detectability captures
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whether or not we can always detect the current state of
the system within a finite delay, while weak detectability
captures whether or not we can detect the current state
of the system via some path. Verification algorithms were
also provided for different notions of detectability in [22].
In [18], a polynomial-time algorithm was provided for the
verification of strong detectability. However, it has been
shown more recently by [9], [10], [38] that verifying weak
detectability is PSPACE-hard. Therefore, it is unlikely that a
polynomial-time algorithm exists for the verification of weak
detectability.

Since the seminal work of Shu and Lin, the concept of
detectability has been studied more extensively and has been
extended to more different settings. In [19], the concept of
delayed detectability was proposed by allowing the usage
of future observation for information smoothing. In [5], [6],
[23], detectability was investigated in the stochastic setting
by considering the transition probability of the system;
corresponding stochastic notions of detectability capturing
the probability of state detection were also provided. In
[20], [30], the detectability enforcement problem was stud-
ied, where the goal is to design a maximally-permissive
supervisor such that the controlled system is detectable.
Recently, different new types of detectability are proposed
in the literature for different detection requirements, e.g.,
K-detectability [3] and trajectory detectability [35]. De-
tectability has also been extended to different system models,
including nondeterministic systems [40], fuzzy systems [12],
Petri net systems [11], [39], networked systems [15] and
modular systems [32].

In some applications, we may not interested in knowing
the current-state of the system. Instead, we may be interested
in detecting the initial-state of the system. To this end, the
concept of I-detectability was introduced by [21]. Specifical-
ly, weak I-detectability captures whether or not the initial-
state of the system can be detected via some path, while
strong I-detectability captures whether or not the initial-state
of the system can always be detected within a finite delay.
Verification algorithms were also provided in [21] for both
weak I-detectability and strong I-detectability. More recently,
the initial-state detection problem has also been studied in
the stochastic setting [27]. The usefulness of I-detectability
has been supported by the work of [1], [2], where the
authors apply I-detectability to smart home systems in order
to tracking unknown inhabitants in a region.

In this paper, we revisit the verification of weak I-
detectability and strong I-detectability as defined in [21].
The main contributions of this paper are as follows. First,
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we provide an improved approach for the verification of
weak I-detectability. The complexity of previous algorith-
m proposed in [21] requires O(|Σ|2|X|2), where |Σ| and
|X| are the number of events and number of states in
the system, respectively. By using the reversed observer,
we improve this complexity to O(|Σ|2|X|). Also, we also
provide an improved approach for the verification of strong
I-detectability, whose complexity is O(|Σ||X|2) compared
with complexity O(|Σ||X|4) of the previous algorithm. The
idea is to construct a new structure called the reversed verifier
that tracks the dynamic of the system reversely. This idea
avoids using the state-augmenting procedure as used in [19]
and improves the computational complexity.

The rest of this paper is organized as follows. Section II
provides some necessary preliminaries. In Section III and IV,
we study the verification of weak I-detectability and the
verification of strong I-detectability, respectively. Finally, we
conclude the paper in Section V.

II. PRELIMINARIES

A. System Model

Let Σ be a finite set of events. A string s = σ1 . . . σn
is a finite sequence of events. We denote by |s| the length
of string s with |ε| = 0, where ε is the empty string. We
denote by Σ∗ the set of all strings over Σ including the
empty string ε. A language L ⊆ Σ∗ is a set of strings. We
define Σε := Σ ∪ {ε}.

We consider a DES modeled as a non-deterministic finite-
state automaton (NFA)

G = (X,Σ, δ,X0) (1)

where
• X is the finite set of states;
• Σ is the finite set of events;
• δ : X × Σ → 2X is the non-deterministic (partial)

transition function;
• X0 ⊆ X is the set of initial-states.

For any x, x′ ∈ X,σ ∈ Σ, x′ ∈ δ(x, σ) implies that there
exists a transition from x to x′ labeled with σ. Function
δ is also extended to δ : X × Σ∗ → 2X recursively as
follows: for any s ∈ Σ∗ and σ ∈ Σ, we have δ(x, sσ) =
∪x′∈δ(x,s)δ(x′, σ). For each state x, we denote by L(G, x)
the set of strings generated by G from x, i.e, L(G, x) = {s ∈
Σ∗ : δ(x, s)!}, where “!” stands for “is defined”. Therefore,
L(G) = ∪x0∈X0

L(G, x0) is the language generated by the
system.

In many applications, the occurrence of event cannot be
perfectly observed. To capture the imperfect observation, we
assume that the event set is partitioned as

Σ = Σo∪̇Σuo,

where Σo is the set of observable events and Σuo is the set
of unobservable events. The natural projection P : Σ∗ → Σ∗o
is defined recursively by: ∀s ∈ Σ∗, σ ∈ Σ

P(ε) = ε, P (sσ) =

{
P (s)σ if σ ∈ Σo
P (s) if σ ∈ Σuo

The natural projection is also extended to P : 2Σ∗ → 2Σ∗o

by: ∀L ⊆ Σ∗ : P (L) = {P (s) ∈ Σ∗o : s ∈ L}.
Finally, we make the following standard assumptions in

the analysis of partially-observed DES:
A1 System G is deadlock-free, i.e., ∀x ∈ X,∃σ ∈ Σ :

δ(x, σ)!;
A2 System G does not contain unobservable cycle, i.e.,
∀x ∈ X,∀s ∈ Σ∗uo : x /∈ δ(x, s).

B. Initial-State Detectability

In the initial-state detection problem, we assume that the
system may initiated from states X0; however, which specific
state the system starts from is unknown. Therefore, the goal
is to estimate and to detect the precise initial-state of the
system based on the observation. To this end, for any α ∈
P (L(G)), we define

X̂0(α) = {x0 ∈ X0 : ∃s ∈ L(G, x0) s.t. P (s) = α} (2)

as the initial-state estimate of the system upon the occurrence
of α.

In [21], two notions of initial-state detectability, weak I-
detectability and strong I-detectability, are proposed in order
to capture whether or not the initial-state of the system can
be detected. These two definitions are reviewed as follows.

Definition 1: (Weak I-Detactability) A DES G is said to
be weakly I-detectable w.r.t. Σo if there exists a string α ∈
P (L(G)) such that |X̂0(α)| = 1.

Definition 2: (Strong I-Detactability) A DES G is said to
be strongly I-detectable w.r.t. Σo if

(∃n ∈ N)(∀α ∈ P (L(G)))[|α| ≥ n⇒ |X̂0(α)| = 1] (3)

Intuitively, weak I-detectability requires that the initial-
state of the systems can be determined for some trajectory,
while strong I-detectability requires that the initial-state of
the systems can be determined after a finite delay for any
trajectory.

We illustrate weak I-detectability and strong I-detectability
by the following example.

Example 1: Let us first consider system G1 shown in
Figure 1(a), where we have Σo = {a, b} and input arrow
without predecessor states presents that the corresponding
state is an initial state, i.e., we have X0 = {0, 1} in G1. Note
that this system is neither weakly I-detectable nor strongly
I-detectable, since the only possible observation is abbb . . .
and we have X̂0(abn) = {0, 1} for any n ≥ 0.

However, system G2 shown in Figure 1(b) is weakly I-
detectable. For example, if we observe string ab, then we
know for sure that the system must initially from state 0 and
we have X̂0(ab) = {0}. However, this system is still not
strongly I-detectable since X̂0(an) = {0, 1} for any n ≥ 0,
i.e., we may not always be able to detect the initial-state of
the system within a finite delay.

Finally, let us consider system G3 shown in Figure 1(c).
This system is both weakly I-detectable and strongly I-
detectable. To see this, let us consider all possible observable
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(a) G1: neither weakly I-detectable nor strongly I-detectable.
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(b) G2: weakly I-detectable but not strongly I-detectable.
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(c) G3: both weakly I-detectable and strongly I-detectable.

Fig. 1. Examples to illustrate detectability, where we have Σo = {a, b} for G1, G2 and G3.

strings with two events, i.e., strings ab, ba and aa. Then
we have X̂0(ab) = X̂0(ba) = {0} and X̂0(aa) = {1}.
Therefore, we know that the initial-state of the system can
always been detected within two steps. In the following
sections, we will show formally how to verify weak I-
detectability and strong I-detectability.

III. VERIFICATION OF WEAK I-DETECTABILITY

In [21], the authors have provided an algorithm for the
verification of weak I-detectability. The idea is to first
augment each state in G with the initial-state leading to this
state, which leads to a new system with state-space X ×X .
Then we can test weak I-detectability by constructing the
observer automaton of the augmented system. The overall
complexity of the algorithm in [21] is O(|Σ|2|X|2). In this
section, we provide a new approach for verifying weak I-
detectability that improves the complexity of the algorithm
in [21].

To this end, we define a new (deterministic) finite-state
automaton called the reversed observer

ObsR(G) = (Q,Σo, f,X)

where
• Q ⊆ 2X is the set of states;
• Σo is the set of observable events;
• f : Q×Σo → Q is a (deterministic) transition function

defined by: for any q ∈ Q, σ ∈ Σo, we have

f(q, σ)={x∈X : ∃x′∈q,∃w∈Σ∗uo s.t. x′∈δ(x,wσ)}

• X ∈ Q is the unique initial state, which is the set of all
states in G.

For the sake of simplicity, we only consider the reachable
part of ObsR(G).

The idea of reversed observer was first presented in [26]
for verifying opacity. Intuitively, it is similar to the standard
observer automaton, but estimating states reversely. The
following theorem shows how to use the reversed observer
to verify weak I-detectability.

Theorem 1: System G is weakly I-detectable w.r.t. Σo if
and only if there exists a state q ∈ Q such that |q∩X0| = 1.

Proof: First, we claim that, for any α = σ1 . . . σn ∈
P (L(G)), we have

f(X,σn . . . σ1) = {x ∈ X : ∃s ∈ L(G, x) s.t. P (s) = α}
(4)

We prove this claim by induction on n. When n = 0, i.e,
α = ε, we know that f(X, ε) = X Therefore, the induction
basis holds. Now we assume that Equation (4) holds for
|α| = n and consider string σ1 . . . σn+1 ∈ P (L(G)). Then
we have

f(X,σn+1σn . . . σ1)

=f(f(X,σn+1 . . . σ2), σ1)

=

{
x ∈ X :

∃x′ ∈ f(X,σn+1 . . . σ2),∃w ∈ Σ∗uo
s.t. x′ ∈ δ(x,wσ1)

}
=

{
x ∈ X :

∃s ∈ L(G, x′),∃w ∈ Σ∗uo
s.t. P (s) = σ2 . . . σn+1 ∧ x′ ∈ δ(x,wσ1)

}
={x ∈ X : ∃s ∈ L(G, x) s.t. P (s) = σ1 . . . σn+1}

This proves our claim in Equation (4) and we further know
that

f(X,σn . . . σ1)∩X0 ={x∈X0 : ∃s∈L(G, x) s.t. P (s)=α}
=X̂0(α) (5)

Therefore, by Equation (5), that G is weakly I-detectable,
i.e., ∃α = σ1 . . . σn ∈ P (L(G)) such that |X̂0(α)| = 1, is
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equivalent to the existence of a state f(X,σn . . . σ1) ∈ Q
such that |f(X,σn . . . σ1) ∩X0| = |X̂0(α)| = 1.

Remark 1: Theorem 1 provides a direct approach for the
verification of weak I-detectability. Specifically, we just need
to construct ObsR(G) and test whether or not a state q
such that |q ∩ X0| = 1 can be reached. If so, then G is
weakly I-detectability; otherwise, the system is not weakly
I-detectable. The complexity of this approach only requires
O(|Σo|2|X|). Recall that the complexity of the algorithm in
[21] for checking weak I-detectability requires O(|Σo|2|X|

2

).
Therefore, our result provides an improved approach for
checking this notion.

We illustrate how to use Theorem 1 to check weak I-
detectability by the following example.

Example 2: Let us still consider systems G1 and G2

shown in Figures 1(a) and 1(b), respectively. Their re-
versed observers ObsR(G1) and ObsR(G2) are shown in
Figures 2(a) and 2(b), respectively. For ObsR(G1), we have
|{0, 1, 2, 3, 4} ∩ X0| = |{0, 1, 2} ∩ X0| = |{0, 1}| = 2 and
|{3, 4}∩X0| = |∅| = 0. Therefore, by Theorem 1, we know
that G1 is not weakly I-detectable. However, for ObsR(G2),
we have |{0, 2}∩X0| = |{0}| = 1. Therefore, by Theorem 1,
we know that G1 is weakly I-detectable.

IV. VERIFICATION OF STRONG I-DETECTABILITY

In this section, we investigate the verification of strong
I-detectability. Note that, in [21], the authors have already
provided an algorithm for verifying strong I-detectability by
constructing a structure called the I-detector. The complexity
of the algorithm proposed in [21] is O(|Σ||X|4). In this
section, we show that this complexity can also be improved
by providing a new algorithm.

Our approach for the verification of strong I-detectability
is based on the construction of a new structure called the
reversed verifier. Specifically, the reversed verifier for system
G is a NFA

VR(G) = (QV ,ΣV , fV , Q0,V ) (6)

where
• QV = X ×X is the set of states;
• ΣV = (Σε × Σε) \ {(ε, ε)} is the set of events;
• Q0,V = QV = X ×X is the set of initial states;
• The transition function fV : QV ×ΣV → 2QV is defined

as follows. For any q = (x1, x2) ∈ QV , σ ∈ Σ, the
following transitions are defined:
(a) If σ ∈ Σo, then

fV ((x1, x2), (σ, σ)) (7)
={(x′1, x′2) ∈ QV : x1 ∈ δ(x′1, σ) ∧ x2 ∈ δ(x′2, σ)}

(b) If σ ∈ Σuo, then

fV ((x1, x2), (σ, ε)) ={(x′1, x2)∈QV : x1∈δ(x′1, σ)}
(8)

fV ((x1, x2), (ε, σ)) ={(x1, x
′
2)∈QV : x2∈δ(x′2, σ)}

(9)

The reversed verifier is motivated by the standard verifier
(or twin-machine) construction that has been widely used
in the verification of partially-observed DES. Essentially,
the structure tracks a pair of strings that have the same
projection. The main difference between our construction
and the standard verifier construction is that we track strings
from all possible pairs of states and following the reversed
dynamic of the original system.

The following results shows the main properties of the
reversed verifier. First, we show that any pair of strings
tracked by the reversed verifier have the same observation.

Proposition 1: For any sequence

(x0
1, x

0
2)

(σ1
1 ,σ

1
2)

V
- (x1

1, x
1
2)

(σ2
1 ,σ

2
2)

V
- · · · (σn

1 ,σ
n
2 )

V
- (xn1 , x

n
2 )

in VR(G), we have
(i) ∀i = 1, 2 : σni σ

n−1
i . . . σ1

i ∈ L(G, xni ); and
(ii) P (σn1 σ

n−1
1 . . . σ1

1) = P (σn2 σ
n−1
2 . . . σ1

2).
Proof: Property (i) follows directly from the fact that

for any i = 1, 2 and for any k = 1, . . . , n, we have xk−1
i ∈

δ(xki , σ
k
i ). Note that this includes the case when σki = ε.

For property (ii), by the construction of VR(G), for each
k = 1, . . . , n, there are only the following three cases:
• if σk1 ∈ Σo, then P (σk1 ) = P (σk2 ) = σk1 = σk2
• if σk1 ∈ Σuo, then σk2 = ε and P (σk1 ) = P (σk2 ) = ε;
• if σk1 = ε, then σk2 ∈ Σuo and P (σk1 ) = P (σk2 ) = ε.

Therefore, we have P (σn1 . . . σ
1
1) = P (σn2 . . . σ

1
2).

Next, we show that, for any pair of strings that have
the same observation, they will be included in the reversed
verifier.

Proposition 2: For any two initial states x0,1, x0,2 ∈ X0

and two strings s1 ∈ L(G, x0,1), s2 ∈ L(G, x0,2) such that
P (s1) = P (s2), there must exist a sequence

(x0
1, x

0
2)

(σ1
1 ,σ

1
2)

V
- (x1

1, x
1
2)

(σ2
1 ,σ

2
2)

V
- · · · (σn

1 ,σ
n
2 )

V
- (xn1 , x

n
2 )

in VR(G) such that
1) (xn1 , x

n
2 ) = (x0,1, x0,2); and

2) For any i = 1, 2, si = σni σ
n−1
i . . . σ1

i .
Proof: We prove by induction on the length of P (s1) =

P (s2).
Induction Basis: When |P (s1)| = |P (s2)| = 0, for each

i = 1, 2, we can write si in the form of si = σ1
i . . . σ

ki
i ,

where σji ∈ Σuo. Therefore, for each i = 1, 2, there exist an
initial state x̃0

i ∈ X0 and a sequence

x̃0
i

σ1
i- x̃1

i

σ2
i- · · ·

σ
ki
i- x̃ki1 (10)

Therefore, we can construct the following sequence in
VR(G)

(x̃k11 , x̃
k2
2 )

(ε,σ
k2
2 )

V
- · · · (ε,σ2

2)

V
- (x̃k11 , x̃

1
2)

(ε,σ1
1)

V
- (x̃k11 , x̃

0
2)

(σ
k1
1 ,ε)

V
- · · · (σ2

1 ,ε)

V
- (x̃1

1, x̃
0
2)

(σ1
1 ,ε)

V
- (x̃0

1, x̃
0
2)

satisfying the conditions 1) and 2) in the proposition.
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(a) ObsR(G1).
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(b) ObsR(G2).

Fig. 2. Examples of the reversed observer.

Induction Step: Let us assume that the proposition holds
when |P (s1)| = |P (s2)| = k and consider the case of
|P (s1)| = |P (s2)| = k + 1. In this case, for each i = 1, 2,
we can write si in the form of si = s′iσ

0
i σ

1
i . . . σ

ki
i , where

σ0
i ∈ Σo and ∀j ≥ 1 : σji ∈ Σuo. Note that, since
|P (s′1)| = |P (s′2)| = k, by the induction hypothesis, there
exists a sequence

(x0
1, x

0
2)

(t1,t2)

V
- (xn1 , x

n
2 ), where (t1, t2) ∈ Σ∗V ,

such that ∀i = 1, 2 : (ti)
R = s′i and (xn1 , x

n
2 ) = (x0,1, x0,2).

Based on this sequence, we can further construct the follow-
ing sequence in VR(G)

(x̃k11 , x̃
k2
2 )

(ε,σ
k2
2 )

V
- · · · (ε,σ2

2)

V
- (x̃k11 , x̃

1
2)

(ε,σ1
1)

V
- (x̃k11 , x̃

0
2)

(σ
k1
1 ,ε)

V
- · · · (σ2

1 ,ε)

V
- (x̃1

1, x̃
0
2)

(σ1
1 ,ε)

V
- (x̃0

1, x̃
0
2)

(σ0
1 ,σ

0
2)

V
- (x0

1, x
0
2)

(t1,t2)

V
- (xn1 , x

n
2 )

satisfying the conditions 1) and 2) in the proposition.
In order to state our main result on the verification

procedure, we first introduce some concepts. Let VR(G) be
the reversed verifier. We denote by QI ⊆ QV the set of
states in which the first and the second components are two
different initial states, i.e.,

QI := {(x1, x2) ∈ QV : x1, x2 ∈ X0 and x1 6= x2} (11)

A strongly connected component (SCC) in VR(G) is a
maximal set of states C ⊆ QV such that

∀q, q′ ∈ C,∃s ∈ Σ∗V : q′ ∈ fV (q, s) (12)

A SCC C ⊆ QV is said to be non-trivial if it contains at
least one transition in it, i.e., it is not a single state without
self-loops. For each SCC C, we denote by REACHV (C) the
set of states reachable from C, i.e.,

REACHV (C)={q ∈ QV : ∃q′∈C, s∈Σ∗V s.t. q∈fV (q′, s)}.

The following result provides a necessary and sufficient
condition for strong I-detectability.

Theorem 2: System G is strongly I-detectable w.r.t. Σo
if and only if for any non-trivial SCC C, we have
REACHV (C) ∩QI = ∅.
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Fig. 3. Part of the reversed verifier VR(G2) for system G2 shown in
Figure 1(b).

We illustrate how to verify strong I-detectability using
Theorem 2.

Example 3: Let us consider system G2 shown in Fig-
ure 1(b). We have discussed in Example 1 that this system is
not strongly I-detectable; here, we verify this result by using
Theorem 2. First, we construct the reversed verifier VR(G2).
For the sake of simplicity, we only depict part of VR(G2) in
Figure 3, which is sufficient for the purpose of disproving
detectability. Then we see that state (4, 4) is in a non-trivial
SCC (since it has a self-loop event). Moreover, we have
(1, 0), (0, 1) ∈ REACHV ({(4, 4)}) and (1, 0), (0, 1) ∈ QI .
Therefore, by Theorem 2, we can conclude that G2 is not
strongly I-detectable.

We conclude this section by discussing the complexity of
verifying strong I-detectability using Theorem 2. In order
to check strong I-detectability, first, we need to construct
the reversed verifier, which contains at most |X|2 states and
|Σ||X|2 transitions. Detecting all SCCs can be done in linear
time in the size of the reserved verifier using the well-known
Kosaraju’s algorithm; see, e.g., [17]. Searching all reachable
states from all non-trivial SCCs can also be done in linear
time in the size of the reserved verifier using a simple depth-
first search. Therefore, the overall complexity of verifying
strong I-detectability using Theorem 2 is O(|Σ||X|2); this
improves the previous algorithm in [21] whose complexity
is O(|Σ||X|4).
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V. CONCLUSION

In this paper, we revisited the verification of initial-state
detectability in the context of partially-observed DES. First,
we provided an improved approach for the verification of
weak I-detectability by using the reversed observer. The com-
plexity of the proposed algorithm is O(|Σ|2|X|) compared
with complexity O(|Σ|2|X|2) of the previous algorithm.
Then, we provided a new approach for the verification of
strong I-detectability by using the reversed verifier. The com-
plexity of the proposed algorithm is O(|Σ||X|2) compared
with complexity O(|Σ||X|4) of the previous algorithm. In
the future, we plan to extend our results to the stochastic
setting and to investigate how to improve the computational
complexity for verifying stochastic I-detectability [27].

REFERENCES

[1] M. Danancher, J.-J. Lesage, and L. Litz, “Model-based location
tracking of an a priori unknown number of inhabitants in smart
homes,” IEEE Transactions on Automation Science and Engineering,
vol. 13, no. 2, pp. 1090–1101, 2016.

[2] M. Fanti, G. Faraut, J.-J. Lesage, and M. Roccotelli, “An integrated
framework for binary sensor placement and inhabitants location track-
ing,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 48, no. 1, pp. 154–160, 2018.

[3] C. Hadjicostis and C. Seatzu, “K-detectability in discrete event
systems,” in 55th IEEE Conf. Decision and Control, 2016, pp. 420–
425.

[4] R. Jacob, J.-J. Lesage, and J.-M. Faure, “Overview of discrete event
systems opacity: Models, validation, and quantification,” Annual Re-
views in Control, vol. 41, pp. 135–146, 2016.

[5] C. Keroglou and C. Hadjicostis, “Detectability in stochastic discrete
event systems,” Syst. Control Letters, vol. 84, pp. 21–26, 2015.

[6] ——, “Verification of detectability in probabilistic finite automata,”
Automatica, vol. 86, pp. 192–198, 2017.

[7] S. Lafortune, F. Lin, and C. Hadjicostis, “On the history of diag-
nosability and opacity in discrete event systems,” Annual Reviews in
Control, 2018.

[8] F. Lin and W. Wonham, “On observability of discrete-event systems,”
Information sciences, vol. 44, no. 3, pp. 173–198, 1988.

[9] T. Masopust, “Complexity of deciding detectability in discrete event
systems,” Automatica, vol. 93, pp. 257–261, 2018.

[10] T. Masopust and X. Yin, “Complexity of detectability, opacity and A-
diagnosability for modular discrete event systems,” Automatica, vol.
101, pp. 290–295, 2019.

[11] ——, “Deciding detectability for labeled petri nets,” Automatica, 2019.
[12] A. Mekki, F. Lin, H. Ying, and M. Simoff, “Fuzzy detectabilities for

fuzzy discrete event systems,” in International Conference on Fuzzy
Systems, 2017, pp. 1–6.
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