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a b s t r a c t

Modular discrete event systems are modeled as a parallel composition of finite automata. While deciding
weak detectability, opacity, and A-diagnosability for monolithic systems is PSPACE-complete, the com-
plexity formodular systems is unknown.We show that formodular systems the problems are EXPSPACE-
complete, and hence there is neither a polynomial-time nor a polynomial-space algorithm solving them.
While the upper bound is a natural modification of the PSPACE algorithms for monolithic systems, the
lower bound requires a novel and nontrivial construction.We further discuss a casewhere the complexity
drops to PSPACE-complete.
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1. Introduction

Discrete event systems (DES) are dynamical systems with dis-
crete state spaces and event-triggered dynamics. In most appli-
cations, DES models consist of local modules, modeled as finite
automata, running synchronously. This leads to the research on
modular DES, where the challenge is the state-space explosion
problem (the number of states in the monolithic model grows
exponentially with the number of modules). Understanding the
computational complexity is essential for the analysis of modular
DES that has drawn considerable attention in the literature. Among
others, Gohari and Wonham (2000) and Rohloff and Lafortune
(2005) investigated the complexity of supervisory control prob-
lems for modular DES, Yin and Lafortune (2017) the complexity
of verification of diagnosability, detectability and predictability,
and Masopust (2017) the complexity of nonblockingness. Many
problems tractable for monolithic DES are intractable for modu-
lar DES due to the state explosion issue, although the issue it-
self is not sufficient for intractability. There are many results on
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tractable solutions for problems of modular DES, see Feng and
Wonham (2008), Gummadi, Singh, and Sreenivas (2011), Hill, Cury,
de Queiroz, Tilbury, and Lafortune (2010), Komenda, Masopust,
and van Schuppen (2014), Leduc, Lawford, and Wonham (2005),
Saboori and Hadjicostis (2010) and Schmidt and Cury (2012).

Detectability, opacity, and diagnosability are important system-
theoretic properties of DES. Detectability defined in Shu, Lin, and
Ying (2007) arises in state estimation and askswhether the current
state of the system can be determined unambiguously after a finite
number of observations. Detectability is closely related to opacity,
a property of interest in the privacy and security analysis, see Jacob,
Lesage, and Faure (2016). The system has a secret modeled as a set
of states and an intruder ismodeled as a passive observerwith lim-
ited observations. The system is opaque if the intruder never knows
for sure that the system is in a secret state. Diagnosability defined
in Sampath, Sengupta, Lafortune, Sinnamohideen, and Teneketzis
(1995) is another important task requiring that an occurrence of a
fault can always be detected within a finite delay. A-diagnosability
is a relaxation of diagnosability requiring that there always exists
a possibility to detect the fault. For more details, Jacob et al. (2016)
give an overview of opacity in DES, and Zaytoon and Lafortune
(2013) of fault diagnosis.

Deciding weak detectability, opacity, and A-diagnosability is
PSPACE-complete for monolithic DES as shown in Bertrand, Had-
dad, and Lefaucheux (2014), Cassez, Dubreil, andMarchand (2012),
Chen, Keroglou, Hadjicostis, and Kumar (2018), Masopust (2018),
Zhang (2017), and hence the problems are polynomially reducible
to each other. In particular, Lin (2011) gives links among opacity,
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anonymity, secrecy, observability, diagnosability, and detectabil-
ity.

For modular DES, the complexity is open. Indeed, the modu-
lar problems are PSPACE-hard and a natural modification of the
monolithic results gives that they are in EXPSPACE. However, do
they belong to PSPACE or are they EXPSPACE-hard? We show,
using a novel and nontrivial construction, that the modular prob-
lems are EXPSPACE-hard, and hence EXPSPACE-complete. Conse-
quently, there is neither a polynomial-timenor a polynomial-space
algorithm verifying the modular properties. Our results are ob-
tained in a uniformmanner in the sense that a similar construction
is used. In particular, A-diagnosability may seem different from
weak detectability and opacity at the first glance. Note that Saboori
and Hadjicostis (2010) present an algorithm checking modular
opacity in exponential time under some restrictions. However, our
results show that there is unlikely an exponential-time algorithm
in general.

We also discuss the casewhere unobservable events are private.
In this case, the projection commutes with parallel composition,
and the modular problems can be reduced to the composition
of monolithic problems. The complexity thus drops to PSPACE-
complete.

2. Preliminaries and definitions

For a set A, |A| denotes the cardinality of A and 2A its power set.
An alphabet Σ is a finite nonempty set of events. A word over Σ is
a sequence of events. Let Σ∗ denote the set of all finite words over
Σ; the empty word is denoted by ε. For a word u ∈ Σ∗, |u| denotes
its length. As usual, Σ+ stands for Σ∗

\ {ε}.
A nondeterministic finite automaton (NFA) over an alphabet Σ is

a structure A = (Q , Σ, δ, I, F ), where Q is a finite nonempty set
of states, I ⊆ Q is a nonempty set of initial states, F ⊆ Q is a set
of marked states, and δ:Q × Σ → 2Q is a transition function that
can be extended to the domain 2Q

×Σ∗ by induction. The language
generated by A is the set L(A) = {w ∈ Σ∗

| δ(I, w) ̸= ∅} and the
language recognized by A is the set Lm(A) = {w ∈ Σ∗

| δ(I, w)∩F ̸=

∅}.
A discrete event system (DES) is modeled as an NFA G with all

statesmarked. Thereforewe simplywrite G = (Q , Σ, δ, I) without
specifying the marked states. The alphabet Σ is partitioned into
two subsets Σo and Σuo = Σ \ Σo called the set of observable and
unobservable events, respectively.

The problems under investigation are based on the observation
of events described by a projection P:Σ∗

→ Σ∗
o . The projection P

is a morphism defined by P(a) = ε for a ∈ Σ \ Σo, and P(a) = a
for a ∈ Σo. The action of P on a word σ1σ2 · · · σn with σi ∈ Σ for
1 ≤ i ≤ n is to erase all events that do not belong to Σo; namely,
P(σ1σ2 · · · σn) = P(σ1)P(σ2) · · · P(σn). The definition can readily be
extended to infinite words and languages.

Let G = (Q , Σ, δ, I) be a DES, and let P be a projection from Σ

to ∆ ⊆ Σ . We use the notation P(G) to denote the DES P(G) =

(Q , ∆, δ′, I), where the function δ′
= {(p, P(a), q) | (p, a, q) ∈ δ}.

Intuitively, P(G) has the same structure as G with unobservable
transitions labeled with ε.

As usual when partially-observed DES are studied, see Sam-
path et al. (1995) and Shu and Lin (2011), we assume that G =

(Q , Σ, δ, I) is deadlock free, that is, the system can always make a
transition: for every q ∈ Q , there is σ ∈ Σ such that δ(q, σ ) ̸= ∅.

A system G is oftenmodeled as a parallel composition of a set of
local modules {G1, . . . ,Gn}, where Gi is a DES, i.e., G = G1∥ · · · ∥Gn,
where ‘‘∥’’ denotes the parallel composition operator (Cassandras
& Lafortune, 2008, p. 78). We call such a system amodular DES.

A decision problem is a yes–no question. A decision problem
is decidable if there is an algorithm solving it. Complexity theory
classifies decidable problems into classes based on time or space

an algorithm needs to solve the problem. Considered classes in
this work are PSPACE and EXPSPACE denoting the classes of prob-
lems solvable by a deterministic polynomial-space algorithm and
by a deterministic exponential-space algorithm, respectively. A
decision problem is PSPACE-complete (EXPSPACE-complete) if it
belongs to PSPACE (EXPSPACE) and every problem from PSPACE
(EXPSPACE) can be reduced to it by a deterministic polynomial-
time algorithm. By the space hierarchy theorem given in Stearns,
Hartmanis, and Lewis I.I. (1965), PSPACE is a strict subclass of EX-
PSPACE. Thus, for an EXPSPACE-complete problem, there is neither
a polynomial-space nor a polynomial-time algorithm.

3. Modular detectability

In this section, we investigate the complexity of deciding mod-
ular detectability. Let Σ be an alphabet, Σo ⊆ Σ be the set of
observable events, and P be the projection from Σ to Σo. Let N
denote the set of all natural numbers. The set of infinite sequences
of events generated by a DES G is denoted by Lω(G). For w ∈ Lω(G),
we denote the set of its finite prefixes by Pr(w).

By Shu et al. (2007), a DES G = (Q , Σ, δ, I) is weakly detectable
with respect to Σuo if we can determine, after a finite number of
observations, the current and subsequent states of the system for
some trajectories, i.e.,

(∃n ∈ N)(∃s ∈ Lω(G))(∀t ∈ Pr(s))[|P(t)| > n ⇒ |RG(t)| = 1] ,

where RG(t) = {x ∈ Q | ∃ t ′ ∈ L(G) such that P(t) = P(t ′) and x ∈

δ(I, t ′)}, and it isweakly periodically detectable ifwe canperiodically
determine the current state of the system for some trajectories, i.e.,

(∃n ∈ N)(∃s ∈ Lω(G))(∀t ∈ Pr(s))(∃t ′ ∈ Σ∗)
[tt ′ ∈ Pr(s) ∧ |P(t ′)| < n ∧ |RG(tt ′)| = 1] .

Given a modular DES {G1, . . . ,Gn} and a set of unobservable
events Σuo. Theweak (periodic) modular detectability problem asks
whether G1∥ · · · ∥Gn is weakly (periodically) detectable with re-
spect to Σuo.

Yin and Lafortune (2017) and Zhang (2017) showed that decid-
ing weak modular detectability is PSPACE-hard and in EXPSPACE,
but its complexity is open. PSPACE-hardness does not rule out
polynomial-space solvability of the problem. We show that the
problem requires exponential space. To this aim,we first formulate
an auxiliary lemma.

Lemma 1. Let Σ be an alphabet and n ≥ 1 be an integer. There are
n six-state automata Ai such that P(Lm(∥n

i=1 Ai)) = Σ2n−1 for P being
a projection to Σ .

Proof. Let Γ = {a1, a2, . . . , an}. For i = 1, . . . , n, we define the
automaton Ai = ({0, 1, p, q, r, s}, Γ , δi, 0, {1}) where

δi = {(0, aj, p), (p, b, 0), (1, aj, q), (q, b, 1) | j < i, b ∈ Σ}

∪ {(0, ai, r), (r, b, 1) | b ∈ Σ}

∪ {(1, aj, s), (s, b, 0) | j > i, b ∈ Σ} ,

see Fig. 1 orMasopust and Yin (2017, Example 9) for an illustration.
Let A =∥

n
i=1 Ai. Intuitively, A counts from 0 to 2n

− 1 in binary;
the initial state is (0, 0, . . . , 0) representing 0 in binary, which is
modified step by step to state (1, 1, . . . , 1) representing 2n

− 1 in
binary (this explains why we write the composition from right to
left). Every odd transition under an event from Γ is used to count
the number of steps, and every even transition under an event from
Σ is to give the required language Σ2n−1 in the projection to Σ .

We prove by induction on n ≥ 1 that An∥ · · · ∥A1 accepts a
language Ln ⊆ (Γ Σ)2

n
−1 such that the projection of Ln to Γ is a

singleton. For n = 1, L1 = {a1b | b ∈ Σ}, and the claim holds.
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Fig. 1. Automaton A = A3∥A2∥A1 .

Fig. 2. An NFA for the subexpression ∆n+1
· b∗

· (∆ \ {b,#}) · ∆∗ .

Assume that the claim holds for n, and prove it for n+ 1. In this
case, Γ = {a1, . . . , an, an+1}. Let w ∈ Ln. Then w does not contain
an+1, and the automaton An+1 cycles between states 0 and p when
reading w. Thus, in An+1∥An∥ · · · ∥ A1, we have (0, 0, . . . , 0)

w
−→

(0, 1, . . . , 1)
w′

−→ (1, 0, . . . , 0)
w
−→ (1, 1, . . . , 1), where w′

= an+1b
for some b ∈ Σ , i.e., the projection of w′ to Γ is the singleton
{an+1}. The parallel composition therefore accepts thewordww′w,
which is of the form (Γ Σ)2

n+1
−1, and where the projection of

ww′w to Γ is a unique word by the induction hypothesis. □

We now prove our main result.

Theorem 2. Deciding weak (periodic) modular detectability is
EXPSPACE-complete.

Proof. Membership in EXPSPACE follows by adapting themember-
ship in PSPACE formonolithic DES, seeMasopust and Yin (2017) for
more details.

To show EXPSPACE-hardness, we reduce the EXPSPACE-
complete problemaskingwhether a regular expressionwith squar-
ing is universal. A regular expression with squaring may use the
usual operations ∪, ·, ∗, as well as the squaring operations s2 =

s · s. Meyer and Stockmeyer (1972) showed that it is sufficient to
consider an expression E over ∆ = {#} ∪ T ∪ Q × T , where T and
Q are finite disjoint sets, of the form

((∆ \ #) ∪ # · ((∆ \ (qo, x1)) ∪ (qo, x1) · ((∆ \ x2)

∪ x2 · ((∆ \ x3) ∪ · · · (∆ \ xn))) · · ·) · ∆∗ (1)

∪ ∆n+1
· b∗

· (∆ \ {b,#}) · ∆∗ (2)

∪ # · (∆ ∪ ε)2
n
−1

· # · ∆∗ (3)

∪ # · ∆2n
· (∆ \ #) · ∆∗ (4)

∪ (∆ \ (∪t∈T (qa, t)))∗ (5)

∪

⋃
c1,c2,c3∈∆

∆∗
· c1c2c3 · ∆2n−1

· (∆ \ N(c1, c2, c3)) · ∆∗ (6)

where qo, qa ∈ Q , x1, . . . , xn ∈ T , and N(c1, c2, c3) ⊆ ∆. The
expression consists of unions of structurally simpler expressions,
most of which can be translated to an NFA in polynomial time by
a direct transformation. For instance, an NFA for subexpression (2)
is depicted in Fig. 2.

However, the construction of an NFA is not easy for a subex-
pression E ′ that contains ∆2n−1 (subexpressions (3), (4), and (6)),

Fig. 3. Modification of an NFA Gi .

because the direct transformationwould require 2n
−1 transitions

labeled with events of ∆, which cannot be done in polynomial
time. Instead, we construct a modular system H consisting of n
NFAs B1, . . . , Bn such that the language of H projected to∆ is L(E ′),
that is, P(Lm(H)) = P(Lm(B1∥ . . . ∥Bn)) = L(E ′). The core of the
construction of B1, . . . , Bn is formalized in Lemma 1.

For every subexpression of E, we now construct a (possibly
modular) system Gi as follows. For (1), (2), and (5), NFAs G1, G2,
and G5 can directly be constructed, see Fig. 2.

For (3), we construct G3 as a modular DES {B3
1, . . . , B

3
n} such

that Lm(B3
i ) = # · Lm(Ai) · # · ∆∗, where Ai is as in Lemma 1

over the alphabet Σ ∪ Γ3, where Γ3 is a set of new events and
Σ = ∆ ∪ {e} with e being a new unobservable event. Then, by
Lemma 1, (3) is a projection to ∆ of the composition B3

n∥ · · · ∥B3
1,

that is, P(Lm(B3
n∥ · · · ∥B3

1)) = # · (∆ ∪ {ε})2
n
−1

· # · ∆∗.
For (4), we construct G4 as amodular DES {B4

1, . . . , B
4
n} such that

Lm(B4
i ) = # ·∆ · Lm(Ai) · (∆ \#) ·∆∗, where Ai is as in Lemma 1 over

the alphabet Σ ∪Γ4, where Γ4 is a set of new events (in particular,
Γ3 ∩ Γ4 = ∅) and Σ = ∆. Then, by Lemma 1, we have that
P(Lm(B4

n∥ · · · ∥B4
1)) = # · ∆ · ∆2n−1

· (∆ \ #) · ∆∗.
For (6), we construct |∆|

3 modular DES Gc1c2c3 . Namely, for ev-
ery triple c1c2c3, we constructGc1c2c3 as amodular DES {C c1c2c3

1 , . . . ,

C c1c2c3
n } such that Lm(C

c1c2c3
i ) = ∆∗

·c1c2c3 ·Lm(Ai)·(∆\N(c1, c2, c3))·
∆∗, where Ai is as in Lemma 1 over the alphabet ∆∪Γc1c2c3 , where
Γc1c2c3 is a new set of events and Σ = ∆. Then, by Lemma 1, we
have that P(Lm(Gc1c2c3 )) = P(Lm(∥n

i=1 C c1c2c3
i )) = ∆∗

·c1c2c3 ·∆2n−1
·

(∆ \ N(c1, c2, c3)) · ∆∗.
We now denote all the systems constructed above as Gi, for

i = 1, . . . ,m, where m = |∆|
3

+ 5 is polynomial, and every Gi
was constructed in polynomial time. Recall that every Gi is either
an NFA, or a modular system of the form {B1, . . . , Bn}, where every
Bj is an NFA. Moreover, by construction, we have that

L(E) = ∪
m
i=1P(Lm(Gi)) .

In the above constructions, we used total automata (every au-
tomaton can bemade total by adding a single state and themissing
transitions), that is, in every state a transition under every event is
defined. Then every Gi is also total.

We now use a new event, ⋄, to modify every Gi by adding two
new states qsi and qfi so that if a word w is accepted by P(Gi), then
both qsi and qfi are reachable by w⋄ in P(Gi), whereas if w is not
accepted by P(Gi), only qsi is reachable by w⋄ in P(Gi).

Formally, let qsi and qfi , i = 1, . . . ,m, be newnon-marked states
with self-loops under all events from ∆ ∪ {⋄}, where ⋄ is a new
observable event. For every i, ifGi is anNFA,wemodifyGi by adding
qsi to the set of initial states, and by adding a transition from every
state under event ⋄ to state qsi , and from every marked state to
state qfi , see Fig. 3.

If Gi is a modular DES {B1, . . . , Bn}, we add a new unobservable
event ⋄i and, for every Bj, we add two new states bsj and bfj to
Bj; bsj is added to initial states of Bj. We add a transition under ⋄

from every state of Bj to bsj . Now, for everymarked state tj of Bj, we
add the transitions (tj, ⋄i, tj′) and (tj′, ⋄, bfj ), where tj′ is a new state
added to Bj. We define qsi = (bs1 , . . . , bsn ) and qfi = (bf1 , . . . , bfn ),
see Fig. 4.
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Fig. 4. Modification of Gi being a modular DES {B1, B2}; qsi = (bs1 , bs2 ) and qfi =

(bf1 , bf2 ).

Notice that Gi is always in state qsi . If a reachable state (r1, . . . ,
rn) of Gi contains a non-marked state rj of Bj, then only state qsi is
reachable from (r1, . . . , rn) under⋄ in P(Gi). However, if (r1, . . . , rn)
consists only of marked states of B1, . . . , Bn, then (r1, . . . , rn) leads
to state qsi under⋄ and to state (r ′

1, . . . , r
′
n) under⋄i inGi, and hence

to states qsi and qfi in P(Gi).
Summarized, after these modifications, for every Gi it holds

that if w ∈ P(Lm(Gi)) and s is a marked state reached by w, then
s

⋄
−→ {qsi , qfi}, and that if w /∈ P(Lm(Gi)), then any state s reachable

by w is such that s
⋄
−→ {qsi}.

We now consider the composition ∥
m
i=1 Gi. Assume that the al-

phabet of ∥m
i=1 Gi isΣ .We show that ∥m

i=1 Gi isweakly (periodically)
detectable with respect to Σ \ (∆ ∪ {⋄}) iff L(E) ̸= ∆∗.

Notice that ∥
m
i=1 Gi is weakly (periodically) detectable with

respect to Σ \ (∆ ∪ {⋄}) iff P(∥m
i=1 Gi) is weakly (periodically)

detectable with respect to ∅.
Assume first that L(E) = ∆∗. Then, for every w ∈ ∆∗,

there exists i ∈ {1, . . . ,m} such that w ∈ P(Lm(Gi)). Then
there is w′

∈ P−1(w) such that the composition ∥
m
i=1 Gi is in

a state (y1, . . . , ym) after reading w′, where yi is a marked state
of Gi. This means that the system P(∥m

i=1 Gi) is, after reading
w⋄, in at least two states, namely q̄s = (qs1 , . . . , qsi , . . . , qsm )
and (qs1 , . . . , qsi−1 , qfi , qsi+1 , . . . , qsm ), and hence the system is not
weakly (periodically) detectable.

On the other hand, if L(E) ̸= ∆∗, then there is w ∈ ∆∗ such that
w /∈ L(E) = ∪

m
i=1P(Lm(Gi)), and hence none of Gi is in a marked

state after reading any w′
∈ P−1(w). Since event ⋄ leads every

non-marked state of Gi only to state qsi , we have that w⋄ leads
P(∥m

i=1 Gi) only to state q̄s = (qs1 , . . . , qsm ). Thus, P(∥
m
i=1 Gi) is

weakly (periodically) detectable. □

The algorithm of Lin (2011) to decide weak detectability is
based on the computation of observer. If all unobservable events
are private, the projection commutes with parallel composition,
i.e., P(Lm(∥k

i=1 Gi)) =∥
k
i=1 P(Lm(Gi)), see Feng (2007), and we can

reduce the complexity of weak modular detectability by comput-
ing the parallel composition of local observers rather than the
observer of the exponentially larger monolithic DES. We formalize
this observation as follows.

Lemma 3. Let {G1, . . . ,Gn} be a modular DES and P:Σ → Σo be
a projection such that all shared events of any two systems are in Σo.
Then a state is reachable in P(∥n

i=1 Gi) by aword P(w) iff it is reachable
in ∥

n
i=1 P(Gi) by P(w).

Proof. Let (x1, . . . , xn) be a state of P(∥n
i=1 Gi) reachable by P(w).

Then every xi is reachable by P(w) in P(Gi), and hence (x1, . . . , xn)
is reachable by P(w) in ∥

n
i=1 P(Gi).

Let (x1, . . . , xn) be a state reachable by P(w) in ∥
n
i=1 P(Gi). Then

there are words wi, i = 1, . . . , n, such that P(wi) = P(w), and xi
is reachable by wi in Gi. Let P(w) = a1a2 · · · am, for some m ≥ 0.

Then wi = u1,ia1u2,i · · · um−1,iamum,i, where every uk,i ∈ E∗

i , k =

1, . . . ,m, for Ei denoting the private alphabet of Gi, that is, for any
i ̸= j, Ei ∩ Ej = ∅. Then the word

u1,1u1,2 · · · u1,n a1 u2,1 · · · u2,n · · · um−1,n am um,1 · · · um,n

leads ∥
n
i=1 Gi to state (x1, . . . , xn). Therefore, state (x1, . . . , xn) is

reachable in P(∥n
i=1 Gi) by P(w). □

We now have the following.

Theorem 4. Let {G1, . . . ,Gn} be a modular DES and P:Σ → Σo
be a projection such that all shared events of any two systems are in
Σo. Then deciding weak (periodic) modular detectability is PSPACE-
complete.

Proof. By Lemma 3, P(∥n
i=1 Gi) is weakly (periodically) detectable

iff ∥
n
i=1 P(Gi) is. Let Hi denote the determinization of P(Gi), i.e., Hi

is the observer of Gi with respect to Σo. To check weak de-
tectability in PSPACE means to guess a reachable state X =

(X1, . . . , Xn) of ∥
n
i=1 Hi, where every Xi is a singleton, such that

X is non-trivially reachable from itself by states consisting only
of singletons, see Shu and Lin (2011). (Similarly for weak pe-
riodic detectability.) Since PSPACE-hardness was shown in Yin
and Lafortune (2017) and Zhang (2017), the problem is PSPACE-
complete. □

4. Modular opacity

By Saboori and Hadjicostis (2007), a DES G = (Q , Σ, δ, I) is
current-state opaque with respect to Σuo and a set of secret states
QS ⊆ Q if

(∀s ∈ L(G))[RG(s) ̸⊆ QS] .

Given a modular DES {G1, . . . ,Gn}, a set of unobservable events
Σuo, and a set of secret states QS . Themodular opacity problem asks
whether G1∥ · · · ∥Gn is opaque with respect to Σuo and QS .

Theorem 5. Deciding modular opacity is EXPSPACE-complete.

Proof. Membership in EXPSPACE follows by adapting themember-
ship in PSPACE for monolithic DES, see Masopust and Yin (2017).

To prove EXPSPACE-hardness, we reuse the proof of Theorem 2
and show that the modular DES constructed there is opaque with
respect to QS = {q̄s} iff it is not weakly detectable.

As shown in the proof of Theorem 2, if ∥
m
i=1 Gi is weakly

detectable with respect to Σ \ (∆ ∪ {⋄}), then there is a word w
such that, after reading w⋄, the observer knows for sure that the
modular system is in state q̄s. Hence the system is not opaque with
respect to Qs and Σ \ (∆ ∪ {⋄}).

On the other hand, if ∥
m
i=1 Gi is not weakly detectable with

respect to Σ \ (∆ ∪ {⋄}), then, after reading any word, we cannot
distinguish state q̄s from some other state, and hence the system is
opaque with respect to {q̄s} and Σ \ (∆ ∪ {⋄}). □

A similar case to Theorem 4 applies to modular opacity.

Theorem 6. Let {G1, . . . ,Gn} be a modular DES and P:Σ → Σo be
a projection such that all shared events of any two systems are in Σo.
Then deciding modular opacity is PSPACE-complete.

Proof. By Lemma3, P(∥n
i=1 Gi) is opaque iff ∥n

i=1 P(Gi) is opaque. Let
Hi denote the determinization of P(Gi). To check non-opacity with
respect to the set of secret states QS , we guess a reachable state
(X1, . . . , Xn) of ∥n

i=1 Hi such that X1 × · · · × Xn ⊆ QS . Since PSPACE
is closed under complement, checking opacity is in PSPACE. Since
PSPACE-hardness was shown in Cassez et al. (2012), the problem
is PSPACE-complete. □
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5. Modular A-diagnosability

Let ΣF ⊆ Σ be a set of faults, and let LF = Σ∗ΣFΣ
∗ be the

set of all trajectories that contain a fault. A DES G = (Q , Σ, δ, I) is
A-diagnosablewith respect toΣuo andΣF if for any fault trajectory,
there is an extension under which a fault has occurred, i.e.,

(∀s ∈ L(G) ∩ LF )(∃t ∈ L(G)/s)[P−1P(st) ∩ L(G) ⊆ LF ] ,

where L(G)/s = {t ∈ Σ∗
| st ∈ L(G)}.

Remark 7. A-diagnosability is a property originally defined in
Thorsley and Teneketzis (2005) for stochastic DES. Let p:Q × Σ ×

Q → [0, 1] be a probability function that assigns to each transition
of G a probability. Then the stochastic version of A-diagnosability
requires that

(∀ϵ > 0)(∃K ∈ N)(∀s ∈ L(G) ∩ LF )

[Prob(t : P−1P(st) ∩ L(G) ̸⊆ LF | t ∈ L(G)/s ∧ |t| = K ) < ϵ] ,

where Prob(·) denotes the probability of continuations of s with
length K under which a fault cannot be detected unambiguously,
i.e., the miss-detection rate. However, as pointed out in Bertrand
et al. (2014) or Chen et al. (2018), A-diagnosability does not depend
on the specific value of the probability function p; our definition is
thus equivalent to the stochastic definition. In particular, for each
miss-detection rate ϵ, the transition probability only affects the
value of the delay K but not the existence of such a delay. Therefore,
we use the equivalent logical definition to simplify our proof.

Given a modular DES {G1, . . . ,Gn}, a set of unobservable events
Σuo, and a set of faults ΣF . The modular A-diagnosability problem
asks whether G1∥ · · · ∥Gn is A-diagnosable with respect to Σuo and
ΣF .

Bertrand et al. (2014) and Chen et al. (2018) showed that testing
A-diagnosability is PSPACE-complete for monolithic systems. We
show that it is EXPSPACE-complete for modular systems.

Theorem 8. Deciding modular A-diagnosability is EXPSPACE-
complete.

Proof. Membership in EXPSPACE follows by adapting themember-
ship in PSPACE for monolithic DES, see Masopust and Yin (2017).

To show EXPSPACE-hardness, we reuse and slightly modify the
proof of Theorem 2. Let Gi be the systems constructed there, f be
a new unobservable event, which is the sole fault, □ be a new
observable event, and, for i = 1, . . . ,m, □i be a new unobservable
event. We modify every Gi by adding transitions

(1) (qsi , f , q
′
si ), where q′

si is a new state,
(2) (q′

si ,□, Ii), where Ii are the initial states of Gi,
(3) (qsi ,□j, q′

si ), for j ̸= i, and
(4) (qfi ,□j, q′

si ), for j = 1, . . . ,m.

Intuitively, having read a word w⋄, for some w ∈ ∆∗, the
modular system is in state q̄s = (qs1 , qs2 , . . . , qsm ) and perhaps
also in a state q = (. . . , qfi , . . .). From state q̄s, it can go to state
q̄′
s = (q′

s1 , q
′
s2 , . . . , q

′
sm ) under f , where the fault occurs. But the

system can also go to state q̄′
s from q under □i, for some i, which

is a word with the same projection but without the fault f . Notice
that □i is possible only if there is state qfi indicating that Gi marks
word w. This mechanism prevents q from going to state q̄′

s if none
of Gi marks w. A conceptual illustration is provided in Fig. 5.

We show that L(E) ̸= ∆∗ iff G =∥
m
i=1 Gi is A-diagnosable with

respect to fault {f } and unobservable events Σ \ (∆ ∪ {⋄,□}).
Suppose that L(E) = ∆∗. By the proof of Theorem 2, for every

w ∈ ∆∗, P(w)⋄ ends up in at least two states, namely q̄s and states
of the form q = (. . . , qfi , . . .), where ‘‘. . .’’ are either qfj or qsj . Notice

Fig. 5. An illustration of the proof of Theorem 8.

that there is an unobservable transition from q under □i to q̄′
s =

(q′
s1 , . . . , q

′
sm ), i.e., there are w1 and w2 such that P(w1) = P(w2) =

P(w) and w1⋄ leads to state q̄s and w2⋄ to state q. Then the words
w1 ⋄ f containing the fault and w2 ⋄□i ∈ P−1P(w1 ⋄ f ) both end up
in state q̄′

s. Now, only event □ is possible, which leads the system
to the initial states. The proof now follows by induction. Therefore,
for any extension ofw1 ⋄ f , there is always a path that bypasses the
fault f due to some event□k, and hence P−1P(w1⋄ fw′)∩L(G) ̸⊆ LF
for any extension w′ of w1 ⋄ f in the system. Therefore, the system
is not A-diagnosable.

On the other hand, if L(E) ̸= ∆∗, then there is w such that,
observing P(w)⋄, the system reaches only states q̄s and q̄′

s. Let
s ∈ L(G) ∩ LF be a fault trajectory. We now fix a word t ′ such
that st ′□ is defined in the system; notice that such a word exists.
Then t = t ′□w ⋄ f□ ∈ L(G) is an extension of s such that all
words of L(G) with the projection equal to P(st) contain the fault
f . Indeed, after observing P(st ′)□, the observer of the system is in
the initial state, and P(w)⋄ leads the observer only to state {q̄s, q̄′

s}.
Now, when the observer sees event □, it is sure that the fault f
occurred, that is, P−1P(st) ∩ L(G) ⊆ LF . Since the fault trajectory
swas chosen arbitrarily, the system is A-diagnosable. □

A case similar to Theorem 4 applies to A-diagnosability.

Theorem 9. Let {G1, . . . ,Gn} be a modular DES and P:Σ → Σo be
a projection such that all shared events of any two systems are in Σo.
Then deciding modular A-diagnosability is PSPACE-complete.

Proof. We assume that faults are unobservable; for observable
faults the problem is trivial. By the assumption, all faults are
private, i.e., each fault can only occur locally. Let ΣFi = ΣF ∩ Σi
be the set of all local faults, i = 1, . . . , n.

Since A-diagnosability is an event-based property, faults are
erased in P(Gi). Therefore, we reformulate A-diagnosability as a
state-based property. To this end, we assume, without loss of
generality, that for each Gi, its state-space Qi is partitioned as
Qi = QNi ∪̇QFi so that the system is in states of QNi as long as
no fault has occurred and it is in states of QFi from the moment
on a fault has occurred. This can be easily fulfilled in polynomial
time by computing the product ofGi with a two-state deterministic
automaton marking the language LF . Thus, we can reformulate
A-diagnosability as follows:

(∀s ∈ L(G) : δ(I, s) ∩ QF ̸= ∅)(∃t ∈ L(G)/s)[RG(st) ⊆ QF ] ,

where QF =
⋃n

i=1 Q1 × · · · × Qi−1 × QFi × Qi+1 × · · · × Qn is the
set of all states where at least one component indicates that a fault
has occurred.

Using Lemma 3 and letting Hi denote the determinization of
P(Gi), to verify A-diagnosability means to check that for every
reachable state (X1, . . . , Xn) of ∥

n
i=1 Hi, if there is i such that

Xi ∩ QFi ̸= ∅, then there is a state (Y1, . . . , Yn) reachable from
(X1, . . . , Xn) with the property that there is j such that Yj ⊆ QFj .
Since PSPACE-hardness was shown in Bertrand et al. (2014) and
Chen et al. (2018), the problem is PSPACE-complete. □
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6. Conclusions

Using a novel and nontrivial construction, we proved that the
problems of deciding weak detectability, opacity, and
A-diagnosability for modular DES are EXPSPACE-complete. Our
results reveal that the properties are significantly more difficult
to verify in the modular setting compared with their monolithic
counterparts. A special case was identified where the complexity
of the properties drops down to polynomial space. Our results also
reveal the connections and similarities among these properties
from the structural point of view.

Yin and Lafortune (2017) showed that deciding strong modular
detectability as defined in Shu et al. (2007) is PSPACE-hard and, to
the best of our knowledge, the membership in PSPACE has not yet
been discussed in the literature. However, adapting the detector
construction of Shu and Lin (2011) shows that deciding strong (pe-
riodic) modular detectability is PSPACE-complete, see Masopust
and Yin (2017) for details. Moreover, if the number of components
in a modular DES is bounded a priori by a constant, then the
problem is NL-complete; NL is the class of problems efficiently
solvable on a parallel computer. By the space hierarchy theorem
of Stearns et al. (1965), NL is a strict subclass of PSPACE, and hence
deciding strongmodular detectability is significantly simpler if the
number of systems is bounded a priori.
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