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a b s t r a c t

This paper investigates the enforcement of opacity by insertion functions subject to multiple quanti-
tative constraints capturing resource or energy limitations. There is a malicious intruder attempting
to infer secrets of the system from its observations. To prevent the disclosure of secrets, the insertion
function inserts fictitious events to the output of the system to obfuscate the intruder. The system is
initialized with several types of resources, referred to as energy. The energy is consumed or replenished
with event occurrences while always consumed with event insertions. The insertion function must
enforce opacity while ensuring that each type of resource is never depleted. This problem is then
reduced to a two-player game between the insertion function and the system (environment), with
properly defined objectives. A game structure called the Energy Insertion Structure, denoted by EIS is
proposed, which provably contains solutions to the energy constrained opacity enforcement problem.
Then we further study the bounded cost rate insertion problem on the insertion function’s winning
region of EIS, which requires that the long run average rate of insertion cost be bounded. This problem
is formulated as a multidimensional mean payoff game and a special method called hyperplane
separation technique is applied to efficiently solve it.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Opacity is an information-flow based property that charac-
terizes whether the secrets of a system can be inferred by an
outside intruder with malicious purposes. The outside intruder is
typically modeled as an observer with knowledge of the structure
of the system; its intention is to infer system secrets by observing
system outputs. The system is opaque if the intruder is never able
to unambiguously determine any of the system secrets from its
observations.

Opacity has received significant attention in the context of Dis-
crete Event Systems (DES). Different notions of opacity have been
proposed and studied for finite-state automata, e.g., language-
based opacity (Lin, 2011), current-state opacity (Saboori & Hadji-
costis, 2007), initial-state opacity (Saboori & Hadjicostis, 2013),
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K -step opacity (Yin & Lafortune, 2017) and infinite-step opac-
ity (Zhang, Yin, & Zamani, 2019). Opacity has also been discussed
in other models, like infinite state systems (Chédor, Morvan,
Pinchinat, & Marchand, 2015), Petri nets (Tong, Li, Seatzu, &
Giua, 2017), modular systems (Masopust & Yin, 2019) and timed
systems (Cassez, 2009). Opacity under the so-called Orwellian
observation is studied in Mullins and Yeddes (2014). Addition-
ally, many works investigate opacity quantitatively in stochastic
settings, e.g., Bérard, Mullins, and Sassolas (2015), Chen, Ibrahim,
and Kumar (2017), Keroglou and Hadjicostis (2018), Yin, Li, Wang,
and Li (2019). The review paper (Jacob, Lesage, & Faure, 2016)
provides a comprehensive summary of research topics on opacity
in DES.

Violations of opacity give rise to the problem of opacity en-
forcement, see, e.g., Barcelos and Basilio (2018), Falcone and
Marchand (2015), which has been investigated under various
mechanisms. Supervisory control can be used to disable non-
opaque behaviors, thereby preventing disclosure of secrets
(Dubreil, Darondeau, & Marchand, 2010; Takai & Oka, 2008; Tong,
Li, Seatzu, & Giua, 2018; Yin & Lafortune, 2016; Zhang, Shu, & Lin,
2015). Another popular framework is sensor activation (Cassez,
Dubreil, & Marchand, 2012; Yin & Lafortune, 2019), which dy-
namically changes the observability of certain events but does not
intervene with the operation of the system. Differently from these
approaches, Ji, Wu and Lafortune (2018) study opacity enforce-
ment using insertion functions, which may insert fictitious events
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Fig. 1. Location-based service and insertion mechanism.

into the system’s output to modify the intruder’s observation for
obfuscation purposes. This method is further generalized to edit
functions (Ji, Yin, & Lafortune, 2019; Mohajerani, Ji, & Lafortune,
2018) which may erase events from the output of the system,
along with event insertions.

All the above works concentrate on logical properties of opac-
ity enforcement. However, in many applications, the execution of
system events may gain or consume certain types of resources of
the system, which we refer to as ‘‘energy". Besides, secrecy obfus-
cation may also consume some types of resources so that some
strategies may be preferred due to lower costs. Those resources
may be interpreted as budget for insertion of fictitious events,
processing time, storage space, power supply, and so forth. Mo-
tivated by this practical situation, it is meaningful to investigate
opacity enforcement under quantitative constraints. We assume
that the system has several types of resources whose amounts
are all fixed. The system’s energy levels may change due to event
occurrences and defense of secrets. Under this framework, our
objective is to guarantee that secrets are not disclosed to the
intruder while each type of resource is never depleted in the
process of enforcing opacity.

In this work, we consider opacity enforcement by leveraging
the technique of insertion functions (Ji, Wu, et al., 2018) and
further investigate it under a quantitative setting. This problem
is inspired by the rapidly growing application of location-based
services (LBS). Suppose there is a device providing LBS, which
sends personalized information to the user by exploiting the
user’s real time location. There may be a malicious eavesdropper
which intends to infer some critical information of the user from
the queries sent by the device, through the open communication
network. To prevent the disclosure of secrets, some fictitious
queries may be inserted to the ongoing queries if they are going
to reveal the user’s critical information. Then the resulting query
sequences must be made consistent with some existing queries
not revealing any secret information. This mechanism is shown
in Fig. 1. Since inserting queries may cost certain resources like
electricity, bandwidth and money, the insertion functions may
not insert arbitrary long or arbitrary many queries for obfuscation
in practice. They should be properly designed so that the resource
budget requirements are not violated. In addition, the resources
should not be consumed too sharply so that the insertion func-
tions work economically, i.e., the rate of insertion cost should be
bounded from above.

These requirements lead us to study opacity enforcement
by insertion functions with multiple quantitative objectives. This
problem is discussed under imperfect information due to the
insertion function’s partial observation of the system, i.e., it is
only aware of the occurrence of observable events. The insertion
function aims to enforce opacity under the constraint that each
type of resource of the system never drops below zero, for all
possible system behaviors (worst-case analysis). We transfer this
problem to a two-player game between the insertion function
and the environment, then solve it by constructing a discrete
game structure called Energy Insertion Structure, denoted by EIS.
The insertion function plays by inserting events, which consumes
resources, while the system plays by executing events, which

consumes or gains resources. So the system’s resource levels
dynamically change, which are reflected in EIS.

Based on EIS, we first find the strategies of the insertion
function, which enforce opacity while not violate the energy level
constraints. Among them, we are particularly interested in the
strategies working in an ‘‘economical" way. In other words, there
should exist an upper bound for the rate of insertion cost so that
only a reasonable amount of resource is consumed per step of
insertion. Motivated by this requirement, we further formulate
the bounded insertion cost rate problem as a multidimensional
mean payoff game and solve it by leveraging the hyperplane
separation technique originally proposed in Chatterjee and Velner
(2017).

Our work is inspired by some results on quantitative two-
player games in theoretical computer science, specifically, energy
games and mean payoff games (Apt & Grädel, 2011; Ehrenfeucht
& Mycielski, 1979). In some cases, one player only has imper-
fect information about the game and thus is not informed of
some moves of its opponent. Under imperfect information, energy
games are decidable and known to be ACK-complete (Pérez,
2017) with fixed amount of initial energy, while mean payoff
games are in general undecidable (Degorre, Doyen, Gentilini,
Raskin, & Toruńczyk, 2010). Another generalization is multidi-
mensional game (Chatterjee & Velner, 2017), where both players
have several quantitative objectives. The above works also in-
spired the work (Pruekprasert & Ushio, 2017), which studies
supervisory control for DES using energy games with partial
observation. We adapt some methodology from Pruekprasert and
Ushio (2017) to the different problem of opacity enforcement by
obfuscation. To the best of our knowledge, this paper is the first
to investigate opacity enforcement under multiple quantitative
objectives.

The rest of this paper is organized as follows. Section 2 de-
scribes our system model. Section 3 formulates the energy con-
strained opacity enforcement problem. Section 4 introduces EIS
and presents its construction algorithm. Section 5 solves the
energy constrained opacity enforcement problem based on EIS.
Section 6 formulates the bounded cost rate insertion strategy
synthesis problem and solves it by the hyperplane separation
technique. Finally, Section 7 concludes the paper.

A preliminary version of this paper appears in Ji, Yin and
Lafortune (2018) and the improvement is three-fold. First, Ji, Yin,
et al. (2018) only show the soundness of obtaining insertion
functions from EIS, while this work also shows the completeness.
Second, we extend the one-dimensional quantitative objective
in Ji, Yin, et al. (2018) to the multidimensional case. Finally, we
solve the bounded cost rate insertion strategy synthesis problem,
which was not treated in Ji, Yin, et al. (2018).

2. System model

We consider opacity and its enforcement in a quantitative DES
modeled as a weighted finite-state automaton:

G = (X, E, f , x0, ω)

where X is the finite set of states, E is the finite set of events, f :

X×E → X is the partial state transition function, and x0 ∈ X is the
unique initial state. We denote by XS ⊂ X the set of secret states
that should remain opaque. The transition function is extended to
domain X × E∗ in the standard manner (Cassandras & Lafortune,
2008) and we still denote it by f . The language generated by G is
defined as L(G) = {s ∈ E∗

: f (x0, s)!} where ! means ‘‘is defined".
We write s ≤ u if string s is a prefix of string u; also s < u
if s ≤ u and s ̸= u. We also denote by t ∈ s if string t is a
substring of s. The multidimensional function ω : E → Zk assigns
a k-dimensional weight vector to each event in E where k is a
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(fixed) positive integer and each entry reflects the gain or cost of
a certain type of resource associated with the occurrence of an
event. We denote by ω(i)(e) the ith component of ω(e) for e ∈ E.
In this work, we let

−→
0 be the k-dimensional vector of all 0s. The

function ω is additive, whose domain is extended to E∗ by letting
ω(ϵ) =

−→
0 , ω(se) = ω(s) + ω(e) where s ∈ E∗, e ∈ E.

Given an automaton G, for x1, x2 ∈ X and e ∈ E, we denote by
x1

e
−→ x2 if f (x1, e) = x2. A run in G is a sequence of alternating

states and events: r = x1
e1
−→ x2

e2
−→ · · ·

en−1
−−→ xn and it may be

infinitely long. We denote the set of runs in G by Run(G) and x ∈ r
if x is a state in r . A run is initial if its initial state is the initial state
of the system. Also, a run forms a cycle if x1 = xn and the cycle
is simple if ∀i, j ∈ {1, 2, . . . , n − 1}, i ̸= j ⇒ xi ̸= xj. If r is a
cycle, there is a corresponding loop e1e2 · · · en−1 starting from and
ending in x1. We further call the loop simple if the cycle is simple.

We refer to the set of quantitative resources associated with
the operation of the system as energy. The system is granted
with initial energy vector v0 ∈ Nk to support its operation.
Given s = e0e1 · · · en−1 ∈ L(G), the energy level of the system
after s is V (s) = v0 +

∑n−1
i=0 ω(ei). We also denote by V (i)(s) the

ith component of the k-dimensional vector V (s). Then we make
the following important assumption that the energy level vector
should always be nonnegative in every dimension and we will
explain it in the next section.

Assumption 1. ∀s ∈ L(G), V (s) ≥
−→
0 .

System G is partially observable, i.e., E = Eo ∪ Euo, where Eo
is the set of observable events and Euo is the set of unobservable
events. Given t = t ′e ∈ E∗, its natural projection under P : E∗

→

E∗
o is recursively defined as P(t) = P(t ′)P(e) where t ′ ∈ E∗ and

e ∈ E. The projection of an event is P(e) = e if e ∈ Eo and P(e) = ϵ
if e ∈ Euo ∪ {ϵ}, where ϵ is the empty string.

Given a set of states q ⊆ X , the unobservable reach, denoted
by UR(q), is defined as: UR(q) = {x′

∈ X : ∃x ∈ q, ∃s ∈

E∗
uo, s.t. f (x, s) = x′

}. The observable reach under observable
event eo, denoted by Nexteo (q), is defined as: Nexteo (q) = {x′

∈

X : ∃x ∈ q, eo ∈ Eo, s.t. f (x, eo) = x′
}. Then the observer of

G is: Obs(G) = (Xobs, Eo, δ, xobs,0, ωobs) where Xobs ⊆ 2X is the
state space; δ : Xobs × Eo → Xobs is the transition function and
∀xobs ∈ Xobs, δ(xobs, eo) = UR(Nexteo (xobs)); xobs,0 = UR(x0) is the
initial state; ωobs : Eo → Zk is the same as ω over the restricted
domain Eo. An observer state can be viewed as a (current) state
estimate of the system, which is a subset of X .

3. Problem formulation

In this section, we first review the notion of current-state opac-
ity and the mechanism of insertion functions. Then we formulate
the energy constrained opacity enforcement problem.

Definition 1 (Current-State Opacity (CSO)). Given system G, pro-
jection P , and secret state set XS , G is CSO if ∀t ∈ LS := {t ∈ L(G) :

f (x0, t) ∈ XS}, ∃t ′ ∈ LNS := {t ∈ L(G) : f (x0, t) ∈ (X \ XS)} such
that P(t) = P(t ′).

A system is current-state opaque if for every string reach-
ing a secret state, there exists another string reaching a
non-secret state which shares the same projection, thereby pro-
viding deniability of the secret. CSO can be verified by building
the observer and checking whether an observer state contains
solely secret states. Based on CSO, we define the safe language,
which is the prefix-closure of the projected non-secret strings:
Lsafe = P[L(G)] \ {[P[L(G)] \ P(LNS)] E∗

o }. We also define the unsafe
language Lunsafe = P[L(G)] \ Lsafe.

Given system G and its observer Obs(G), the desired observer
Obsd(G) = (Xd, Eo, δd, xd,0) is obtained by removing all observer

states composed of only secret states and then taking the acces-
sible part, see Ji, Wu, et al. (2018). Here Xd ⊆ Xobs is the state
space, Eo is the set observable events, δd : Xd × Eo → Xd is the
same transition function as δ with restricted domain Xd × Eo, xd,0
is the initial state and we omit the weight function in Obsd(G). It
is easy to see that Obsd(G) generates exactly Lsafe.

Opacity may not always hold and an insertion function may
be used to enforce opacity. The insertion function is an interface
between the output of the system and the external environment
including the intruder. It may insert fictitious events into the
output stream of the system to obfuscate the intruder; see Ji, Wu,
et al. (2018) for more details of this concept.

Definition 2 (Insertion Function). An insertion function is defined
as: fin : E∗

o × Eo → E∗
o Eo such that for l ∈ E∗

o and eo ∈ Eo,
fin(l, eo) = sIeo where sI ∈ E∗

o .

By definition, the insertion function inserts sI before the next
observable event eo given that l has been observed, then it outputs
sIeo. It is likely that sI is ϵ when no event is inserted. An insertion
function fin may be encoded as an input/output (I/O) automaton
IA = (Xia, Eo, E+

o , δia, δoa, xia,0). Here Xia is the state space; Eo is
the set of input events; E+

o = E∗
o Eo is the set of output strings;

δia : Xia×Eo → Xia is the transition function; δoa : Xia×Eo → E+
o is

the output function such that δoa(xia, eo) = sIeo where δia(xia, eo)!
and δia(xia,0, s) = xia, if fin(s, eo) = sIeo; xia,0 ∈ Xia is the initial
state.

We also define a string-based version of fin and with a slight
abuse of notation, denote it by fin as well (it will be clear from the
argument which form of fin is being considered): fin(ϵ) = ϵ and
fin(leo) = fin(l)fin(l, eo).

An insertion function inserts strings based on the observable
behavior of the system. However, unobservable events do occur
between two observable events. As a convention, when we need
to discuss unprojected strings with insertion, we assume without
loss of generality that the inserted string is placed right before
the next observable event in an unprojected string.

Convention 1. Given s = ξ0e0 · · · ξn−1en−1ξn ∈ L(G) where
∀j ≤ n, ξj ∈ E∗

uo and ej ∈ Eo, if fin(e0e1 · · · ej−1, ej) = θjej where
∀j ≤ n, θj ∈ E∗

o , then s is mapped to s′ = ξ0θ0e0 · · · ξjθiej · · · ξnθnen
where P(s′) ∈ P[L(G)].

It is possible that s′ /∈ L(G), but what matters is that P(s′) ∈

P[L(G)], since the intruder only observes strings in P[L(G)] for its
inference of secrets.

Next, we present the notion of private safety from Ji, Wu, et al.
(2018), which indicates that every string in P[L(G)] is mapped to
a safe string under certain insertion choices.

Definition 3 (Private Safety). Given system G with projection P
and safe language Lsafe, insertion function fin is privately safe if
∀s ∈ P[L(G)], fin(s) ∈ Lsafe.

We assume that event insertion always costs energy and de-
fine the insertion weight function ωin : Eo → (Z \ N+)k, which
assigns a k-dimensional weight vector to each inserted event,
where all components are non positive. Function ωin is additive
and its domain is extended to E∗

o by letting ωin(ϵ) =
−→
0 and

ωin(seo) = ωin(s)+ωin(eo) for s ∈ E∗
o , eo ∈ Eo. Equivalently, we may

use −ωin to stand for insertion costs. Without loss of generality,
we assume that ωin(eo) ̸=

−→
0 for all eo ∈ Eo, i.e., insertion of

an observable event always costs energy. The ith component of
ωin(eo) for eo ∈ Eo is denoted by ω

(i)
in (eo).

Next, we define the system’s energy level after insertion as Vm :

L(G) × E∗
→ Zk. Given s = ξ0e0ξ1e1 · · · ξn−1en−1ξn ∈ L(G)

where ∀j ≤ n, ξj ∈ E∗
uo and ej ∈ Eo, suppose s is mapped to
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s′ = ξ0θ0e0ξ1θ1e1 · · · ξn−1θn−1en−1ξn by Convention 1 by some
insertion function; then we let Vm(s, s′) = V (s)+

∑n−1
j=0 ωin(θj). We

will denote s′ by sfin if s is mapped to s′ by fin. Hence, Vm(s, sfin )
is the energy level of the system after string s is modified by
insertion function fin.

Given a non-opaque system G with initial energy vector v0,
we aim to design an insertion function fin which enforces opacity
but never forces the system’s energy level to drop below zero
in the component-wise sense. That is, the insertion function
is constrained by the energy level of the system, i.e., ∀s ∈

P[L(G)], Vm(s, sfin ) ≥
−→
0 . Since insertion always costs energy, we

made Assumption 1 earlier to ensure some energy margins for
the insertion function. We now formally formulate the energy
constrained opacity enforcement problem.

Problem 1. Given system G with initial energy vector v0, the
energy constrained opacity enforcement problem is to find an
insertion function fin such that: (i) fin is privately safe; (ii) ∀s ∈

L(G), Vm(s, sfin ) ≥
−→
0 .

Due to partial observation of the system, we need to estimate
both current states and energy levels of the system so that inser-
tion functions may make proper decisions to enforce opacity. This
issue will be discussed in the following sections. Also notice that
if there exists an insertion function solving Problem 1 with initial
energy vector v0, then the same insertion function also solves the
problem with any initial energy vector v′

0 ≥ v0. We will see later
that this simple monotonicity property allows us to define a finite
structure to embed solutions to Problem 1.

4. Energy insertion structure

In this section we define energy information states and En-
ergy Insertion Structure, which is denoted by EIS. By introducing
these concepts, we transform Problem 1 into a reachability game
with perfect information between the insertion functions and
environment. Then we solve Problem 1 on EIS.

4.1. Building the verifier

We first review the concept of verifier proposed in Ji, Wu, et al.
(2018). It serves as an intermediate structure for constructing EIS
here and encodes potentially feasible insertion choices for opacity
enforcement without considering the energy constraints.

Given system G, in order to build the verifier, we first in-
troduce the feasible observer (Ji, Wu, et al., 2018). The feasi-
ble observer is obtained by adding self-loops for all observable
events at each state in observer Obs(G). Formally, it is defined
as Obsf (G) = (Xf , Eo, δ, δsl, x

f
0) where Xf = Xobs is the state

space; Eo is the set of observable events; δ is the same transition
function as in the observer; δsl : Xf × Eo → Xf is the self-loop
transition function such that ∀xf ∈ Xf , ∀eo ∈ Eo, δsl(xf , eo) = xf ;
xf0 = xobs,0 is the initial state. Thus at a state xf , there may be
two transitions labeled by eo defined: (i) the normal transition
δ representing the occurrence of an observable event and (ii)
transition δsl representing potential event insertion.

Then we synchronize desired observer Obsd(G) and feasible
observer Obsf (G) by the verifier parallel composition (Ji, Wu, et al.,
2018) to obtain the verifier, defined as Gv = (Xv, Eo, δvd, δvs, xv0).
Here Xv ⊆ Xd × Xf is the state space, Eo is the set of observable
events; δvs : Xv×Eo → Xv is the transition function corresponding
to normal transitions in both Obsd(G) and Obsf (G); δvd : Xv ×Eo →

Xv is the transition function corresponding to normal transitions
in Obsd(G) and added self-loop transitions in Obsf (G); xv0 =

(xobs,0, xobs,0) is the initial state. A state xv = (xd, xf ) ∈ Xv has two
components: the left one is the intruder’s estimate and the right

one is the (true) system’s estimate. They are usually different
as insertion functions obfuscate the intruder by manipulating its
observation.

Definition 4 (Verifier Parallel Composition). The verifier parallel
composition ∥v is a special parallel composition between Obsd(G)
and Obsf (G): Gv = Obsd(G)∥vObsf (G) where transition functions
δvs and δvd are defined for synchronization: δvs((xd, xf ), e) :=

(δd(xd, e), δ(xf , e)) and δvd((xd, xf ), e) := (δd(xd, e), δsl(xf , e)) =

(δd(xd, e), xf ).

The transition function δvs captures actual event occurrences,
thus both the intruder’s and the system’s estimates change with
such transitions; while δvd captures event insertions, thus only
the intruder’s estimate is updated. This is consistent with the
mechanism of the insertion function, which is an interface be-
tween the output of the system and the outside environment.
It only changes the intruder’s observations but not the system’s
behavior. Here xd ∈ Xd and xd /∈ 2XS by definition, so what
the intruder observes does not reveal the system’s secrets. For
completeness, we define δvd(xv, ϵ) = xv for all xv ∈ Xv .

4.2. Energy information states

We aim to synthesize an insertion function which enforces
opacity and maintains nonnegative energy level in all dimensions.
To achieve these goals, we integrate the information of state esti-
mates and energy levels into properly defined Energy Information
States. Here we let |·| be the cardinality of a set.

Definition 5 (Energy Information State). Given G, an energy in-
formation state is: qe = ((xd, xf ), [v(1), . . . , v(|xf |)]) ∈ Xv ×

∪
|X |

i=1Z
k×|i|. Let I(qe) and EL(qe) denote the state estimate and

energy level components, respectively, so qe = (I(qe), EL(qe)).

We denote by Q E the set of energy information states, which
track the system’s estimate xd, the intruder’s estimate xf and the
energy levels of the system at each state in xf . Besides, each
qe ∈ Q E induces a belief function hqe : X → Zk. Specifically,
for qe ∈ Q E where I(qe) = (xd, xf ) ∈ Xv , we have EL(qe) =

{hqe (x) : x ∈ xf }. We usually put EL(qe) in a column vector’s
form: [hqe (x1), . . . , hqe (x|xf |)]. By convention, elements in EL(qe)
are placed in an increasing order w.r.t. state names in xf . Our
definition is inspired by the belief function in Degorre et al. (2010)
and the observation function in Pruekprasert and Ushio (2017). In
the following discussion, we use h(i)

qe (x) to denote the ith element
in hqe (x).

To compare energy level vectors, we extend the measure
≤ from scalars to vectors as follows: given two vectors v1 =

[v1(1), v1(2), . . . , v1(k)], v2 = [v2(1), v2(2), . . . , v2(k)] ∈ Zk, we
denote by v1 ≤ v2 (respectively v1 ≥ v2) if ∀1 ≤ i ≤

k, v1(i) ≤ v2(i) (respectively v1(i) ≥ v2(i)). Then we further
extend it to a measure on matrices: given two matrices m1 =

[v1, v2, . . . , vn],m2 = [v′

1, v
′

2, . . . , v
′
n] ∈ Zk×n, we denote by

m1 ≤ m2 if vi ≤ v′

i for all 1 ≤ i ≤ n.
An energy information state qe ∈ Q E is energy safe (or simply

safe) if ∀x ∈ xf where I(qe) = (xd, xf ), hqe (x) ≥
−→
0 . We define an

order ≼ over the set of energy information states: for qe1, q
e
2 ∈ Q E ,

qe1 ≼ qe2 if I(qe1) = I(qe2) and EL(qe1) ≤ EL(qe2). We also say that qe2
subsumes qe1 if qe1 ≼ qe2, i.e., q

e
1 and qe2 share the same verifier state

component but the energy level vector of qe2 is no less than that
of qe1 at every possible current state in I(qe2). By Dickson’s lemma
(see Levy (2002)), the order ≤ on Nm is a well-quasi-ordering for
any m ∈ N. In addition, the Cartesian product of two well-quasi-
ordered sets S ⊆ Nm and T ⊆ Nm by using ≤ is also a well-quasi
ordered set (Nash-Williams, 1963), i.e., (s, t) ≤ (s′, t ′) ⇔ [s ≤

s′] ∧ [t ≤ t ′] for s, s′ ∈ S, t, t ′ ∈ T . Thus we can further argue that
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≼ on safe energy information states is also a well-quasi ordering,
i.e., for any infinite sequence of states qe1, q

e
2 · · · ∈ Q E , ∃i, j ∈ N,

s.t. i < j and qei ≼ qej .
We call qae ∈ Q E

× Eo an augmented energy information
state, i.e., qae is an energy information state augmented with an
observable event. Let IE(qae), E(qae) denote the energy information
state and observable event components of qae, respectively. So we
have qae = (IE(qae), E(qae)). With a slight abuse of notation, we use
hqae to stand for hqe where qe = IE(qae). Besides, qae is (energy) safe
if ∀x ∈ xf where I(IE(qae)) = (xd, xf ), hqae (x) ≥

−→
0 . Then we define

the following two concepts to characterize the update of energy
and augmented energy information states with event insertion
and execution.

For eo ∈ Eo, we say that qae ∈ Q E
× Eo is an eo-execution

successor of qe ∈ Q E if IE(qae) = qe and qae = (qe, eo). In other
words, we simply combine an energy information state qe with an
observable event eo to create an augmented energy information
state qae.

For θ ∈ E∗
o , eo ∈ Eo, we say qe ∈ Q E is a (θ, eo)-insertion

successor of qae = (IE(qae), eo) ∈ Q E
× Eo if: (i) I(qe) = (x′d, x′f ) =

δvs(δvd((xd, xf ), θ ), eo) where I(IE(qae)) = (xd, xf ); (ii) ∀x′
∈ x′f ,

∀1 ≤ i ≤ k, h(i)
qe (x

′) = minξ∈E∗
uo{h

(i)
qae (x)+ω(i)(eo)+ω(i)(ξ )+ω

(i)
in (θ ) :

∃x ∈ xf , s.t. f (x, eoξ ) = x′
}.

Intuitively, a (θ, eo)-insertion successor indicates the update of
state estimates and energy levels after string θ is inserted before
observable event eo. Since event insertion does not change the
system’s estimate, the system’s estimate gets updated after eo
occurs. While the intruder’s estimate is updated with both θ and
eo. For a current state x′ in the system’s estimate x′f , it may be
reached through strings starting from some state(s) x in xf and
those strings may have different unobservable strings as suffixes.
In this case, hqe (x′) indicates the minimum energy level at every
dimension at x′ with the occurrence of eo and unobservable string
ξ from some x ∈ xf s.t. x′

= f (x, eoξ ). We also take into account
the cost of inserted string θ (potentially ϵ). Intuitively, if the worst
case energy level is nonnegative, then the system’s energy level
is always nonnegative.

An insertion-execution sequence is a sequence of alternating
states, inserted strings and executed observable events of the
form: ρ = ye1

e1
−→ ze1

θ1
−→ ye2

e2
−→ ze2 · · ·

en−1
−−→ zen−1

θn−1
−−→ yen where

∀i ≤ n, θi ∈ E∗
o , ei ∈ Eo, yei ∈ Q E , zei ∈ Q E

×Eo, zei is an ei-execution
successor of yei and yei+1 is a (θi, ei)-insertion successor of zei . Such
a sequence may be finite or infinite.

Lemma 1. Given an insertion-execution sequence ρ = ye1
e1
−→

ze1
θ1
−→ ye2

e2
−→ ze2 · · ·

en−1
−−→ zen−1

θn−1
−−→ yen, let I(yei ) = (xdi , x

f
i ) for

all 1 ≤ i < n and let l = e1e2 · · · en−1 and l′ = θ1e1 · · · θn−1en−1,
then δd(xd1, l

′) = xdn in Obsd(G) and δ(xf1, l) = xfn in Obsf (G).

Proof. By induction. First, consider ye1
e1
−→ ze1

θ1
−→ ye2. Since ze1 is an

e1-execution successor of ye1 and ye2 is an (θ1, e1)-insertion succes-
sor of ze1, then (xd2, x

f
2) = δvs(δvd((xd1, x

f
2), θ1), e1). So δd(xd1, θ1e1) =

xd2 and δ(xf1, e1) = xf2 by definitions of δvd and δvs in the verifier
parallel composition.

Then suppose the result holds for ye1
e1
−→ ze1

θ1
−→ ye2

e2
−→

ze2 · · ·
ek−1
−−→ zek−1

θk−1
−−→ yek. When n = k + 1, by a similar argument,

we can show that δd(xdk, θkek) = xdk+1 and δ(xfk, ek) = xfk+1. Com-
bining the inductive hypothesis, we know δd(xd1, θ1e1 · · · θkek) =

xdk+1 and δ(xf1, e1 · · · ek) = xfk+1, so the result also holds at k + 1,
which completes the whole proof. □

Lemma 1 illustrates that in an insertion-execution sequence,
the ‘‘original string" e1e2 · · · en−1 before insertion is defined in

the feasible observer and the string θ1e1 · · · θn−1en−1 after in-
sertion is defined in the desired observer. This result further
implies that the string after insertion is always a safe one, so
private safety is not violated following the insertion choices in
any insertion-execution sequence.

The following theorem shows that the belief function always
returns the minimum energy level at every dimension by strings
that have the same observation and reach some state in the esti-
mate, under certain insertion choices. By convention, we denote

by ρj = ye1
e1
−→ ze1

θ1
−→ ye2

e2
−→ ze2 · · ·

ej−1
−−→ zej−1

θj−1
−−→ yej for 1 ≤ j ≤ n

the jth prefix of ρ. Also we let V (i)
m (s, s′) denote the ith component

of the k-dimensional vector Vm(s, s′).

Theorem 1. Given an insertion-execution sequence ρ = ye1
e1
−→

ze1
θ1
−→ ye2

e2
−→ ze2 · · ·

en−1
−−→ zen−1

θn−1
−−→ yen, let I(y

e
i ) = (xdi , x

f
i ) for all

1 ≤ i ≤ n and let l = e1 · · · en−1, then ∀x ∈ xfn, ∀1 ≤ i ≤ k,
h(i)
yen
(x) = mins{V

(i)
m (s, s′) : ∃x′

∈ xf1, s ∈ P−1(l), s.t. f (x′, s) =

x, δd(xd1, P(s
′)) = xdn} where string s is mapped to s′ following

Convention 1 under insertions indicated by ρ.

Proof. Proof by induction on the length of l. Suppose s =

ξ1e1 · · · ξn−1en−1ξn, P(s) = l = e1 · · · en and s is mapped to s′ =

ξ1θ1e1 · · · ξnθnenξn+1 where θj ∈ E∗
o and P(s′) = θ1e1 · · · θnen = l′.

Let lj = e1 · · · ej and l′j = θ1e1 · · · θjej be the jth prefix of l and l′, re-
spectively. Let l0 = ϵ and sj = ξ1e1 · · · ξj−1ejξj+1, with s0 = ϵ. We
also suppose δvd(δvs(· · · δvs(δvd((xd1, x

f
1), θ1), e1) · · · , ej−1), θj) =

(x′d
j , x′f

j ) and δvs((x′d
j , x′f

j ), ej) = (xdj+1, x
f
j+1) in Gv .

Induction Basis: n = 0, the result holds immediately.
Inductive Hypothesis: Assume that the result holds when n =

j − 1, i.e., for ρj.
Induction Step: consider n = j. First, δvd((xdj , x

f
j ), θj) =

(x′d
j+1, x

′f
j+1) and δvs(δvd((x′d

j+1, x
′f
j+1), θj), ej) = (xdj+1, x

f
j+1) hold by

the definition of the verifier. Then in ρj+1, zej is an ej-execution
successor of yej and yej+1 is a (θj, ej)-insertion successor of zej . So by
definition, ∀x′

∈ xfj+1, ∀1 ≤ i ≤ j, h(i)
yej+1

(x′) = minξj+1∈E∗
uo{h

(i)
yej
(x) +

ω(i)(ej) + ω(i)(ξj+1) + ω
(i)
in (θj) : ∃x ∈ xfj , s.t. f (x, ejξj+1) = x′

}. From
the inductive hypothesis, we have h(i)

yej+1
(x′) =

minsj−1 minξj+1∈E∗
uo{V

(i)
m (sj−1, s′j−1) + ω(i)(ej) + ω(i)(ξj+1) + ω

(i)
in (θj) :

∃x′′
∈ xf1, x ∈ xfj , s.t. f (x′′, sj−1) = x, δd(xd1, P(s

′

j−1)) = xdj ,
f (x, ejξj+1) = x′

}. That is, h(i)
yej+1

(x′) = minsj{V
(i)
m (sj, s′j) : ∃x′′

∈

xf1, sj ∈ P−1(lj), s.t. f (x′′, sj) = x′, δd(xd1, P(s
′

j)) = xdj+1}. Thus the
result holds when n = j, completing the whole proof. □

Given an energy information state ye ∈ Q E , for every x ∈ xf
where I(ye) = (xd, xf ), each component of hye (x) may be due
to different strings with the same projection but different unob-
servable substrings. This can be interpreted as follows: since the
insertion function does not know the occurrence of unobservable
strings, it should be ‘‘conservative" and take into account the
system’s worst-case energy level in every dimension.

4.3. Building the energy insertion structure

We now formally define EIS by construction in Algorithm 1.
EIS is a two-player game structure which reflects the update
of energy and augmented energy information states with event
insertion and execution. It is of the form: EIS = (Q E

Y ,Q E
Z , Eo, f Eyz,

f Ezy, y
e
0, v0,Q E

l ) where Q E
Y ⊆ Q E is the set of energy information

states; Q E
Z ⊆ Q E

× Eo is the set of augmented energy information
states; f Eyz : Q E

Y ×Eo → Q E
Z is the transition function from Q E

Y states
to Q E

Z states; f Ezy : Q E
Z × E∗

o → Q E
Y is the transition function from
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Q E
Z states to Q E

Y states; Eo is the set of observable events; ye0 ∈ Q E
Y

is the initial state; v0 ∈ Nk is the initial energy vector; and Q E
l is

the set of leaf states. We call a Q E
Y state as Y -state and a Q E

Z state
as Z-state. A Z-state ze is deadlocking if ∄θ ∈ E∗

o , s.t. f
E
zy(z

e, θ )!.
Deadlocking Z-states are undesirable and will be pruned away in
constructing EIS.

Algorithm 1: Construction of EIS
Input: Obs(G), Gv , v0
Output: EIS = (Q E

Y ,Q E
Z , E, f Eyz, f

E
zy, Eo, y

e
0, v0,Q E

l )
1: Q E

Y = {ye0} where I(ye0) = (xobs,0, xobs,0), ∀x ∈ xobs,0, ∀i ≤ k,
hi
ye0
(x) = min

ξ∈E∗
uo
{V i(ξ ) : f (x0, ξ ) = x}, and Q F

Z = ∅, Q E
l = ∅;

2: EISpre = DoDFS(ye0,Obs(G),Gv);
3: EIS = Prune(EISpre);
4: procedure DoDFS(ye,Obs(G),Gv)
5: for eo ∈ Eo, s.t. δ(xf , eo)! in Obs(G), where I(ye) = xv =

(xd, xf ) do
6: let ze be an eo-execution successor of ye;
7: add transition ye

eo
−→ ze to f Eyz ;

8: if ze /∈ ZE then
9: Q E

Z = Q E
Z ∪ {ze};

10: for θ ∈ E∗
o , s.t. ∃x̃v = δvd(xv, θ ), δvs(x̃v, eo)! do

11: let y′e be an (θ, eo)-insertion successor of ze;
12: add transition ze

θ
−→ y′e to f Ezy;

13: if y′e /∈ Q E
Y then

14: if y′e is energy safe then
15: Q E

Y = Q E
Y ∪ {y′e

};

16: if there exists a run re = ye0
e0
−→ ze0

θ0
−→

ye1 · · ·
en−1
−−→ zen−1

θn−1
−−→ y′e and ∃j ≤ n, s.t. yej ≼ y′e then

17: let Sub(y′e) = yej , stop searching from
y′e, Q E

l = Q E
l ∪ {y′e

};
18: else DoDFS(y′e,Obs(G),Gv);
19: if y′e is not energy safe then
20: Q E

Y = Q E
Y ∪ {y′e

}, Q E
l = Q E

l ∪ {y′e
}, stop

searching from y′e, ignore all θ ′ s.t. θ < θ ′;
21: procedure Prune(EISpre)
22: for ze ∈ Q E

Z that is deadlocking do
23: remove ze and all ye ∈ Q E

Y , s.t. f
E
yz(y

e, eo) = ze for some
eo ∈ Eo;

24: take the accessible part of the structure;

Algorithm 1 builds the state space of EIS recursively by adding
(θ, eo)-insertion successors and eo-execution successors into the
structure. In general, EIS represents a game with full observa-
tion between the insertion function and the environment. The
environment plays at Y -states and the insertion function plays
at Z-states. The procedure DoDFS builds the state space of EIS
in a depth-first search like process. The game is initiated from
ye0 where the system plays first by executing observable events.
The state estimate component of ye0 contains the initial states
of the observer and the desired observer. For the energy level
matrix EL(ye0), we track the minimum energy level of the system
by unobservable strings. In Line 5, the environment plays by
executing eo if eo is defined from the system’s estimate xf in
observer Obs(G). Then we create an eo-execution successor ze and
define a f Eyz transition out of ye. Note that no string has been
inserted yet and we create ze simply to indicate that some string
may be inserted before observable event eo.

After that, the games goes on and it is the insertion function’s
turn to play by inserting stings. In Line 10, θ is a logically feasible
insertion choice if a δvd transition labeled with θ is defined in

the verifier and the δvd transition is followed by a δvs transition
labeled by some observable event eo. That means θ can be in-
serted before eo without considering the energy constraint. So we
create a (θ, eo)-insertion successor y′e and define a f Ezy transition
out of ze, indicating that θ has been inserted before eo. Since the
initial energy vector is fixed and insertion is costly, there may
only be a finite set of finite-length inserted strings that lead to
nonnegative energy levels. When y′e is safe, i.e., θ is inserted
before eo without violating the energy constraint, we proceed to
check the condition in Line 16. If there exists an initial run re
ending in y′e and yej ∈ re for some j < n, s.t. y′e subsumes yej , then
we know the state estimate I(yej ) is reached again, i.e., I(yej ) =

I(y′e). Let I(yej ) = (xdj , x
f
j ), then we know there exists a simple

cycle xfj
ej
−→ xfj+1 · · ·

en−1
−−→ xfj in the feasible observer Obsf (G) (also

in the observer Obs(G)). There also exists a cycle starting from and
ending in xdj in the desired observer, whose corresponding loop
is l = θjej · · · θn−1en−1. It is also the case that ∀x ∈ xdj , ∀s ∈ P−1(l),
s.t. f (x, s) = x, we have V (s) +

∑n−1
i=j θi ≥

−→
0 . In words, even

after considering the cost of inserting θj, . . . , θn−1 into the original
string, the system’s energy level vector is still nondecreasing in
every dimension.

Even though the structure may be further expanded, we ter-
minate searching from y′e and define Sub(y′e) to store the state
subsumed by y′e. Note that y′e and yej share the same state
estimate while the energy level at y′e is no less than that of
yej in component-wise sense. No matter what decision is made
by the environment at y′e, if the insertion function makes the
same decision at the succeeding state of y′e as it does at the
succeeding state of yej , then all the new succeeding states created
in this manner are energy safe as well. This is consistent with the
monotonicity property discussed at the end of Section 3. Later on,
we will see this observation ensures finiteness of EIS.

If no cycle is detected, we call DoDFS again in Line 18 to con-
tinue searching until no more states are added to the structure.
On the other hand, if y′e is not energy safe, system’s energy level
is below 0 at some dimension. Then we stop searching from y′e

in Line 20 and discard longer string θ ′ where θ < θ ′. Since
ωin(θ ′) < ωin(θ ) ≤ 0, insertion of θ ′ would inevitably drop the
energy level vector below 0 at certain dimension.

DoDFS may result in some deadlocking Z-states where no
insertion can be made. We denote by EISpre the intermediate
structure obtained after DoDFS, then remove deadlocking Z-states
and their preceding Y -states recursively in Procedure Prune since
the observable events from Y -states cannot be blocked from
happening. More reasoning can be found in Ji, Wu, et al. (2018),
where a similar pruning process is conducted. Prune works like
calculating the supremal controllable sublanguage (Cassandras &
Lafortune, 2008) by viewing the environment’s winning states
as undesirable, f Eyz transitions as uncontrollable, f Ezy transitions as
controllable, and Y -states as marked. Next, we show Algorithm 1
stops after a finite number of steps and returns a finite structure,
namely, EIS.

Theorem 2. The state space of EIS is finite.

Proof. By contradiction. Suppose that EIS is infinite. The number
of outgoing transitions at each state is finite since Eo is finite
and there are only a finite number of insertion choices defined
at a Z-state due to energy constraints. Then by König’s lemma
(see, e.g., Levy (2002)), there exists an infinite run ye1

e1
−→ ze1

θ1
−→

ye2
e2
−→ ze2

θ2
−→ ye3 · · · in EIS. From Algorithm 1, every state in

the run is energy safe and it is never the case that ∃i < j, s.t.
yei ≼ yej . However, this contradicts the well-quasi ordering ≼ on
safe energy information states. □
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The size of EIS is bounded by Ackermann function (Rackoff,
1978) following a similar augment as in Degorre et al. (2010),
which also presented a procedure of ‘‘unfolding" the game graph
until some simple cycles are formed or the energy level drops
below 0. The complexity of EIS exceeds its counterpart without
energy constraint (Ji, Wu, et al., 2018).

In EIS, we call a leaf state ye ∈ Q E
l as a good leaf state if ye

is energy safe, otherwise, we call it a bad leaf state. We denote
the sets of good and bad leaf states by Q E

lg and Q E
lb, respectively.

In order to win the game and solve Problem 1, the insertion
function should make decisions such that only good leaf states are
reached. The environment just does the opposite to prevent the
insertion function from winning, thus the game on EIS is a zero
sum reachability game. We elaborate the reasoning and discuss
both players’ strategies in the next section.

Example 1. Let the automaton G in Fig. 2 be with observable
events Eo = {a, b, c, d}, unobservable events Euo = {u1, u2,
u3, u4, u5, u6, u7}, and secret states XS = {x7, x8, x10}. The system
is granted with initial energy v0 = [9, 9]T where T stands for
the transpose of a matrix. The weight function in this example is
2-dimensional and the weight vector of each event is shown in
Fig. 2. Additionally, the insertion weight function ωin is defined
as follows: ωin(a) = [−3, −6]T , ωin(b) = [−1, −3]T , ωin(c) =

[−2, −2]T , ωin(d) = [−3, −1]T .
The observer is shown in Fig. 3 with states: A = {x0, x3, x4, x9},

B = {x1}, C = {x2}, D = {x5, x6}, E = {x7, x8} and F = {x10}. The
system is not current state opaque due to states E and F , thus we
apply insertion functions to enforce opacity. The desired observer
Obsd(G) is obtained by removing E and F from Obs(G) and taking
the accessible part, while the feasible observer Obsf (G) is obtained
by adding self-loops for every event in Eo at every state in Obs(G);
their figures are omitted here due to space limitations. Next
we build the verifier Gv in Fig. 4 following Definition 4, where
dashed lines indicate δvd transitions and solid lines indicate δvs
transitions. Gv contains all potentially feasible insertion choices.

Then we follow Algorithm 1 to build EIS in Fig. 5, where square
states stand for Y -states while oval states stand for Z-states. In
DoDFS, the game is initiated from ye0 where the environment plays
first: it can execute events a, b or c. For example, if b is executed,
then b-execution successor ze0 = (ye0, b) is reached where it is
the insertion function’s turn to play; while if a is inserted, then
a-insertion successor ye1 is reached. We have I(ye1) = (C,D) as
δvd((A, A), a) = (B, A) and δvs((B, A), b) = (C,D) in Gv . Also
h(1)
ye1
(x5) = min{h(1)

ye0
(x3) + ω(1)(b) + ω

(1)
in (a), h(1)

ye0
(x4) + ω(1)(b) +

ω
(1)
in (a)} = 5, h(2)

ye1
(x5) = min{h(2)

ye0
(x3) + ω(2)(b) + ω

(2)
in (a), h(2)

ye0
(x4) +

ω(2)(b)+ ω
(2)
in (a)} = 3, h(1)

ye1
(x6) = min{h(1)

ye1
(x5)+ ω(1)(u4), h

(1)
ye1
(x5)+

ω(1)(u5)} = 0 and h(2)
ye1
(x6) = min{h(2)

ye1
(x5) + ω(2)(u4), h

(2)
ye1
(x5) +

ω(2)(u5)} = 0. Hence ye1 = {(C,D),
[
5, 0
3, 0

]
}. The other states are

calculated similarly.
The first component of h(2)

ye1
(x5) = [5, 3]T comes from string

u2u3b and insertion of a, while the second component comes from
string u1u3b and insertion of a. Since the insertion function does
not know whether u2u3b or u1u3b occurs when it observes b,
it has to estimate the worst case energy level, which is consis-
tent with Theorem 1. We list the energy and augmented energy
information states obtained from DoDFS in Table 1.

After DoDFS, we find ye2 ≼ ye4, y
e
21 ≼ ye19 and ye23 ≼ ye19, so we

stop searching from ye4, y
e
21 and ye23. Besides, y

e
5, y

e
7, y

e
8, y

e
9, y

e
10, y

e
11,

ye12, y
e
16, y

e
17, y

e
18, y

e
24 are not energy safe so they are the bad leaf

states. Furthermore, Z-state ze5 is deadlocking since no transition
is defined out of it. Then we prune away ze5 and its preceding
Y -state ye13 in process Prune of Algorithm 1. The final EIS is shown
in Fig. 5, where the dashed lines represent deleted states in the
pruning process from EISpre to EIS.

Fig. 2. System G with secret states x7 , x8 , x10 .

Fig. 3. The observer Obs(G).

Fig. 4. The verifier Gv where dashed transitions are δvd transitions and solid
transitions are δvs transitions.

Fig. 5. Energy Insertion Structure (without dashed states).

5. Solution to the opacity enforcement problem

In this section, we discuss the strategies for both players to
win the game on the Energy Insertion Structure. We also show
that the insertion function’s winning strategies in EIS lead to
sound solutions to Problem 1.

The runs in EIS are finite insertion-execution sequences and
we denote the set of runs in EIS by Run(EIS). Given re ∈ Run(EIS),
we denote by ye ∈ re and ze ∈ re if ye (respectively ze) is a
Y -state (respectively Z-state) in re. Let LastY (re) and LastZ (re) be
the last Y -state and Z-state of re, respectively, and denote by
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Table 1
Energy and augmented energy information states.

ye0 = {{A, A},

[
9, 10, 7, 7
9, 10, 9, 8

]
} ze0 = {{A, A},

[
9, 10, 7, 7
9, 10, 9, 8

]
, b}

ye1 = {(C,D),
[
5, 0
3, 0

]
} ze1 = {(C,D),

[
5, 0
3, 0

]
, c}

ye2 = {(B, E),
[
2, 1
2, 1

]
} ze2 = {(B, E),

[
2, 1
2, 1

]
, c}

ye3 = {(B, E),
[
3, 2
1, 0

]
} ze3 = {(B, E),

[
1, 0
3, 2

]
, c}

ye4 = {(B, E),
[
2, 1
2, 1

]
} ye5 = {(B, E),

[
4, 3
0, −1

]
}

ye6 = {(B, E),
[
1, 0
3, 2

]
} ze4 = {(B, E),

[
3, 2
1, 0

]
, c}

ye7 = {(B, E),
[
0, −1
4, 3

]
} ye8 = {(B, E),

[
−4, −5
0, −1

]
}

ye9 = {(B, E),
[
−2, −3
−2, −3

]
} ye10 = {(B, E),

[
−3, −4
−1, −2

]
}

ye11 = {(B, E),
[
−1, −2
−3, −4

]
} ye12 = {(C,D),

[
2, −3

−2, −5

]
}

ye13 = {(D,D),
[
8, 9
3, 6

]
} ze5 = {(D,D),

[
8, 9
3, 6

]
, c}

ze6 = {(A, A),
[
9, 10, 7, 7
9, 10, 9, 8

]
, c} ye14 = {(B, F ),

[
5
1

]
}

ye15 = {(B, F ),
[
3
3

]
} ye16 = {(B, F ),

[
2

−4

]
}

ye17 = {(B, F ),
[

0
−2

]
} ye18 = {(B, F ),

[
−2
0

]
}

ze7 = {(A, A),
[
9, 10, 7, 7
9, 10, 9, 8

]
, a} ye19 = {(B, B),

[
1
1

]
}

ze8 = {(B, B),
[
1
1

]
, b} ye20 = {(C, C),

[
2
1

]
}

ze9 = {(C, C),
[
2
1

]
, c} ye21 = {(B, B),

[
4
3

]
}

ze10 = {(B, B),
[
1
1

]
, d} ye22 = {(C, C),

[
1
2

]
}

ze11 = {(C, C),
[
1
2

]
, c} ye23 = {(B, B),

[
3
4

]
}

ye24 = {(B, E),
[

0, −1
−4, −5

]
}

Runy(EIS) (respectively Runz(EIS)) the set of runs whose last states
are Y -states (respectively Z-states).

Given an initial run re = ye0
e0
−→ ze0

θ0
−→ · · · yen−1

en−1
−−→ zen−1

θn−1
−−→

yen, the edit projection Pe : Run(EIS) → P[L(G)] is defined such
that Pe(re) = e0e1 · · · en−1. So Pe just returns the original string
before any insertion takes place. For re ∈ Run(EIS), we denote it
by re(l) if Pe(re) = l. We call θ0e0θ1e1 · · · θn−1en−1 as the generated
string of re and denote it by lg (re), i.e., lg (re) is the string after
insertion. By Lemma 1, δd(xobs,0, lg (re)) is defined in Obsd(G), so
lg (re) ∈ L(Obsd(G)) = Lsafe, i.e., l is mapped to a safe string by
insertion decisions in EIS.

Then we define strategies for both players in EIS. The in-
sertion function’s strategy (insertion strategy) is defined as πin :

Runz(EIS) → E∗
o and the environment’s strategy as πen : Runy(EIS)

→ Eo. When it is a player’s turn to play, it selects a transition
according to its strategies. Since the insertion function does not
know the occurrence of unobservable events and makes decisions
from its observations, its strategy is called observation based.
Denote the set of all insertion strategies by Πin and the set of
all environment’s strategies by Πen. From an insertion strategy,
we know exactly the decisions of an insertion function, so from
now on, we use ‘‘insertion strategy" and ‘‘insertion function"
interchangeably.

A strategy πi ∈ Πi for player i ∈ {in, en} in EIS is called
positional if the decisions only depend on the current energy
(augmented energy) information state. In other words, πi ∈ Πi
is positional if πi(rf ) = πi(r ′

f ) for all rf , r ′

f ∈ Run(EIS) such
that Last(rf ) = Last(r ′

f ). Therefore, positional strategies for the
insertion function and the environment can be represented as
πin : Q E

Z → E∗
o and πen : Q E

Y → Eo, respectively. From
results in Apt and Grädel (2011) and Ehrenfeucht and Mycielski
(1979), positional strategies are sufficient for players to win a
reachability game, thus we simply assume both players’ strategies
are positional in the rest of this section.

If the insertion function plays πin while the environment plays
πen from the initial state ye0, then a unique initial run, denoted by
re(πin, πen), is generated. We also define Run(πin, ye) = {ye

e1
−→

ze1
θ1
−→ ye2 · · ·

en−1
−−→ zen−1

θn−1
−−→ yen : ∀i < n, θi = πin(ye

e1
−→ ze1

θ1
−→

ye2 · · · yei
ei
−→ zei )} as the set of runs starting from ye and consistent

with insertion strategy πin, i.e., insertion decisions in the run are
specified by πin. The set of runs consistent with an environment’s
strategy πen are defined analogously.

In EIS, we say that the insertion function wins the game if
only good leaf states are reached while the environment wins
if bad leaf states are reached. Thus they play a finite-duration
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zero sum reachability game. By defining the energy information
states, we have constructed a game under full observation on EIS.
Therefore, either the supervisor or the environment has a winning
strategy (Apt & Grädel, 2011). Formally speaking, πin ∈ Πin is
winning from ye if ∀re ∈ Run(πin, ye), LastY (re) ∈ Q E

l ⇒ LastY (re) ∈

Q E
lg , i.e., πin is a winning strategy for the insertion function if all

runs consistent with it end in a good leaf state. In other words,
the insertion function wins if private safety is satisfied and the
energy level of the system is never below 0 in every dimension.

We define the insertion function’s winning region Winin in EIS
as the set of states where it has a strategy to reach a good leaf
state no matter what strategy the environment plays. This is a
commonly used concept in graph game theory, see., e.g. (Apt &
Grädel, 2011). Then we present Algorithm 2 to compute Winin.

Algorithm 2: Compute the insertion function’s winning region

Input: EIS
Output: Winin
1: Remove all bad leaf states from EIS;
2: while ∃ze ∈ Q F

Z , s.t. z
e is deadlocking do

3: Remove ze and all ye ∈ Q E
Y , s.t. f

E
yz(y

e, eo) = ze for some
eo ∈ Eo;

4: Take the accessible part of the structure;
5: Denote the remaining structure by EISw;
6: if EISw is not empty then
7: Return all states in EISw;
8: else Return ∅;

In Algorithm 2, we prune away bad leaf states and calculate
the winning region for the insertion function in an iterative man-
ner. We first remove all bad leaf states from EIS. If the removal
of bad leaf states results in some deadlocking Z-states, then we
know all transitions from such Z-states lead to bad leaf states,
where the insertion function loses the game for sure. Thus we
further remove those Z-states and their preceding Y -states where
the environment has a way to reach the deadlocking Z-states.
This process continues until no more states are removed and we
denote the resulting structure by EISw . The pruning process works
in a fixed-point iteration manner.

By definition, a privately safe insertion function (strategy)
maps every string in P[L(G)] to a safe one. However, state pruning
may remove all potentially feasible insertion choices for a partic-
ular string if they all violate energy constraints. Thus we need to
guarantee that all strings in P[L(G)] are still preserved in the EISw

after the pruning. Before proving that assertion, we present the
following result from Algorithm 2.

Lemma 2. If Winin ̸= ∅, then ∄l ∈ P[L(G)], s.t. ∀πin ∈ Πin,
∀re ∈ Run(πin, ye0) with Pe(re) = l, LastY (re) ∈ Q E

lb in EIS.

Proof. By contradiction. Assume ∃l ∈ P[L(G)], s.t. ∀πin ∈ Πin,
∀re ∈ Run(πin, ye0) with Pe(re) = l in EIS, LastY (re) ∈ Q E

lb. Suppose

l = e0 · · · en−1 and re = ye0
e1
−→ ze1

θ1
−→ ye2 · · ·

en−1
−−→ zen−1

θn−1
−−→ yen ∈

Run(πin, ye0). Since LastY (re) ∈ Q E
lb holds for all re ∈ Run(πin, ye0)

with Pe(re) = l and for all πin ∈ Πin, the last Y -state of every
run in Run(πin, ye0) with Pe(re) = l is pruned in Algorithm 2.
Then we know the last Z-state of each run in Run(πin, ye0) with
Pe(re) = l becomes deadlocking so those zen−1 are pruned away
as well. Furthermore, we also prune away all preceding Y -states
yen−1 such that f Eyz(y

e
n−1, en−1) = zen−1 by Algorithm 2. This process

continues until the initial state ye0 is pruned, so EISw is empty. □

Next we slightly modify EISw: merge ye with Sub(ye) by letting
all transitions going to ye reach Sub(ye) instead, if Sub(ye) is

defined in Algorithm 1. Intuitively, we assume that the game
continues at the leaf states of EISw , which share the same state
estimate with the state subsumed by them. We denote the re-
sulting structure by EISm and extend concepts of runs and both
players’ strategies to EISm. Besides, the energy level vector at each
leaf state is no less than that at the state subsumed by the same
leaf state. Thus if every leaf state is energy safe, the system’s
energy level vector never contains a negative element when
their state estimates are reached again. In this way the game is
extended to be infinite-duration without loss of generality since
we assume that the insertion functions in EISw always make the
same decisions at each leaf state and the state subsumed by it.
Therefore, if the insertion function plays according to strategies
in EISm, it will always maintain the system’s energy level above 0
in each dimension. This is an implication of the monotonicity of
energy game discussed at the end of Section 3: if the insertion
function wins the game from some state with energy level vector
v ∈ Nk, it also wins the game from the same state with any energy
level vector v′

≥ v.
In EISm, we define the unmodified language Lu(EISm) = {l ∈

P[L(G)] : ∃re ∈ Run(EISm), s.t. Pe(re) = l}, where Run(EISm)
denotes the set of runs in EISm. Lu(EISm) just ‘‘retrieves" the
original language before any insertion takes place. Then we prove
a property of Lu(EISm) in Lemma 3.

Lemma 3. If Winin ̸= ∅, then Lu(EISm) = P[L(G)].

Proof. By the definition of Lu(EISm), Lu(EISm) ⊆ P[L(G)] holds
immediately. Thus we only need to show P[L(G)] ⊆ Lu(EISm) and
we proceed by contradiction. Assume that Lu(EISm) ⊈ P[L(G)]
and ∃l ∈ P[L(G)] but l /∈ Lu(EISm). Then by construction of
EIS and EISm, there exists a finite prefix l′ < l, s.t. ∀πin ∈ Πin,
∀re ∈ Run(πin, ye0) with Pe(re) = l′, LastY (re) ∈ Q E

lb. That is, there
exists a finite string in P[L(G)] such that no insertion strategy in
EISm can map it to a safe string without reaching a bad leaf state.
However, that means Winin = ∅ by Lemma 2, which contradicts
the assumption. □

Now we are now ready to state one of the main results in this
paper. Given a winning insertion strategy in EIS, we can always
construct an insertion function solving Problem 1. Conversely,
if there exists an insertion function solving Problem 1, we can
always find a winning insertion strategy in EIS.

Theorem 3. There exists an insertion function solving Problem 1 if
and only if there exists a winning strategy for the insertion function
in EIS.

Proof. The ‘‘only if" part: by contrapositive, i.e., if no winning
insertion strategy exists in EIS, then no insertion function solves
Problem 1. If no strategy exists for the insertion function to reach
good leaf states in EIS, then we know the winning set Winin is
empty, i.e., Algorithm 2 returns an empty set. So by Lemma 2,
∃s ∈ L(G) with P(s) = l = e0 · · · en−1, s.t. for all initial re(l) ∈

Run(EIS), LastY (re(l)) ∈ Q E
l ⇒ LastY (re(l)) ∈ Q E

lb, i.e., all runs
with original string l end in bad leaf states. Then by the pruning
process in Algorithm 2, every initial run re(l) is removed, thus the
initial state of EIS is also removed and EISw becomes empty. From
the construction process in Algorithm 1, for all feasible insertion
choices θ0, . . . , θn−1 s.t. s is mapped to s′ by Convention 1 and
θ0e0 · · · θn−1en−1 ∈ Lsafe, we have that Vm(s, s′) <

−→
0 . In other

words, no matter what string is inserted into l, the system’s
energy level would drop below 0 at some dimension. Thus no
insertion function solves Problem 1.

The ‘‘if" part. Suppose that πin is a winning insertion strategy
in EIS. Since we follow Algorithm 2 to obtain Winin and EISw , then
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Fig. 6. EISw with a winning insertion strategy indicated by blue lines. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

πin is also in EISw . Then we extend EISw to EISm by merging states.
By definition of EIS, the state estimate component of each state
is in Xv ⊆ Xobsd ×Xobs so the intruder’s estimate is always in Xobsd.
Since by the definition of the desired observer, ∀xobsd ∈ Xobsd,
xobsd /∈ 2XS , we know πin maps every string in P[L(G)] into a safe
string.

Besides, ∀s ∈ L(G) with P(s) = l = e0e1 · · · en−1, suppose that
there exists a run re(l) = ye0

e0
−→ ze0

θ0
−→ ye1

e1
−→ · · · yen−1

en−1
−−→

zen−1
θn−1
−−→ yen consistent with πin in EISm, denoted by rπin (l).

Every ye ∈ rπin (l) is energy safe and the belief function in each
energy information state returns the minimum energy level of the
system at every dimension under certain insertion choices. Then
from Theorem 1, we know that ∀s ∈ P−1(l) ∩ L(G), Vm(s, sπin ) ≥
−→
0 , therefore πin solves Problem 1. □

The above theorem shows the completeness and soundness of
Algorithms 1 and 2. Therefore, Problem 1 can be solved by first
building EIS and then finding the insertion function’s winning
strategies if they exist. As was shown in the last section, the state
space of EIS is bounded by Ackermann function, which is not
primitive recursive. Also, both the winning set and strategies for
a reachability game can be computed in linear time with respect
to the size of EIS from results in Apt and Grädel (2011). Therefore
we have the complexity bound for solving Problem 1. We end this
section by revisiting our running example.

Example 2.
We revisit Example 1 and synthesize insertion functions to

solve Problem 1. We follow Algorithm 2 and build EISw in Fig. 6.
In Algorithm 2, all bad leaf states are removed and the winning
region Winin is the set of states in EISw . Here we use dashed
lines to connect each good leaf state with the state subsumed by
it. Observe that condition Lu(EISm) = P[L(G)] holds for EISm in
Fig. 6 so that every string in P[L(G)] may be mapped to some safe
strings. From EISw , we find one winning insertion strategy, which
solves Problem 1 and is indicated by blue lines in Fig. 6. Finally,
we encode this selected insertion function as an I/O automaton
in Fig. 7, where the insertion decisions are explicitly shown.

Fig. 7. An insertion function that solves Problem 1.

6. Bounded cost rate insertion strategies

In the last section, we have solved the opacity enforcement
problem so that the system’s energy level at every dimension
never drops below 0. Since event insertion always costs energy, it
is beneficial to explore an economical way of insertion for prac-
tical purposes. Motivated by this requirement, we propose the
concept of bounded cost rate insertion strategies and investigate
their synthesis in this section.

6.1. Motivation and problem formulation

The structure EISw obtained in the last section usually con-
tains more than one insertion strategies that solve Problem 1.
Generally, there exist cycles in the original system thus insertion
functions may need to insert fictitious events infinitely often
to enforce opacity, in which case event insertion consumes an
infinite amount of energy. From a practical point of view, it is
desirable to require that the insertion function’s long run rate of
energy consumption be bounded so that the designer may control
the energy consumed per insertion step.

To facilitate our discussion, we proceed as before and merge
each leaf state of EISw with the state subsumed by it, resulting in
EISm. As was discussed earlier, the same decision is made at the
leaf state and at the state subsumed by it; also, the same game
starts from the leaf states as from the subsumed states. Thus we
are able to discuss infinite-duration games on EISm.

To explore the rate of insertion cost, we first define Vc :

Run(EISm) → (Z \N)k as the accumulative insertion cost function
for runs in EISm. Given rm = ye0

e1
−→ ze1

θ1
−→ ye2 · · ·

en−1
−−→ zen−1

θn−1
−−→ yen,

Vc(rm) =
∑n

i=1 ωin(θi). We also define Vmc : Runinf (EISm) → Rk

as the limit mean insertion weight function for infinite runs in
EISm. Given rm = ye1

e1
−→ ze1

θ1
−→ ye2

e2
−→ ze2

θ2
−→ · · ·, Vmc(rm) =

lim infn→∞
1
n

∑n
i=1 ωin(θi). Then we propose the bounded cost rate

insertion strategy synthesis problem.

Problem 2. Synthesize a bounded cost rate insertion strategy
πin such that for any infinite initial run rm ∈ Runinf (πin, ye0),
−Vmc(rm) ≤ vb for some threshold vector vb ∈ Nk.

Intuitively, we require the long run average of insertion cost be
below a threshold under bounded rate cost insertion strategies, so
that the rate of insertion cost does not blow up. This problem is
discussed on EISm and is meaningful when the original system G
is cyclic, i.e., there are infinite runs in G and the EISm. Problem 2
can be viewed as a multidimensional mean payoff game (Chat-
terjee & Velner, 2017) between the insertion function and the
environment. Specifically, the insertion function tries to main-
tain multidimensional mean payoff vectors bounded by a given
threshold vb while the antagonistic environment tires to spoil
the goal. Furthermore, this game is with complete information
as inserted events and insertion cost are known to both players.
Due to this fact, we may ignore the state information but only
focus on weights associated with fzy transitions in EISm.
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We add a minus sign on both sides of the inequality in Prob-
lem 2 and obtain lim infn→∞

1
n

∑n
i=1 ωin(θi) ≥ −vb. Equivalently,

we may show whether lim infn→∞
1
n

∑n
i=1(ωin(θi) + vb) ≥

−→
0

holds. Hence, we add vb to each insertion weight vector in EISm
and discuss the equivalent mean payoff objective. For simplicity,
we still denote the game graph by EISm. We further let W =

max{−ω
(i)
in (θ ) : ∃ze ∈ Q E

Z , θ ∈ E∗

o , s.t. f Ezy(z
e, θ )!, 1 ≤ i ≤ k} be the

maximal absolute value of elements in insertion weight functions
in EISm. Obviously, W is a positive integer.

6.2. Hyperplane separation technique

A multidimensional mean payoff game is more challenging
to solve than a one-dimensional game since the objectives in
different dimensions may be in conflict. In this section, we apply a
recently-proposed method called hyperplane separation technique
from Chatterjee and Velner (2017) to solve Problem 2. Originally,
this technique was developed for general multidimensional mean
payoff games. The main idea is to reduce the multidimensional
mean payoff game in Problem 2 to a one-dimensional mean
payoff game on the same graph and then solve it. It can be further
shown that there is close relation between the winning regions
of both players in the original game and the induced game.

Since the algebraic mean of a set of vectors can always be
expressed as a convex combination of those vectors, we have the
following observation: if there exists a convex combination of the
cost vectors such that some dimensions remain negative, then
there exists a strategy for the environment to spoil the goal of
the insertion function in Problem 2. Intuitively, we are going to
‘‘separate" the convex combinations leading to each player to win
the game. By linear space theory, a hyperplane may also be used
to separate vectors in a linear space.

In a linear space, a vector v lies above a hyperplane H with
normal vector λ if vT

· λ ≥ 0; otherwise, it lies below H; see,
e.g., Boyd and Vandenberghe (2004). Furthermore, if the mean
payoff vector resulted from a game lies below a hyperplane
containing the origin, then it has at least one negative element.
Therefore, if such a hyperplane exists, then the insertion function
fails to enforce its multidimensional mean payoff objective and
loses the game. On the other hand, if the insertion function is
able to achieve mean payoff vectors that lie above all possible
hyperplanes, then it can ensure its objective and win the game.

Given a k-dimensional insertion weight vector ωin(θ ) for some
insertion decision θ and a vector λ ∈ Rk, we denote by ωin(θ )T ·λ

the inner product between ωin(θ ) and λ. With a slight abuse of
notation, we also use ωT

in · λ when there is no need to specify the
insertion decision θ .

Then we assign ωT
in·λ to the edge labeled with insertion weight

function ωin in EISm and transfer a game with multidimensional
objective to one with one-dimensional objective. From the above
discussion, the insertion function achieves a mean payoff vector
that lies above H or a mean payoff vector with all nonnegative
elements if and only if it ensures that the one-dimensional mean
payoff objective remains nonnegative, with weight function ωT

in ·λ

in EISm. Therefore, our goal is to search for such hyperplanes,
which transfers the problem of solving a multidimensional mean
payoff game to one of finding a proper normal vector in the
k-dimensional integer space.

6.3. Synthesize bounded cost rate insertion strategies

We establish the relation between the original multidimen-
sional mean payoff game and the induced one-dimensional mean

payoff game after applying the hyperplane separation technique.
Then we derive solutions to Problem 2.

Denote by Winem (respectively Winim) the winning region of
the environment (respectively the insertion function) in the mul-
tidimensional mean payoff game with weight function ωin; fur-
ther denote by Winλ

em (respectively Winλ
im) the winning region

of the environment (respectively the insertion function) in the
one-dimensional mean payoff game with weight function ωT

in · λ.
From now on, we focus on the environment’s winning strategies.
Since a mean payoff game under complete information is deter-
mined (Ehrenfeucht & Mycielski, 1979), i.e., from any vertex in
the game graph, exactly one player has a winning strategy, we
may directly obtain the insertion function’s winning strategies
afterwards.

Given a vector λ ∈ Rk, we do the inner product between λ

and each insertion weight vector in EISm to obtain a game with
scalar insertion weights, while we do not consider the weights
associated with event occurrence anymore. In the new game, we
hope to achieve a nonnegative mean payoff objective. We repeat
Lemma 1 and Lemma 2 of Chatterjee and Velner (2017) here: (i)
For every λ ∈ Rk, we have Winλ

em ⊆ Winem; also if Winλ
em ̸= ∅,

then Winem ̸= ∅; (ii) If for all λ ∈ Rk we have Winλ
em = ∅,

then Winem = ∅. These results establish the relation between the
winning regions for both players in the original game and the new
game.

These results illustrate a potential way to determine whether
the environment player has a non-empty winning region in the
multidimensional mean payoff game: we just need to check all
λ ∈ Rk to determine whether the environment wins the one-
dimensional mean payoff game with weight function ωT

in · λ. The
readers are referred to Chatterjee and Velner (2017) for detailed
proofs.

Therefore, the key point is to search for a hyperplane and
then determine the winner of the induced one-dimensional mean
payoff game. However, it seems that we need to check infinitely
many vectors in Rk, which is not feasible in practice. Fortunately,
by Lemma 3 in Chatterjee and Velner (2017), we only need to
check a finite number of vectors in a k-dimensional space. Let
M = (k · n · W )k+1, where W is the maximal absolute value in
insertion weight functions defined in EISm, n is the number of
states in EISm, and k is the number of dimensions. For a positive
integer i, we denote by Z±

i = {j ∈ Z : −i ≤ j ≤ i} (resp.
Z+

i = {j ∈ N : 1 ≤ j ≤ i}) the set of integers (positive integers)
from −i to i (resp. from 1 to i). Lemma 3 of Chatterjee and Velner
(2017) is stated here: There exists λ ∈ Rk such that Winλ

em ̸= ∅ if
and only if there exists λ′

∈ (Z±

M )k such that Winλ′

em ̸= ∅. The proof
is omitted.

To summarize and strengthen the above results, we repeat
Lemma 4 in Chatterjee and Velner (2017) as a theorem here.

Theorem 4. Given the multidimensional mean-payoff game on
EISm, we have that: (1)

⋃
λ∈(Z+

M )k Winλ
em ⊆ Winem; (2) if

⋃
λ∈(Z+

M )k

Winλ
em = ∅, then Winem = ∅.

This theorem illustrates that if the environment wins the one-
dimensional mean payoff game with weight vector ωT

in · λ at a
certain state in EISm for some λ ∈ (Z+

M )k, then it also has a
way to beat the insertion function and win the multidimensional
mean payoff game from the same state; conversely, if the inser-
tion function wins any one-dimensional mean payoff game with
weight vector ωT

in · λ where λ ∈ (Z+

M )k at a state in EISm, then
the insertion function also wins the original multidimensional
game from that state. This theorem suggests that we can restrict
attention to vectors in (Z+

M )k and determine which player wins
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the transformed one-dimensional game. More details concerning
the proof of the theorem can be found in Chatterjee and Velner
(2017).

Based on the above results, we present Algorithm 3 to solve
Problem 2. We first assume that states in EISm are numbered from
1 to n. At each state, we sequentially iterate over vector λ ∈ (Z+

M )k
to see if there exists a winning strategy for the environment
with weight function ωT

in · λ by the pseudo-polynomial algorithm
proposed in Brim, Chaloupka, Doyen, Gentilini, and Raskin (2011)
for mean payoff games. Then we define the attractor for each
player in EISm. Let Q be a set of states in EISm, then for the
environment (‘‘em" for short), Attrem(Q ) is defined recursively as
follows: Q0 = Q , Qj+1 = Qj ∪ {ye ∈ Q E

Y : ∃ze ∈ Qj, eo ∈

Eo s.t. f Eyz(y
e, eo) = ze} ∪ {ze ∈ Q E

Z : ∀ye ∈ Q E
Y : [∃θ ∈

E∗
o , s.t. f Ezy(z

e, θ ) = ye] ⇒ [ye ∈ Qj]} and Attrem(Q ) =
⋃

j≥0 Qj. The
environment ensures to reach Qi from Qi+1 within one transition
regardless of the insertion function’s strategies, so it may reach
states in Q from states in Attrem(Q ) within a finite number of
transitions regardless of the insertion function’s strategies. On
the other hand, the environment may avoid reaching Q if it is
at states outside of Attrem(Q ). Similarly, we define the attractor
for the insertion function.

Algorithm 3: Find solutions to Problem 2

Input: EISm
Output: Insertion strategies solving Problem 2
1: for j = 1 : n do
2: if qj is still in the remaining structure then
3: Consider qj ∈ Q E

Y ∪ Q E
Z in EISm;

4: for λ ∈ (Z+

M )k do
5: if there exists an environment’s winning strategy

from qj to achieve a negative mean payoff in the transformed
one-dimensional game with weight function ωT

in · λ by the
method in Section 5 of Brim et al. (2011) then

6: Remove Attrem({qj}) from EISm;
7: if the remaining structure is not empty then
8: Return insertion strategies in the structure;
9: else No solution exists for Problem 2.

In Algorithm 3, we apply the method in Brim et al. (2011)
to solve the induced one-dimensional mean payoff game and
this method outperforms any other known method in terms of
complexity. If at the current state in EISm, there exists a winning
strategy for the environment for the one-dimensional mean-
payoff objective with weight function ωT

in ·λ, then we remove the
attractor of the current state and proceed to the next iteration.
The reason is that if the environment wins the mean payoff
game from a vertex in the game graph, it also wins the game
from the attractor of the current vertex.1 Thus the game graph
may be shrinking when the algorithm is running. However, if
the environment is unable to win the one-dimensional game for
any λ ∈ (Z+

M )k at the current state, i.e., the insertion function
has a winning strategy to enforce a nonnegative mean payoff
from the current state for all λ ∈ (Z+

M )k, then the insertion
function may enforce a mean payoff vector with all nonnegative
elements. Thus this state should be included in the winning
region of the insertion function for the multidimensional mean
payoff game. Therefore, after all states in EISm are checked, the

1 The pruning here is similar to calculating the supremal controllable
sublanguage (Cassandras & Lafortune, 2008) by viewing the environment’s
winning states as undesirable, f Eyz transitions as uncontrollable, f Ezy transitions
as controllable, and Y -states as marked.

Fig. 8. EISm after merging states.

insertion function has winning strategies for Problem 2 against
all environment’s strategies if the remaining structure is not
empty. Otherwise, no solution exists for Problem 2 if all states
of EISm are removed. Besides, as positional strategies suffice to
win a mean payoff game with perfect information (Ehrenfeucht &
Mycielski, 1979), we simply let strategies returned by Algorithm
3 be positional so that a finite number of strategies are returned.
The correctness of Algorithm 3 is from Theorem 4 and more
details concerning solving a one-dimensional mean payoff game
are available in Brim et al. (2011).

Finally, we briefly discuss the complexity of Algorithm 3 fol-
lowing a similar argument as in Chatterjee and Velner (2017).
When running the algorithm, we need n iterations under the
worst case and in each iteration we solve at most Mk one-
dimensional mean payoff games. Thus the iterative algorithm
needs to solve O(n·Mk) one-dimensional mean payoff games with
m edges, n vertexes, and the maximal weight being at most k ·W ·

M (as the maximum element in all λ ∈ (Z+

M )k is M , the maximum
weight in every dimension of ωin isW , and we sum k dimensions).
Since one-dimensional mean payoff games with n vertexes, m
edges and maximal weight W can be solved in time O(n·m·W ) by
the method proposed in Brim et al. (2011), the overall complexity
of the algorithm is O(n2

· m · k · W · (k · n · W )k
2
+2k+1), which

is polynomial in terms of the number of vertexes when k is
fixed.

Example 3.
We revisit Example 2 and further discuss Problem 2 based on

the solutions of Problem 1. We show EISm in Fig. 8 after merging
the leaf states with states subsumed by them in EISw . Then we
investigate the bound of insertion cost rate by starting with
threshold vb = [3, 3]T and see if Problem 2 has a solution. It is
seen that EISm contains cyclic runs and this problem is discussed
on them. We add vb to each insertion cost vector in EISm to obtain
the new weight vectors ωin(b)+vb = [2, 0]T , ωin(d)+vb = [0, 2]T ,
ωin(ϵ) + vb = [3, 3]T and those events are inserted in cyclic
runs. After running Algorithm 3, we find that there exist insertion
strategies solving Problem 2. The detailed process is tedious and
is omitted here. For example, one feasible insertion strategy is to
choose to insert b at Z-state ze2. Then it is easy to see that this
strategy achieves a positive mean payoff value.
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However, if we change the threshold vector to v′

b = [1, 1]T ,
then Problem 2 has no solution. From Fig. 8, we see that two
simple cycles ye2

c
−→ ze2

{b}
−→ ye3

c
−→ ze3

{d}
−→ ye2 and ye2

c
−→ ze2

{d}
−→ ye6

c
−→

ze4
{b}
−→ ye2 both have weight vector ωin(b) + ωin(d) = [−4, −4]T .

Since −ωin(b)−ωin(d)
2 = [2, 2]T > vb, no insertion strategy can

enforce mean payoff threshold [1, 1]T .

7. Conclusion

This work investigated opacity enforcement by insertion func-
tions under multiple quantitative constraints for the first time
in discrete event systems. The system is initialized with certain
types of energy and the energy levels change dynamically with
event insertion and execution. Our goal is to synthesize an in-
sertion function that enforces opacity as well as ensures that
the system’s energy level in every dimension is never below
zero. We transferred the constrained opacity enforcement prob-
lem to a two-player game between the insertion function and
the environment. A bipartite information structure called Energy
Insertion Structure was defined to characterize the game. It also
provides a sound and complete characterization of the solution
space. Then we subsequently considered the rate of insertion cost
and formulated the bounded cost rate insertion strategy synthesis
problem, which was characterized as a multidimensional mean
payoff game. A method called hyperplane separation technique
was applied to reduce the multidimensional game to a one-
dimensional game on the same graph. Additional analysis showed
that by solving the induced game, we obtain valid solutions for
the original problem.
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