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a b s t r a c t

Detectability of discrete event systems is a property to decide whether the current and subsequent
states can be determined based on observations. We investigate the existence of algorithms for
checking strong and weak detectability for systems modeled as labeled Petri nets. Strong detectability
requires that we can always determine, after a finite number of observations, the current and
subsequent markings of the system, while weak detectability requires that we can determine, after
a finite number of observations, the current and subsequent markings for some trajectories of the
system. We show that there is an algorithm to check strong detectability requiring exponential space,
and that there is no algorithm to check weak detectability.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

State estimation is one of the central problems in systems and
control, playing a key role in problems where one needs to esti-
mate the state of the system based on observations (Ozveren &
Willsky, 1990; Ramadge, 1986; Shu, Lin, & Ying, 2007). We study
such a property called detectability for labeled Petri nets (LPNs).
The concept of detectability was proposed by Shu et al. (2007) for
finite-state automata. It asks whether the current and subsequent
states can be determined based on observations. Since then, it
has drawn a considerable attention in the literature (Keroglou &
Hadjicostis, 2017; Shu & Lin, 2011, 2013; Yin, 2017), including
studies on the complexity of verification of different notions
of detectability (Masopust, 2018; Yin & Lafortune, 2017; Zhang,
2017) and a generalization to, e.g., stochastic DES (Keroglou &
Hadjicostis, 2017; Yin, 2017).

In this paper, we study the existence of algorithms for the
verification of strong and weak detectability for LPNs, where the
Petri net structure and the initial marking are known, and the
system is partially observed via a labeling function.
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For systems modeled by finite-state automata, there is an al-
gorithm checking strong detectability in polynomial time (Shu &
Lin, 2011) (actually, there is an efficient parallel algorithm (Maso-
pust, 2018)). However, any algorithm checking weak detectabil-
ity requires polynomial space (Yin & Lafortune, 2017; Zhang,
2017), and hence, according to the current knowledge, expo-
nential times; this holds even for a very restricted type of au-
tomata (Masopust, 2018).

For systems modeled by LPNs, Zhang and Giua (2018) recently
showed undecidability of weak detectability for LPNs with in-
hibitor arcs, which are computationally universal models, and
stated the decidability questions of strong and weak detectability
for LPNs as open problems.

In this paper, we solve these problems. Namely, we show that
checking strong detectability for LPNs is decidable, by expressing
it as a path formula in Yen’s logic, the satisfiability of which is
decidable (Yen, 1992), and that any algorithm requires exponen-
tial space, and is thus infeasible. Then we show that checking
weak detectability for LPNs is undecidable, solving the second
open problem and improving the result of Zhang and Giua (2018).
We prove it by reduction from the language inclusion problem of
two LPNs.

2. Preliminaries and definitions

We assume that the reader is familiar with the basics of Petri
nets (Peterson, 1981). For a set A, |A| denotes the cardinality of A.
An alphabet Σ is a finite nonempty set of events. A word over
Σ is a sequence of events of Σ . Let Σ∗ denote the set of all
finite words over Σ , the empty word denoted by ε, and let Σω
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denote the set of all infinite words over Σ . For a word u ∈ Σ∗,
|u| denotes its length. Let N = {0, 1, 2, . . .} denote the set of all
non-negative integers.

A Petri net is a structure N = (P, T , Pre, Post), where P is a
finite set of places, T is a finite set of transitions, P ∪ T ̸= ∅

and P ∩ T = ∅, and Pre: P × T → N and Post: P × T → N are
the pre- and post-incidence functions specifying the arcs directed
from places to transitions and vice versa. A marking is a map
M: P → N assigning to each place a number of tokens. A Petri
net system (N,M0) is the Petri net N with the initial marking M0.
A transition t is enabled in a marking M if M(p) ≥ Pre(p, t) for
every place p ∈ P . An enabled transition t can fire, resulting in
the marking M ′(p) = M(p)− Pre(p, t)+ Post(p, t) for every p ∈ P .
We write M

σ
−→N to denote that the sequence of transitions σ is

enabled in M of N , and M
σ
−→N M ′ to denote that the firing of

the sequence σ results in a marking M ′. For simplicity, we omit
the subscript N if the net is clear from the context. We write
L(N,M0) = {σ ∈ T ∗

| M0
σ
−→} to denote the set of all transition

sequences enabled in the marking M0. A marking M is reachable
in the Petri net system (N,M0) if there is a sequence of transitions
σ ∈ T ∗ such that M0

σ
−→ M . The set of all markings reachable from

M0 defines the reachability set of the Petri net system (N,M0),
denoted by R(N,M0).

A labeled Petri net system is a quadruple G = (N,M0, Σ, ℓ),
where (N,M0) is a Petri net system, Σ is an alphabet (a set of
labels), and ℓ: T → Σ ∪ {ε} is a labeling function assigning
to each transition t ∈ T a symbol from Σ ∪ {ε}. The labeling
function can be extended to ℓ: T ∗

→ Σ∗ by ℓ(σ t) = ℓ(σ )ℓ(t)
for σ ∈ T ∗ and t ∈ T ; we define ℓ(λ) = ε for the empty
transition sequence λ. A transition t ∈ T is observable if ℓ(t) ∈ Σ;
unobservable otherwise. The language of G is the set L(G) =

{ℓ(σ ) | σ ∈ L(N,M0)}. Similarly, Lω(G) is the set of all infinite
words generated by G. Finally, for a word s ∈ L(G), R(G, s) =

{M | σ ∈ L(N,M0), ℓ(σ ) = s, M0
σ
−→ M} denotes the set of all

reachable markings consistent with the observation s.
As usual when detectability is discussed (Shu & Lin, 2011), we

make the following two assumptions on the system G: (i) G is
deadlock free, i.e., in every reachable marking of the system, there
is a transition that can fire, and (ii) G cannot generate an infinite
unobservable sequence.

3. Strong detectability

Strong detectability requires that we can determine, after a
finite number of observations, the current and subsequent states
for all trajectories of the system, formally defined as follows.

Definition 1. An LPN system G = (N,M0, Σ, ℓ) is strongly
detectable if there is an integer n ≥ 0 such that for every infinite
word s ∈ Lω(G) and every finite prefix s′ of s, if s′ is longer than
n, then |R(G, s′)| = 1.

To check strong detectability, it suffices to verify whether
there are two arbitrarily long sequences with the same obser-
vation leading to two different markings. To formalize this idea,
we use the twin-plant construction for Petri nets used to test
diagnosability (Cabasino, Giua, Lafortune, & Seatzu, 2012; Yin &
Lafortune, 2017) and prognosability (Yin, 2018).

Let G = (N,M0, Σ, ℓ) be an LPN, and let G′
= (N ′,M ′

0, Σ, ℓ) be
a place-disjoint copy of G, i.e., N ′

= (P ′, T , Pre′, Post ′) where P ′
=

{p′
| p ∈ P} is a disjoint copy of P and the functions Pre′ and Post ′

are adjusted in the natural way. The copy G′ has the same initial
marking as G, i.e., M ′

0(p
′) = M0(p) for every p′

∈ P ′. We define a
Petri net (N∥,M0,∥) = ((P∥, T∥, Pre∥, Post∥),M0,∥) that is essentially
the (label-based) synchronization of G and G′, where the set of
places is P∥ = P∪P ′, the initial marking M0,∥ = [M⊤

0 M ′

0
⊤
]
⊤

is the

concatenation of the initial markings of G and G′, the transitions
T∥ = (T∪{λ})×(T∪{λ})\{(λ, λ)} are pairs of transitions of G and G′

without the empty pair, and the functions Pre∥: P∥ × T∥ → N and
Post∥: P∥ × T∥ → N are defined as follows: (i) for every p ∈ P and
every t ∈ T with ℓ(t) = ε, we define Pre∥(p, (t, λ)) = Pre(p, t)
and Post∥(p, (t, λ)) = Post(p, t); (ii) for every p′

∈ P ′ and every
t ∈ T with ℓ(t) = ε, we define Pre∥(p′, (λ, t)) = Pre′(p′, t) and
Post∥(p′, (λ, t)) = Post ′(p′, t); (iii) for every p ∈ P and every
t1, t2 ∈ T with ℓ(t1) = ℓ(t2) ̸= ε, we define Pre∥(p, (t1, t2)) =

Pre(p, t1) and Post∥(p, (t1, t2)) = Post(p, t1); (iv) for every p′
∈

P ′ and every t1, t2 ∈ T with ℓ(t1) = ℓ(t2) ̸= ε, we define
Pre∥(p′, (t1, t2)) = Pre′(p′, t2) and Post∥(p′, (t1, t2)) = Post ′(p′, t2);
(v) otherwise, no arc is defined, i.e., Pre∥(p, t) = Post∥(p, t) = 0.

Essentially, (N∥,M0,∥) tracks all pairs of sequences that have
the same observation. Namely, for any (σ , σ ′) ∈ L(N∥,M0,∥), we
have ℓ(σ ) = ℓ(σ ′), and for any σ , σ ′

∈ L(N,M0) such that ℓ(σ ) =

ℓ(σ ′), there is a sequence in (N∥,M0,∥) whose first and second
components are σ and σ ′, respectively (possibly by inserting the
empty transition sequence λ). For an example of the construction,
we refer the reader to the literature (Cabasino et al., 2012; Yin,
2018).

Theorem 2. An LPN G = (N,M0, Σ, ℓ) is not strongly detectable
if and only if, in (N∥,M0,∥), there exists a sequence

M0,∥
α

−→N∥
M1

β
−→N∥

M2
γ

−→N∥
M3

such that (M1 ≤ M2) ∧ |β| > 0 ∧
⋁

p∈P M3(p) ̸= M3(p′).

Proof. (⇐) Suppose that there is such a sequence. Let Mi,1 and
Mi,2, for i = 1, 2, 3, denote the first and the second components
of Mi, respectively, that is, Mi = [M⊤

i,1 M⊤

i,2]
⊤ where the lengths

of Mi,1 and Mi,2 coincide and are equal to the number of places
in G. Let α = (α1, α2), β = (β1, β2), and γ = (γ1, γ2). By the
construction of N∥, ℓ(α1) = ℓ(α2), ℓ(β1) = ℓ(β2), and ℓ(γ1) =

ℓ(γ2). Since |β| > 0, either β1 or β2 is not the empty transition;
without loss of generality, let β1 ̸= λ.

Let n ∈ N be an arbitrary natural number. We consider an
infinite sequence α1β

m+1
1 γ1w ∈ Lω(G), where w is an arbitrary

infinite continuation of the sequence σ1 = α1β
m+1
1 γ1 such that

ℓ(w) ̸= ε; such a continuation exists by the assumptions that
the system is deadlock free and there is no infinite unobservable
sequence. The sequence σ1 is well defined in G because M1 ≤ M2,
and hence the sequence σ2 = α2β

m+1
2 γ2 ∈ L(G) is also well

defined in G. Let M0
σ1
−→N Mσ1 and M0

σ2
−→N Mσ2 . Then

Mσi = Mi,3 + m · (Mi,2 − Mi,1).

Let p be a place such that M3(p) ̸= M3(p′). Then we can always
find an integer m ≥ n such that Mσ1 (p) ̸= Mσ2 (p

′). Since s =

ℓ(α1β
m+1
1 γ1) = ℓ(α2β

m+1
2 γ2) is a prefix of ℓ(α1β

m+1
1 γ1w), we have

that {Mσ1 ,Mσ2} ⊆ R(G, s), and hence |R(G, s)| > 1. Moreover,
M1 ≤ M2 implies the existence of βω

1 in G, and hence ℓ(β1) ̸= ε,
because ℓ(β1) = ε would give ℓ(βω

1 ) = ε, which contradicts
the assumption that no such sequence exists. Therefore, |s| ≥

m + 1 > n. Since n was chosen arbitrarily, the system is not
strongly detectable.

(⇒) Suppose that the system is not strongly detectable, that
is, for every n ∈ N there exist s ∈ Lω(G) and a finite prefix s′
of s such that |s′| ≥ n and |R(G, s′)| > 1. Then, for any n ∈ N,
there are sequences α, β ∈ L(N,M0) such that (i) ℓ(α) = ℓ(β)
and |ℓ(α)| = |ℓ(β)| ≥ n, and (ii) M0

α
−→N Mα and M0

β
−→N Mβ

with Mα ̸= Mβ . By (i) and the construction of N∥, there exists
a sequence σ ∈ L(N∥,M0,∥) in N∥ such that σ is in the form of
σ = (α, β). Let σ = t1t2 · · · tk for some ti ∈ T∥ and k ≥ n, and
let M1,M2, . . . ,Mk be the markings induced by the transitions,
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i.e., M0,∥
t1
−→N∥

M1
t2
−→N∥

M2
t3
−→N∥

· · ·
tk
−→N∥

Mk, where Mk =

[M⊤
α M⊤

β ]
⊤.

Consider a computation tree consisting of the computations
described above. Note that the same marking may appear at
different places as different vertices of the tree. There is such a
computation of length at least n for every n ∈ N, and hence the
tree is infinite. Therefore, by König’s lemma (König, 1927) stating
that every finitely branching infinite tree contains an infinite
path, there is an infinite path C0, C1, C2, . . . in the tree, where C0
is the initial marking M0,∥. Then, since vectors of natural numbers
with the product order form a well-quasi-ordering, Dickson’s
lemma (Dickson, 1913) implies that there are i < j such that Ci ≤

Cj. Since the tree consists only of computations of the above form,
C0, C1, . . . , Cj is a prefix of such a computation, and hence there
is a sequence Cj+1, . . . , Cm such that C0, C1, . . . , Cj, Cj+1, . . . , Cm
is a computation of the above form, that is, Cm is of the form
[M⊤

α M⊤

β ]
⊤ for some α and β satisfying (i) and (ii) above. Consider

the sequence

M0,∥
t1···ti
−−→N∥

Ci
ti+1···tj
−−−→N∥

Cj
tj+1···tm
−−−−→N∥

Cm.

Since Cm = [M⊤
α M⊤

β ]
⊤ and Mα ̸= Mβ , there is a place p such

that Cm(p) = Mα(p) ̸= Mβ (p′) = Cm(p′). Finally, |ti+1 · · · tj| > 0,
because i < j, and hence the sequence satisfies the statement of
the theorem. □

To state our first result, we briefly recall a fragment of Yen’s
path logic, the satisfiability of which is decidable (Atig & Haber-
mehl, 2011; Yen, 1992). Let M1,M2, . . . be variables representing
markings and σ1, σ2, . . . be variables representing finite
sequences of transitions. Every mapping c ∈ N|P| is a term. For all
j > i, if Mi and Mj are marking variables, then Mj − Mi is a term,
and if T1 and T2 are terms, then T1 + T2 and T1 − T2 are terms. If
c ∈ N and t ∈ T , then #t (σ1) ≤ c and #t (σi) ≥ c are transition
predicates, where #t (σ ) denotes the number of occurrences of
t in σ . If T1 and T2 are terms and p1, p2 ∈ P are places, then
T1(p1) = T2(p2), T1(p1) < T2(p2), and T1(p1) > T2(p2) are
marking predicates. A predicate is a positive boolean combination
of transition and marking predicates. A path formula is a formula
of the form (∃σ1, σ2, . . . , σn)(∃M1, . . . ,Mn)(M0

σ1
−→ M1

σ2
−→ · · ·

σn
−→

Mn) ∧ ϕ(M1, . . . ,Mn, σ1, . . . , σn) where ϕ is a predicate.

Theorem 3. Strong detectability is decidable for LPNs.

Proof. The formula of Theorem 2 can be expressed as the follow-
ing path formula:

(∃σ1, σ2, σ3, σ4)(∃M1,M2,M3,M4)

(M0,∥
σ1

−−→N∥
M1

σ2
−−→N∥

M2
σ3

−−→N∥
M3

σ4
−−→N∥

M4)

∧(M2 ≤ M3) ∧ |σ1| = 0 ∧ |σ3| > 0 ∧

⋁
p∈P

M4(p) ̸= M4(p′),

where |σ1| = 0 is equivalent to ∧t∈T#t (σ1) ≤ 0 and |σ3| > 0
is equivalent to ∨t∈T#t (σ3) > 0. Note that M4 can be written as
term M4 −M1 +M0,∥, where M4 −M1 and M0,∥ are terms (M4 and
M1 are marking variables but M0,∥ is a constant). Therefore, the
last term

⋁
p∈P M4(p) ̸= M4(p′) is equivalent to⋁

p∈P

(
(M4 − M1 + M0,∥)(p)> (M4 − M1 + M0,∥)(p′)

∨ (M4 − M1 + M0,∥)(p)< (M4 − M1 + M0,∥)(p′)

)
,

which is a valid predicate of Yen’s path logic. □

To discuss the lower bound complexity, we show that check-
ing strong detectability requires exponential space. We reduce
the coverability problem, which is known to be EXPSPACE-
complete (Esparza, 2018).

Fig. 1. Sketch of the hardness construction.

Theorem 4. Checking strong detectability is EXPSPACE-hard.

Proof. Given a Petri net system (N,M0), the coverability problem
asks whether there is a reachable marking that covers a given
marking M .

Let (N,M0) and M be the instance of the coverability problem.
We construct a new Petri net as follows (see Fig. 1 for an illus-
tration). We add two new unobservable transitions tuo,1 and tuo,2,
and two new place pnew,1 and pnew,2 initialized with zero tokens
to (N,M0), and we define Pre(p, tuo,1) = Pre(p, tuo,2) = M(p)
for p ∈ P , and Post(pnew,i, tuo,i) = 1 for i = 1, 2; unspecified
mappings are defined as zero. We add a new isolated place pnew,3
initialized with one token, and define a new self-loop transition
tloop in pnew,3 to guarantee that the system is deadlock free. Finally,
we define the labeling function ℓ: T∪{tuo,1, tuo,2, tloop} → T∪{tloop}
by ℓ(t) = t for t ∈ T ∪ {tloop}, and ℓ(tuo,1) = ℓ(tuo,2) = ε.

By the construction, unobservable transitions tuo,1 and tuo,2
can be fired if and only if M can be covered. Thus, if these two
unobservable transitions are firable, then the modified system is
not strongly detectable because we cannot distinguish between
the tokens in pnew,1 and pnew,2. On the other hand, if these two un-
observable transitions are not firable, then all firable transitions
are observable, which directly implies that the system is strongly
detectable. Overall, the original system covers M if and only if the
modified system is strongly detectable. Hence, deciding strong
detectability is EXPSPACE-hard. □

4. Weak detectability

In some applications, we only need to determine, after a finite
number of observations, the current and subsequent states for
some trajectories of the system. This property is referred to as
weak detectability and is defined as follows.

Definition 5. An LPN system G = (N,M0, Σ, ℓ) is weakly
detectable if there is an integer n ≥ 0 and a word s ∈ Lω(G) such
that |R(G, s′)| = 1 for any prefix s′ of s of length at least n.

We now show that deciding weak detectability is undecidable
for LPNs.

Theorem 6. Weak detectability is undecidable for LPNs.

Proof. Let G1 and G2 be two LPNs with no unobservable tran-
sitions, i.e., ℓ(t) is not the empty word for any transition t . It
is well-known that the inclusion problem, which asks whether
L(G1) ⊆ L(G2), is undecidable (Hack, 1976) for LPNs even when all
transitions are observable. Next, we reduce the inclusion problem
to the weak detectability verification problem.

From G1 and G2, we construct an LPN G as follows. We create
10 new places p0 up to p9, and we use new labels x, a, and b as
depicted in Fig. 2. Place p1 (resp. p4, p7) is connected by a self-loop
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Fig. 2. Sketch of the construction; labels depicted in transitions.

to every transition of G1 (resp. G2). Intuitively, p1 (resp. p4, p7)
allows G to simulate G1 (resp. G2). For every place of G1, we create
a new transition labeled by a to which the place is connected, and
through which there is a self-loop from place p2 back to place
p2. The intuition is that p2 allows G to remove tokens from the
G1 part under a word from a∗. The rest of the Petri net G is as
depicted in Fig. 2.

The initial marking of G consists of a single token in place p0.
At the beginning, only the transitions connected to place p0 are
enabled. Then, after the first transition (which is labeled by x), the
net G simulates either G1 or G2 from their corresponding initial
markings, and hence the ω-language of G is

{xwxay(w)bω
| w ∈ L(G1)} ∪ {xwx(aω

+ a∗bω) | w ∈ L(G2)}
∪ {xw | w ∈ Lω(G1) ∪ Lω(G2)}

where y(w) is finite and depends on the number of tokens in the
net G1 after generating the word w ∈ L(G1).

We show that L(G1) ⊆ L(G2) if and only if G is not weakly
detectable.

If L(G1) ⊈ L(G2), then there exists a word w ∈ L(G1) − L(G2).
We now consider all markings of G1 after generating the word
w. There can be several, but a finite number of such markings,
because the length of w is finite and there are no transitions
labeled by ε in G1. We sum the tokens in every such marking
and let k denote its maximum. This means that after generating
xwxakb, the marking of G is such that a single token is in place
p3, no tokens are in the part of G1, because k is the maximum
number of tokens in G1 after generating w, so we had to use all
of them to generate ak, and the part of G2 contains no tokens.
If the net now keeps generating bω , we stay in this marking for
ever. This is the only marking reachable by the ω-word xwxakbω ,
because w /∈ L(G2). Thus, the net is weakly detectable; the n from
the definition is n = |xwx| + k + 1, which is a constant for such
a fixed word w.

If L(G1) ⊆ L(G2), then any word xvxaubω generated using the
part with G1, that is, v ∈ L(G1) and u is bounded by the number

of tokens in any marking of G1 reachable after generating v in G1,
can be simulated using the part of G2. Moreover, any word from
{xwx(aω

+ a∗bω) | w ∈ L(G2)} ∪ {xw | w ∈ Lω(G2)} generated by
the part using G2 always leads to at least two different markings
because of the two identical parts in G simulating G2, cf. the places
p4, p5, p6 and p7, p8, p9, and hence G is not weakly detectable. □

5. Discussion

Our proof of Theorem 6 is similar, but more involved, than
the construction of Tong, Li, Seatzu, and Giua (2017) showing
that checking current-state opacity is undecidable. The secret
set in their construction is infinite in general, and hence it is a
natural question whether undecidability of current-state opacity
follows from the infinity of the secret set. In other words, whether
current-state opacity is decidable if the secret set is finite. As a
consequence of Theorem 6, current-state opacity is undecidable
even if the secret set consists of a single marking (Masopust &
Yin, 2018).
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