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a b s t r a c t

We study the problem of dynamic sensor activation for centralized partially-observed discrete event
systems. The sensors can be turned on/off online dynamically according to a sensor activation policy
in order to satisfy some observation property. We consider a general class of properties, called
Information-State-based (or IS-based) properties, which include, but are not limited to, observability,
K -diagnosability, predictability, and opacity. We define a new Most Permissive Observer (MPO) that
generalizes previous versions of this structure. Based on the generalized MPO, we first synthesize
a logical minimal or maximal sensor activation policy based on a set inclusion criterion. Then we
study the synthesis of optimal solutions for a given quantitative objective function that considers
numerical activation costs and switching costs. Our results generalize previous works on dynamic
sensor activation for enforcement of specific properties.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

We consider dynamic sensor activation problem in centralized
and partially-observed Discrete Event Systems (DES). The objec-
tive in this problem is to synthesize a sensor activation policy
that dynamically turns sensors on/off online in order to achieve
a given objective, e.g., to control the system or to diagnose faults.
This problem is important since in many applications turning
more sensors on implies that more energy or bandwidth is con-
sumed. Therefore, it is of interest to synthesize a sensor activation
policy that is optimal with respect to some criterion, subject to
the constraints of the problem.

Dynamic sensor activation has been studied extensively in the
DES literature; see, e.g., Cassez, Dubreil, and Marchand (2012),
Cassez and Tripakis (2008), Dallal and Lafortune (2014), Shu,
Huang, and Lin (2013), Thorsley and Teneketzis (2007), Wang,
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Lafortune, Lin and Girard (2010), Wang, Lafortune, Girard and Lin
(2010), Yin and Lafortune (2018), Zhang, Shu, and Lin (2015) and
the recent survey paper (Sears & Rudie, 2016) for an extensive
bibliography. In Cassez and Tripakis (2008) and Thorsley and
Teneketzis (2007), the problem of dynamic sensor activation for
the purpose of fault diagnosis was studied. In Wang, Lafortune
and Girard et al. (2010) and Wang, Lafortune and Lin et al. (2010),
both centralized and decentralized sensor activation problems
for the purposes of control and diagnosis, respectively, were
studied. In Shu et al. (2013), an online approach was proposed
for detectability.

In Cassez and Tripakis (2008), a game structure called the
Most Permissive Observer (MPO) was proposed for solving the
problem of dynamic sensor activation for the purpose of fault
diagnosis. The MPO is a finite structure that embeds, in some
sense to be made precise later in this paper, all valid sensor
activation policies, i.e., all policies that enforce the property of
K -diagnosability. This approach was extended to timed systems
in Cassez (2010) and to the problem of opacity in Cassez et al.
(2012). An information-state-based characterization of the MPO
structure was proposed in Dallal and Lafortune (2014) in the
context of the enforcement of K -diagnosability. Similar game-
theoretical approach has also been used in Wu and Lafortune
(2014) and Yin and Lafortune (2016) for different purposes.

In this paper, we use the MPO approach to investigate the
sensor activation problem for centralized partially-observed DES.
However, instead of investigating the enforcement of a partic-
ular property, e.g., observability, diagnosability, or opacity, as
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Table 1
Comparison between the proposed general approach and previous approaches in sensor activation problems.

Cost Property

Observability Diagnosability Detectability Predictability Opacity Anonymity

Previous
results

Logical
cost

Wang, Lafortune
and Lin et al.
(2010)

Dallal and
Lafortune (2014),
Wang, Lafortune
and Girard et al.
(2010)

Shu et al. (2013) N/A Zhang et al. (2015) N/A

Activation
cost

N/A Cassez and
Tripakis (2008),
Thorsley and
Teneketzis (2007)

N/A N/A Cassez et al.
(2012)

N/A

Switching
cost

N/A N/A N/A N/A N/A N/A

This paper All three costs for all the above properties

was done in previous works, we study a general class of prop-
erties called Information-State-based (IS-based) properties, that
captures all properties previously considered, and more. Specif-
ically, we formulate the problem of dynamic sensor activation
for any property that can be expressed as an IS-based property.
To solve this problem, we define a generalized version of the
most permissive observer. Then we present algorithms for the
synthesis of optimal sensor activation policies under qualitative
or quantitative performance objectives.

Compared with prior works where the MPO was employed
(Cassez et al., 2012; Cassez & Tripakis, 2008; Dallal & Lafortune,
2014), the MPO defined in this paper is more general since we
consider a general class of properties. The problem of optimal
sensor activation for predictability, which to the best of our
knowledge, has not been considered so far in the literature,
can also be solved by our approach. Moreover, our approach
can be employed to solve sensor activation problems for the
enforcement of a wide class of user-defined properties that can
be expressed as IS-based properties. Also, we solve a quantitative
optimization problem by considering numerical activation costs
and switching costs. Previously, only activation costs were consid-
ered in the literature (Cassez et al., 2012; Cassez & Tripakis, 2008;
Thorsley & Teneketzis, 2007). However, considering switching
costs is important in many applications, since turning a sensor
on/off too frequently may decrease its life span. To the best
of our knowledge, such a switching cost for sensor activation
has never been considered in the DES literature. Our proposed
approach is compared with previous works in Table 1, where
all of the problems listed can be solved with our new approach.
Preliminary and partial versions of some of the results in Sections
3, 4, and 6 appear in Yin and Lafortune (2015).

2. Preliminaries and problem formulation

2.1. System model

The system under consideration is modeled by a deterministic
finite state automaton G = (Q , Σ, δ, q0), where Q is the finite
set of states, Σ is the finite set of events, δ : Q × Σ → Q is the
partial transition function, and q0 is the initial state. The transition
function δ is extended to Q × Σ∗ in the usual manner (see,
e.g., Cassandras & Lafortune, 2008). The language generated by
G from state q is defined by L(G, q) = {s ∈ Σ∗

: δ(q, s)!}, where !

means ‘‘is defined’’. We write L(G, q) as L(G) if q = q0. The prefix-
closure of a language L is L = {s ∈ Σ∗

: ∃w ∈ Σ∗ s.t. sw ∈ L}.
We use notation |·| to denote the length of a string. We denote
by L/s the post-language of L after s, i.e., L/s = {t ∈ Σ∗

: st ∈ L}.
We say a language L is live if ∀s ∈ L, ∃σ ∈ Σ : sσ ∈ L. Hereafter,
we assume w.l.o.g. that L(G) is live.

The sensors are turned on/off dynamically based on the obser-
vation history. When the sensor corresponding to an event σ ∈ Σ

is turned ‘‘on’’, we say that the event is being monitored. While
an event is monitored, any occurrence of it will be observed. The
set of events θ ∈ 2Σ that we decide to monitor, at any point,
is called a sensing decision. We assume that Σ is partitioned as
Σ = Σo∪̇Σs∪̇Σuo, where: (i) Σo is the set of events whose
occurrences are always observed; (ii) Σs is the set of events that
we can choose to monitor or not; and (iii) Σuo is the set of events
that are always unobservable. We say that a sensing decision
θ ∈ 2Σ is admissible if Σo ⊆ θ ⊆ Σo ∪ Σs and we let Θ denote
the set of all admissible sensing decisions.

Under dynamic sensing decisions, the observations of the sys-
tem behavior are specified by a sensor activation policy ω :

L(G) → Θ , where for any s ∈ L(G), ω(s) is the set of events that
are monitored after the occurrence of s. Given a sensor activation
policy ω, we define the projection Pω : L(G) → Σ∗ recursively
by:

Pω(ϵ) = ϵ, Pω(sσ ) =

{
Pω(s)σ if σ ∈ ω(s)
Pω(s) if σ ̸∈ ω(s) (1)

We also define the state estimator function (or simply ‘‘state esti-
mator’’) under ω, EG

ω : L(G) → 2Q , as follows upon the occurrence
of s ∈ L(G):

EG
ω(s) :={q∈Q :∃t∈L(G) s.t. Pω(s)=Pω(t) ∧ δ(q0, t)=q} (2)

For the purpose of implementation, we require that ∀s, t ∈

L(G) : Pω(s) = Pω(t) ⇒ ω(s) = ω(t). It simply requires that
the sensing decisions for any two indistinguishable strings must
be the same. We use the notation Ω to denote the set of all
sensor activation policies. Given two sensor activation policies
ω, ω′

∈ Ω , we say that ω is smaller than ω′, denoted by ω < ω′,
if (1) ∀s ∈ L(G) : ω(s) ⊆ ω′(s); and (2) ∃s ∈ L(G) : ω(s) ⊂ ω′(s).

2.2. Problem formulation

We define an information state to be a subset of states in Q and
denote by I = 2Q the set of information states. Hereafter, we con-
sider a special class of properties called information-state-based
(IS-based) properties.

Definition 1. Let G be the system automaton and ω : L(G) → Θ
be a sensor activation policy. An IS-based property w.r.t. G is a
function ϕ : 2Q

→ {0, 1}. We say that ω satisfies ϕ w.r.t. G,
denoted by ω |=G ϕ, if ∀s ∈ L(G) : ϕ(EG

ω(s)) = 1.

Example 1. Consider the system G in Fig. 1. Let ϕ : 2Q
→ {0, 1}

be an IS-based property defined by: for any i ∈ 2Q , ϕ(i) = 1 if
and only if ̸ ∃q ∈ {1, 4, 5, 6} : {3, q} ⊆ i. This IS-based property ϕ
requires that we should never confuse state 3 with any state in
{1, 4, 5, 6}. Let us consider the sensor activation policy ω defined
by ∀s ∈ L(G) : ω(s) = {o}. By taking eo ∈ L(G), we know that
EG

ω(eo) = {1, 2, 3, 4, 5, 6, 7}. Therefore, ω ̸|=G ϕ.
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Fig. 1. System with Σo = {o}, Σs = {σ1, σ2} and Σuo = {e, f }.

Our objective is to synthesize a sensor activation policy such
that some given property holds. We define the Minimal Sensor
Activation Problem for IS-Based Properties as follows.

Problem 1. Let G be the system automaton and ϕ be an IS-based
property w.r.t. G. Find a sensor activation policy ω ∈ Ω s.t. (i)
ω |=G ϕ; and (ii) ̸ ∃ω′

∈ Ω s.t. ω′
|=G ϕ and ω′ < ω.

In some contexts, we may be interested in the dual version of
the Minimal Sensor Activation Problem, the Maximal Sensor Acti-
vation Problem for IS-Based Properties. Its definition is analogous,
with ‘‘<’’ replaced by ’’>’’ in condition (ii).

Remark 1. In Wang, Lafortune, and Lin (2007), the state disam-
biguation problem is defined. Formally, Tspec ⊆ Q ×Q is the set of
state pairs that need to be distinguished and we want to find a
minimal ω ∈ Ω s.t. (∀s ∈ L(G))(∀q1, q2 ∈ EG

ω(s))[(q1, q2) /∈ Tspec].
This problem is a special case of the minimal sensor activation
problem for IS-based properties, since given Tspec , we can define
an IS-based property ϕspec : 2Q

→ {0, 1} by: ∀i ∈ 2Q
: [ϕspec(i) =

0] ⇔ [∃q1, q2 ∈ i : (q1, q2) ∈ Tspec].

Remark 2. In some scenarios, e.g., when the system is monitored
by a malicious external observer, the ‘‘disablement’’ of sensors
can be costly, since we need to spend additional effort to hide
the occurrences of the corresponding events. In this regard, the
optimal dynamic mask synthesis problem investigated in the
literature (see, e.g., Cassez et al., 2012) is essentially the maximal
sensor activation problem defined above.

Remark 3. In Yin and Lafortune (2016), a similar concept of
IS-based properties was defined for the purpose of control. How-
ever, the notion of IS-based property defined in this paper and
the related notion of IS-based property in the control problem are
incomparable. For example, in the supervisory control problem,
safety is an IS-based property but cannot be formulated as an
IS-based property in the sensor activation problem. On the other
hand, there exist some properties that are IS-based properties
in the sensor activation problem, but that cannot be formulated
as IS-based properties in the control problem. One such exam-
ple is predictability; we will further elaborate on this issue in
Section 6.2.

3. A general most permissive observer

3.1. Information state dynamics

A sensor activation policy ω works dynamically as follows.
Initially, a sensing decision θ0 is issued. Then, upon the occurrence
of (monitored) event σ1 ∈ θ0, a new decision θ1 is made, and so
forth. We call such a sequence in the form of θ0σ1θ1σ2 . . . , where
θi ∈ Θ, σi+1 ∈ θi, ∀i ≥ 0, a run. For any s ∈ L(G), suppose that s =

ξ0σ1ξ1σ2 . . . ξn−1σnξn, where ξi ∈ (Σ \ ω(ξ0σ1 . . . ξi−1σi))∗, ∀i ≥ 0
and σi ∈ ω(ξ0σ1 . . . σi−1ξi−1), ∀i ≥ 1. In words, ξi is an unobserved
string and σi is a monitored event. Then the information available
to the sensor activation module upon the occurrence of s is, in
fact, the run

Rω(s) := θ0σ1θ1 . . . θn−1σnθn (3)

where θi = ω(ξ0σ1 . . . ξi−1σiξi), ∀i ≥ 0.
To capture the alternating nature of sensing decisions and

observations, we define two kinds of states, termed Y -states and
Z-states, respectively. A Y -state y is an information state from
which a sensing decision is made and Y ⊆ I denotes the set of
Y -states. A Z-state z is an information state augmented with a
sensing decision from which observations of monitored events
occur. Z ⊆ I × Θ denotes the set of Z-states and we write
z = (I(z), Θ(z)) for any z ∈ Z . We define the transition function
from Y -states to Z-states, hYZ : Y × Θ → Z , and the transition
function from Z-states to Y -states, hZY : Z × Σ → Y . For any
y ∈ I, z ∈ I × Θ, σ ∈ Σ and θ ∈ Θ ,

• z = hYZ (y, θ ) if and only if I(z) = {q ∈ Q : ∃q′
∈ y, s ∈

(Σ\ θ )∗ s.t. δ(q′, s)=q} and Θ(z)=θ

• y = hZY (z, σ ) if and only if σ ∈ Θ(z) and y= {q∈ Q : ∃q′
∈

I(z) s.t. δ(q′, σ )=q}

For simplicity hereafter, we write y
θ
−→ z if z = hYZ (y, θ ) and

z
σ
−→ y if z = hZY (z, σ ). Intuitively, y

θ
−→ z simply represents

the unobserved reach under sensing decision θ and it remembers
the sensing decision that leads to it. On the other hand, z

σ
−→ y

represents the set of states the system can reach immediately after
the occurrence of event σ . We require that σ ∈ Θ(z), since σ
must be monitored.

Let s ∈ L(G) be a string and Rω(s) = θ0σ1θ1 . . . θn−1σnθn be its
corresponding run defined in Eq. (3). Let y0 = {q0} be the initial
Y -state. Then occurrence of the run θ0σ1θ1 . . . θn−1σnθn will reach
an alternating sequence of Y - and Z-states

y0
θ0
−→ z0

σ1
−→ y1

θ1
−→ . . .

θn−1
−−→ zn−1

σn
−→ yn

θn
−→ zn (4)

We denote by IY
ω(s) and IZ

ω(s), the last Y -state and Z-state in
y0z0y1z2 . . . zn−1ynzn, respectively, i.e., IY

ω(s) = yn and IZ
ω(s) =

zn. By induction on the length of Pω(s), it can be verified that
I(IZ

ω(s)) = EG
ω(s), i.e., the information state component of IZ

ω(s)
is the state estimator of s.

Example 2. Let us return to the system G in Fig. 1. Consider the
sensor activation policy ω defined by:

ω(s) =

{
{o, σ1}, if s ∈ {ϵ, e}
{o}, otherwise (5)

The above definition means that ω monitors event σ1 only when
nothing has been observed so far. Let us consider the string s =

σ1σ2. The corresponding run of s is Rω(σ1σ2) = {o, σ1}σ1{o}
and the corresponding sequence of Y - and Z-states is {1}

{o,σ1}

−−−→

({1, 2}, {o, σ1})
σ1
−→ {4}

{o}
−→ ({3, 4, 5, 7}, {o}). So we have that

IY
ω(σ1σ2) = {4}, IZ

ω(σ1σ2) = ({3, 4, 5, 7}, {o}) and EG
ω(σ1σ2) =

I(IZ
ω(σ1σ2)) = {3, 4, 5, 7}.

3.2. Bipartite dynamic observer

Recall that the sensor activation policy ω is a function defined
over a language domain. For implementation purposes, we need
to build a finite representation of the function ω. To this end,
we define the structure of bipartite dynamic observer (BDO) that
realizes a (set of) sensor activation policy(ies).

Definition 2. A bipartite dynamic observer O is a 7-tuple

O = (QO
Y ,QO

Z , hOYZ , h
O
ZY , Σ, Θ, y0) (6)

where, QO
Y ⊆ I is a set of Y -states, QO

Z ⊆ I × Θ is a set of
Z-states, hOYZ : QO

Y ×Θ → QO
Z and hOZY : QO

Z ×Σ → QO
Y are partial

transition functions such that for any z ∈ QO
Z , y ∈ QO

Y , θ ∈ Θ and
σ ∈ Σ , the following conditions hold
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Fig. 2. Two incomparable minimal solutions.

C1. hOZY (z, σ ) = y ⇔ hZY (z, σ ) = y;
C2. hOYZ (y, θ ) = z ⇒ hYZ (y, θ ) = z;
C3. ∀y ∈ QO

Y , ∃θ ∈ Θ : hOYZ (y, θ )!.

Σ is the set of events of G, Θ is the set of admissible sensing
decisions, and y0 = {q0} is the initial Y -state. For brevity, we only
consider the accessible part of a BDO.

Condition C1 says that for any z ∈ QO
Z , hOZY (z, σ ) is defined for

any possible observation σ ∈ Θ(z) by the definition of hZY . This is
due to the fact that we cannot decide which monitored event will
occur once we make a sensing decision. Condition C2 says that for
the transition function hOYZ , we have either hOYZ (y, θ ) = hYZ (y, θ ) or
it is undefined. Condition C3 requires that for any Y -state y ∈ QO

Y ,
there exists at least one θ ∈ Θ such that hOYZ (y, θ ) is defined.
This is because a sensor activation policy is defined for all strings
in L(G) and we must make a sensing decision at all accessible
Y -states.

Definition 3. Given a BDO O, we say that ω is allowed by O if
∀s ∈ L(G) : hOYZ (I

Y
ω(s), ω(s))!. With a slight abuse of notation, we

write that ω ∈ O whenever ω is allowed by O.

Given a BDO O, the set of sensor activation policies allowed
by O may not be a singleton, since for each Y -state there may be
multiple sensing decisions to choose from. Moreover, the domain
of a sensor activation policy in a BDO need not be finite since
different sensing decisions may be chosen on different visits to
the same Y -state. We say that a BDO O is deterministic if, for any
y∈QO

Y , there exists only one θ ∈Θ such that hOYZ (y, θ )!. It is clear
that a deterministic BDO O allows a unique sensor activation
policy; we denote it by ωO . In this case, the deterministic BDO
O is essentially a finite representation of ωO .

Example 3. Consider again the system G in Fig. 1. Fig. 2(a)
provides an example of a deterministic BDO. For the sake of
simplicity, since event o ∈ Σo is always observable, we omitted
this event in each sensing decision in the figures. For the initial
Y -state y0 = {1}, by making sensing decision θ = {o, σ1}, we
will reach Z-state z = hYZ (y0, θ ) = ({1, 2}, {o, σ1}). From z, only
monitored events o and σ1 can be observed. If σ1 is observed, then
the next Y -state is y1 = hZY (z, σ1) = {4}, and so forth. Similarly,
the BDO O2 shown in Fig. 2(b) is also deterministic. However, the
BDO shown in Fig. 3 is not a deterministic BDO, since there are
three sensing decisions {o, σ1}, {o, σ2} and {o, σ1, σ2} defined at
Y -state {1}.

3.3. Generalized MPO and its properties

We return to the sensor action problem for IS-based prop-
erties, Problem 1, formulated in Section 2.2. By condition (i) in

Fig. 3. Example of BDOs, where blue rectangular states and yellow oval states
represent, respectively, Y -states and Z-states.

Problem 1, we must find an ω such that ∀s ∈ L(G) : ϕ(EG
ω(s)) = 1.

However, for any BDO, we know that ∀s ∈ L(G) : I(IZ
ω(s)) = EG

ω(s)
and IZ

ω(s) is indeed the Z-state reached by the run Rω(s) in the
BDO. Therefore, if we construct a BDO O such that

∀z ∈ QO
Z : ϕ(I(z)) = 1 (7)

and such that O is ‘‘as large as possible’’, then the resulting
structure will contain all sensor activation policies that satisfy
ϕ. The property of such a BDO being as large as possible is
actually well defined: if O1 and O2 are two BDOs that both satisfy
Eq. (7), then their union, in the sense of graph merger, is a BDO
that satisfies Eq. (7). This observation leads to the definition of
the most permissive observer.

Definition 4 (Most Permissive Observer). Let G be the system and
let ϕ be the IS-based property under consideration. The Most
Permissive Observer for ϕ is the BDO

MPOϕ = (QMPO
Y ,QMPO

Z , hMPO
YZ , hMPO

ZY , Σ, Θ, y0)

defined as the largest BDO such that ∀z ∈ QMPO
Z : ϕ(I(z)) = 1.

Note that, in our definitions, the BDO is a class of bipartite
structures, while the MPO is a specific type of BDO. The follow-
ing theorem reveals that the MPO embeds all sensor activation
policies satisfying ϕ in its structure. Due to space constraints, its
proof has been omitted and it is available in Yin and Lafortune
(0000).

Theorem 1. ω |=G ϕ if and only if ω ∈ MPOϕ .

The MPO can be constructed directly based on its definition.
First, we search through the state space of Y -states and Z-states
until a Z-state that violates the IS-based property ϕ is encoun-
tered. Then we iteratively remove Y -state that has no successors
and Z-states that has undefined feasible outgoing transitions,
until the structure converges to a BDO. The worst-case time
complexity of the construction of the MPO is exponential in both
|Q | and |Σs|. In Yin and Lafortune (0000), a detailed algorithm
is provided for the construction of the MPO; the construction
algorithm has also been implemented by software DPO-SYNT;
see, https://github.com/xiang-yin/DPO-SYNT.

Example 4. We return to system G in Fig. 1 and IS-based property
ϕ defined in Example 1. The corresponding MPO is shown in
Fig. 3. At initial Y -state {1}, if we make sensing decision {o}
(depicted as {} in the figure), then Z-state {1, 2, 3, 4, 5, 7} will be
reached (see the dashed lines). However, the information-state
component of this Z-state contains both states 3 and 1, i.e., the IS-
based property ϕ is violated. Therefore, we cannot make sensing
decision {o} at the initial state.

https://github.com/xiang-yin/DPO-SYNT
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4. Synthesis of logically optimal policies

In this section, we show how to synthesize from the MPO an
optimal sensor activation policy ω that solves Problem 1. Partic-
ularly, we shall require that ω be defined over a finite domain, so
that it can be effectively implemented. To this end, we define a
special class of sensor activation policies that are represented by
subgraphs of the MPO and thus have finite realizations.

Definition 5. A sensor activation policy ω is information-state-
based if ∀s, t ∈ L(G) : IY

ω(s) = IY
ω(t) ⇒ ω(s) = ω(t).

Clearly, if ω is IS-based, then ω can always be represented by
a deterministic BDO that is a subgraph of the MPO.

Definition 6. Suppose ω is a sensor activation policy such that
ω |=G ϕ. We say that ω is greedy minimal if ∀s ∈ L(G), ∀θ ∈ Θ :

hMPO
YZ (IY

ω(s), θ )! ⇒ θ ̸⊂ ω(s). The notion of greedy maximality is
defined analogously.

The following theorem says that a greedy minimal (respec-
tively, maximal) solution is a minimal (respectively, maximal)
solution. Its proof is available in Yin and Lafortune (0000).

Theorem 2. Suppose ω is a sensor activation policy such that
ω |=G ϕ. Then ω is minimal (respectively, maximal) if it is greedy
minimal (respectively, greedy maximal).

By Theorem 2, it is clear that if we synthesize an IS-based
greedy optimal sensor activation policy, then we will have ob-
tained a solution to Problem 1, which was our objective. (Of
course, not all solutions to Problem 1 need be IS-based or greedy.)
An IS-based greedy optimal sensor activation policy can be ob-
tained by a depth-first search over the state space of the MPO
that picks one greedy optimal sensing decision at each Y -state
and then picks all observations for each Z-state. The resulting
structure will be a deterministic BDO that represents the solution.
We illustrate this synthesis procedure by an example.

Example 5. We return to the MPO shown in Fig. 3. To
synthesize a minimal sensor activation policy for ϕ, we can
pick decision {o, σ1}, which is greedy minimal, at the initial
Y -state. Then, upon the occurrence of monitored event σ1, the new
Y -state {4} is reached. At that state, we pick the unique greedy
minimal decision {o, σ2}, and so forth. These choices result in
deterministic BDO O1 shown in Fig. 2(a) that allows the unique
sensor activation policy ωO1 , which is provably minimal.

Remark 4. In the synthesis step in the previous example, we
could have selected sensing decision {o, σ2} at the initial Y -state,
which yields the minimal solution shown in Fig. 2(b). Interest-
ingly, we see that the intersection of the two valid decisions
{o, σ1} and {o, σ2}, i.e., {o} is not a valid decision, since {o} is
not defined at Y -state {1} in the MPO (recall the discussion in
Example 4). This illustrates the earlier claim that Problem 1 may
not have an infimal (respectively, supremal) solution in general,
but instead several incomparable minimal (respectively maximal)
solutions.

5. Synthesis of numerically optimal policies

In Section 4, we solved the optimal sensor activation problem
under a logical performance objective based on set inclusion.
However, in many applications, it may be useful or preferable
to quantify the performance of a sensor activation policy under
a numerical performance objective. The problem of quantitative
optimization is addressed in this section.

We consider two different types of numerical costs: activation
costs and switching costs. Specifically, the activation cost for
sensing decisions is defined as a function Ca : Θ → N that assigns
a non-negative integer to each sensing decision. The switching
cost for each event is a function cs : Σ × {0, 1} → N, where
(σ , 0) and (σ , 1) denote the cost of turning off the sensor for σ

and the cost of turning on the sensor for σ , respectively. Then the
switching cost for two sensing decisions is function Cs : Θ×Θ →

N defined as follows: for any θ1, θ2 ∈ Θ , we have

Cs(θ1, θ2) =

∑
σ∈θ1\θ2

cs(σ , 0) +

∑
σ∈θ2\θ1

cs(σ , 1) (8)

That is, Cs(θ1, θ2) is the switching cost encountered if the sensing
decision is switched from θ1 to θ2. We assume that the values of
the activation cost and the value of the switching cost are both
bounded by a non-negative integer Cmax over their respective
domains.

Let ω be a sensor activation policy, s be a string in L(G), and
Rω(s) := θ0σ1θ1 . . . θn−1σnθn be its corresponding run as defined
in Eq. (3). The cost of string s under ω is defined as the summation
the first |Pω(s)| activation costs and the first |Pω(s)| switching
costs, i.e.,

C(s, ω) =

n−1∑
i=0

Ca(θi) +

n−1∑
i=0

Cs(θi−1, θi) (9)

where θ−1 ∈ 2Σ denotes the initial configuration of the sensors.
For the sake of simplicity, we assume that θ−1 = ∅, i.e., all sensors
are off initially (before the system starts). Therefore, the term
Cs(θ−1, θ0) = Cs(∅, ω(ϵ)) represents the switching cost of turning
on the system to sensing decision θ0.

Finally, the cost of a sensor activation policy ω is defined as
the worst-case mean cost of an infinite run, i.e.,

C(ω) = lim sup
n→∞

max
s∈L(G):|Pω(s)|=n

{
1
n
C(s, ω)} (10)

We now define the optimal sensor activation problem under a
quantitative performance objective.

Problem 2. Let G be the system and ϕ be an IS-based property
w.r.t. G. Let Cs and Ca be the switching cost and the activation
cost, respectively. Find a sensor activation policy ω∗

∈ Ω s.t. (i)
ω∗

|=G ϕ; and (ii) ∀ω ∈ Ω : ω |=G ϕ ⇒ C(ω∗) ≤ C(ω).

Although the MPO embeds all sensor activation policies satis-
fying ϕ, it cannot be used directly for the purpose of synthesizing
a numerically optimal solution, since a Y -state only carries the
information of the set of potential states that are possible im-
mediately after the last observation. To address the issue of the
switching cost, we must treat Y -states reached from different
Z-states, whose sensing decisions are distinct, differently. To this
end, we define the Y -augmented BDO as follows.

Given a BDO O = (QO
Y ,QO

Z , hOYZ , h
O
ZY , Σ, Θ, y0), its

Y -Augmented BDO Õ = (Q Õ
Y ,Q Õ

Z , hÕYZ , h
Õ
ZY , Σ, Θ, ỹ0) is defined

by augmenting each Y -state with the sensing decision of its
predecessor Z-state. More specifically, we have Q Õ

Z = QO
Z and

Q Õ
Y ⊆ QO

Y × (Θ ∪ {∅}), where y = (I(y), Θ(y)) ∈ Q Õ
Y if (i)

I(y) ∈ QO
Y ; and (ii) for some z ∈ QO

Z , σ ∈ Θ(z), we have
hOZY (z, σ ) = I(y) and Θ(z) = Θ(y). Note that the initial state is
ỹ0 = (y0, ∅) since we assume that all sensors are off initially.
Then the transition functions hÕYZ : Q Õ

Y × Θ → Q Õ
Z and hÕZY :

Q Õ
Z × Σ → Q Õ

Y are defined, respectively, as follows: (i) for any
y = (I(y), Θ(y)) ∈ Q Õ

Y , θ ∈ Θ , we have hÕYZ (y, θ ) = hOYZ (I(y), θ );
and (ii) for any z = (I(z), Θ(z)) ∈ Q Õ

Z , σ ∈ Θ(z), we have
hÕZY (z, σ ) = (hOZY (z, θ ), Θ(z)). Fig. 4 shows the Y -augmented BDO
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Fig. 4. The Y -augmented BDO of the MPO in Fig. 3. The sensing decision for
each transition in hÕYZ is omitted; it can be uniquely determined by the Z-state
reached.

of the MPO shown in Fig. 3. Clearly, we see that Y -states {3}, {4}
and {5} in Fig. 3 are split into several different Y -states in Fig. 4.

Hereafter, we show that Problem 2 can be formulated as a
mean payoff game on a weighted bipartite graph constructed
from the Y -augmented MPO. First, we recall some notions from
graph theory and graph games. A weighted bipartite graph is a
triple G = (V1∪̇V2, E1∪̇E2, κ), where V = V1∪̇V2 is the set of
vertices with a unique initial vertex v0 ∈ V1, E = E1∪̇E2 ⊆

(V1 × V2) ∪ (V2 × V1) is the set of edges and κ : E →

{−K , . . . ,−1, 0, 1, . . . , K }, K ∈ N is the weight function. A two-
player game on G proceeds as follows. Player 1 first chooses an
edge e1 ∈ E1 from v0 ∈ V1. Then Player 2 chooses an edge
e2 ∈ E2 from the vertex reached, and so on, indefinitely. The goal
of Player 1 is to minimize lim supn→∞

1
n

∑n
i=1 κ(ei). It was shown

in Zwick and Paterson (1996) that there exists a rational number
v∗, called the value of the game, such that Player 1 has an optimal
strategy SG∗ such that lim supn→∞ maxe∈E(SG∗):|e|=n

1
n

∑n
i=1 κ(ei) =

v∗, where E(SG∗) denotes the set of all possible sequences of
edges under strategy SG∗. Moreover, SG∗ is positional, i.e., its
decision only depend on the current vertex reached and it can
be represented as a sub-graph of G.

In our problem, Player 1 is the policy and Player 2 is the
system. Let ˜MPOϕ = (Q̃Y , Q̃Z , h̃YZ , h̃ZY , Σ, Θ, ỹ0) be the Y -
augmented MPO. We define a weighted graph G̃ = (V1 ∪ V2, E1 ∪

E2, κ) based on ˜MPOϕ by treating each state in Q̃Y (respectively,
Q̃Z ) as a vertex in V1 (respectively, V2). Then ⟨y, z⟩∈E1 if ∃θ ∈Θ :

h̃YZ (y, θ ) = z and ⟨z, y⟩∈E2 if ∃σ ∈Σ : h̃ZY (z, σ ) = y. The weight
function κ is defined by:

• For any e1 =⟨y, z⟩∈E1, we have κ(e1)=Cs(Θ(y), Θ(z)).
• For any e2 = ⟨z, y⟩ ∈ E2, we have κ(e2) = Ca(Θ(z)).

Moreover, for each z ∈ V2 from which no edge is defined, which
corresponds to a Z-state from which no observable event can
occur, we add an auxiliary vertex Yz ∈ V1 and auxiliary edges
⟨z, Yz⟩ ∈ E2 and ⟨Yz, z⟩ ∈ E1, connecting these states, with
zero weights for both of these two edges. This auxiliary vertex
guarantees that the game graph constructed is complete. Since
the values of these auxiliary edges are zero, they will not affect
the worst-case mean cost in the limit.

Since G̃ is constructed from ˜MPOϕ except the auxiliary ver-
tices, its sub-graph G∗ representing the optimal strategy also
corresponds to a deterministic Y -augmented BDO, denoted by O∗,
which is a sub-system of ˜MPOϕ . We denote by ωO∗ the unique
sensor activation policy allowed by O∗. The following theorem
shows that ωO∗ actually solves Problem 2.

Theorem 3. Let SG∗ be the optimal positional strategy for the
game on G̃ and v∗ be the value of the game. Let ωO∗ be the sensor
activation policy induced by SG∗. Then for any ω ∈ MPOϕ , we have
C(ωO∗ ) ≤ C(ω). Moreover, C(ωO∗ ) = 2v∗.

Proof. Let ω be a sensor activation policy. Then ω defines a
strategy SGω for Player 1 as follows. Initially, at y0, it chooses
⟨y0, z0⟩ such that y0

ω(ϵ)
−−→ z0. If Player 2 chooses ⟨z0, y1⟩ at z0,

then this implies that there exists σ1 ∈ Θ(z0) such that z0
σ1
−→ y1.

Then Player 1 chooses ω(s) such that Pω(s) = σ1 and so forth.
Note that strategy SGω need not be positional. Then, let s ∈ L(G)
be a string such that Pω(s) = σ1 . . . σn, and let y0

θ0
−→ z0

σ1
−→

. . .
θn−1
−−→ zn−1

σn
−→ yn be the Y - and Z-states reached along s under

ω in ˜MPOϕ . The above run also defines a sequence of edges in
G̃ e1e2 . . . e2n−1e2n := ⟨y0, z0⟩⟨z0, y1⟩ . . . ⟨yn−1, zn−1⟩⟨zn−1, yn⟩. By
the definition of κ , we know that C(s, ω) =

∑2n
i=1 κ(ei). Therefore,

C(ω) = lim sup
n→∞

max
s∈L(G):|Pω(s)|=n

{
1
n
C(s, ω)} (11)

= 2 lim sup
n→∞

max
e∈E(SGω):|e|=2n

{
1
2n

2n∑
i=1

κ(ei)}

Now, let us assume that there exists a sensor activation policy
ω′

∈ MPOϕ such that C(ω′) < C(ωO∗ ). Then we know that

lim sup
n→∞

max
e∈E(SGω′ ):|e|=n

{
1
n

n∑
i=1

κ(ei)}

=
C(ω′)
2

<
C(ωO∗ )

2
= lim sup

n→∞

max
e∈E(SG∗):|e|=n

{
1
n

n∑
i=1

κ(ei)}

However, it contradicts the fact that SG∗ is the optimal strategy
for Player 1 on G̃. Therefore, no such ω′ exists. Finally, by Eq. (11),
we also know that C(ωO∗ ) = 2 lim supn→∞ maxe∈E(SG∗):|e|=n
{
1
n

∑n
i=1 κ(ei)} = 2v∗. □

Example 6. We return to system G in Fig. 1 and IS-based property
ϕ defined in Example 1. The corresponding MPO is shown in Fig. 3
and the Y -augmented MPO is shown in Fig. 4. For each sensing
decision, its activation cost is defined by the number of events
in Σs we decide to monitor, i.e., ∀θ ∈ Θ : Ca(θ ) = |θ ∩ Σs|.
For example, we have Ca({o, σ1}) = 1 and Ca({o, σ1, σ2}) = 2.
We also define the switching costs as cs(o, 0) = cs(o, 1) = 0,
cs(σ1, 0) = cs(σ1, 1) = 3, and cs(σ2, 0) = cs(σ2, 1) = 0, i.e., σ2
can be freely switched without any cost. Note that cost cs(o, 1)
only occurs when the system starts, since o is always observable
thereafter.

The graph G̃ constructed based on the Y -augmented MPO is
shown in Fig. 5(a), where each vertex has been renamed for
simplicity and the integer associated with each edge denotes its
weight. States A1–A4 are four auxiliary edges, since no observable
event can occur from vertices 16, 18, 20 and 22. By applying the
mean-payoff game algorithm, we find that the value of the game
is v∗

= 1 and the optimal strategy that achieves this value is
represented by graph G∗ shown in Fig. 5(b). By removing auxiliary
edges from G∗, we obtain the Y -augmented BDO O∗ that realizes
the optimal sensor activation policy ωO∗ , which is the highlighted
part in Fig. 4. Based on the previous discussion, we know that
C(ωO∗ ) = 2. Interestingly, ωO∗ is not a logically minimal solution.
For example at Y -state ({4}, {o, σ1, σ2}), we need to take sensing
decision {o, σ2} in order to achieve logical minimality. However, if
we take {o, σ2}, then the increment of the switching cost is larger
than the decrement of the activation cost. This implies that there
exists a tradeoff between the activation costs and the switching
costs.
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Fig. 5. Figures in Example 6.

Remark 5. The Y -augmented BDO of the MPO has at most
2|Q |+|Σs| Y -states and the same number of Z-state. Therefore, the
corresponding graph G has at most |V | := 2|Q |+|Σs|+1 vertices and
|E| := (2|Σs| + |Σ |)2|Q |+|Σs| edges. The optimal strategy can be
found using the algorithm in Brim, Chaloupka, Doyen, Gentilini,
and Raskin (2011) with a complexity O(K |E ∥ V |

2(log |V |+log K )),
where K = Cmax.

6. Applications of the generalized MPO

In this section, we show how the generalized MPO can be
applied to specific sensor activation problems.

6.1. Application to control and diagnosis

Observability and diagnosability are two key properties of
interest in control and diagnosis of DES. It is shown in Wang et al.
(2007) that the problem of sensor activation for observability
can be formulated as a state-disambiguation problem. Similarly,
it is shown in Dallal and Lafortune (2014) that the problem
of sensor activation for K -diagnosability can be formulated as
a state-disambiguation problem. Therefore, as was discussed in
Remark 1, both of these sensor activation problems can be solved
by the generalized MPO approach that we have presented. An-
other property of interest in sensor activation is detectability (Shu,
Lin, & Ying, 2007); it is related to state reconstruction. By using
the same approach that is used for the reformulation of K -
diagnosability in Dallal and Lafortune (2014), we can show that
strong K -detectability can also be formulated as an IS-based
property and thereby our solution procedure also applies to that
property.

6.2. Application to fault prediction

As a specific example of how the methodology presented in
this paper can be used to solve problems that have not yet
been addressed in the literature, we consider the problem of
sensor activation for the enforcement of predictability, a notion
introduced in Genc and Lafortune (2009). Let f ∈ Σ be the fault
event to be predicted. We denote by Ψ (f ) := {sf ∈ L(G) : s ∈ Σ∗

}

the set of strings that end with f . We write f ∈ s if s∩ Ψ (f ) ̸= ∅.

Definition 7 (Predictability). A live language L(G) is said to be
predictable w.r.t. f ∈ Σ and ω if (∀s ∈ Ψ (f ))(∃t ∈ {s} : f /∈ t)
(∀u ∈ L(G) : f /∈ u ∧ Pω(u) = Pω(t))(∃n ∈ N)(∀v ∈ L(G)/u)[|v| ≥

n ⇒ f ∈ v].

The above definition requires that the fault event f should
be predicted unambiguously before its occurrence. To proceed
further, we assume, w.l.o.g., that state space of G is partitioned
into two disjoint sets Q = QY ∪̇QN , such that (i) ∀s ∈ L(G) :

δ(q0, s) ∈ QY ⇒ f ∈ s; and (ii) ∀s ∈ L(G) : δ(q0, s) ∈ QN ⇒ f ̸∈ s.
That is, QY is the set of faulty states and QN is the set of non-
faulty states. Next, similarly to the notions of boundary strings
and indicator strings in Kumar and Takai (2010), we define the set
of boundary states as ∂Q = {q ∈ Q : δ(q, f )!} and the set of non-
indicator states as NQ = {q ∈ QN : ∀n ∈ N, ∃s ∈ L(G, q) s.t. |s| >

n ∧ f ̸∈ s}.
With the above notions, we define the IS-based property ϕpre :

2Q
→ {0, 1} by:

∀i∈2Q
: [ϕpre(i)=0] ⇔ [∃q, q′

∈ i : q∈∂Q ∧ q′
∈NQ ] (12)

The following result says that predictability is equivalent to
the IS-based property ϕpre. Its proof is available in Yin and Lafor-
tune (0000).

Theorem 4. Let ϕpre be the IS-based property defined by Eq. (12).
For any sensor activation policy ω ∈ Ω , L(G) is predictable w.r.t. f
and ω if and only if ω |=G ϕpre.

Therefore, to synthesize a minimal sensor activation policy for
predictability, it suffices to solve Problem 1 w.r.t. ϕpre.

Example 7. Let us return to the system G in Fig. 1. Suppose that
f is a fault event. System G already satisfies the state partition
assumption Q = QY ∪̇QN , where QN = {1, 2, 3, 4, 5, 6} and
QY = {7}. Also, we have ∂Q = {3} and NQ = {1, 4, 5, 6}. In
fact, we see that the IS-based property defined in Example 1
that we considered in the previous examples is indeed the IS-
based property ϕpre for this example. Therefore, the solutions O1
and O2 shown in Fig. 2 that we obtained previously are two
(incomparable) logical minimal sensor activation policies that
guarantee predictability and O∗, which is the highlighted part of
Fig. 4, is the quantitative optimal solution.

6.3. Application to cyber-security

As was discussed earlier in Remark 2, in some cases, the
system may also be monitored by an external observer that is
potentially malicious. We recall an important security property
called current-state opacity.

Definition 8. Secret QS ⊆ Q is current-state opaque w.r.t. G and
ω if ∀s ∈ L(G) : EG

ω(s) ̸⊆ QS .

Current-state opacity is clearly an IS-based property. The prob-
lem of synthesizing a maximal/optimal sensor activation policy
(or dynamic mask) can also be solved by the approach presented
in this paper. Moreover, the same approach can be applied to
other user defined properties. For example, consider the IS-based
property ϕKano : 2Q

→ {0, 1} defined by

∀i ∈ 2Q
: ϕKano(i) = 0 ⇔ |i| ≤ K (13)

where K ∈ N. This property is related to K -anonymity studied in
the computer security literature (Sweeney, 2002). Intuitively, it
requires that the observer should never determine the current-
state of the system ‘‘too precisely’’ in the sense that the cardinal-
ity of EG

ω(s) is smaller than or equal to K . We can also synthesize
a sensor activation policy that guarantees this property.
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6.4. Composition of IS-based properties

Finally, we would like to remark that IS-based properties are
compositional in the sense that for any two IS-based properties
ϕ1 and ϕ2, ϕ1 ∧ ϕ2 : 2Q

→ {0, 1} defined by (ϕ1 ∧ ϕ2)(i) =

1 ⇔ ϕ1(i) = 1 ∧ ϕ2(i) = 1 is also an IS-based property
that captures the satisfactions of both ϕ1 and ϕ2. Therefore, our
framework also allows the enforcement of multiple properties at
the same time. For example, if we want to synthesize a sensor
activation policy satisfying some utility requirement, e.g., to pre-
dict fault occurrences, and at the same time, we also want that
the information released by the sensor activation policy should
meet certain security or privacy concern, e.g., to keep the system
K -anonymous, then it suffices to enforce the IS-based property
ϕpre ∧ ϕKano within our framework.

7. Conclusion

We presented a new approach for the problem of synthe-
sizing an optimal sensor activation policy that guarantees some
observation property in problems of control, diagnosis, predic-
tion, or other types, in the context of partially-observed discrete
event systems. We defined the generalized Most Permissive Ob-
server that is applicable to a wide class of properties called
information-state-based properties. Both the problem of synthe-
sizing a logically optimal sensor activation policy and the problem
of synthesizing an optimal sensor activation policy with respect
to a quantitative cost function were solved based on the gen-
eralized MPO. Our approach generalizes the previous works on
the MPO, which pertain to specific properties such as opacity or
K -diagnosability. Moreover, our approach is applicable to a wide
class of user-defined properties.
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