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a b s t r a c t

Traditional control system design to complex networks is generally implemented by integrated
structural analysis aiming at a global network. However, such a global method may be inefficient,
in particular, when a massive network with a huge number of nodes and associations is considered.
In this paper, motivated by the idea of ‘‘dividing and dealing’’, we propose a block-based approach
to the issue of minimum input design for structural controllability (MIDSC) of complex networks that
potentially incurs in higher efficiency. Specifically, we consider a large-scale networked system that
consists of several local blocks. The main challenge for control configuration design of this class of
systems is how to find the minimum inputs of global network according to the local block information
while maintaining system’s structural controllability. To this end, two block-based graphical algorithms
are developed to meet the conditions required for achieving structural controllability, and meanwhile
determine an optimal solution for addressing the MIDSC problem. The complexity of the proposed
method is analyzed, which is also compared with existing algorithms designed mainly based on
monolithic model. In particular, we show that, under some mild conditions on blocking structure, the
complexity of the proposed algorithm is strictly lower than that of existing algorithms to the MIDSC
problem.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Complex networks arise in a great deal of natural and man-
made systems. The instances in nature involve metabolic net-
work, biological immune network, and brain’s neural network,
while electrical power grids, multi-agent robotic system and mass
transportation network are examples of modern science and tech-
nology, to name only a few. Owing to a wide applying foreground,
a tremendous amount of studies on complex networks have
been prompted. In the application of complexity networks (Kivelä
et al., 2014; Maza, Simon, & Boukhobza, 2012; Pan & Li, 2014;
Wu, Li, Wang, & Wu, 2016), one of the key questions is to have
full control over the network, i.e., the capability of steering the
network behavior to an expected state in finite time. Such a
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capability is referred to as network controllability in system the-
ory, and it is of fundamental importance to ensure depend-
able and effective network functionalities. As a primary property,
indeed, network controllability can be analyzed by standard al-
gebraic methods based on the well-known Kalman’s rank crite-
rion (Chui & Chen, 2012). Notwithstanding, the precise numerical
parameters of network models are sometimes difficult to be ob-
tained. Instead, it is more practical to know whether there exists a
link between different states. In this situation, a natural direction
for network analysis is to turn to structural system theory and
pursue structural controllability. As first posed by Lin in the semi-
nal work (Lin, 1974), a complex network is said to be structurally
controllable if an array of numerical values can be found for those
unknown parameters such that the resulting system is control-
lable in classic sense (Dion, Commault, & Van Der Woude, 2003).
Considering the economic restrictions, i.e., since more actuation
incurs in higher control cost, the issue pertaining to minimum
input design for structural controllability (MIDSC) of complex
networks has drawn extensive interest, which is formally stated
as: Identify the smallest subset of actuated states (so-called driver
nodes) to manipulate each with an external input so that the
resulting network is structurally controllable. It is worth men-
tioning that, there exist two cases in the MIDSC problem. In one
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case, each input is connected to multiple system states; while in
another case, each control input drives at most a single system
state. In this paper, we concentrate on the minimum input design
problem for the second case, which is already known to be in
polynomial-time (Assadi, Khanna, Li, & Preciado, 2015).

Although great advances have been obtained for solving the
MIDSC problem (see references in Liu, Slotine, & Barabási, 2011,
Yuan, Zhao, Di, Wang, & Lai, 2013, Pequito, Kar, & Aguiar, 2016,
Yin & Zhang, 2016, Carvalho, Pequito, Aguiar, Kar, & Johans-
son, 2017), including algebraic and graphical techniques, a high-
efficiency way that adapts to massive complex networks is still
lacking, in particular, for a class of large-scale systems with
several local blocks. Lately, it has shown growing interest in this
direction and a flurry of papers have concentrated on various
ways to improve the algorithm efficiency in addressing the MIDSC
problem. In Pequito, Kar, and Aguiar (2013), Pequito et al. first
identified the smallest subset of driver nodes for structural con-
trollability in O(mn1.5) operations, where n denotes the number
of network states and m is the number of nonzero entries of
the system state matrix. Shorter after, Olshevsky presented a
faster algorithm to the MIDSC problem in Olshevsky (2015) with
the total running time O(m

√
n), which is obtained by solving a

maximum bipartite matching (MBM) problem in the first place,
and then, transforming the found matching into a solution of
the MIDSC in the second augmentation stage. Each of the two
phases requires O(m

√
n) operations. Furthermore, this result was

promoted by Assadi et al. (2015), where it has been proved
that the MIDSC issue is computationally equivalent to addressing
a MBM problem. In this sense, the efficiency improvement for
addressing the MIDSC problem can benefit from all the break-
throughs in MBM computation, such as the well-known Hopcroft–
Karp algorithm (Hopcroft & Karp, 1973), Mucha–Sankowski al-
gorithm and Madry’s algorithm (Madry, 2013). Therefore, an
alternative approach was developed with the time complexity
min{O(m

√
n), Õ(n2.37), Õ(m10/7)}.

Noticeably, as most existing algorithms depend on a mono-
lithic system model, it will inevitably put a high computational
burden on massive networks with a huge number of nodes and
associations. Motivated by the idea of ‘‘dividing and dealing’’, in
this paper, we intend to address the MIDSC problem under a
block-based framework for improving the computation efficiency
of traditional methods. Specifically, we consider a large-scale
networked system consisting of several local blocks. The modular
structure nature allows for dimension reduction and parallel pro-
cessing in the analysis of this class of systems. In such a blocking
setting, the main challenge for control configuration design is
how to find the minimum input deployment of global network
by effectively synthesizing the block information for achieving
system’s structural controllability.

Using typical graphical tools (Aguilar & Gharesifard, 2015; Liu
& Barabási, 2016), we map the MIDSC problem of networked
systems with blocking structures into local independent analysis
and global integrative optimization. On this basis, a block-based
approach to address the MIDSC issue is proposed for the first
time. The major contributions of this paper are threefold: (i) two
block-based graphical algorithms are proposed to determine a
minimum input deployment of global network while maintain-
ing system’s structural controllability; (ii) the time complexity
of the developed method is analyzed, which is also compared
with the fastest (up-to-date) algorithm that designed based on
a monolithic system model to demonstrate the higher efficiency
of the proposed algorithm; (iii) the validity of the presented
method is substantiated by the minimum input design problem
of an example with blocking system structure. Our main results

show that, under some mild conditions on blocking structure, the
complexity of the proposed method is strictly lower than that of
existing algorithms.

2. Problem statement

Notation: Let R denote the real numbers, Rn the vector space of
real n-vectors and Rn×m the set of n×m real matrices. N+ denotes
the set of positive integers and [1 : n] represents a set of ordered
integers {1, 2, . . . , n} with n ∈ N+. The cardinality of a set C is
denoted by |C|. Given a set D ⊆ [1 : n] and a n × n identity
matrix I , ID indicates a matrix constructed by the columns of I
indexed by D . 0 is the zero matrix with appropriate dimension.
The zero (quasi) norm is denoted by ∥R∥0, which equals to the
number of nonzero entries of matrix R.

Throughout this context, we concentrate on a large-scale dis-
crete time, linear and time-invariant directed complex network
with autonomous dynamics

Σ : x(k + 1) = Ax(k), (1)

where x ∈ Rn denotes global network state. A ∈ Rn×n is network
state matrix and it is assumed to be a sparsity pattern with m
nonzero entries. As a rule, we make the standard assumption
m ≥ n. Now consider a network consisting of r blocks and the
time evolution of every local block follows the form of

Σi : xi(k + 1) =

r∑
j=1

Aijxj(k), (2)

where xi ∈ Rni is the state of block Σi. Aii ∈ Rni×ni represents the
block state matrix while {Aij}i̸=j are the interconnected matrices
between different blocks. Constructed by the blocking structure,
x = [xT1, . . . , x

T
r ]

T with n =
∑r

i=1 ni and m =
∑r

i=1
∑r

j=1 ∥Aij∥0.
Meanwhile, the global network matrix A can be characterized as
[A]ij = Aij, where [A]ij denotes the matrix block located in the
row i column j of matrix A. In structural representation, we use
a binary matrix Āij ∈ {0, 1}ni×nj to encode the structural pattern
of Aij by assigning 0 to each zero entry of Aij and 1 otherwise. To
well depict associated relationships, the neighbor of every block
is brought in.

Definition 1 (Incoming/Outgoing Neighbor). The block Σj satisfy-
ing Āij ̸= 0, i, j ∈ [1 : r] and j ̸= i is said to be an incoming
neighbor of Σi. Accordingly, those Σj achieve Āji ̸= 0, i, j ∈ [1 : r]
and j ̸= i are known as outgoing neighbors of block Σi. The set
of incoming and outgoing neighbors are denoted by Ii and Oi,
respectively.

In this context, we propose to address the MIDSC problem
under a block-based structure setting, which is formally stated as:
Given the structural block matrix Āii ∈ {0, 1}ni×ni , the associated
structural matrices {Āij}j̸=i ∈ {0, 1}ni×nj and {Āji}j̸=i ∈ {0, 1}nj×ni

with i, j ∈ [1 : r], determine the set Di ⊆ [1 : ni] of the following
optimization problem:

min
Di⊆[1:ni]

r∑
i=1

|Di| (3)

s.t. (Ā, diag(ID1 , . . . , IDr )) is structurally controllable,

where Di denotes the index subset of states in block Σi. More
precisely, for any l ∈ Di, it indicates that the state xli of xi is se-
lected to be driven directly by an dedicated input (i.e., each input
is connected to at most a single state), which corresponds to the
lth column of the ni×ni matrix I . Meanwhile, diag(ID1 , . . . , IDr ) ∈

Rn×p and p =
∑r

i=1 |Di|. Indexed by Di, B̄i = IDi , and the
optimization (3) is equivalent to minimizing

∑r
i=1 ∥B̄i∥0. This
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is noted, the optimal {Di}∀i∈[1:r] exactly constitutes the desired
sparsest input matrix B̄ of the control network

ΣΛ : x(k + 1) = Ax(k) + Bu(k), (4)

where u ∈ Rp is the input of global network. By definition, the
network (4) represented by the pair (A, B) is said to be structurally
controllable if there exists at least one controllable network (A, B)
that has the same structured pattern with (Ā, B̄). Generally speak-
ing, a network is controllable for almost all possible parameter
realizations if it is structurally controllable (Dion et al., 2003).

3. Preliminaries and terminology

This section recalls some standard graph theoretic notions and
key results used in the analysis of structural networks. The refer-
ences can be found, for instance, in Liu and Morse (2017), Pequito
et al. (2016) and Sundaram and Hadjicostis (2013).

It is customary to associate the network (4) with a digraph
D = (V, E) for structural analysis, where V denotes the vertex-
set and E is the edge-set so that an edge (vi, vj) is directed from
vertex vi to vj. To this end, denote by X = {x1, . . . , xn} and
U = {u1, . . . , up} the set of state and input vertices, respectively.
Meanwhile, denote by EX ,X = {(xi, xj) : āji ̸= 0} and EU,X =

{(uj, xi) : b̄ij ̸= 0} the set of edges, where āji is the element of row
j column i of Ā and b̄ij is the element of row i column j of B̄.
Then we may introduce the state digraph D(Ā) = (X , EX ,X ) and
network digraph D(Ā, B̄) = (X ∪U, EX ,X ∪EU,X ). A directed path is
defined by a sequence of edges {(v1, v2), (v2, v3), . . . , (vk−1, vk)}.
If all the vertices involved in a directed path are distinct, it is also
known as an elementary path. In D(Ā, B̄), a state vertex is said to
be input-reachable if there exists a directed path from an input
vertex to it. An outgoing edge from a vertex vi is an edge starts in
vi while an incoming edge to vi is an edge ends on vi. A vertex with
an edge to itself (i.e., a self-loop), or an elementary path from v1
to vk, together with an edge (vk, v1) is denoted by a cycle.

A subgraph of D is a digraph Ds = (Vs, Es) with Vs ⊂ V
and Es ⊂ E . D is said to be strongly connected if there exists a
directed path between any two vertices of V . A strongly connected
component (SCC) is a maximal subgraph Ds = (Vs, Es) of D such
that for any two vertices vi, vj ∈ Vs, there exist paths from vi to vj
and also from vj to vi. An SCC that has no incoming edge to any of
its vertices from another SCC is referred to as a non-top linked SCC
(NT-SCC). Given any D and vertex-sets V1,V2 ⊂ V , the bipartite
graph is defined by B(V1,V2, EV1,V2 ), whose vertex-set is V1 ∪ V2
and edge-set is EV1,V2 ⊂ {(v1, v2) : v1 ∈ V1, v2 ∈ V2}. B(V,V, E)
is known as the bipartite graph associated with D(V, E). In the
sequel, we make use of state bipartite graph B(Ā) = (X ,X , EX ,X )
and network bipartite graph B(Ā, B̄) = B(U ∪ X ,X , EX ,X ∪ EU,X ).

In B(V1,V2, EV1,V2 ), a matching M is a subset of edges in EV1,V2
so that no two edges share a common vertex, i.e., given edges
e = (v1, v2), e′

= (v′

1, v
′

2) with v1, v′

1 ∈ V1 and v2, v′

2 ∈ V2, then
e, e′

∈ M only if v1 ̸= v′

1 and v2 ̸= v′

2. A maximum matching M∗ is
a matching M including the maximum number of edges among
all possible matchings, which may not be unique. Accordingly, the
right (or left)-unmatched vertex, with respect to a bipartite graph
B(V1,V2, EV1,V2 ) and a matching M , not necessarily maximum,
will refer to the vertex in V2 (or V1) that does not belong to
a matching edge in M . Otherwise, it is known as a right (or
left)-matched vertex.

Lemma 1 (Lin, 1974; Pequito et al., 2016). For linear systems de-
scribed by (4), the following statements are equivalent:

(1) the pair (Ā, B̄) is structurally controllable;
(2a) every state vertex of the system is input-reachable,
(2b) and the generic rank of [Ā, B̄] = n;
(3a) the NT-SCCs of D(Ā, B̄) are comprised of inputs,
(3b) and there exists a matching of B(Ā, B̄) without right-unmatched
vertex.

Lemma 1 reveals following two things: (i) to achieve the input-
reachability condition, one needs to seek all the NT-SCCs of D(Ā)
and allocate at least one input vertex to each NT-SCC; (ii) the
generic rank condition for structural controllability is equivalent
to finding a maximum matching of B(Ā, B̄) with size n. A min-
imum input design meeting both the conditions will render a
structurally controllable network. Taking these results as a basis,
hereafter, we propose to address the MIDSC problem in a blocking
framework for higher algorithm efficiency.

4. Main results

This section introduces the two block-based algorithms for
addressing the MIDSC problem. First, a graphical description to
local blocks is provided for clear algorithm representation. Next,
to meet the input-reachability and generic rank condition of
structural controllability, two block-based graphical algorithms
are presented, respectively, to find the NT-SCCs and maximum
matching of global network, which are further employed to de-
termine a minimum input deployment of the MIDSC issue.

4.1. Graph-based description of local blocks

In view of the inner structure of every block Σi, we use
D(Āii) = (Xi, EXi,Xi ) to denote the block state digraph, where
Xi = {x1i , . . . , x

ni
i } is the local state-set and EXi,Xi = {(xli, x

m
i ) :

āiml ̸= 0, ∀l,m ∈ [1 : ni]} is the edge-set. āiml represents the
element in Āii of row m column l. Associated with D(Āii), the
block state bipartite graph is denoted by B(Āii) = B(Xi,Xi, EXi,Xi ).
From a local point of view, the states in Xi are distinguished by
various associations between different blocks, which fall into the
following three categories: incoming local state, outgoing local
state and absolute local state. Specifically, we refer to the state of
Xi that has at least one incoming edge from any state of {Xj}j∈Ii
as an incoming local state of block Σi. Correspondingly, that of
Xi with at least one outgoing edge to {Xj}j∈Oi is known as an
outgoing local state. The rest states of Xi except for incoming and
outgoing ones are called absolute local state. The three kinds of
local state-sets are described by

X in
Li

= {xmi : āij
m:

̸= 0, ∀m ∈ [1 : ni]} (5a)

X out
Li

= {xli : āji
:l ̸= 0, ∀l ∈ [1 : ni]} (5b)

X abs
Li

= Xi \ {X in
Li

∪ X out
Li

}, (5c)

where āij
m:

denotes the row m of Āij while āji
:l is the column l of Āji.

Meanwhile, to depict the associated relationships, the incoming
neighborhood state of block Σi is used to denote the states of
block {Σj}j̸=i that connects to at least one state of Xi through
incoming edges of Σi. Accordingly, that of {Σj}j̸=i connecting by
a state of Xi through outgoing edges of block Σi is known as
the outgoing neighborhood state of block Σi. The incoming and
outgoing neighborhood state-sets are denoted by

X in
Ni

= {xlj : āij
:l ̸= 0, ∀l ∈ [1 : nj]} (6a)

X out
Ni

= {xmj : āji
m:

̸= 0, ∀m ∈ [1 : nj]}. (6b)
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Fig. 1. A network digraph consisting of two local blocks, where the associations
are denoted by directed edges.

To make things more concrete, an example is given to illustrate
the above state-sets. As shown in Fig. 1, there is X in

L1
= {x41},

X out
L1

= {x11}, X
abs
L1

= {x21, x
3
1}, X

in
N1

= {x32}, X
out
N1

= {x12}.
On this basis, the incoming associated digraph D(Āii, Āij) and

outgoing associated digraph D(Āii, Āji) of block Σi can be, respec-
tively, defined by

D(Āii, Āij) = (Xi ∪ X in
Ni

, EX in
Ni

,Xi
∪ EXi,Xi ) (7)

D(Āii, Āji) = (Xi ∪ X out
Ni

, EXi,Xi ∪ EXi,X out
Ni

). (8)

Definition 2 (Absolute/Relative Correlation Degree). The cardinality
of X in

Li
and X out

Li
are, respectively, referred to as the incoming and

outgoing absolute correlation degree of block Σi, i.e., d in
i = |X in

Li
|

and dout
i = |X out

Li
|. Meanwhile, |X in

Ni
| and |X out

Ni
| are known as the

incoming/outgoing relative correlation degree and denoted by d in
ri

and dout
ri . We denote by d i = d in

i + dout
i and dri = d in

ri + dout
ri the

absolute/relative correlation degree of Σi.

Remark 1. Note that the absolute correlation degree d i re-
flects the association strength of block Σi to other interconnected
blocks, whereas the relative correlation degree dri denotes the
relevance of other associated blocks to Σi itself. The two cor-
relation degrees provide an essential indicator in evaluating the
blocking structure and play an important role in the following
algorithm design for addressing the MIDSC problem.

4.2. Block-based algorithm to find NT-SCCs

As mentioned before, to meet the input reachability condition
for structural controllability, the first important thing is to find
all the NT-SCCs of global network. To this end, one of the diffi-
culties for algorithm design in block-based framework is how to
explore the SCCs separated by different local blocks, and another
challenge is how to provide a good judgment on whether the
identified SCC is a NT-SCC of global system. The following will
detail how we overcome these hurdles.

Now consider that if there exist some states of block Σi that
are conducive to forming a combined (i.e., a bigger) SCC together
with the states of other blocks {Σj}j̸=i, the involved local states
must contain two kinds of nodes as follows: the incoming local
state and outgoing local state, through which can Σi be connected
with other blocks. In other words, a pair of nodes consisting of
an incoming local state xli and an outgoing local state xmi , together
with a directed path from xli to xmi , represents a way of connecting
block Σi with other blocks. Formally, we denote by (xli, x

m
i )

in the
inward connected pair of block Σi, where xli ∈ X in

Li
and xmi ∈ X out

Li
.

It can be readily seen that, if an inward connected pair belongs
to a combined SCC, all the local states on the directed paths from
xli to xmi should be involved in the same combined SCC. Taking
into account the interconnections between different blocks, the

outward connected pair of block Σi is denoted by (xmi , xlj)
out , where

xmi ∈ X out
Li

and xlj ∈ X out
Ni

.

Algorithm 1. Block-based algorithm to find the NT-SCCs
Step1.1: Initialization

– find the local SCCs of D(Āii), whose number is Ni;
– obtain the vertex-set Ci,kl of local SCCs, kl ∈ [1 : Ni];
– determine the local state vertex-sets X in

Li
and X out

Li
;

– explore all the inward and outward connected pairs (xli, x
m
i )

in

and (xmi , xlj)
out in D(Āii, Āij) and D(Āii, Āji) while maintaining

xli and xmi belong to different Ci,kl ;
Step1.2: Identify the combined SCCs

– transfer {Ci,kl , (x
l
i, x

m
i )

in, (xmi , xlj)
out

} to coordination layer;
– obtain every combined SCC and its vertex-set CNkc ,kc , Nkc is

the set of involved blocks Σj, i.e., j ∈ Nkc ;
– transfer {CNkc ,kc } to every involved block Σj with j ∈ Nkc ;

Step1.3: Mark up for every SCC
– select (xli, x

m
i )

in
kc from (xli, x

m
i )

in with xli, x
m
i ∈ CNkc ,kc ;

– find the biggest set Cadd,kc of states located on the directed
paths from xli to xmi so that xli, x

m
i constitute (xli, x

m
i )

in
kc ;

– obtain the marker of local SCCs, where the marker M[Ci,kl ]
= 0 if there is no incoming edge to any state of Ci,kl ,
otherwise, M[Ci,kl ] = 1;

– obtain the marker of state xki that involved in a combined
SCC, where xki ∈ (CNkc ,kc ∪ Cadd,kc ) ∩ Xi and M[xki ] = 0 if
there is no incoming edge from a state out of CNkc ,kc ∪Cadd,kc
to xki , otherwise, M[xki ] = 1;

Step1.4: Identify the NT-SCCs of global network
– transfer {M[Ci,kl ], M[xki ]} to coordination layer;
– identify the NT-SCCs from local SCCs, i.e., if M[Ci,kl ] = 0,

then use Cn
i,kl

to represent Ci,kl ;
– identify the NT-SCCs from the combined SCCs, i.e., ∀xki ∈

CNkc ,kc ∪ Cadd,kc and ∀i ∈ [1 : r], if M[xki ] = 0, then denote
by Cn

Nkc ,kc = CNkc ,kc ∪ Cadd,kc ;
– obtain the NT-SCCs of global network Cn

k , which is composed
by Cn

i,kl
and Cn

Nkc ,kc with k ∈ [1 : Nn
].

Then, to find the combined SCCs and identify the NT-SCCs of
global network, our main idea is: first, seek the SCCs, inward and
outward connected pairs of every local block in parallel; second,
with the aid of communication, synthesize local information to
determine the SCCs of global network, including the local SCCs
and the combined ones; third, mark up for every local SCC and
the local states involved in combined SCCs; finally, identify the
NT-SCCs of global network according to the obtained markers.
The complete block-based algorithm to find the NT-SCCs of global
system is provided in Algorithm 1.

Remark 2. In the determination of the inward connected pairs,
the states of kl-th local SCC of block Σi are denoted by Ci,kl for
brevity. In particular, to include all the states on the directed
paths from an incoming local state xli to an outgoing local state xmi ,
it is necessary to put the condition setting that xli and xmi should
belong to different Ci,kl .

4.3. Block-based algorithm to solve the MIDSC

By Lemma 1, another condition to be considered for address-
ing the MIDSC problem is [Ā, B̄] = n. In structural graph-based
theory, it is equivalent to find a maximum matching of B(Ā, B̄)
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with size n. To solve the MBM problem in blocking framework,
a prominent issue is that: the total size of maximum matchings
of every block may be smaller than the size of the maximum
matching of global network. To tackle this challenge, our main
idea and method are presented as follows.

Since solving the MBM problem equals to find a smallest
right-unmatched vertex-set of the same bipartite graph, if we
can find a matching that minimizes the sum of right-unmatched
vertices of every local block, then the smallest right-unmatched
vertex-set of global network can be obtained. To do this, we
analyze the bipartite graph B(Āii) of every block and have the
following findings: (1) in B(Āii), the left vertices of X abs

Li
can be

used to match with the right vertices of block Σi only; (2) the left
vertices of X out

Li
can be employed to match with not only the right

vertices of B(Āii) but also the right vertices of B(Ājj) with j ∈ Oi.
Therefore, we refer to the states of X out

Li
and X in

Ni
as the associated

states of block Σi, which may contribute to reducing the right-
unmatched vertices of B(Āii). The set of associated states of block
Σi is denoted by X ass

i = X out
Li

∪ X in
Ni

. Then to address the MBM
problem in a block-based manner, the key is how to optimize the
allocation of every associated state into the most suitable block
so that the total size of the maximum matchings of every block
is maximized. To this end, some concepts and theoretical results
are presented.

Definition 3 (Extended Bipartite Graph). Given a bipartite graph
B(V1,V2, EV1,V2 ), if one adds a vertex-set V̄1 to V1 and an edge-
set EV̄1,V2 to EV1,V2 , where V̄1 ∩ V1 = ∅, then the obtained
B(V+

1 ,V2, EV+

1 ,V2
) is referred to as an extended bipartite graph of

B(V1,V2, EV1,V2 ), where V+

1 = V̄1 ∪ V1 and EV+

1 ,V2
= EV̄1,V2 ∪

EV1,V2 .

Lemma 2. Let s be the size of the right-unmatched vertex-set with
respect to a maximum matching M∗ of B(V1,V2, EV1,V2 ), and s+ be
the cardinality of the right-unmatched vertex-set with respect to a
maximum matching M+∗ of B(V+

1 ,V2, EV+

1 ,V2
). If V̄1 contains only

one vertex v̄, i.e., V+

1 = V1 ∪ v̄, then there is s+ = s or s+ = (s−1).

In Lemma 2, it can be readily seen that if any right-unmatched
vertex with respect to M∗ of B(V1,V2, EV1,V2 ) can be matched by
Ev̄,V2 , then there is s+ = (s − 1). Otherwise, s+ = s holds true.
On this basis, the extensible vertex of a bipartite graph can be
defined below.

Definition 4 (Extensible Vertex). Let V̄1 = v̄, if there is a maximum
matching M+∗ of B(V+

1 ,V2, EV+

1 ,V2
) so that s+ = (s− 1), then v̄ is

known as an extensible vertex of B(V1,V2, EV1,V2 ).

Definition 5 (Valid Matching). Given an extensible vertex v̄ of
B(V1,V2, EV1,V2 ) and a maximum matching M+∗ of B(V+

1 ,V2,
EV+

1 ,V2
), if (v̄, v2) ∈ M+∗, v2 ∈ V2, then (v̄, v2) is said to be a valid

matching of M+∗ and denoted by (v̄, v2)v .

Definition 6 (Eliminable Matching). Given an extensible vertex v̄
and a maximum matching M∗ of B(V1,V2, EV1,V2 ), if there exists
an edge (v̄, vum2 ) while satisfying vum2 ∈ Vum

2 (M∗), where Vum
2 (M∗)

is the right-unmatched vertex-set of B(V1,V2, EV1,V2 ) with re-
spect to M∗, then denoted by (v̄, vum2 )e an eliminable matching of
B(V1,V2, EV1,V2 ).

Note that the valid matching depends on M+∗ while the elim-
inable matching relies on M∗. To better illustrate the difference
of the two matchings, an example is provided in Fig. 2.

Theorem 1. If v̄ is an extensible vertex of the bipartite graph
B(V1,V2, EV1,V2 ), then there must exist an eliminable right vertex
vum2 such that vum2 ∈ Vum

2 (M∗
g ), where M∗

g is any given maximum
matching of B(V1,V2, EV1,V2 ).

Fig. 2. Given a bipartite graph shown in (a), its extended bipartite graph is
shown in (b). The maximum matching M+∗ is denoted by the pink and blue
edges while the valid matching (v̄, v2)v is shown by the blue edge in (b). Given a
maximum matching M∗ of (a), as shown by the pink edges in (c), the eliminable
matching (v̄, vum2 )e is denoted by the yellow edge in (d) . (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3. Given a B(V+

1 ,V2, EV+

1 ,V2
) shown in (a), where the M+∗ is denoted by

the pink and blue edges of (a). (b) shows the situation (1) of Proof 1, where
M∗

g is denoted by the pink edge and vum2 = v2(M+∗) is shown by the yellow
node. The first case of situation (2) is shown in (c), where M∗

g is shown by the
pink edge while (v̄, vum2 )e is denoted by the yellow edge. The second case of
situation (2) is provided in (d), where the augmenting path is shown by the
edges with blue arrows and vum2 ∈ Vum

2 (M∗
g ) is shown by the yellow node of (e)

. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Proof 1. By Definition 4, if v̄ is an extensible vertex of B(V1,V2,

EV1,V2 ), there must exist a maximum matching M+∗ of B(V+

1 ,V2,

EV+

1 ,V2
) so that s+ = (s − 1) holds true. To proceed, let us

denote by v2(M+∗) the right vertex of B(V+

1 ,V2, EV+

1 ,V2
) matched

with v̄ through (v̄, v2(M+∗))v . Meanwhile, we denote by Vum
2 (M∗

g )
and Vm

2 (M∗
g ) the right-unmatched and matched vertex-set with

respect toM∗
g of B(V1,V2, EV1,V2 ). Then review the vertex v2(M+∗)

in B(V+

1 ,V2, EV+

1 ,V2
), there exist two situations, i.e., v2(M+∗) ∈

Vum
2 (M∗

g ) or v2(M
+∗) ∈ Vm

2 (M∗
g ), which are discussed, respectively,

as follows:
(1) if v2(M+∗) ∈ Vum

2 (M∗
g ), then (v̄, v2(M+∗))e is an eliminable

matching of B(V1,V2, EV1,V2 ) (see Fig. 3(b)). In this situation,
another maximum matching M̂+∗ of B(V+

1 ,V2, EV+

1 ,V2
) can be

obtained by defining M̂+∗
= M∗

g ∪ (v̄, v2(M+∗))e. Then vum2 =

v2(M+∗). By Definition 6, vum2 ∈ Vum
2 (M∗

g ) is proved;
(2) else if v2(M+∗) ∈ Vm

2 (M∗
g ), since s+ = (s − 1), there must

exist a right-unmatched vertex of some maximum matching M̃∗

of B(V1,V2, EV1,V2 ) can be matched by a vertex of V+

1 . Specifi-
cally, in one case, if (v̄, vum2 )e can be found (see Fig. 3(c)), then
vum2 ∈ Vum

2 (M∗
g ) definitely holds by Definition 6. In another

case, if (v̄, vum2 )e is non-existent (see Fig. 3(d)), one can find an
augmenting path (i.e., a path connecting a left-unmatched vertex
and a right-unmatched vertex with the matching edge and un-
matching edge appear on this path alternatively) from v̄ to a
vertex of Vum

2 (M∗
g ). By performing the augmenting path inversion

(i.e., changing the un-matching edge of the augmenting path into
a matching edge while changing the matching edges into un-
matching ones), vum2 matched by a vertex of V+

1 with satisfying
vum2 ∈ Vum

2 (M∗
g ) can be finally found (see Fig. 3(e)). Because v̄ is

an extensible vertex of B(V1,V2, EV,V2 ), the augmenting path is
always existed in the second case. Consequently, vum2 ∈ Vum

2 (M∗
g )

is tenable with respect to any given M∗
g , which completes the

proof of Theorem 1. □
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Remark 3. Theorem 1 reveals that any given maximum matching
M∗

g (or equivalently, any right-unmatched vertex-set Vum
2 (M∗

g ))
of a bipartite graph will not effect the judgment on the exis-
tence of an eliminable right vertex vum2 corresponding to a given
extensible vertex v̄. This result indicates that, a random initial
right-unmatched vertex-set can be adopted to find the eliminable
right vertices of every local block.

Theorem 2. Let v̄1, . . . , v̄k be k different extensible vertices of
B(V1,V2, EV1,V2 ), whose a group of eliminable matchings with re-
spect to a certain maximum matching M∗ of B(V1,V2, EV1,V2 ) are
(v̄1, vum2,1)e, . . . , (v̄

k, vum2,k)e. Denote by M+∗ a maximum matching of
B(V+

1 ,V2, EV+

1 ,V2
), where V+

1 = V̄1 ∪ V1 and V̄1 = {v̄1, . . . , v̄k}. Let
s (s ≥ k) be the size of Vum

2 (M∗) and s+ be the size of Vum
2 (M+∗).

If vum2,1, . . . , v
um
2,k ∈ Vum

2 (M∗) and vum2,1∩, . . . ,∩vum2,k = ∅, then there is
s+ = (s − k) holds true.

Proof 2. Because the k extensible vertices correspond to k dif-
ferent eliminable right vertices with respect to the same M∗,
the k eliminable right vertices of Vum

2 (M∗) can be matched by
the k different eliminable matchings (v̄1, vum2,1)e, . . . , (v̄

k, vum2,k)e. In
consequence, s+ = (s − k) is true. □

Theorem 2 implies that the effect of each extensible ver-
tex in eliminating the right-unmatched vertex is independent
if they can match with a different eliminable right vertex with
respect to a certain M∗. Therefore, we can use the following
method to solve the MBM problem in a block-based frame-
work: (1) define the bipartite graph of rest states B(Ārest

ii ) =

B(X rest
i ,Xi, EX rest

i ,Xi
) for every local block, where X rest

i = Xi \

X out
Li

is the rest local state-set; (2) determine a random ini-
tial right-unmatched vertex-set X um

i (Mrest
i ) with respect to any

maximum matching Mrest
i of B(Ārest

ii ) (revealed by Theorem 1);
(3) select the extensible vertices from X ass

i and find the eliminable
matchings of every block; (4) determine the optimal alloca-
tion of every associated state by computing a maximum match-
ing of the association bipartite graph (revealed by Theorem 2)
B(Ē) = B(X ass,X um, EX ass,X um ), where X ass

=
⋃r

i=1 X
ass
i , X um

=⋃r
i=1 X

um
i (Mrest

i ) and EX ass,X um = {(xassi , xumi ) : xassi ∈ X ass
i , xumi ∈

X um
i (Mrest

i ), and (xassi , xumi )e is existed}. The block-based graph-
ical approach to resolve the MIDSC problem is presented in
Algorithm 2. Note that, based on the result of Algorithm 1, the so-
lution of Algorithm 2 always satisfies the two conditions required
for guaranteeing the structural controllability of global system
with using a minimum number of actuated states. Therefore, the
resulting solution is globally optimal.

Remark 4. It is noteworthy that in Setp2.4 of Algorithm 2, if uk is
not matched in M+∗, at the same time, Cn

k ∩X um
= ∅. Then select

any state xli of C
n
k (which must be matched in Mrest

i , ∀i ∈ [1 : r])
and match xli to uk, which brings no change in M+∗.

Algorithm 2. Block-based algorithm to solve MIDSC
Step2.1: Initialization

– determine the associated state-set X ass
i ;

– obtain X rest
i and X rest+

i = X rest
i ∪ xassi , ∀xassi ∈ X ass

i ;
– construct the bipartite graph B(Ārest

ii );
– find any maximum matching Mrest

i of B(Ārest
ii ), and obtain the

right-unmatched vertex-set X um
i (Mrest

i );
Step2.2: Find the eliminable matchings

– construct B(Ārest+
ii ) = B(X rest+

i ,Xi, EX rest+
i ,Xi

);
– select the extensible vertices of B(Ārest

ii ) from X ass
i ;

– find all the eliminable matchings (xassi , xumi )e in B(Ārest+
ii ) with

xumi ∈ X um
i (Mrest

i );
Step2.3: Construct the extended association bipartite graph

– transfer {X um
i (Mrest

i ), (xassi , xumi )e} to coordination layer;
– construct the association bipartite graph B(Ē);
– add the set Un

= {u1, . . . , uNn} to the left vertex-set X ass

of B(Ē), and add new edges from every uk to every right
vertex of B(Ē) that is involved in Cn

k . Obtain the extended
association bipartite graph B(Ē+);

Step2.4: Determine the minimum input design
– compute a maximum matching M+∗ of B(Ē+);
– for any k ∈ [1 : Nn

], if uk is not matched in M+∗, select any
state xli of C

n
k∩X um (which must be matched inM+∗), remove

the matching edge of xli and match xli with uk. Denote the
new maximum matching by M̃+∗;

– determine the minimum input design Di of every block,
which is the index-set of states in {X um(M̃+∗)∪Xm(Un)}∩Xi,
where X um(M̃+∗) is the set of right vertices of B(Ē+) that
are not matched by M̃+∗, and Xm(Un) is the set of states
matched by any uk.

5. Complexity analysis and comparison

In this section, we analyze the complexity of the proposed
approach and demonstrate its advantage by comparing it with
the fastest (up-to-date) algorithm (Olshevsky, 2015) to the MIDSC
problem that is designed based on a monolithic system model.
The analytical results show that, the algorithm complexity of
the block-based method is strictly lower than that of the fastest
algorithm (Olshevsky, 2015) under some mild conditions on the
blocking network structure, i.e., if each well partitioned block
meets the following criteria

(dout
i + d in

ri ) ≤
√
n, (9)

where the correlation degrees dout
i and d in

ri are mainly determined
by a specific blocking topology.

Hereafter, the complexity of Algorithms 1 and 2 is analyzed,
respectively, to obtain the complete complexity of the block-
based approach.
(i) Let us denote by ni = |Xi|, mi = |EXi,Xi ∪ EXi,X out

Ni
| and d =∑r

i=1 d i. In the worst case, one needs to traverse all the vertices
and edges in local computation, and check every associated vertex
for coordination. Thus, Algorithm 1 can be certainly performed in
the operations of

T1 =

r∑
i=1

O(mi + ni) + O(d). (10)

(ii) Then let mi,1 = |EX rest
i ,Xi

| be the number of edges in B(Ārest
ii ).

Since the randomized Mucha–Sankowski and Madry’s algorithms
give the correct answer with a certain probability (at least 1 −

1/n), the determinate Hopcroft–Karp algorithm is employed in
finding the maximum matching. That is, the time complexity for
determining the Mrest

i is denoted as

T2,1 =

r∑
i=1

O(mi,1
√
ni).

To proceed, let mi,2(xassi ) = |EX rest
i ,Xi

∪ Exassi ,Xi | be the number of
edges in B(Ārest+

ii ). Since mi,2(xassi ) depends on different xassi , we
use mmax

i,2 to denote the biggest mi,2(xassi ). Additionally, due to
the number of associated states is |X ass

i | = dout
i + d in

ri , the time
consumed to explore the eliminable matchings is derived by

T2,2 =

r∑
i=1

O(mmax
i,2 (dout

i + d in
ri )).

Next, denote by D(Ē) = (X ass
∪X um, EX ass,X um ), whose number of

vertices and edges are ne = |X ass
∪ X um

| and me = |EX ass,X um |.
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Then in determining the optimal allocation of the associated
states, the time complexity is

T2,3 = O(me
√
ne).

Hence, the complexity of Algorithm 2 is obtained by

T2 =T2,1 + T2,2 + T2,3
=O(max

i∈[1:r]
{mi,1

√
ni,mmax

i,2 (dout
i + d in

ri )}) + O(me
√
ne). (11)

Given the above, the complete time complexity of the block-
based approach has the form of

T =T1 + T2
=O(max

i∈[1:r]
{mi + ni, d,mi,1

√
ni,mmax

i,2 (dout
i + d in

ri ),me
√
ne}). (12)

Eq. (12) reveals that the complexity of the block-based algorithm
is closely related to the size and complication (i.e., the number
of nodes and edges involved in a block) of the biggest block, the
maximal correlation degree and the number of associated edges.
It indicates that a blocking structure with fewer local nodes, less
local edges and lower correlation degree is more favorable to
enhance the algorithm efficiency.

In what follows, we further expound the advantage of the
proposed approach by comparing it with the fastest algorithm (Ol-
shevsky, 2015) to the MIDSC problem designed based on a mono-
lithic system model, whose complexity is O(m

√
n). Now let us

denote by n =
∑r

i=1 ni, m =
∑r

i=1 mi, then there is

max
i∈[1:r]

{mi + ni} < m + n < m
√
n, d ≤ n < m

√
n.

Since D(Ārest
ii ) and D(Ē) are sub-digraphs of D(Ā), we have

maxi∈[1:r]{mi,1
√
ni} < m

√
n, me

√
ne < m

√
n. Moreover, because

the matching edges of B(Ārest+
ii ) constitute a subset of matching

edges of B(Ā), mmax
i,2 < m holds true. Thus, when a proper blocking

structure is attainable with (dout
i +d in

ri ) ≤
√
n is satisfied for every

local block, it derives that

max
i∈[1:r]

{mmax
i,2 (dout

i + d in
ri )} < m

√
n.

Taken together, we prove that

T < O(m
√
n), (13)

which demonstrates a higher efficiency of the proposed method.

Remark 5. Criteria (9) is a mild condition on the blocking
network structure since it can be certainly met for the worst case
with r = 1, i.e., there is only one block and dout

i + d in
ri = 0. In this

case, (dout
i + d in

ri ) ≤
√
n definitely holds and the algorithm com-

plexity gets back to O(m
√
n) without improvement. However, in

some other cases with r > 1, we can eventually obtain a favorable
blocking structure that satisfies (9) by means of properly merging
the blocks that do not meet the criteria into a larger block. In
these cases, the algorithm complexity can be certainly reduced
by employing the proposed approach.

6. Illustrative example

Next, we validate the proposed approach through an illustra-
tive example from Carvalho et al. (2017) and Pequito et al. (2016).
Here we consider a network that has been well partitioned into
six blocks. For every block, the criterion (9) is satisfied. Without
loss of generality, the blocking structure with an SCC is split
by block Σ1 and Σ2 is taken into account. The global network
digraph D(Ā) with a blocking structure is shown in the following
Fig. 4.

Fig. 4. The global network digraph D(Ā) with a blocking structure.

Fig. 5. The implementation of Algorithm 1. The nodes of X in
Li

, X out
Li

, and the
intersection of the two sets are, respectively, shown by the blue, red and purple
ones in (a). The outward connected pair is connected by a red dotted edge
while the inward connected pair is connected by a blue solid edge in (a). The
local SCC is denoted by the green nodes connected with green edges in (a). In
(b), the obtained combined SCC is shown by green nodes connected with blue
edges. (c) shows the markers while (d) shows the NT-SCCs of global network .
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

The implementation to Step1.1–Step1.4 of Algorithm 1 is
shown in (a)–(d) of Fig. 5 while the inward and outward con-
nected pairs of every block are given in Table 1. In local SCCs,
C3,1 = {x13, x

2
3, x

3
3, x

4
3}. In this example, one combined SCC is found

with CN1,1 = {x11, x
2
1, x

1
2} and N1 = {1, 2}. The obtained NT-SCCs

are {x11, x
2
1, x

1
2} and {x16}, which are shown by the green nodes

connected with green edges in Fig. 5(d).
Based on the above result, Algorithm 2 is implemented to

solve the MIDSC problem. X ass
i of every block is obtained as

X ass
1 = {x11, x

1
2}, X ass

2 = {x11, x
1
2}, X ass

3 = {x12, x
3
3, x

1
6},

X ass
4 = {x33}, X ass

5 = {x33}, X ass
6 = {x16}.

In Fig. 6, the constructed B(Ā), B(Ārest
ii ) and B(Ē+) are shown by the

subgraph (a), (b) and (c), respectively. Meanwhile, the eliminable
matchings of every block are provided in Table 1. According to the
optimal allocation result shown in Fig. 6(c), we have X um(M̃+∗) =

∅, Xm(Unt ) = {x21, x
1
6}. Consequently, the optimal solution of

the MIDSC problem in this example is D1 = {2} and D6 =
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Table 1
The connected pairs and eliminable matchings of local blocks.
Block Inward

connected pair
Outward
connected pair

Eliminable
matching

Σ1 (x21, x
1
1)

in (x11, x
1
2)

out (x12, x
2
1)e

Σ2 − (x12, x
2
1)

out (x11, x
1
2)e

Σ3 − (C3,1, x14)
out (x12, x

1
3)e

(C3,1, x15)
out (x16, x

4
3)e

Σ4 − − (x16, x
1
6)e

Σ5 − − −

Σ6 − (C6,1, x43)
out

−

Fig. 6. The construction of B(Ā), B(Ārest
ii ) and B(Ē+). (a) shows B(Ā), where the

associated states are shown by the blue nodes. (b) shows B(Ārest
ii ) of every local

block, where Mrest
i are shown by the pink edges. The right matched vertices

are shown by the yellow nodes while the unmatched vertices are shown by
white ones in (b). (c) shows B(Ē+), where M̃+∗ is denoted by the pink edges .
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

{1}, i.e., the minimum driver nodes for structural controllability
are {x21, x

1
6}. This result is exactly consistent with the solution

obtained in Pequito et al. (2016), which verifies the effectiveness
of our approach. On the other hand, the algorithm complexity
here is reduced by considering the blocking structure.

7. Conclusions and further research

In this work, we have developed a graphical approach to
address the minimum input design problem for structural con-
trollability under a block-based structure setting to accommodate
the control system design of massive networks. First, we pro-
vided tools to identify the smallest subset of driver nodes by
two proposed algorithms, which were used to find the NT-SCCs
and the maximum matching of global network in a blocking
framework, respectively. Then the computational complexity of
the proposed method was analyzed. Finally, we shown the advan-
tage of our algorithm by comparing it with existing algorithms.
The main results indicate that the complexity of the block-based
algorithm is guaranteed to be lower than existing algorithms un-
der a mild condition on the blocking structure. Additionally, the
effectiveness of the algorithm was demonstrated by an example.

The blocking framework put forward here raises many open
questions, such as an investigation on the efficient graph parti-
tioning strategy for achieving higher algorithm efficiency, which
is more challenging but will shed light on a deep understanding
of complex network control.
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