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Abstract— Detectability is an important property that char-
acterizes whether or not the state of a system can be precisely
determined under imperfect observation. In this paper, we
investigate the supervisor synthesis problem for a specific class
of detectability, called delayed detectability, in the context
of Discrete Event Systems. Specifically, delayed detectability
requires that the state of the system can always be determined
after some bounded information delays. That is, one is allowed
to use future information to “smooth” the state estimate of
previous instant. Our goal is to design a maximally-permissive
supervisor that restricts the behavior of the original system
such that the closed-loop system under control is delayed
detectable. To this end, we propose a new supervisor synthesis
approach that appropriately handles the delayed information
in the control problem . Our work generalizes previous results
on supervisory control of detectability, where only non-delayed
information is considered.

I. INTRODUCTION

State estimation and detection are central problems in the
systems theory. In most of the real-world systems, the state
of the system cannot be perfectly measured due to mea-
surement noises or measurement uncertainties. Therefore,
it is necessary to perform state estimation and detection
algorithms to obtain more precise knowledge of the system.
State estimation and detection are useful for many practical
purposes, e.g., supervisory control, fault diagnosis, fault
prognosis and security analysis.

In the DES literature, the study of the state estima-
tion problem dates back to [9], [10], where the notion of
observability is investigated. More recently, Shu and Lin
investigated this problem more systematically and proposed
the concept of detectability. In [15], four different notions of
detectability were proposed including (periodically) strong
detectability and (periodically) weak detectability. Since
then, detectability has drawn increasing attention in the past
few years; see, e.g., [1], [3], [6], [8], [8], [12]–[14], [17],
[19], [21], [22], [24], [26], [26], [27]. For example, in [4],
[5], [16], [18], [28], the authors extended detectability to the
stochastic setting by explicitly considering the probability of
detection. In [8], [17], [27], detectability has been extended
to systems modeled as labeled Petri nets. In [6], [7], [26],
the complexity of checking different notions of detectability
has been investigated.

Most of the state detection problems in the literature focus
on the detection of the current state of the system. However,
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in some situations, we are able to use future information
to improve our knowledge of the system’s state at some
previous instant [11], [23], [25]. This is also referred to as
the “smoothing” process in the systems theory. Essentially,
by using future information, we are able to eliminate the
possibility of those states that do not have the observed future
behavior from the state estimate in order to enhance precision
of the state estimation for a previous instant. In order to
utilize the delayed information in the state detection problem,
in [13], Shu and Lin proposed a new type of detectability
called delayed detectability. Specifically, delayed detectabili-
ty requires that, after k1 steps, we can always unambiguously
determine the precise state of the system with at most k2

steps of delay. More recently, delayed detectability has been
extended to the nondeterministic observation setting by [29].

In many applications, however, the open-loop system may
not be detectable directly. Therefore, in order to obtain better
information about the system, it is important to enforce
detectability via some enforcement mechanisms. One widely
used property enforcement mechanism in the DES literature
is the supervisory control theory initiated by Ramadge and
Wonham [2]. The supervisory control approach has already
been applied in the literature to enforce detectability; e.g.,
[14], [19]. For example, in [14], the authors show how to
design a supervisor that enforces strong detectability; it has
been pointed out that maximally-permissive supervisor does
not exist in general for this problem. In [19], the authors
study the enforcement of strong K-detectability using super-
visory control, where maximally-permissive supervisor does
exists.

In this paper, we investigate how to synthesize a supervi-
sor that enforces detectability when delayed information is
involved. Specifically, we study the enforcement of (k1, k2)-
detectability proposed by [13]. To this end, we propose a
new structure called the (k1, k2)-observer that precisely cap-
tures the delayed information in the synthesis problem. An
effective approach is provided to synthesize an detectability
enforcing supervisor for this case. In particular, we show
that a maximally-permissive supervisor always exists and it
is unique, i.e., supremal, when all controllable events are
observable.

II. PRELIMINARIES

A. System Model

Let Σ be a finite set of events. A string is a finite sequence
of events and a language is a set of strings. We denote by Σ∗

the set of all strings over Σ including the empty string ε. For
any string s ∈ Σ∗, we denote by |s| its length with |ε| = 0;
we denote by σsi the ith event in s, i.e., s = σs1σ

s
2 . . . σ

s
|s|.
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We consider a DES modeled by a finite-state automaton

G = (X,Σ, δ,X0),

where X is a finite set of states, Σ is a finite set of events,
δ : X × Σ → 2X is a non-deterministic partial transition
function and X0 ⊆ X is the set of initial states. The transition
function is also extended to δ : X × Σ∗ → 2X recursively
by: ∀s ∈ Σ∗, σ ∈ Σ, x ∈ X : δ(x, sσ) = ∪x′∈δ(x,s)δ(x′, σ).
The language generated by G from state x ∈ X is defined
by L(G, x) := {s ∈ Σ∗ : δ(x, s)!}, where “!” means
“is defined”. We define L(G) := ∪x0∈X0

L(G, x0) as the
language generated by the system.

For any finite-state automaton G = (X,Σ, δ,X0), we
denote by GR = (X,Σ, δR, X) the reversed automaton of
G. Specifically, the transition function δR : X × Σ → 2X

is defined by: ∀x, x′ ∈ X,σ ∈ Σ : x′ ∈ δR(x, σ) ⇔ x ∈
δ(x′, σ). Note that the initial state of GR is the entire state
space. For any string s ∈ Σ∗, we denote by sR its reversed
string, i.e., sR = σs|s| . . . σ

s
2σ

s
1.

We assume that the system G is partially-observed. Specif-
ically, we assume that the event set is partitioned as Σ =
Σo∪̇Σuo, where Σo is the set of observable events and Σuo
is the set of unobservable events. The natural projection from
P : Σ∗ → Σ∗o is defined recursively by: ∀s ∈ Σ∗, σ ∈ Σ

P(ε) = ε, P (sσ) =

{
P (s)σ if σ ∈ Σo
P (s) if σ ∈ Σuo

The natural projection is also extended to P : 2Σ∗ → 2Σ∗o

by: ∀L ⊆ Σ∗ : P (L) = {P (s) ∈ Σ∗o : s ∈ L}.

B. Delayed Detectability

Let G be a system and αβ ∈ P (L(G)) be an observable
string. We denote by X̂(α | αβ) the set of states the system
could have been in for the instant when α is observed given
the entire observation αβ, i.e.,

X̂G(α | αβ) :=

x ∈ X :
∃x0 ∈ X0, s1s2 ∈ L(G, x0) s.t.
P (s1) = α ∧ P (s1s2) = αβ

∧x ∈ δ(x0, s1)


We define X̂G(α) := X̂G(α | α). Therefore, X̂(α | αβ) and
X̂G(α) are also referred to as the delayed state estimate and
the current state estimate, respectively.

The current-state estimate X̂G(α) can be computed by
the well-known observer automaton. Let q ∈ 2X be a set of
states and σ ∈ Σo be an observable event. Then we define

UR(q) := {x′ ∈ X : ∃x ∈ q, w ∈ Σ∗uo s.t. x′ ∈ δ(x,w)}

as the unobservable reach of q and define

Nextσ(q) := {x′ ∈ X : ∃x ∈ q s.t. x′ ∈ δ(x, σ)}

as the observable reach of q upon the occurrence of σ.
To compute the current-state estimate, we can construct

the observer. Specifically, the observer of G is a finite-state
automaton

Obs(G) = (Xobs,Σo, δobs, xobs,0),
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Fig. 1. System G with Σo = {a, b, c} and Σc = {a, c}. Note that all
states are initial in GR.

where Xobs ⊆ 2X \ ∅, xobs,0 = UR(X0) and δobs :
Xobs × Σo → Xobs is a deterministic transition function
defined by: ∀q ∈ Xobs, σ ∈ Σo : δ(q, σ) = UR(Nextσ(q)).
Then we have L(Obs(G)) = P (L(G)) and for any α ∈
P (L(G)) : X̂G(α) = δobs(q0, α), which computes the
current-state estimate upon the occurrence of α.

To compute the delayed-state estimate, one can construct
both the observer of the original system and the observer of
the reversed system, i.e., Obs(G) and Obs(GR). It has been
shown in [20] that, for any string αβ ∈ P (L(G)), we can
compute the delayed-state estimate by

X̂G(α | αβ) = X̂G(α) ∩ X̂GR
(βR). (1)

Note that X̂GR
(βR) is the state reached via βR in Obs(GR).

Example 1: Let us consider system G shown in Fig-
ure 1(a) with Σo = {a, b, c}. Its reversed automaton GR
is shown in Figure 1(b), where all states are initial. Then
Obs(G) and Obs(GR) are shown in Figures 1(c) and 1(d),
respectively. For example, when we observe string ac ∈
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P (L(G)), we have X̂G(ac) = δobs(q0, ac) = {5, 6}. If we
observe string ba after observing ac, then we have

X̂G(ac | acba)=X̂G(ac)∩X̂GR
(ab)={5, 6}∩{3, 6, 7}={6}

i.e., the system must be at state 6 two steps ago when acba
is observed.

C. Delayed Detectability

In the state detection problem, the goal is to precisely
determine the state of the system, possibly with some infor-
mation delay. To this end, in [13], Shu and Lin propose the
notion of (k1, k2)-detectability, which is reviewed as follows.

Definition 1: ((k1, k2)-Detectability) Let k1, k2 ∈ N be
two non-negative integers. System G is said to be (k1, k2)-
detectable w.r.t. Σo if, for any αβ ∈ P (L(G)) such that
|α|≥k1 and |β|≥k2, we have |X̂G(α | αβ)|=1.

Intuitively, (k1, k2)-detectability says that, after k1 (obser-
vational) steps from the initial state, any state of the system
can be precisely determined within at most k2 steps. This
definition is weaker than strong (current-state) detectability
[15] since we can use future information to improve our
knowledge of the system for some previous instant.

Example 2: We still consider system G shown in Fig-
ure 1(a) with Σo = {a, b, c}. This system is not (1, n)-
detectable for any n, since ac(bc)n ∈ P (L(G)) and X̂G(a |
ac(bc)n) = {3, 4}. That is, we may never be able to
determine the precise state of the system for the instant of
the occurrence of a within any finite delay.

III. SUPERVISORY CONTROL FOR DELAYED
DETECTABILITY

A. Problem Formulation

In many situations, the open-loop system G may not be
detectable. Therefore, we need to enforce detectability via
some mechanism in order to maintain precise knowledge
of the system. One of the most widely used enforcement
mechanisms is the supervisory control theory initiated by
Ramadge and Wonham. In this framework, we assume that
the event set is further partitioned as Σ = Σc∪̇Σuc, where
Σc and Σuc are the set of controllable events and the set of
uncontrollable events, respectively. We assume that Σc ⊆ Σo,
i.e., we can only disable observable events which is the case
in many applications.

A control decision is a set of events that includes Σuc;
we denote by Γ = {γ ∈ 2Σ : Σuc ⊆ γ} the set of control
decisions. Then a partial-observation supervisor is a function

S : Σ∗o → Γ,

i.e., for any observable string α ∈ P (L(G)), S(α) is the set
of events enabled upon the observation of α. We denote by
S/G the closed-loop system under control. The language
generated by the closed-loop system L(S/G) is defined
recursively by:
• ε ∈ L(S/G); and
• ∀s ∈ Σ∗, σ ∈ Σ : sσ ∈ L(S/G) ⇔ s ∈ L(S/G) ∧ σ ∈
S(P (s)) ∧ sσ ∈ L(G);

In the closed-loop system under control, since some possi-
ble string can be disabled by the supervisor, the information
of the system may be changed under supervision. Therefore,
we define

X̂S/G(α | αβ) :=

x ∈ X :
∃x0∈X0,∃s1s2∈L(S/G) s.t.
P (s1) = α ∧ P (s1s2) = αβ

∧x ∈ δ(x0, s1)


as the delayed state estimate under control. Compared with
X̂G(α | αβ), X̂S/G(α | αβ) only consider observation
consistent strings in L(S/G).

The detectability enforcement problem is to synthesize a
supervisor such that the closed-loop system is detectable.
This problem is formulated as follows.

Problem 1: Given system G with Σc ⊆ Σo ⊆ Σ,
synthesize a supervisor S : P (L(G)) → Γ such that, for
any αβ ∈ P (L(S/G)) : |α| ≥ k1, |β| ≥ k2, we have
|X̂S/G(α | αβ)|=1.

We say that a solution S to Problem 1 is optimal if for
any other solution S′, we have L(S′/G) ⊆ L(S/G).

B. Separability in Delayed State Estimation

In order to solve Problem 1, we need to provide an
effective approach to compute the closed-loop delayed state
estimate X̂S/G(α | αβ). Note that, in general, we always
have X̂S/G(α | αβ) ⊆ X̂G(α | αβ).

In [19], the authors have shown that, under the assumption
of Σc ⊆ Σo, the current state estimates of the open-
loop system and the closed-loop system are the same, i.e.,
X̂S/G(α) = X̂G(α) for any supervisor S. Therefore, the
state estimation and the control synthesis can be separated.
Here, we further generalize this separability result to the case
of delayed state estimate.

Proposition 1: Assume that Σc ⊆ Σo. For any supervisor
S : P (L(G)) → Γ and any string αβ ∈ P (L(S/G)), we
have X̂S/G(α | αβ) = X̂G(α | αβ).

IV. THE (k1, k2)-OBSERVER

In this section, we present the structure of the (k1, k2)-
observer, which generalizes the standard observer structure
to handle delayed information. This structure will be used as
the basis for solving the control synthesis problem.

Before, we formally present the definition of the (k1, k2)-
observer, we first introduce some necessary notations.

For any non-negative integer n ∈ N, we define

Σ≤n := {s ∈ Σ∗ : |s| ≤ n}

as the set of strings whose lengths are smaller than or equal
to n. Also, for any string s = σs1σ

s
2 . . . σ

s
|s| ∈ Σ∗ and non-

negative integer n ∈ N, we denote by Lastn(s) the string
consisting of the last n events of s, i.e.,

Lastn(s) =

{
s if |s| ≤ n
σs|s|−n+1 . . . σ

s
|s| if |s| > n

We are now ready to define the (k1, k2)-observer.
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Given system G with Σo ⊆ Σ and two non-negative
integers k1, k2 ∈ N, the (k1, k2)-observer for G is defined as
a new finite-state automaton

Obsk1,k2(G) = (Q,Σo, f, q0)

where
• Q ⊆ (2X \∅)×Σ≤k2×{0, 1, . . . , k1} is the set of states;
• Σo is the set of observable events;
• f : Q × Σo → Q is the deterministic partial transition

function defined as follows:
– For any state ı = (q, s, n) and any observable event
σ ∈ Σo, f(ı, σ) is defined if and only if δobs(q, sσ)
is defined.

– Moreover, if f((q, s, n), σ) is defined, then it leads
to state ı′ = (q′, s′, n′) defined by:

∗ If n < k1, then

(q′, s′, n′) = (δobs(q, σ), ε, n+ 1) (2)

∗ If n = k1 and |s| < k2, then

(q′, s′, n′) = (q, sσ, k1) (3)

∗ If n = k1 and |s| = k2, then

(q′, s′, n′) = (δobs(q, σ
s
1), Lastk2(sσ), k1) (4)

• q0 := (UR(X0), ε, 0) ∈ Q is the initial state.
For the sake of simplicity, we only consider the reachable
part of the (k1, k2)-observer.

The (k1, k2)-observer is the key information structure in
this paper. Essentially, it divides the evolution of the system
into three phases:
• the transient phase: less than k1 observable events are

generated; and
• the event-delay phase: more than k1 but less than k2

observable events are generated;
• the evaluation phase: more than k1 + k2 observable

events are generated.
More intuitively, each phase works as follows.
• We say that system is at the transient phase when less

than k1 observable events are executed, since we do
not need to determine the precise state of the system
for these instants. Therefore, the first component simply
tracks the current state estimate following the dynamic
of the system, and the second component will not
store any string information. The last integer component
is simply a counter that determines whether or not
the system is at the transient phase, i.e., how many
observable events have occurred from the initial state.
Therefore, upon the occurrence of each new observable
event, its value is added by one and it will only record
at most k1 steps.

• We say that system is at the event-delay phase when
more than k1 but less than k1+k2 observable events are
executed, since we need to determine the precise state
of the system for these instants, but not for now, i.e.,
the detection bound k2 has not expired. Therefore, we

will not update the state estimate immediately. Instead,
we will keep the first component unchanged and store
the observable string following the receiving order until
there are k2 events in the string. Note that the last
component will not change anymore since the transient
phase has expired.

• Finally, the system goes to the evaluation phase after
k1 +k2 observable events are generated. This is because
we need to evaluate whether or not the state of the
instant k2 steps ago can be determined. In this phase,
the string in the second component is used to record the
last k2 observable events after k1 observable events have
occurred. Therefore, whenever a new event is observed,
the last event will be erased by the Lastk2 operator and
the new event will be added to the rear of the string; the
string in this component is essentially a queue. Hence,
for any α = σα1 . . . σ

α
|α| such that(q, s, k) = f(q0, α),

we have

s =

{
ε if |α| ≤ k1

Lastk2(σαk1+1 . . . σ
α
|α|) if |α| > k1

(5)

Then the state estimate component is updated based on
the event erased at each instant, i.e., σs1. Therefore, each
state at the phase contains the current state estimate
for the instant k2 steps ago and the string with length
k2 that is executed from that instant. Formally, for any
α = σα1 . . . σ

α
|α| such that f(q0, α) = (q, s, n), we have

q =


X̂G(α) if |α| < k1

X̂G(σα1 . . . σ
α
k1

) if k1 ≤ |α| < k1 + k2

X̂G(σα1 . . . σ
α
|α|−k2) if k1 + k2 ≤ |α|

(6)

Finally, we note that the transition function of the (k1, k2)-
observer is defined if and only if the transition function of
the standard observer is defined. Therefore, we also have
L(Obsk1,k2(G)) = L(Obs(G)) = P (L(G)).

Let us illustrate this structure by the following example.
Example 3: Still, let us consider system G shown in

Figure 1(a). We consider k1 = 1 and k2 = 2. Then the
(k1, k2)-observer Obs1,2(G) is shown in Figure 2.

Initially, Obs1,2(G) starts from state ({0, 1, 2}, ε, 0),
where {0, 1, 2} is the initial state of Obs(G) and the string
queue is empty. Upon the occurrence of the first observable
event a, the system moves to state ({3, 4}, ε, 1). Specifically,
since 0 < k1 = 1, the observer is still at the transient
phase, i.e., (i) {3, 4} is computed by updating the current-
state estimate {0, 1, 2} using event a; and (ii) the string queue
remains as the empty string; and (iii) the integer component
is added to 1.

When state ({3, 4}, ε, 1) is reached, the observer becomes
to the event-delay phase, since 1 = k1 but |ε| < k2.
Therefore, if event c is observed, then we move to state
({3, 4}, c, 1), where (i) state estimate {3, 4} is not changed;
and (ii) the string queue becomes to c by adding event c to
the queue; and (iii) the integer component is not changed
anymore by remaining as 1 = k1.
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Fig. 2. The (k1, k2)-observer Obsk1,k2
(G) for system G shown in

Figure 1(a), where k1 = 1 and k2 = 2.

When state ({3, 4}, cb, 1) is reached, the observer becomes
to the evaluation phase, since |cb| = 2 = k2. If event a is
observed from state ({3, 4}, cb, 1), then state ({5, 6}, ba, 1)
is reached. Specifically, the state estimate {3, 4} is updated
to {5, 6} by using the first event c in the queue. Therefore,
event c is consumed and we add new event a to the end of
the queue, which gives ba. Still, the integer component is
not changed anymore by remaining as 1 = k1.

V. SYNTHESIS PROCEDURE

In order to enforce delayed detectability, we need to avoid
the occurrence of observable string αβ ∈ P (L(G)) such that
|α| ≥ k1, |β| ≥ k2 and |X̂G(α | αβ)| > 1. Since the delayed
state estimate for the instant of α can only be improved when
β goes longer, it suffices to consider the case of |β| = k2.
As we discussed in Equations (5) and (6), for any α =
σα1 . . . σ

α
|α| such that |α| ≥ k1 + k2 and f(q0, α) = (q, s, n),

we have
• q = X̂G(σα1 . . . σ

α
|α|−k2); and

• s = Lastk2(α) = σα|α|−k2+1 . . . σ
α
|α|.

According to Equation (1), we can actually use the informa-
tion of q and s to reconstruct X̂G(σα1 . . . σ

α
|α|−k2 | α) by

X̂G(σα1 . . . σ
α
|α|−k2 | α)

=X̂G(σα1 . . . σ
α
|α|−k2) ∩ X̂GR

((Lastk2(α))R) (7)

=q ∩ X̂GR
(sR)

Based on this intuition, we define the set of illegal states in
Obsk1,k2(G) as follows.

Definition 2: Let Obsk1,k2(G) = (Q,Σo, f, q0) be the
(k1, k2)-observer of G. For any state ı = (q, s, n) ∈ Q, we
say that ı is an illegal state if (i) n = k1; and (ii) |s| = k2;
and (iii) |q∩ X̂GR

(sR)| > 1. We denote by Qillegal ⊆ Q the
set of illegal states in Obsk1,k2(G).

The following result reveals that a supervisor S enforces
(k1, k2)-detectability if and only if it avoids the occurrences
of strings leading to illegal states in Obsk1,k2(G).

Theorem 1: Supervisor S solves Problem 1 if and only if
∀α ∈ P (L(S/G)), f(q0, α) /∈ Xillegal.
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(b) The closed-loop language under control L(S‖G).

Fig. 3. System G with Σo = {a, b, c} and Σc = {a, c}. Note that all
states are initial in GR.

Based on the Theorem 1, we are able to find an optimal
solution to Problem 1. Specifically, we need to first build the
(k1, k2)-observer Obsk1,k2(G). Then we just need to solve
a standard fully observed supervisory control problem by
considering Obsk1,k2(G) as the system model, Σc as the
set of controllable events and Qillegal as the set of illegal
states in Obsk1,k2(G). The reader is referred to [2] for
more details on the standard supervisory control algorithm
under the full observation setting. Essentially, it performs
an fixed-point computation by iteratively removing illegal
states and states with uncontrollable out-going transitions
from Obsk1,k2(G). The synthesis procedure resulting a sub-
automaton of Obsk1,k2(G), say S, which can be used as the
optimal (maximally-permissive) supervisor. The closed-loop
system can be represented as S‖G, where “‖” denotes the
standard parallel composition operator (see, e.g., p. 80 of
[2])1.

We illustrate the synthesis procedure by the following
example.

Example 4: We still consider our running example system
G shown in Figure 1(a). Its (k1, k2)-observer Obsk1,k2(G)
has been shown in Figure 2 when k1 = 1 and k2 = 2.
We can check that states ({3, 4}, cb, 1), ({5, 6}, bc, 1) and
({7, 8}, cb, 1) highlighted by solid red lines are illegal states.
For example, for ({3, 4}, cb, 1), we have 1 = k1, |cb| = 2 =

1In general, for partially-observation supervisor, we need to first add
controllable and unobservable self-loops at each supervisor state, and take
the product composition with the original system to get the closed-loop
system. However, since we assume here that all controllable events are
observable, it suffices to consider the parallel composition directly.
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k2 and

{3, 4} ∩ X̂GR
((cb)R) ={3, 4} ∩ δRobs(X, bc)

={3, 4} ∩ {3, 4, 7, 8} = {3, 4}

where δRobs denotes the transition function of Obs(GR);
recall that the initial state of Obs(GR) is X . Clearly,
({3, 4}, cb, 1) ∈ Qillegal since |{3, 4} ∩ X̂GR

((cb)R)| = 2 >
1.

In order to solve the standard supervisory control problem
based on Obsk1,k2(G),Σc and Qillegal, first, we need to
remove all illegal states from Obsk1,k2(G). However, since s-
tate ({3, 4}, cb, 1) is removed and event b is an uncontrollable
event, state ({3, 4}, c, 1), which is highlighted by red dashed
line, also needs to be removed in the second iteration. This
gives automaton S shown in Figure 3(a), which is the optimal
(maximally permissive) supervisor that solves Problem 1. By
taking the parallel composition between S and G, we obtain
the closed-loop behavior under control, which is shown in
Figure 3(b).

Remark 1: Finally, we discuss the computational com-
plexity for solving Problem 1 using the proposed approach.
First, we need to construct Obsk1,k2(G), which contains at
most k1 × |Σo|k2 × 2|X| states and k1 × |Σo|k2+1 × 2|X|

transitions. In order to determine Qillegal, we need to first
construct Obs(GR), which contains at most 2|X| states
and |Σo| × 2|X| transitions, and then test whether or not
|q ∩ X̂GR

(sR)| > 1 for each (q, s, n) in Obsk1,k2(G) such
that |s| = k2 and n = k1. Therefore, the entire complexity
for determining Qillegal is O(k1 × |Σo|k2 × 4|X|). Finally,
solving a standard supervisory control problem for state
avoidance can be done in linear time in the size of the system.
Therefore, the overall complexity is O(k1×|Σo|k2+1×4|X|).

VI. CONCLUSION

In this paper, we solved the supervisory control problem
for delayed detectability. The synthesized supervisor guar-
antees that the state of any instant of the system after k1

steps can be determined unambiguously with at most k2

steps of delay. To this end, a new information structure called
the (k1, k2)-observer is proposed to capture all information
needed in the synthesis problem in a finite domain. Based
on this structure, we further show that, under the mild
assumption of all controllable events are observable, the
synthesis problem can be reduced to a standard supervisory
control problem under full observation for state avoidance
specification.

REFERENCES

[1] M.V.S. Alves and J.C. Basilio. State estimation and detectability of
networked discrete event systems with multi-channel communication
networks. In American Control Conference, 2019.

[2] C. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems. Springer, 2nd edition, 2008.

[3] X. Han, Z. Chen, and J. Zhao. Matrix approach to detectability of
discrete event systems under partial observation. In 13th IEEE Conf.
Automation Science and Engineering, pages 187–192, 2017.

[4] C. Keroglou and C.N. Hadjicostis. Detectability in stochastic discrete
event systems. Syst. Control Letters, 84:21–26, 2015.

[5] C. Keroglou and C.N. Hadjicostis. Verification of detectability in
probabilistic finite automata. Automatica, 86:192–198, 2017.

[6] T. Masopust. Complexity of deciding detectability in discrete event
systems. Automatica, 93:257–261, 2018.

[7] T. Masopust and X. Yin. Complexity of detectability, opacity and
A-diagnosability for modular discrete event systems. Automatica,
101:290–295, 2019.

[8] T. Masopust and X. Yin. Deciding detectability for labeled Petri nets.
Automatica, 104:238–241, 2019.
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