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Abstract— We investigate state estimation and safe controller
synthesis for networked discrete-event systems (DES), where
supervisors send control decisions to plants via communication
channels subject to communication delays. Previous works on
state estimation of networked DES are based on the open-loop
system without utilizing the knowledge of the control policy. In
this paper, we propose a new approach for online estimation and
control of networked DES with control delays. We first propose
a new state estimation algorithm for the closed-loop system
utilizing the information of control decision history. Then we
investigate how to predict the effect of control delays in order
to calculate a control decision online at each instant. We show
that the proposed online supervisor can be updated effectively
and the resulting closed-loop behavior is safe.

I. INTRODUCTION

In this paper, we investigate the problem of supervi-
sory control of discrete-event systems (DES). Supervisory
control is a widely used approach for synthesizing con-
trollers/supervisors with formal correctness guarantees. In
many modern applications, supervisors are connected to
the plants via communication channels. Although such net-
worked information structures provide more flexible ways
for controlling DES, it also brings new research challenges.
Therefore, networked DES has drawn many attention in the
past few years in the DES literature; see, e.g., [1]–[5].

The study of supervisory control of networked DES dates
back to the work of Balemi [6], where the robustness of
supervisors under communication delays was investigated.
In [7], Park and Cho also studied the supervisor control
problem of networked DES assuming that each controllable
event is disabled by default. More recently, Lin [8] proposed
a general framework for supervisory control of networked
DES. In particular, it considers communication delays and
losses in both control channels and observation channels.
Necessary and sufficient conditions, termed as network con-
trollability and network observability, were provided for the
existence of a non-predictive supervisor that exactly achieves
a given specification language. Following the framework of
Lin, many works on control of networked DES have been
done in the literature in the past few years [9]–[11]. In [11],
the authors proposed a predictive supervisor and showed that

This work was supported by the National Natural Science Foundation of
China (61803259, 61833012).

Z. Liu, X. Yin and S. Li are with Department of Automation
and Key Laboratory of System Control and Information Process-
ing, Shanghai Jiao Tong University, Shanghai 200240, China. E-mail:
{zhaocongl,yinxiang,syli}@sjtu.edu.cn.

S. Shu is with the School of Electronics and Information
Engineering, Tongji University, Shanghai 201804, China. E-mail:
shushaolong@tongji.edu.cn.

the specification language is achievable if and only if the
predictive supervisor can do so. The predictive supervisor
has also been extended to modular systems by [10]. In [12],
[13], supervisory control of networked DES has also been
extended to the timed setting.

In many applications, it is very difficult to achieve a
given specification language exactly, i.e., supervisor exis-
tence problem is not solvable. Therefore, one is interested
in synthesizing a supervisor such that the closed-loop lan-
guage is a sub-language of the desired specification. This
problem is referred to as the supervisor synthesis problem
in the literature, which is one of the central problems in
the supervisory control theory [14]–[18]. In the context of
control of networked DES, in [19]–[21], supervisor synthesis
under observation delays and losses were investigated. To
our knowledge, however, the supervisor synthesis problem
with control delays has not yet been fully investigated in
the literature. One exception is the work of [9], where the
supervisor synthesis problem for safety specification under
both control and observation delays is tackled. However, the
approach in [9] requires to restrict the solution space a priori,
while the solution space is infinite in general.

In this paper, we investigate the supervisor synthesis
problem for networked discrete event systems with safety
specifications. Specifically, we focus on the case of control
delays and assume that the system is only partially-observed.
The synthesis problem under control delays is quite different
from the case of observation delays. In particular, due to
control delays, the control decision issued currently may
affect the closed-loop behavior in the future; this issue has
to be taken into account in the synthesis problem. In this
paper, we proposed a novel online control algorithm for
networked DES with control delays. First, we propose a new
approach for estimating the state of the closed-loop system
recursively online. Then, we discuss how to choose a control
decision online by predicting its effect in the future. Finally,
we integrate the state estimation and the state prediction
techniques into an interactive online control algorithm and
show its correctness. The general idea of online supervisory
control was originally studied for standard DES without
control delays; see, e.g., [15], [22]. To the best of our
knowledge, online supervisory control has never been applied
to networked DES with communication delays.

II. PRELIMINARIES AND PROBLEM FORMULATION

Let Σ be a finite set of events. A string is a finite sequence
of events. We denote by Σ∗ the set of all strings over Σ
including the empty string ε. A language L ⊆ Σ∗ is a set
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of strings. The prefix-closure of a language L is defined by
L = {w ∈ Σ∗ : ∃t s.t. wt ∈ L}. The concatenation of two
languages La, Lb ⊆ Σ∗ is defined by LaLb = {sasb ∈ Σ∗ :
sa ∈ La, sb ∈ Lb}. For any string s = σ1σ2 · · ·σn, σi ∈ Σ,
we denote by |s| its length, i.e., |s| = n. Also, we denote by
s−i the string obtained by removing the last i events in s,
i.e., s−i = σ1 . . . σ|s|−i; we define s−i = ε, if |s| ≤ i. For
any natural number N ∈ N, we denote by [0, N ] the set of
natural numbers from 0 to N .

A discrete event system is modeled by a finite-state
automaton G = (Q,Σ, δ, q0), where Q is a finite set of states,
Σ is a finite set of events, δ : Q×Σ→ Q is a partial transition
function, and q0 is the initial state. For any states q, q′ ∈ Q
and event σ ∈ Σ, δ(q, σ) = q′ implies that there exists a
transition from q to q′ labeled with event σ. The transition
function is also extended to δ : Q× Σ∗ → Q in the usually
manner; see, e.g., [23]. For the sake of simplicity, we write
δ(q, s) as δ(s) if q = q0. Then the language generated by G
is defined L(G) = {s ∈ Σ∗ : δ(s)!}.

In many situations, the original system G may not sat-
isfy some desired specification. Therefore, the superviso-
ry control theory was introduced in order to restrict the
system’s behavior such that the closed-loop system fulfills
the specification. In the supervisory control framework, the
event set Σ is partitioned as Σ = Σc∪̇Σuc = Σo∪̇Σuo,
where Σc and Σuc denote the set of controllable events and
the set of uncontrollable events, respectively. Similarly, Σo
and Σuo denote the set of observable events and the set of
unobservable events, respectively.

We define Γ = {γ ∈ 2Σ : Σuc ⊆ γ} as the set
of control decisions. That is, a supervisor cannot disable
uncontrollable events. The natural projection P : Σ∗ → Σ∗o
is defined in the usual manner; see, e.g., [23]. That is, upon
the occurrence of a string s ∈ Σ∗, the supervisor can only
observed P (s) ∈ Σ∗o. A supervisor is a mechanism that
enables/disables events dynamically based on its observation.
Formally, a supervisor is a mapping S : P (L(G))→ Γ. That
is, the supervisor decides to enable events in S(P (s)) when
string s is generated by the system.

In the networked setting, the supervisor needs to send its
control decisions to the plant via control channels, where
communication delays may occur. In this setting, the plant
may still use a previous control decision even when a
new control decision has been issued. We assume that the
communication delays are bounded by a non-negative integer
Nc. Then the language generated by the closed-loop system
(subject to control delays), denoted by L(S/G), is defined
recursively as follows [8]:

• ε ∈ L(S/G);
• For any s ∈ Σ∗ and σ ∈ Σ, we have sσ ∈ L(S/G) if

and only if
– sσ ∈ L(G); and
– s ∈ L(S/G); and
– σ ∈ S(P (s)) ∪ S(P (s−1)) ∪ · · · ∪ S(P (s−Nc

))

Remark 1: The definition of L(S/G) says that, at each
instant, the plant may use any control decision issued by the

supervisor in the previous Nc steps due to control delays.
This language is also referred to as the “large language”
(or the upper bound language) in the literature [24]. This
definition is very suitable for the purpose of safety as it is
conservative by capturing all possible actions the supervisor
may take under control delays.

Our goal is to design a supervisor such that the closed-
loop system satisfies a safety specification. We assume that
the specification is given as a legal language K ⊆ L(G) and
we want to make sure that the behavior of the closed-loop
system is within the legal language. Then we formulate the
Safety Control Problem with Control Delays (SCPCD) that
we solve in this paper as follows.

Problem 1: (SCPCD) Let G be a networked DES with
control delays bounded by Nc. Let K ⊆ L(G) be a safety
specification language. Find a safe supervisor S such that
L(S/G) ⊆ K.

Without loss of generality, we assume hereafter that K
is recognized by a strict sub-automaton of G, denoted by
H = (QH ,Σ, δH , q0), where QH ⊆ Q and δH ⊆ δ. That is,
L(H) = K ⊆ L(G) and for any string s ∈ L(G), we have
s ∈ K if and only if δ(q0, s) ∈ QH . We define

Qgood = {q ∈ QH : ∀s ∈ Σ∗uc s.t. δ(q, s) ∈ QH}

as the set of states that cannot reach a state in Q \ QH
via uncontrollable transitions. We assume that q0 ∈ Qgood.
Therefore, to guarantee safety, we need to make sure that the
system can only reach states in Qgood.

Remark 2: In [11], the authors investigated under what
condition the specification language K can be exactly
achieved subject to control delays. This problem is referred
to as the supervisor existence problem in the literature
[23]. Specifically, it has been shown that K can be exactly
achieved if and only if the specification is controllable
and networked observable. Our problem setting implicitly
assumes that the existence conditions are not satisfied and
we need to consider the synthesis problem.

III. ONLINE STATE ESTIMATION UNDER CONTROL
DELAYS

In the partial observation setting, in order to make control
decision at each instant, the supervisor needs to estimate the
set of all possible states the system can be in currently based
on all information available. Formally, let G be a system, S
be a supervisor (with control delays bounded by Nc) and
α ∈ P (L(S/G)) be an observable string. Then the state
estimate upon the occurrence of α is defined by

ES(α) = {q ∈ Q : ∃s ∈ L(S/G) s.t. P (s) = α∧δ(s) = q}.

Note that we use subscript “S” in ES(·) in order to
emphasize that we are considering the state estimate of
the closed-loop system controlled by supervisor S. When
supervisor S is given or we know a priori that the supervisor
will exactly achieve a given language, the state estimate
can be computed by constructing the (networked) observer
based on the closed-loop behavior L(S/G) [8]. However,
this state estimation technique essentially utilize the entire
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functionality of the supervisor including the future control
actions, which are unknown in the synthesis problem. In
order to synthesize control decisions effectively, we need to
estimate the state of the system online only based on the
information available up to the current instant.

In order to state our online state estimation algorithm, first,
we introduce the concept of channel configuration.

Definition 1: Let G be a networked DES with control
delays bounded by Nc. A channel configuration is a set of
pairs in the form of:

θ = {(γ1, n1), (γ2, n2), · · · , (γk, nk)},

where each γi ∈ Γ is a control decision and each ni ∈
[0, Nc] is a non-negative integer smaller than or equal to
Nc. We denote by Γ(θ) the union of all control decision
components in θ, i.e., Γ(θ) = ∪i=1,...kγi. Finally, we define
Θ := 2Γ×[0,Nc] as the set of all channel configurations.

Intuitively, each channel configuration specifies the control
decisions remained in the control channel and their timing
information. That is, (γi, ni) means that decision γi is de-
layed in the control channel and will still be effective for the
next ni steps. Essentially, the channel configuration models
the “state” of the control channel. Therefore, in our setting,
the true “state” of the closed-loop control system consists of
both the state of the plant and the channel configuration, and
we call this the extended state.

Definition 2: Let G be a networked DES with control
delays bounded by Nc. An extended state is a plant state
augmented with a channel configuration in the form of
q̃ = (q, θ), where q ∈ Q and θ ∈ Θ. We define Q̃ := Q×Θ
as the set of all extended states.

To precisely estimate the state of the system, we should not
only track all possible states of the plant, but also track the
channel configuration of each possible state since delayed
control decisions may affect the behavior of the system
in the future. That is, we want to estimate all possible
extended states based on the information available. Next, we
describe how the extended state estimate evolves when new
information is obtained.

Let θ ∈ Θ be a channel configuration. We define the “next”
operator NX : Θ→ Θ by: for any θ ∈ Θ,

NX(θ) = {(γ, n− 1) ∈ Γ×N : (γ, n) ∈ θ, n ≥ 1}.

That is, NX(θ) decreases the timing index of each control
decision in θ one unit and it only keeps control decisions
whose timing indices are non-negative (which means that
the delay has not yet expired).

Now we are ready to present how the extended state
estimate can be updated recursively online based on new
information obtained. Suppose that our current estimation of
the extended state of the system is x ∈ 2Q̃. Then we need
to update this set for the following two scenarios
• a new control decision γ ∈ Γ is issued;
• a new observable event σ ∈ Σo is observed.

We formalize the estimation updating procedures for the
above two scenarios by operators NUR : 2Q̃ × Γ → 2Q̃

and NOR : 2Q̃ × Σo → 2Q̃, respectively, as follows.

Definition 3: Let x ∈ 2Q̃ be a set of extended states and
γ ∈ Γ be a control decision. Then the networked unobserv-
able reach (NUR) of x under γ, denoted by NURγ(x), is
defined recursively as follows:
• For any extended state (q, θ) ∈ x, we have

(q, θ ∪ {(γ,Nc)}) ∈ NURγ(x) (1)

• For any extended state (q, θ) ∈ NURγ(x) and any
unobservable event σ ∈ Σuo, we have

σ ∈ Γ(θ) and δ(q, σ)! (2)
⇒(δ(q, σ),NX(θ) ∪ {(γ,Nc)}) ∈ NURγ(x).

Intuitively, NURγ(x) is the updated extended state esti-
mate immediately after a new control decision γ (but before
the occurrence of the next observable event) based on the lat-
est state estimate x. The update is implemented by searching
all extended states that can be reached unobservably from x.
More specifically, first, we add the latest control decision γ
and its timing index Nc to each extended state in x. Then, for
each extended state (q, θ) ∈ NURγ(x), we need to consider
all unobservable and feasible events from x. By feasible,
we mean that the event is defined at q and is enabled by
some control decision in the control channel, i.e., σ ∈ Γ(θ).
For such (q, θ) and σ, we then add its successor extended
state (δ(q, σ),NX(θ)∪{(γ,Nc)}) to NURγ(x). The second
component of the successor state is NX(θ)∪{(γ,Nc)} since
(i) the execution of σ will decrease the timing index of each
previous control decision in θ by one unit; and (ii) we need
to add the current control decision with its timing index Nc.

Definition 4: Let x ∈ 2Q̃ be a set of extended states
and σ ∈ Σo be an observable event. Then the networked
observable reach (NOR) of x upon the occurrence of σ,
denoted by NORσ(x), is defined by

NORσ(x) = {(δ(q, σ),NX(θ)) ∈ Q̃ : (q, θ) ∈ x, σ ∈ Γ(θ)}.
(3)

Intuitively, NORσ(x) is the set of extended state estimate
that can be reached immediately after observing σ, but before
the next control decision is issued, based on the latest state
estimate x. Therefore, for each state (q, θ) ∈ x considered,
event σ must be feasible in G and be enabled by some control
decision in the control channel, i.e., σ ∈ Γ(θ). Upon the
occurrence of σ, the plant state will be updated and we also
need to decrease the timing index of each control decision
in θ by one unit.

Example 1: Let us consider system G shown in Figure 1
with Σo = {a},Σc = Σ and Nc = 1. Suppose that the
current extended state estimate is x1 = {(1, ({a, u1}, 1))},
which means that the system is at state 1 and there exists a
control decision γ1 = {a, u1} delayed in the control channel
that will still be effective in one step. Then if we observe
a, we have x̂2 = NORa(x1) = {(δ(1, a),NX((γ1, 1))} =
{(2, {(γ1, 0)})}. From x̂2, if we make control decision γ2 =
{u1}, then we have
• (2, {(γ1, 0)} ∪ {(γ2, 1)}) ∈ NURγ2(x̂2); and
• Since u1 ∈ Γ({(γ1, 0), (γ2, 1)}) and δ(2, u1) = 3,

we have (3,NX({(γ1, 0), (γ2, 1)}) ∪ {(γ2, 1)}) ∈
NURγ2(x̂2).
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Fig. 1. System G with Σo = {a},Σc = Σ and Nc = 1

Therefore, we have x2 = NURγ2(x̂2) =
{(2, {(γ1, 0), (γ2, 1)}), (3, {(γ2, 0), (γ2, 1)})}.

We are now ready to present our online state estimation
algorithm. The main idea is to employ NUR(·) and NOR(·)
alternatively so that the extended state estimate can be
updated recursively online. Formally, let G be a DES and
S be a supervisor with control delays bounded by Nc. Let
α ∈ P (L(S/G)) be an observable string generated by the
closed-loop system. We define two sets ÊS(α) and ES(α)
recursively by: for any α ∈ Σ∗o and σ ∈ Σo, we have

ÊS(ε) = {(q0, ∅)} (4)

ES(α) = NURS(α)(ÊS(α)) (5)

ÊS(ασ) = NORσ(ES(α)) (6)

Intuitively, ÊS(α) is the extended state estimate immediately
after observing α and ES(α) is the extended state estimate
after making control decision S(α) with unobservable reach
included. Hereafter, we will formally show that ES(α) is
indeed the extended state estimate of the closed-loop system
upon the observation of α. A very important feature of ES(α)
is that, its computation only utilizes the information available
up to the instant of α = σ1 . . . σn, σi ∈ Σo, i.e., the following
alternating sequence of control decisions and observations

S(ε)σ1S(σ1)σ2 · · ·σnS(σ1 . . . σn)

This makes online control synthesis possible as all informa-
tion needed are available up to the current instant.

To state our result, for any s ∈ L(S/G), we define

θ(s)={(γ,Nc − n) : 0≤n≤min{Nc, |s|}, γ=S(P (s−n))}
(7)

as the channel configuration upon the execution of s. Using
this notation, for any s ∈ L(S/G), we have

Γ(θ(s)) = S(P (s)) ∪ S(P (s−1)) ∪ · · · ∪ S(P (s−Nc
)). (8)

The following result shows that our proposed state es-
timate ES(α) indeed correctly estimates the plant state to-
gether with its channel configuration.

Theorem 1: Let G be a DES and S be an arbitrary
supervisor with control delays bounded by Nc. For any
α ∈ P (L(S/G)), we have

ES(α) = {(δ(s), θ(s))∈Q̃ : ∃s∈L(S/G) s.t. P (s)=α}.
(9)

For any set of extended states x =
{(q1, θ1), · · · , (qn, θn)}, we denote by Q(x) the set of all
states in its first component, i.e., Q(x) = {q1, q2, · · · , qn}.
Then we have the following corollary of Theorem 1 by
restricting our attention to the first component of x.

Corollary 1: Let G be a DES and S be an arbitrary
supervisor with control delays bounded by Nc. For any
α ∈ P (L(S/G)), we have Q(ES(α)) = ES(α).
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Fig. 2. System G with Σc = Σ,Σo = {a} and Nc = 1.

Example 2: Let us consider the system G shown in Fig-
ure 2 with Σc = Σ,Σo = {a} and Nc = 1. Suppose
that the system is controlled by supervisor S defined by:
S(ε) = γ0 and S(a) = γ1, where γ0 = {a, u1, u2, u3} and
γ1 = {a, u1, u3}. We now computed the proposed extended
state estimation ES(a) and ES(a), respectively.

Initially, we have ÊS(ε) = {(1, ∅)}. After making
the first control decision S(ε) = γ0, we have
ES(ε) = NURγ0(ÊS(ε)) = (1, {(γ0, 1)}). Then upon
observing a, we have ÊS(a) = NORa(ES(ε)) =
{(2, {(γ0, 0)})}. After making the second control decision
S(a) = γ1, we further have ES(a) = NURγ1(ÊS(a)) =
{(2, {(γ0, 0), (γ1, 1)}), (3, {(γ1, 0), (γ1, 1)}), (5, {(γ1, 0),
(γ1, 1)})}. Note that state 6 is not contained in ES(a) since
u2 /∈ Γ({(γ1, 0), (γ1, 1)}) = {a, u1, u3}.

On the other hand, by definition of ES(·) and L(S/G), we
have L(S/G) = {ε, a, au1, au1a, au3}. Therefore, we have
ES(a) = {δ(s) : s ∈ L(S/G)s.t.P (s) = a} = {2, 3, 5}.
This is consistent with our result that ES(a) = Q(ES(a)).

IV. STATE PREDICTION AND CHOICE OF CONTROL
DECISION

In the previous section, we have shown how to compute
the state estimate online in the presence of control delays. In
this section, we discuss how to choose a safe control decision
at each instant based on the state estimate.

In the standard supervisory control framework without
control delays, the choice of control decision at each instant
will only affect reachable states until the occurrence of the
next observable event, since the control decision can be
updated immediately. However, in our setting, the current
control decision may affect reachable states in the next Nc
steps due to control delays. Therefore, to precisely evaluate
the effect of a control, we need to predict all possible states
that can be reached in the presence of control delays. To
this end, we introduce the concept of uncontrollable state
prediction (USP).

Let θ = {(γ1, n1), (γ2, n2), · · · , (γk, nk)} be a channel
configuration and m ∈ [0, Nc] be a non-negative integer. We
denote by Γ≥m(θ) the union of all control decisions that will
still be effective after m steps, i.e.,

Γ≥m(θ) =
⋃

i∈{1,...,k}:ni≥m

γi (10)

Clearly, we have Γ≥0(θ) = Γ(θ) and Γ≥m(θ) ⊆ Γ(θ). Then
we define the uncontrollable language from θ by

Luc(θ) := Γ≥0(θ)Γ≥1(θ) · · ·Γ≥Nc
(θ),

where the second part is the prefix-closure of the concatena-
tion of event sets Γ≥i(θ) from i = 0 to i = Nc. Intuitively, if
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Fig. 3. System G with Σc = Σ = Σo and Nc = 1.

the current channel configuration is θ, then we cannot prevent
any string in Luc(θ) from happening due to existing delayed
control decisions.

Definition 5: Let q̃ = (q, θ) ∈ Q̃ be an extended state,
then the uncontrollable state prediction of q̃, denoted by
USP(q̃), is defined by

USP(q̃) = {δ(q, s) ∈ Q : s ∈ Luc(θ)} . (11)

The uncontrollable state prediction is also extended to a set
of extended states x ∈ 2Q̃ by USP(x) = ∪q̃∈xUSP(q̃).

The intuition of the uncontrollable state prediction is
similar to that of the uncontrollable language. It essentially
captures the set of states we cannot prevent from reaching
from x no matter what control decisions we take in the future.
We illustrate this concept by the following example.

Example 3: Let us consider the system G shown in Figure
3 with Σc = Σ = Σo and Nc = 1. Suppose we are now at ex-
tended state q̃ = (3, θ), where θ = {({a, c}, 0), ({b, c}, 1)},
and we want to compute its uncontrollable state prediction
USP(q̃). First, we have

Luc(θ) =Γ≥0(θ)Γ≥1(θ) = {a, b, c}{b, c}
={ab, bb, cb, ac, bc, cc}

Therefore, we have

USP(q̃) = {δ(3, s) ∈ Q : s ∈ Luc(θ)} = {3, 4, 5, qillgeal}.

Therefore, we know that, we will unavoidably reach state
qillegal starting from such extended state q̃ = (3, θ).

Suppose that string α ∈ Σ∗o is observed and the extended
state estimate of the system (before the lastest unobservable
reach) is computed as ÊS(α) ∈ 2Q̃. Now, let us discuss how
to choose a control decision at each instant for the purpose
of safety. As we discussed above, once we choose control
decision γ ∈ Γ at ÊS(α), the extended state estimate will be
updated as ES(α) = NURγ(ÊS(α)). Moreover, the system
will possibly reach any state in USP(ES(α)) no matter what
control decisions we take in the future. Therefore, we say
that a control decision γ ∈ Γ is safe at ÊS(α) if

USP(NURγ(ÊS(α))) ⊆ Qgood. (12)

Therefore, to guarantee safety, we need to make sure that the
control decision at each instant is safe; otherwise, the system
may avoidably reach an illegal state in Q \QH .

V. ONLINE CONTROL ALGORITHM

So far we have discussed how to estimate the state of the
system recursively online and how to predict the effect of a
control decision based on the current state estimate. Now, we
combine the estimation and prediction techniques together to
finally present our online control algorithm.

The online control procedure is formally provided in
Algorithm ONLINE-CONTROL, which computes a control
decision at each instant upon the occurrence of a new
observable event. More specifically, the procedure starts from
the initial state estimate ÊS(ε) = {(q0, ∅)}. Then it wants
to find a safe control decision γ at ÊS(ε) in the sense of
Equation (12). Moreover, to achieve permissiveness, we want
this control decision to be maximal, i.e., there does not exist
another safe control decision γ′ at ÊS(ε) such that γ ⊂ γ′.
Once the control decision is chosen, we update our state
estimate to ES(ε) using the NUR operator and then wait
for the occurrence of the next observable event. Once a new
observable event σ is observed, first, we update the state
estimate to ÊS(σ) using the NOR operator. Again, we go to
line 5 to choose a safe control decision and repeat the above
procedure indefinitely.

Algorithm 1: ONLINE-CONTROL (G,Nc, Qgood)

1 α← ε, ÊS(α)← {(q0, ∅)};
2 Go to line 5;

while a new event σ ∈ Σo is observed do
3 ÊS(ασ)← NORσ(ES(α));
4 α← ασ;
5 Find a maximal control decision γ ∈ Γ such that

USP(NURγ(ÊS(α))) ⊆ Qgood;
6 Make control decision S(α)← γ;
7 ES(α)← NURγ(ÊS(α));

Remark 3: The maximal safety control decision in line 5
of Algorithm 1 can be found by an “add-and-test” manner.
Specifically, we can start from the set of uncontrollable
events and then add a controllable event to it and test whether
or not the resulting set is still safe. If so, we keep this
event and repeat this procedure until no event can be added
anymore. Similar procedure has been described in more
detail in the literature; see, e.g., [22].

The following result shows the correctness of the proposed
online supervisor.

Theorem 2: Let G be a DES and we denote by Sonline
the online supervisor defined in Algorithm 1. Then we have
L(Sonline/G) ⊆ K.

Finally, we illustrate the proposed online control algorithm
by the following example.

Example 4: Let us consider system G shown in Figure 4
with Σ = Σc,Σo = {a, b} and Nc = 1. The specification
language K is generated by the sub-automaton obtained
by removing illegal states from G. For this example, we
have QH = Qgood as all events are controllable. We apply
the proposed online control algorithm to compute control
decision at each instant.

Initially, the algorithm start from Ê(ε) = {(q0, ∅)} and
we want to choose a maximal control decision S(ε) =
γ0 such that USP(NURγ0(ÊS(ε))) ⊆ Qgood. One can
check that γ0 = {a, b, u1, u2, u3} is such a maximal
control decision. Then the state estimate is updated to
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Fig. 4. System G with Σ = Σc,Σo = {a, b} and Nc = 1.

ES(ε) = NURγ0(ÊS(ε)) = {(1, {(γ0, 1)})}. If event a is
observed, then we first update the state estimate to ÊS(a) =
NORa(ES(ε)) = {(2, {(γ0, 0)})}. Then we again want to
find a maximal control decision S(a) = γ1 such that
USP(NURγ1({(2, {(γ0, 0)})})) ⊆ Qgood. For this, we can
choose γ1 = {a, b, u1, u3}. Note that we cannot add event
u2 to γ1 since illegal state qillegal will be reached in the
unobservable reach. Then the immediate state estimate upon
next observable event a occurs is Ê(aa) = {(4, {(γ1, 0)})}.
By applying the online algorithm recursively again, we can
obtain control decision S(aa) = γ2 = {a, b, u1, u2, u3}.

Remark 4: In [11], a supervisor called predictive super-
visor, denoted by Spnc, was proposed in order to exactly
achieve K. Moreover, the authors also show that, when K
is not exactly achievable, the synthesized supervisor is still
safe. However, both state estimation and state prediction pro-
cedures of Spnc are based on the specification K. Therefore,
Spnc is conservative as some infeasible behaviors are also
considered. For example, in Example 4, the closed-loop lan-
guage generated by our online supervisor is L(Sonline/G) =
{au3, au1aa, au1ab}, while the predictive supervisor as de-
fined in [11] achieves L(Spnc/G) = {au3, au1aa}. Clearly,
we see that Sonline is strictly more permissive than Spnc.
Intuitively, this is because that the predictive supervisor
estimates the state of the system based on K. Therefore,
upon the occurrence of aa, Spnc still needs to disable event
b to avoid transition 7

b−→ qillgeal. However, by precisely
estimating the state of the system using previous control
information, our online supervisor knows that state 7 is not
reachable since event u2 was disabled in the previous step.

VI. CONCLUSION

In this paper, we proposed an online approach for solving
the safety supervisory control problem of networked DES
with control delays. To this end, we proposed the concept of
extended states that augments the plant states with channel
configurations. We presented techniques for online state esti-
mation and prediction based on the extended state estimate.
We showed that the proposed online supervisor is safe. We
also illustrated by example that the proposed supervisor
may achieve more permissive behavior than the predictive
supervisor proposed in [11].
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