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Decentralized Fault Prognosis of Discrete-Event
Systems Using State-Estimate-Based Protocols
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Abstract—We investigate the problem of decentralized fault
prognosis in the context of discrete-event systems. In this
problem, the system is monitored by a set of local agents; each
of them sends its local information to a coordinator in order
to issue a fault alarm before the occurrence of fault. Two new
decentralized protocols are proposed by exploiting the state-
estimate of each local agent. For each protocol, a necessary
and sufficient condition for its correctness is proposed; they
are termed as positive state-estimate-prognosability and nega-
tive state-estimate prognosability. Verification algorithms for the
necessary and sufficient conditions are also provided. We show
that the proposed new protocols are incomparable with any of the
existing protocols in the literature. Therefore, they provide new
opportunities for correctly predicting the fault when all existing
protocols fail.

Index Terms—Complexity, decentralized fault prognosis,
discrete-event systems (DESs), state-estimate.

I. INTRODUCTION

FAULT detection and prediction are crucial tasks in
complex automated systems. In many safety-critical

systems, when the system is subject to fault, simply detect-
ing and isolating the fault may not be enough to guarantee
the safety of the system, since some critical functional-
ity of the system can be destroyed before the detection of
fault. Therefore, in some applications, it is of interest to
predict the occurrence of fault in advance such that some
protective actions can be taken before fault occurs. This
problem is referred to as the fault prognosis (or prediction)
problem.

In this paper, we consider the fault prognosis problem in
the context of discrete-event systems (DES). DESs is a class
of dynamic systems with discrete state spaces and event-
triggered dynamics [3]. In the past two decades, the theory
of model-based fault diagnosis using DES model has been
extensively developed and has been successfully applied to
many applications; see [6], [19], [20], [22], [26], [27] and a
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recent survey [40]. More recently, the problem of fault progno-
sis has draw considerable attention in DES literature, see [1],
[2], [4], [5], [7], [10], [11], [15], [16], [18], [21], [23], [24],
[28]–[32], [34], [36], [37], [39]. The problem of fault progno-
sis of DES was initially studied by [10] and [11], where the
notion of predictability (or uniformly bounded prognosability)
was introduced. In [18], using the concept of indicator strings,
the notion of prognosability was introduced as the necessary
and sufficient condition for the existence of a prognoser that
can correctly predict the fault occurrences. Later on, in the
context of DES, the fault prognosis problem has been fur-
ther studied for stochastic systems [2], [5], [7], [23], [24],
distributed systems [30], [31], timed systems [4], and Petri
nets [1], [21]. The problem of enforcing prognosability by
activating/deactivating sensors is studied in [34].

In many large-scale networked systems, the information
structure of the system is naturally decentralized due to the
distributed physical components of the system. It is impossible
or very costly to collect all available data at a central station.
Therefore, using decentralized architecture to process data is
more efficient for large-scale systems. More specifically, we
assume that the system is monitored by several local agents;
each of them has its own observation and data processing capa-
bility. Each local agent first processes the data it observes
locally and then sends the processed and compressed data to
a central fusion site (or coordinator). Then the coordinator
uses the local information received to issue a global prognostic
decision. Following this decentralized scheme, the problem of
decentralized fault prognosis has been studied by many works
in the DES literature; see [16], [18], [29], [36], [37].

In the decentralized fault prognosis problem, one of the
key ingredients is what protocol (or architecture) we adopt
to handle the decentralized information. Roughly speaking,
a decentralized protocol consists of: 1) what information
each local agent sends to the coordinator and 2) how the
coordinator issues a global decision based on the local infor-
mation received. For example, Kumar and Takai [18] assumed
that each local agents can only send a binary informa-
tion and use disjunctive rule for the coordinator. Similarly,
Khoumsi and Chakib [16] still considered using binary infor-
mation but with conjunctive fusion rule. Using inference-based
fusion rule for decentralized fault prognosis is considered
in [29].

In this paper, we propose two new decentralized protocols
for the purpose of fault prognosis; namely, the positive state-
estimate (PSE) based protocol and the negative state-estimate
(NSE) based protocol. In both of these two protocols, each
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local agent uses a subset of its state-estimate as the information
it sends to the coordinator. More specifically, in the PSE-based
protocol, each local agent sends the set of states, which is
believed as the reason why a fault alarm should be issued;
while in the NSE-based protocol, each local agent sends the
set of states, which is believed as the reason why a fault
alarm should not be issued. Then the coordinator takes the
intersection of the local state-estimates to calculate a global
prognostic decision.

The main contributions of this paper are as follows. First,
we formally define the PSE-based protocol and the NSE-based
protocol; the implementation issues of these two protocols are
discussed. Second, for each protocol, we provide a necessary
and sufficient condition under which the protocol satisfies the
following two requirements: 1) a fault alarm can be issued K
steps before any fault occurrence and 2) once a fault alarm is
issued, a fault is guaranteed to occur within M steps. The nec-
essary and sufficient condition is termed as PSE-prognosability
(respectively, NSE-prognosability) for the positive (respec-
tively, negative) state-estimate-based protocol. Third, effective
algorithms for the verification of PSE-prognosability and NES-
prognosability are provided, respectively; the former has a
polynomial complexity with respect to the size of the system,
while the latter has an exponential complexity with respect
to the size of the system. Moreover, we show that the verifi-
cation of both of PSE-prognosability and NSE-prognosability
are PSPACE-hard with respect to the number of local agents.
Finally, we show that the proposed protocols are incompara-
ble with any existing decentralized prognosis protocol in the
literature. This also justifies the usefulness of the proposed
protocols, since they provide new opportunities for predicting
fault when all existing protocols fail to do so.

It is worth remarking that state-estimate-based proto-
cols have been used in the literature for the purposes of
decentralized fault diagnosis [9], [12], [25] and decentral-
ized control [35]. More generally, the idea of taking the
intersection of local (language) information has also been
explored in [13] and [14] for the purpose of supervisory con-
trol. The differences between the results in this paper and the
above works are as follows. First, in this paper, we consider the
decentralized fault prognosis problem, which is different from
the decentralized fault diagnosis problem and the decentral-
ized control problem. Although there is a connection between
decentralized fault diagnosis and decentralized control [33],
to the best of our knowledge, there is no formal relation-
ship between the decentralized fault prognosis problem and
these two problems established in the literature. Therefore, it
is needed and nontrivial to develop state-estimate-based pro-
tocol for the purpose of fault prognosis. Second, the protocols
in [9], [12], [25], and [35] are more close to the positive pro-
tocol in our setting. However, we consider both positive and
negative protocols in this paper. In particular, the necessary and
sufficient condition of the negative protocol is more difficult
to verify in the prognosis problem, since we not only need to
consider the current information, but also need to consider the
previous information along the trajectory. This issue is simi-
lar to that the disjunctive architecture versus the conjunctive
architecture under the binary information setting [38].

The remaining part of this paper is organized as follows.
Section II provides some necessary preliminaries for fault
prognosis of DES. In Section III, we propose two novel
state-estimate-based protocols for the purpose of decentral-
ized fault prognosis. The notion of PSE-prognosability and
NSE-prognosability are introduced. Verification algorithms for
PSE-prognosability and NSE-prognosability are provided in
Section IV. Section V discusses some complexity issues in the
verification problems. In Section VI, we compare the proposed
protocols with the existing ones in the literature. Finally, we
conclude this paper in Section VII.

II. PRELIMINARY

A. Discrete Event Systems

Let � be a finite set of events. A string s = σ1 · · · σn, σi ∈ �

is a finite sequence of events. We denote by �∗ the set of
strings over � including the empty string ε. For any string s,
we denote by |s| its length with |ε| = 0. A language L ⊆ �∗
is a set of strings. We denote by L the prefix-closure of L,
i.e., L = {s ∈ �∗ : ∃t ∈ �∗ s.t. st ∈ L}. For any s ∈ �∗, we
denote by L/s the set of continuations of s in L, i.e., L/s =
{t ∈ �∗ : st ∈ L}.

A DES is modeled by a finite-state automaton

G = (Q, �, δ, q0, Qm) (1)

where Q is the finite set of states, Qm ⊆ Q is the set of marked
states, � is the finite set of events, q0 ∈ Q is the initial state,
and δ : Q × � → Q is the partial transition function, where
for any q, q′ ∈ Q and σ ∈ �, δ(q, σ ) = q′ means that there
exists a transition from q to q′ labeled with σ . Function δ is
also extended to δ : Q × �∗ → Q recursively by: for any
q ∈ Q, s ∈ �∗, σ ∈ �, δ(q, sσ) = δ(δ(q, s), σ ). For the sake
of simplicity, we also write δ(q, s) as δ(s) if q = q0. The
language generated by G from state q ∈ Q is L(G, q) = {s ∈
�∗ : δ(q, s)!}, where “!” means “is defined.” Then the language
generated by G is L(G) := L(G, q0). The language marked
by G is Lm(G) = {s ∈ �∗ : δ(s) ∈ Qm}. We will omit Qm

and write an automaton by G = (Q, �, δ, q0) if marking is not
considered. We say that G is live if ∀q ∈ Q, ∃σ ∈ � : δ(q, σ )!.
Hereafter, we assume without loss of generality (w.l.o.g.) that
G is live.

For any two automata A = (QA, �, δA, q0,A) and B =
(QB, �, δB, q0,B) such that L(A) ⊆ L(B), we say that A is
a subautomaton of B, denoted by A 
 B, if: 1) QA ⊆ QB;
2) q0,A = q0,B; and 3) ∀s ∈ L(B) : δA(s) = δB(s) if δA(s)!. We
say that A is a strict subautomaton of B, denoted by A � B,
if: 1) A 
 B and 2) ∀s ∈ L(B) \L(A) : δB(s) ∈ QB \ QA. Note
that, for any A and B such that L(A) ⊆ L(B), we can always
refine their state-spaces in polynomial-time such that A � B;
see [8].

B. Decentralized Fault Prognosis

In the fault prognosis problem, we want to predict any
fault before its occurrence. To this end, we denote by H =
(QH, �, δH, q0,H) the specification automaton that models the
normal behaviors of the system, i.e., any string in L(H) ⊆
L(G) is considered as a nonfault string and any string in
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L(G) \ L(H) is considered as a fault string. Note that we
do not consider marking in H and G since the fault prognosis
problem is studied on the prefix-closed language generated
by the system. w.l.o.g, we assume that H � G. With this
assumption, for any string s ∈ L(G), s is a nonfault string iff
δ(s) ∈ QH , i.e., QH is the set of nonfault states and Q \ QH is
the set of fault states.

In the decentralized fault prognosis problem, the plant G
is monitored by a set of local agents (or local prognosers).
We assume that there are n local agents and denote by I =
{1, . . . , n} the index set. For each agent i ∈ I, we denote by
�o,i the set of events that can be observed locally by i. Then
Pi : �∗ → �∗

o,i is the natural projection defined by

Pi(ε) = ε and Pi(sσ) =
{

Pi(s)σ if σ ∈ �o,i

Pi(s) if σ �∈ �o,i.

Function Pi is also extended 2�∗
by ∀L ∈ 2�∗

: Pi(L) = {s ∈
�∗

o,i : ∃t ∈ L s.t. Pi(t) = s}. We denote by P−1
i the inverse

projection of Pi.
The basic scheme of the decentralized prognosis is as

follows. At each instant, each local agent, based its own obser-
vation, sends a local information to the coordinator. Then the
coordinator computes a global decision based on the local
information received. More specifically, each local prognoser
i ∈ I is a function

Di : Pi(L(G)) → A (2)

where A is the set of symbols it can send to the coordina-
tor, i.e., the space of communicating information. Then the
coordinator is a (memoryless) function

C : A × · · · × A → {0, 1} (3)

where global decision “1” implies that a fault alarm is issued
and global decision “0” means that no fault alarm is issued.
The memoryless constraint essentially requires that the fusion
site can be easily implemented via simple memoryless devices.
This also corresponds to the essence of the decentralized
decision making problem, i.e., most of the useful informa-
tion need to be processed locally before sending to the
coordinator. With local decision functions Di and the coor-
dinator function C, we can also write the overall decentralized
prognosis system as a function {Di}i∈I : L(G) → {0, 1}
such that

∀s ∈ L(G) : {Di}i∈I(s) = C(D1(P1(s)), . . . ,Dn(Pn(s))) (4)

we also refer to {Di}i∈I as the decentralized prognoser.
In order to make sure that the decentralized prognoser works

“correctly,” we need to put some requirements for {Di}i∈I . In
this paper, we consider the following two criteria proposed
in [36], in order to evaluate the performance of a decentralized
prognoser.

1) Any fault can be predicted K steps before it occurs, i.e.,
for any fault string s ∈ L(G) \ L(H), we have
(∃vu ∈ {s} : vu ∈ L(H) ∧ |u| ≥ K

)[{Di}i∈I(v) = 1
]
.

(5)

2) Once a fault alarm is issued, a fault is guaranteed to
occur within M steps, i.e., for any string s ∈ L(H), we
have

{Di}i∈I(s) = 1 ⇒ (∀t ∈ L(G)/s : |t| ≥ M)
[
st �∈ L(H)

]
.

(6)

Hereafter, we will also refer to (M, K) are the performance
bound of the prognosis system. Note that these criteria gener-
alize the criteria in [18], which are special cases of the above
ones by taking K = 0 and M = |Q|.

Remark 1: The above definition of {Di}i∈I is generic; it
remains to specify functions Di, C and set A in order to specif-
ically define a decentralized prognoser. In fact, the choice
of Di,A and C is referred to as the architecture/protocol of
the decentralized system. By choosing different Di, C and A,
different architectures/protocols have been proposed in the lit-
erature. For example, in the disjunctive architecture [18] A is
chosen to be {0, 1} and function C is the disjunction of the
local binary values. In the inference-based architecture [29],
A is chosen to be {0, 1, φ} × {0, 1, . . . , N}, where the first
component represents local decisions and the second compo-
nent represents ambiguity levels, and C simply selects the local
decision with the smallest ambiguity level. In this paper, we
will present a new decentralized protocol, where A is a set
of states and C is a function that involves set intersection. We
will elaborate on this next.

III. STATE ESTIMATE-BASED PROTOCOL

When string s ∈ L(G) is generated by the system, each
agent i ∈ I can observe Pi(s). Its state-estimate upon observ-
ing Pi(s), denoted by Ei(Pi(s)), is defined as the set of states
the system could be in after observing Pi(s), i.e.,

Ei(Pi(s)) = {q ∈ Q : ∃t ∈ L(G) s.t. Pi(t) = Pi(s) ∧ δ(t) = q}.
(7)

In other words, Ei(Pi(s)) essentially summarizes agent i’s
knowledge about the system state. The state-estimate has the
following two features. First, the domain of Ei, i.e., 2X , is
finite. Second, Ei(Pi(s)) can be computed recursively upon the
occurrence of a new event. Therefore, we may possibly use Ei

as the local decision function and use 2X as the set of symbols
to communicate. This leads to the basic scheme of the state-
estimate-based protocol: “At each instant, each local agent
computes its state-estimate and sends it to the coordinator.
Then the coordinator manipulates on the local state-estimates
to issue a global decision.”

The above basic idea requires to send all states in Ei(Pi(s))
at each instant. However, many states in Ei(Pi(s)) are irrel-
evant for the purpose of fault prognosis. To identify which
states are relevant to the prognosis problem, in particular, the
performance bound (M, K), we define the followings [36]. For
each state q ∈ QH , we denote by dmin(q) the minimum number
of steps required such that a fault can occur from q, i.e.,

dmin(q) = min
s∈L(G,q)\L(H,q)

(|s| − 1). (8)

Note that dmin(q) is undefined when fault can never happen
from state q, i.e., L(G, q) \ L(H, q) = ∅. Also, for each state
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q ∈ QH , we denote by dmax(q) the length of the longest
nonfault string that can occur from q, i.e.,

dmax(q) = max
s∈L(H,q)

|s|. (9)

Note that dmax(q) = ∞ when an arbitrarily long nonfault
string can be executed from state q. Then we define two sets
of states

∂K = {q ∈ QH : dmin = K}
ϒ>

M = {q ∈ QH : dmax ≥ M}. (10)

As shown in [36], both sets ∂K and ϒ>
M can be computed in

polynomial-time in the size of G. Also, we assume hereafter
that dmin(q0) ≥ K; otherwise, no prognoser can achieve the
requirement in (5). Finally, we note that ϒ>|QH | = ϒ>

M for any
M ≥ |QH|, since that a nonfault string with length |QH| can
occur from a state implies that a nonfault cycle can be reached
from this state.

Based on the above concepts, hereafter, we propose two
different state-estimate-based protocols.

A. Positive State-Estimate-Based Protocol

Suppose that the default global decision of the coordinator
is 0, i.e., no fault alarm is issued. In order to issue a global
fault alarm, each local agent needs to send the coordinator a
set of states, which is a subset of the state-estimate, as the
reason why it wants to issue an alarm. Then the coordinator
simply takes the intersection of the sets of states it received.
If the intersection is empty, then it means that the reasons
for issuing a global alarm are not consistent; hence, the coor-
dinator will remain the default decision 0 unchanged. If the
intersection is not empty, then it means that all agents agree
with some common reason for issuing a global alarm; hence,
the coordinator will issue 1 globally.

Based on the above discussion, we propose the PSE-Based
Protocol {Dpos

i }i∈I specified as follows: each local prognoser
is a function

Dpos
i : Pi(L(G)) → 2∂K (11)

such that, for any s ∈ L(G), we have

Dpos
i (Pi(s)) = Ei(Pi(s)) ∩ ∂K . (12)

Then the global decision issued by the coordinator is
defined by

{Dpos
i

}
i∈I(s) =

{
1, if ∩i∈I Dpos

i (Pi(s)) �= ∅
0, if ∩i∈I Dpos

i (Pi(s)) = ∅.
(13)

Intuitively, each local prognoser computes Ei(Pi(s)) ∩ ∂K

as its reason for issuing a fault alarm. Then the coordinator
takes the intersection of Di(Pi(s)) to see if they have some
common reason, i.e., ∩i∈IDi(Pi(s)) �= ∅. If so, then a global
fault alarm will be issued, i.e., {Dpos

i }i∈I(s) = 1; otherwise,
the coordinator will stay silent, i.e., {Dpos

i }i∈I(s) = 0. The
reason why we choose to send states in ∂K is that, ∂K are
the set of states at which we must issue a global fault alarm;
otherwise, the alarm will be too late, i.e., the condition in (5)
may be violated. We call this protocol positive since the default

decision is 0, i.e., no fault alarm. We can also define a negative
protocol with default decision is 1; this will be discussed later.
For the sake of simplicity, hereafter, we will also refer to the
PSE-based protocol as the positive protocol.

To study whether or not {Dpos
i }i∈I satisfies the criteria in (5)

and (6), we introduce the notion of PSE-based prognosability.
Definition 1: Specification H is said to be PSE-based prog-

nosable (PSE-prognosable) with respect to G, �o,i, i ∈ I and
(M, K) if

(∀s ∈ L(H) : δ(s) ∈ ϒ>
M

)[(⋂
i∈I

Ei(Pi(s))

)
∩ ∂K = ∅

]
. (14)

Intuitively, PSE-prognosability requires that for any string
that leads to a state in ϒ>

M , the state-estimate of each local
agent should not contain a common state in ∂K . The following
result reveals that PSE-prognosability is indeed the neces-
sary and sufficient condition such that {Dpos

i }i∈I satisfies (5)
and (6).

Theorem 1: {Dpos
i }i∈I satisfies (5) and (6) if and only if H

is PSE-prognosable with respect to G, �o,i, i ∈ I and (M, K).
Proof: (⇒) If H is not PSE-prognosable with respect to G,

�o,i, i ∈ I and (M, K), then we know that there exists a string
s ∈ L(H) such that δ(s) ∈ ϒ>

M and (
⋂

i∈I Ei(Pi(s)))∩ ∂K �= ∅.
Then, by (12), we know that

∩i∈IDpos
i (Pi(s))

= ∩i∈I(Ei(Pi(s)) ∩ ∂K) = (∩i∈IEi(Pi(s))) ∩ ∂K �= ∅.

Therefore, by (13), we know that {Dpos
i }i∈I(s) = 1. However,

since δ(s) ∈ ϒ>
M , we know that there exists t ∈ L(G)/s such

that |t| ≥ M and st ∈ L(H), i.e., a fault is not guaranteed to
occur in M step. This implies that (6) does not hold.

(⇐) Suppose that H is PSE-prognosable with respect to G,
�o,i, i ∈ I and (M, K). First, we show that {Dpos

i }i∈I satis-
fies (5). For any string s ∈ L(G) \ L(H), since we assume
that dmin(q0) ≥ K we know that there exists a nonfault prefix
sN ∈ {s} ∩ L(H) such that δ(sN) ∈ ∂K . Moreover, for any
i ∈ I, we have δ(sN) ∈ Ei(Pi(sN)). Therefore, we know
that ∩i∈IDpos

i (Pi(sN)) = (∩i∈IEi(Pi(sN))) ∩ ∂K �= ∅, i.e.,
{Dpos

i }i∈I(sN) = 1. Therefore, (5) is satisfied. Next, we show
that {Dpos

i }i∈I satisfies (6) by contradiction. Assume that (6)
is not satisfied, i.e., there exist s ∈ L(H) and t ∈ L(G)/s
such that {Dpos

i }i∈I(s) = 1, |t| ≥ M and st ∈ L(H). For the
above string s, since {Dpos

i }i∈I(s) = 1, by (12) and (13), we
know that (∩i∈IEi(Pi(s))) ∩ ∂K �= ∅. Also, by |t| ≥ M and
st ∈ L(H), we know that dmax(δ(s)) ≥ M, i.e., δ(s) ∈ ϒ>

M .
However, since the system is PSE-prognosable, δ(s) ∈ ϒ>

M
implies that (∩i∈IEi(Pi(s)))∩ ∂K = ∅. This is a contradiction.
Therefore, we know that (6) must be satisfied.

We illustrate the positive protocol by the following example.
Example 1: Let us consider the system automaton G and

the specification automaton H in Fig. 1. Suppose that there
are two local agents, i.e., I = {1, 2}, where �o,1 = {a, o}
and �o,2 = {b, o}. Let us consider performance bound
K = 0 and M = |QH| = 9 and we have ∂K = {8}
and ϒ>

M = {1, 2, 3, 4, 6, 7, 9}. Then for all strings leading
to states 1, 2, 3, 4, 6, 7, and 9, i.e., ε, a, b, ao, bo, aoo, boo,
we have (∩i∈IEi(Pi(ε))) ∩ ∂K = {1, 2} ∩ {1, 3} ∩ {8} = ∅,
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(a) (b)

Fig. 1. H is PSE-prognosable with respect to G, �o,1 = {a, o}, �o,2 = {b, o},
K = 0, and M = |QH |. (a) G. (b) H.

(∩i∈IEi(Pi(a)))∩∂K = {2}∩{1, 2}∩{8} = ∅, (∩i∈IEi(Pi(b)))∩
∂K = {3} ∩ {1, 3} ∩ {8} = ∅, (∩i∈IEi(Pi(ao))) ∩ ∂K = {4} ∩
{4, 5}∩{8} = ∅, (∩i∈IEi(Pi(bo)))∩∂K = {6}∩{5, 6}∩{8} = ∅,
(∩i∈IEi(Pi(aoo))) ∩ ∂K = {7} ∩ {7, 8} ∩ {8} = ∅, and
(∩i∈IEi(Pi(boo)))∩∂K = {9}∩{8, 9}∩{8} = ∅. Therefore, the
system is PSE-prognosable and the positive protocol {Dpos

i }i∈I
achieves the two criteria in (5) and (6). For example, let us
consider fault string oof ∈ L(G)\L(H). For prefix oo ∈ {oof }
such that δ(oo) = 8 ∈ ∂K , we have Dpos

1 (oo) = E1(P1(oo)) ∩
∂K = {8, 9} ∩ {8} and Dpos

2 (oo) = E2(P2(oo)) = {7, 8} ∩ {8}.
Since Dpos

1 (oo)∩Dpos
2 (oo) �= ∅, we know that {Dpos

i }i∈I(oo) =
1. Therefore, a fault alarm can be issued K step before the
fault occurs, i.e., (5) holds. To see that (6) holds, let us
consider string aoo ∈ L(H) such that δ(aoo) = 7 ∈ ϒ>

M .
We have E1(P1(aoo)) = {7} and E2(P2(aoo)) = {7, 8}.
Since E1(P1(aoo)) ∩ E2(P2(aoo)) ∩ ∂K = ∅, we know that
{Dpos

i }i∈I(aoo) = 0, i.e., no wrong fault alarm will be issued.
Similarly, we can show that for any s ∈ L(H) : δ(s) ∈ ϒ>

M , we
have {Dpos

i }i∈I(s) = 0. Therefore, the positive protocol also
satisfies (6).

B. Negative State-Estimate-Based Protocol

In the above section, we have proposed the PSE-based pro-
tocol, where the default global decision is 0 and each local
agent needs to tell the coordinator why it wants to issue a
fault alarm. Alternatively, we can also set the default global
decision as 1 and at each instant, each local agent needs to
tell the coordinator why a fault alarm should not be issued.
To this end, we propose the NSE-Based Protocol {Dneg

i }i∈I
defined as follows: each local prognoser is a function

Dneg
i : Pi(L(G)) → 2ϒ>

M (15)

such that, for any s ∈ L(G), we have

Dneg
i (Pi(s)) = Ei(Pi(s)) ∩ ϒ>

M . (16)

Then the global decision issued by the coordinator is
defined by

{Dneg
i

}
i∈I(s) =

{
1, if ∩i∈I Dneg

i (Pi(s)) = ∅
0, if ∩i∈I Dneg

i (Pi(s)) �= ∅.
(17)

Intuitively, each local prognoser uses Ei(Pi(s)) ∩ ϒ>
M as the

reason why it thinks that a global fault alarm should not be

issued. Then the coordinator still takes the intersection of these
local reasons to determine a global decision. Note that the
reason why we choose to send states in ϒ>

M is that, ϒ>
M are

the set of states at which we cannot issue a global fault alarm;
otherwise, the alarm will be too early, i.e., the condition in (6)
may be violated. For the sake of simplicity, hereafter, we will
also refer to the NSE-based protocol as the negative protocol.

Similar to PSE-porgnosability, to study whether or not the
negative protocol satisfies the criteria in (5) and (6), we
introduce the notion of NSE-based prognosability.

Definition 2: Specification H is said to be NSE-based prog-
nosable (NSE-prognosable) with respect to G, �o,i, i ∈ I and
(M, K) if

(∀s ∈ L(H) : δ(s) ∈ ∂K)
(∃t ∈ {s})

×
[(⋂

i∈I
Ei(Pi(t))

)
∩ ϒ>

M = ∅
]
. (18)

Intuitively, NSE-prognosability requires that, for any string
that leads to a state in ∂K , there must exist a prefix of this string
for which the state-estimate of each local agent should not con-
tain a common state in ϒ>

M . Otherwise, a desired fault alarm
cannot be issued before reaching the state in ∂K . The following
result reveals that NSE-prognosability is indeed the neces-
sary and sufficient condition such that {Dneg

i }i∈I satisfies (5)
and (6).

Theorem 2: {Dneg
i }i∈I satisfies (5) and (6) if and only if H

is NSE-prognosable with respect to G, �o,i, i ∈ I and (M, K).
Proof: (⇒) By contraposition. Suppose that H is not NSE-

prognosable with respect to G, �o,i, i ∈ I and (M, K). Then
we know that there exists a string s ∈ L(H) : δ(s) ∈ ∂K such
that for any t ∈ {s}, we have (

⋂
i∈I Ei(Pi(t))) ∩ ϒ>

M �= ∅.
By (16), we know that

∩i∈IDneg
i (Pi(t))

= ∩i∈I
(Ei(Pi(t)) ∩ ϒ>

M

) = (∩i∈IEi(Pi(t))) ∩ ϒ>
M �= ∅.

Therefore, by (17), we know that ∀t ∈ {s} : {Dneg
i }i∈I(t) = 0.

However, since δ(s) ∈ ∂K , we know that there exists sf ∈
L(G) \ L(H) such that |f | = K. Therefore, for the above sf ,
we have (∀vu ∈ {sf } : vu ∈ L(H) ∧ |u| ≥ K)[Dneg

i∈I(v) = 0],
i.e., (5) does not hold.

(⇐) Suppose that the system is NSE-prognosable. First, we
show that {Dneg

i }i∈I satisfies (5). For any string s ∈ L(G) \
L(H), since we assume that dmin(q0) ≥ K we know that there
exists a nonfault prefix sN ∈ {s} ∩L(H) such that δ(sN) ∈ ∂K .
Furthermore, since H is NSE-prognosable, we know that there
exists t ∈ {sN} such that (∩i∈IEi(Pi(t))) ∩ ϒ>

M = ∅. By (16)
and (17), we know that {Dneg

i }i∈I(t) = 1. Therefore, (5) is
satisfied. Next, we show that {Dneg

i }i∈I satisfies (6) by con-
tradiction. Assume that (6) is not satisfied, i.e., there exist
s ∈ L(H) and t ∈ L(H)/s such that {Dneg

i }i∈I(s) = 1
and |t| ≥ M. Since {Dneg

i }i∈I(s) = 1, by (16) and (17),
(∩i∈IEi(Pi(s))) ∩ ϒ>

M = ∅. Also, by |t| ≥ M and st ∈ L(H),
we know that dmax(δ(s)) ≥ M, i.e., δ(s) ∈ ϒ>

M . Note
that, for any i ∈ I, δ(s) ∈ Ei(Pi(s)). Therefore, δ(s) ∈
(∩i∈IEi(Pi(s))) ∩ ϒ>

M �= ∅. This is a contradiction with the
emptiness of ∩i∈IEi(Pi(s)))∩ϒ>

M . Therefore, we know that (6)
must be satisfied.
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(a) (b)

Fig. 2. H is NSE-prognosable with respect to G, �o,1 = {a, o}, �o,2 =
{b, o}, K = 0, and M = |QH |. (a) G. (b) H.

The following example illustrates the negative protocol.
Example 2: Consider the system automaton G and the spec-

ification automaton H in Fig. 2. Suppose that there are two
local agents 1 and 2, where �o,1 = {a, o} and �o,2 = {b, o}.
We consider performance bound K = 0 and M = |QH| = 8.
Then we have ∂K = {8} and ϒ>

M = {1, 2, 3, 4, 6, 7}. Since
for the unique string leading to state 8, i.e., oo, there exists
o ∈ {oo} such that (∩i∈IEi(Pi(o))) ∩ ϒ>

M = {5} ∩ ϒ>
M = ∅,

we know that H is NSE-prognosable with respect to G and
(M, K) and the negative protocol {Dneg

i }i∈I achieves the two
criteria in (5) and (6). To see this, let us still consider the
unique string oo ∈ L(H) such that δ(oo) = 8 ∈ ∂K , where
we have (∩i∈IEi(Pi(oo))) ∩ ϒ>

M = {7} �= ∅. However, for its
prefix o ∈ {oo}, we have (∩i∈IEi(Pi(o)))∩ϒ>

M = ∅. Therefore,
{Dneg

i }i∈I(o) = 1, i.e., a fault alarm will be issued K steps
before the fault occurs.

Remark 2: So far, we have developed two different decen-
tralized prognositic protocols, i.e., the positive protocol and
the negative protocol. One may ask which protocol is more
powerful in the sense that the corresponding necessary and
sufficient condition is weaker. In fact, these two protocols
are incomparable, i.e., there may exist a system which is
PSE-prognosable but is not NSE-prognosable; and vice versa.
To see this, let us consider the system automaton G in
Fig. 3(a), where we have I = {1, 2}, �o,1 = {a, o}, and
�o,2 = {b, o}. Let K = 0 and M = 5. For specification
automaton Hpos shown in Fig. 3(b), we have ∂K = {4} and
ϒ>

M = {1, 2, 3, 5} and for all strings leading to states 1, 2, 3,
and 5, i.e., ε, a, b, ao, bo, aoo, boo, we have (∩i∈IEi(Pi(ε)))∩
∂K = (∩i∈IEi(Pi(a))) ∩ ∂K = (∩i∈IEi(Pi(b))) ∩ ∂K =
(∩i∈IEi(Pi(ao))) ∩ ∂K = (∩i∈IEi(Pi(bo))) ∩ ∂K =
(∩i∈IEi(Pi(aoo))) ∩ ∂K = (∩i∈IEi(Pi(boo))) ∩ ∂K = ∅.
Therefore, it is PSE-prognosable with respect to G. However, it
is not NSE-prognosable, since for string o ∈ L(Hpos) : δ(o) ∈
∂K , we have (∩i∈IEi(Pi(o))) ∩ ϒ>

M = {3} �= ∅ and for its
prefix ε ∈ L(Hpos), we also have (∩i∈IEi(Pi(ε))) ∩ ϒ>

M =
{2} �= ∅. On the other hand, if we consider the specifi-
cation automaton Hneg shown in Fig. 3(c), then we have
∂K = {3} and ϒ>

M = {1, 4, 5} and it is NSE-prognosable
with respect to G. However, it is not PSE-prognosable,
since for string o ∈ L(Hneg) : δ(o) ∈ ϒ>

M , we have
(∩i∈IEi(Pi(o))) ∩ ∂K = {3} �= ∅. Therefore, we conclude
that the positive and the negative protocols are incompara-
ble and we may need to apply different protocols to different
systems.

(a) (b) (c)

Fig. 3. Examples showing that PSE-prognosability and NSE-prognosability
are incomparable. Let K = 0, M = 5, �o,1 = {a, o}, and �o,2 = {b, o}. Then
Hpos is PSE-prognosable but not NSE-prognosable with respect to G, while
Hneg is NSE-prognosable but not PSE-prognosable with respect to G. (a) G.
(b) Hpos. (c) Hneg.

(a) (b)

Fig. 4. Observer automata for system G shown in Fig. 2 where �o,1 = {a, o}
and �o,2 = {b, o}. (a) Obs1(G). (b) Obs2(G).

C. Implementations of State-Estimate-Based Protocols

We conclude this section by discussing the implementation
issues of the state-estimate-based protocols. According to (12)
and (16), in both the positive and the negative protocols, the
key of implementing each local prognoser is to effectively
compute the state-estimate Ei(Pi(s)) for any observation Pi(s).
This can be done simply by constructing the standard observer
automaton [3]. Specifically, for each i ∈ I, its observer is

Obsi(G) =
(

Xobs
i , �o,i, f obs

i , xobs
0,i

)
(19)

where Xobs
i ⊆ 2Q is the set of states, �o,i is the set of events,

f obs
i : Xobs

i ×�o,i → Xobs
i is the transition function defined by:

for any x ∈ Xobs
i and σ ∈ �o,i, we have

f obs
i (x, σ ) = {

q′ ∈ Q:∃q ∈ x, ∃w ∈ (� \ �o,i
)∗ s.t. q′

= δ(q, σw)}
and xobs

0,i ∈ Xobs
i is the initial state defined by

xobs
0,i := {

q ∈ Q : ∃w ∈ (� \ �o,i
)∗ s.t. q = δ(w)

}
.

Note that the state space Xobs
i is defined recursively by xobs

0,i
and f obs

i , and hence, we only consider the reachable part of
the observer automaton.

Example 3: Again, consider the system automaton G shown
in Fig. 2, where �o,1 = {a, o} and �o,2 = {b, o}. Then the
observer automaton Obs1(G) for agent 1 is shown in Fig. 4(a).
The initial state is {1, 3} since event b could occur unobserv-
ably. Then, upon the occurrence of event o, we move to state
{5, 6} and so forth. Similarly, the observer automaton Obs2(G)

for agent 2 is shown in Fig. 4(b).
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Although computing the entire observer requires 2|Q| states
in the worst case, updating the current observer state can be
done in polynomial-time since each observer state only con-
tains at most Q states; see [3]. Therefore, for the purpose of
online implementation, each local agent just need to store the
current state-estimate Ei(Pi(s)) and update it upon the occur-
rence of a new local observable event. The implementation
of the coordinator simply requires to take the intersection
of each state-estimate; the intersection operation can easily
be implemented by either hardware or software. Moreover,
the intersection operation at the coordinator is memoryless
and model-unaware. In other words, most of the information
are processed locally, which also meets the purpose of using
decentralized architecture, and the fusion site can be simply
implemented by simple memoryless devices.

IV. VERIFICATION OF PSE-AND NSE-PROGNOSABILITY

In this section, we propose algorithms for the verifications of
PSE-prognosability and NSE-prognosability, respectively. The
verification algorithm for PSE-prognosability is based on the
construction of the verifier automaton, while the verification
algorithm for NSE-prognosability requires the construction of
the observer automaton.

A. Verification of PSE-Prognosability

In order to verify PSE-prognosability, we use the verifier
automaton that was introduced in the literature for the veri-
fication of codiagnosability [22], [26], [33]. Specifically, the
verifier automaton is a finite-state automaton

V = (
QV , �V , δV , q0,V

)
(20)

where
1) QV ⊆ QH × · · · × QH︸ ︷︷ ︸

(n+1) times

is the set of states;

2) � ⊆ (� ∪ {ε}) × · · · × (� ∪ {ε})︸ ︷︷ ︸
(n+1) times

\{(ε, . . . , ε)} is the set

of events;
3) q0,V = (q0, . . . , q0) is the initial state;
4) δV : QV × �V → QV is the transition function defined

as follows: for any qV = (q, q1, . . . , qn) and σV =
(σ, σ1, . . . , σn), δV(qV , σV)! if and only if the following
conditions holds simultaneously:

a) σ �= ε ⇒ δH(q, σ )!
b) ∀i ∈ I : σi �= ε ⇒ δH(qi, σi)!
c) ∀i ∈ I : Pi(σ ) = Pi(σi).

If δV(qV , σV)!, then we have

δV(qV , σV) = (δH(q, σ ), δH(q1, σ1), . . . , δH(qn, σn)).

(21)

Note that, each string in L(V) is a tuple and we write
sV = (s, s1, . . . , sn) ∈ L(V), where s, si ∈ L(H). Note that,
we only consider strings in L(H), since prognosability analysis
does not consider what happens after the occurrence of fault.
Intuitively, V tracks and only tracks all tuples (s, s1, . . . , sn),
such that ∀i ∈ I : Pi(s) = Pi(si). That is, the first component

Fig. 5. Part of automaton V for system G and specification Hneg shown in
Fig. 3.

represents the string in the real system and the (i + 1)th com-
ponent represents a string that looks the same as the string in
the real system for agent i.

The following theorem reveals how to use automaton V to
verify PSE-prognosability.

Theorem 3: H is not PSE-prognosable with respect to
G, �o,i, i ∈ I and (M, K), if and only if, there exists a state
(q, q1, . . . , qn) ∈ QV in automaton V such that[

q ∈ ϒ>
M(G)

] ∧ [q1 = q2 = · · · = qn ∈ ∂K
]
. (22)

Proof: (⇒) Suppose that H is not PSE-prognosable. Then
we know that there exists s ∈ L(H) such that δ(s) ∈ ϒ>

M(G)

and (
⋂

i∈I Ei(Pi(s)))∩ ∂K �= ∅. Let q ∈ (
⋂

i∈I Ei(Pi(s)))∩ ∂K .
For each i ∈ I, since q ∈ Ei(Pi(s)), we know that there exists a
string si ∈ L(H) such that Pi(s) = Pi(si) and q = δ(si). By the
definition of V , we know that there exists a string sV ∈ L(V)

such that its first component is s and its (i+1)th-component is
si. Therefore, we know that state (δ(s), δ(s1), . . . , δ(sn)) ∈ QV

is reachable in V . Since δ(s) ∈ ϒ>
M(G) and q = δ(s1) = · · · =

δ(sn) ∈ ∂K , we know that the condition in (22) holds.
(⇐) Suppose that there exists a state qV = (q, q1, . . . , qn) ∈

QV in V such that (22) holds. Let sV ∈ L(V) be a string
in V such that δV(sV) = qV . Note that string sV is a tuple
and we write sV = (s, s1, . . . , sn). By the definition of V , we
know that for each i ∈ I, Pi(s) = Pi(si). Therefore, we have
{δ(s), δ(si)} ⊆ Ei(Pi(s)). Moreover, since q1 = · · · = qn ∈ ∂K ,
we know that

δ(s1) = · · · = δ(sn) ∈ (∩i∈IEi(Pi(s))) ∩ ∂K . (23)

Therefore, we know that ∃s ∈ L(H) such that δ(s) ∈ ϒ>
M and

(∩i∈IEi(Pi(s))) ∩ ∂K �= ∅, i.e., H is not PSE-prognosable.
We illustrate Theorem 3 by the following example.
Example 4: Let us consider again the system G shown

in Fig. 3(a) and the specification Hneg shown in Fig. 3(c),
where �o,1 = {a, o} and �o,2 = {b, o}. We still consider
K = 0, M = 5 and we have ∂K = {3} and ϒ>

M = {1, 4, 5}.
As discussed in Remark 2, Hneg is not PSE-prognosable with
respect to G. Here, we show this by Theorem 3. Part of the
verifier automaton V for G and Hneg is shown in Fig. 5. For
reachable state (q, q1, q2) = (4, 3, 3), we have q = 4 ∈ ϒ>

M
and q1 = q2 = 3 ∈ ∂K . Since state (4, 3, 3) satisfies the condi-
tion in (22), we know that Hneg is not PSE-prognosable with
respect to G.

Remark 3: Let us discuss the complexity of the above
proposed verification procedure. As shown in [36], both
sets ∂K and ϒ>

M can be computed in O(|�| · |QH|2). In
the worst case, automaton V contains |QH|n+1 states and
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(n + 1) · |�| · |QH|n+1 transitions [22], [26], [33]. Moreover,
determining whether or not V contains a state satisfying (22)
is simply a reachability problem, which can be done linearly
in the size of V . Therefore, the entire complexity for verify-
ing PSE-prognosability using Theorem 3 is O((n + 1) · |�| ·
|QH|n+1).

B. Verification of NSE-Prognosability

Recall that, for each i ∈ I, Obsi(G) is defined as the
observer automaton with respect to �o,i. Then we defined a
new automaton G̃ by

G̃ =
(

Q̃, �, δ̃, q̃0

)
:= G‖Obs1(G)‖ · · · ‖Obsn(G) (24)

where “‖” denotes the usual parallel composition operation of
automata; see [3, p. 80]. Then we have L(G) = L(G̃) and each
state in G̃ is in the form of q̃ = (q, x1, . . . , xn), where q ∈ Q

and xi ∈ 2Q. We call q̃1 σ 1−→ q̃2 σ 2−→ . . .
σ k−→ q̃m a path in G̃ if q̃1

is the initial state q̃0 and ∀k = 1, . . . , m−1 : δ̃(q̃k, σ̃ k) = q̃k+1.
Next, we show how to use G̃ to verify NSE-prognosability.
Theorem 4: H is not NSE-prognosable with respect to G,

�o,i, i ∈ I and (M, K), if and only if, there exists a path(
q0, x0

1, . . . , x0
n

)
σ 1−→

(
q1, x1

1, . . . , x1
n

)
σ 2−→ · · ·

σm−→ (
qm, xm

1 , . . . , xm
n

)
(25)

in G̃ such that:
1) qm ∈ ∂K ;
2) ∀k ∈ {0, 1 . . . , m} : (

⋂
i∈I xk

i ) ∩ ϒ>
M �= ∅.

Proof: (⇒) Suppose that H is not NSE-prognosable, i.e.,
there exists a string s ∈ L(H) such that δ(s) ∈ ∂K and (∀t ∈
{s})[(⋂i∈I Ei(Pi(s))) ∩ ϒ>

M �= ∅]. Let s = σ 1 . . . σ |s|, where
σ i ∈ �, and let

x0 σ 1−→ x1 σ 2−→ . . .
σ |s|−−→ x|s|

be the path induced by s from x0 = x̃0. For each k ∈
{0, 1, . . . , m}, we write xk = (qk, xk

1, . . . , xk
n). We claim that

this path satisfies the two conditions in the theorem. First,
since q|s| = δ(s) ∈ ∂K , we know that the first condition holds.
Second, for any k ∈ {0, 1, . . . , |s|} and i ∈ I, by the property
of observer, we have that

xk
i = f obs

i

(
Pi

(
σ 1 . . . σ k

))
= Ei

(
Pi

(
σ 1 . . . σ k

))
.

Since σ 1 . . . σ k ∈ {s}, we know that (
⋂

i∈I Ei(Pi(σ
1 . . . σ k)))∩

ϒ>
M �= ∅. Therefore, (

⋂
i∈I xk

i ) ∩ ϒ>
M �= ∅ for any k ∈

{0, 1, . . . , |s|}, i.e., the second condition holds.
(⇐) Suppose that there exists a path in (25) such that the

two conditions in the theorem hold. Let us consider string
s = σ 1 . . . σm, where σ i ∈ � are events in (25). Still, we
know that δ(s) = qm ∈ ∂K . Also, for any t ∈ {s}, it can be
written by t = σ 1 . . . σ |t|. Since

Ei(Pi(t)) = f obs
i

(
Pi

(
σ 1 . . . σ |t|)) = x|t|

i

we have(⋂
i∈I

Ei(Pi(t))

)
∩ ϒ>

M =
(⋂

i∈I
x|t|

i

)
∩ ϒ>

M �= ∅. (26)

This implies that H is not NSE-prognosable.

Fig. 6. Automaton G̃ for system G and specification H shown in Fig. 2.

We illustrate Theorem 4 by the following example.
Example 5: Let us consider again the system G and the

specification H shown in Fig. 2, where �o,1 = {a, o}
and �o,2 = {b, o}. We still consider performance bound
K = 0 and M = 5; we have ∂K = {8} and ϒ>

M =
{1, 2, 3, 4, 6, 7}. We have discussed in Example 2 that H is
NSE-prognosable with respect to G. Here, we show this by
Theorem 4. First, we construct automaton G̃, which is shown
in Fig. 6. Note that the only string that leads to a state,
whose first component is in ∂K , is oo. However, for the sec-
ond state in path (1, {1, 3}, {1, 2}) o−→ (5, {5, 6}, {4, 5}) o−→
(8, {7, 8, 9}, {7, 8, 9}), we have {5, 6} ∩ {4, 5} ∩ ϒ>

M = {5} ∩
ϒ>

M = ∅. Therefore, there does not exist a path in G̃ satisfy-
ing the two conditions in Theorem 4 and we know that H is
NSE-prognosable.

Remark 4: Let us explain why we propose the observer-
based approach to verify NSE-prognosability instead of using
the verifier-based approach. Note that PSE-prognosability is
a pure always-type property that should be satisfied for all
strings leading to ϒ>

M , while for NSE-prognosability, we need
to check the satisfaction of the condition for some prefix of
any string leading to ∂K . However, automaton V only tracks
state pairs that cannot be distinguished by each agent. For
an always-type property, we can look at each pair, since one
pair that violates the condition will lead to the violation of
the entire condition. However, to determine the existence of
some prefix that satisfies the condition, we cannot make such a
conclusion as the violation of the condition does not necessary
imply that it does not has a prefix that can “save” it. Therefore,
we need to use the observer automaton to track how each state
is visited in order to determine whether or not it has a prefix
that can save it.

Remark 5: We conclude this section by analyzing the com-
plexity of the above proposed procedure for the verification of
NSE-prognosability. For states in G̃, we define

XA := {
(q, x1, . . . , xn) ∈ X̃ : (∩i∈Ixi) ∩ ϒ>

M �= ∅}
XB := {

(q, x1, . . . , xn) ∈ X̃ : q ∈ ∂K
}
.

Therefore, to check the condition in Theorem 4, it suffices
to check whether there exists a state in XA ∩ XB that can
be reached from the initial state only via states in XA. This
problem equals to whether or not a state in XB can be reached
if we remove all states in X̃ \ XA, which is simply a reacha-
bility problem that can be solved linearly with respect to the
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number of transitions in G̃ via a depth-first search. Note that
automaton G̃ contains at most |Q| ·2n·|Q| states. Therefore, the
entire complexity for checking NSE-prognosability using the
proposed approach is O(|�| · |Q| · 2n·|Q|).

V. COMPLEXITY OF THE VERIFICATION PROBLEM

In the above section, procedures for the verifications
of PSE-prognosability and NSE-prognosability have been
proposed, respectively. The verification of NSE-prognosability
is exponential in the size of G, while verification of PSE-
prognosability is polynomial in the size of G. However, both
procedures are exponential with respect to the number of
local agents, i.e., n. In this section, we show that the ver-
ifications of PSE-prognosability and NSE-prognosability are
both PSPACE-hard with respect to n. Therefore, this expo-
nential complexity as the number of agents increases seems to
be unavoidable.

To show a decision problem is PSPACE-hard, we need
to reduce it to a known PSPACE-hard/complete problem in
polynomial-time. One well-known PSPACE-hard problem is
the deterministic finite-state automata intersection problem
DFA intersection (DFA-Int) [17] stated as follows.

DFA Intersection Problem.
1) Instance: A set of automata {G1, G2, . . . , Gn}.
2) Question: Whether or not ∩i∈{1,...,n}Lm(Gi) = ∅.

Hereafter, we will use DFA-Int to show the PSPACE-hardness
of PSE-prognosability and NSE-prognosability.

First, we show that the verification of PSE-prognosability
is PSPACE-hard.

Theorem 5: The verification of PSE-prognosability is
PSPACE-hard with respect to the number of local agents.

Proof: In order to prove this result, we reduce DFA-
Int to the PSE-prognosability verification problem. Let
{G1, G2, . . . , Gn} be the instance of DFA-Int, where Gi =
(Qi, �, δi, q0,i, Qm,i).1 Then we construct a new automaton

Gred = (
Qred, �red, δred, q0,red

)
(27)

where
1) Qred = Q1∪̇ . . . ∪̇Qn∪̇{q0,red, A, B, C, D, E} is the set of

states;
2) �red = �∪̇{f1, f2, σ, e, e1, . . . , en} is the set of events;
3) q0,red is a new initial state;
4) The transition function δred : Qred × �red → Qred is

defined as follows: a) for each i ∈ {1, . . . , n}, the transi-
tions between states in Qi are consistent with Gi; b) for
each i ∈ {1, . . . , n}, δred(q0,red, ei) = q0,i is defined;
c) for each q ∈ Qm,1 ∪ · · · ∪ Qm,n, δred(q, σ ) = A
is defined; and d) the remaining transitions to states
B, C, D, E are specified by Fig. 7.

Based on system automaton Gred, we define a specification
automaton Hred by removing state B and its associated tran-
sitions. Let K = 0 and M = 1. Then we have ∂0 = {A}
and ϒ>

1 = Q1 ∪ · · · ∪ Qn ∪ {q0,red, C, D, E}. Also, we
consider n local agents; each of them can observe events
�o,i = � ∪ {σ, e1, . . . , en} \ {ei}. Clearly, constructing Gred

1We assume w.l.o.g. that all automata have the same event set �.

Fig. 7. Conceptual illustration of how to construct Gred from {G1, . . . , Gn}.

and Hred can be done in polynomial-time with respect to the
instance of DFA-Int.

Hereafter, we show that Hred is PSE-prognosable with
respect to Gred, �o,i, i ∈ I and (M, K) if and only if
∩i∈ILm(Gi) = ∅.

(⇒) By contraposition. Suppose that ∩i∈ILm(Gi) �= ∅ and
let s ∈ ∩i∈ILm(Gi). By the construction of Hred, we know
that for each i ∈ I, eisσ ∈ L(Hred) and δred(eisσ) = A ∈ ∂0.
Also, we have that esσ ∈ L(Hred) and δred(esσ) = D ∈ ϒ>

1 .
Since Pi(eisσ) = Pi(esσ), we know that {A, D} ⊆ Ei(Pi(esσ)),
which further implies that A ∈ (∩i∈IEi(Pi(esσ))) ∩ ∂0 �= ∅.
Therefore, Hred is not PSE-prognosable with respect to Gred.

(⇐) Still by contraposition. Suppose that Hred is not PSE-
prognosable with respect to Gred, i.e.,

(∃s ∈ L(Hred) : δred(s) ∈ ϒ>
1

)[
(∩i∈IEi(Pi(s))) ∩ ∂0 �= ∅].

For the above s that violates PSE-prognosability, it must con-
tain a prefix in the form of s′ = ewσ ; if s does not contain
σ , then each agent knows for sure that the system is not in A,
which is the unique state in ∂0, i.e., (∩i∈IEi(Pi(s))) ∩ ∂0 = ∅.
Therefore, we know that A ∈ ∩i∈IEi(Pi(ewσ)), i.e., for
each agent i ∈ I, there exists si ∈ L(Hred) such that
Pi(ewσ) = Pi(si) and δred(si) = A. By the construction of
Gred, si can only be eiwσ . Therefore, ∀i ∈ I : eiwσ ∈ L(Gred),
which further implies that ∀i ∈ I : w ∈ Lm(Gi). Therefore,
w ∈ ∩i∈ILm(Gi) �= ∅.

Next, we show that the verification of NSE-prognosability
is also PSPACE-hard.

Theorem 6: The verification of NSE-prognosability is
PSPACE-hard with respect to the number of local agents.

Proof: In order to prove this result, we still reduce DFA-
Int to the NSE-prognosability verification problem. (Another
possible way is to reduce the PSE-prognosability verifica-
tion problem to the NSE-prognosability verification problem.)
Let {G1, G2, . . . , Gn} the instance of DFA-Int, where Gi =
(Qi, �, δi, q0,i, Qm,i). We construct a new system automaton
Gred = (Qred, �red, δred, q0,red) following the same construc-
tion in the proof of Theorem 5. However, the specification
automaton Hred is constructed by removing state E and its
associated transitions. Let K = 0 and M = 1. Then we have
∂0 = {B, D} and ϒ>

1 = Q1 ∪ · · · ∪ Qn ∪ {q0,red, A, C}. Still,
we consider n local agents; each of them can observe events
�o,i = � ∪ {σ, f1, e1, . . . , en} \ {ei}. Clearly, constructing Gred
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and Hred can still be done in polynomial-time with respect to
the instance of DFA-Int.

Hereafter, we show that Hred is NSE-prognosable with
respect to Gred, �o,i, i ∈ I and (M, K) if and only if
∩i∈ILm(Gi) = ∅.

(⇒) By contrapositive. Suppose that ∩i∈ILm(Gi) �= ∅ and
let s ∈ ∩i∈ILm(Gi). Then we know that for each i ∈ I, eisσ ∈
L(Hred) and δred(eisσ) = A ∈ ϒ>

1 . Since Pi(eisσ) = Pi(esσ)

we know that {A, D} ⊆ Ei(Pi(esσ)). Note that δred(esσ) =
D ∈ ∂0. Then for each string in

{esσ } =
{
ε, e, eσ 1, eσ 1σ 2, . . . , eσ 1σ 2 · · · σ |s|, esσ

}
(28)

where s = σ 1σ 2 . . . σ |s|, we have

q0,red ∈ ∩i∈IEi(Pi(ε)) ∩ ϒ>
1 (G)

= ∩i∈IEi(Pi(e)) ∩ ϒ>
1 (G) �= ∅

C ∈
(
∩i∈IEi(Pi(eσ

1 · · · σ i))
)

∩ ϒ>
1 (G) �= ∅

i = 1, . . . , |s|
A ∈ (∩i∈IEi(Pi(esσ))) ∩ ϒ>

1 (G) �= ∅.

Therefore, Hred is not NSE-prognosable with respect to Gred.
(⇐) Since ∂0 = {B, D}, any string leading to ∂0 must be

either in the form of eisσ f1, where s ∈ Lm(Gi), or in the form
of esσ , where s ∈ �∗. For any string in the form of eisσ f1,
since the only state that can be reached in Gred after observing
f1 is B, we know that Ei(Pi(eisσ f1)) = {B, E}. Since B /∈ ϒ>

1 ,
we have immediately that (

⋂
i∈I Ei(Pi(eisσ f1))) ∩ ϒ>

1 = ∅.
For string in the form of esσ , we know that there must
exists k ∈ I such that eksσ /∈ L(Gred); otherwise, we
know that s ∈ ∩i∈ILm(Gi), which violates the assumption
that ∩i∈ILm(Gi) = ∅. Therefore, for the above k ∈ I, we
have Ek(Pk(eksσ)) = {D}. Since D /∈ ϒ>

1 , we know that
(
⋂

i∈I Ei(Pi(esσσ))) ∩ ϒ>
1 = ∅. Overall, we know that

(∀s ∈ L(Hred) : δred(s) ∈ ∂0)

[(⋂
i∈I

Ei(Pi(s))

)
∩ ϒ>

1 = ∅
]

that is Hred is NSE-coprognosable with respect to Gred.

VI. COMPARISON WITH OTHER

DECENTRALIZED PROTOCOL

In this section, we compare the proposed two protocols with
existing decentralized prognostic protocols in the literature.
Specifically, we compare the positive and negative protocols
with the inference-based protocol [29] and the conjunctive pro-
tocol [16]. We do not consider the disjunctive protocol [18]
since it is subsumed by the inference-based protocol [29].
Hereafter, we show that each of the proposed protocols is
incomparable with any of the existing protocols.

First, we recall the notion of N-inference prognosability
from [29], which is the necessary and sufficient condi-
tion under which the N-inference-based protocol satisfies (5)
and (6) with K = 0 and M = |QH|. First, we define

∂L := {s ∈ L(H) : δ(s) ∈ ∂0}
ϒL :=

{
s ∈ L(H) : δ(s) ∈ ϒ>|Q|

}
�L := L(H) \ ϒL.

(a) (b)

Fig. 8. System is both PSE-prognosable and NSE-prognosable, but it is
neither N-inference prognosable nor conjunctively prognosable, where �o,1 =
{a, o} and �o,2 = {b, o}. (a) G. (b) H.

Now, we are ready to recall N-inference prognosability.
Definition 3: Specification H is said to be N-inference

prognosable with respect to G and �o,i, i ∈ I if

∂L ⊆ �L \ �L[N + 1] (29)

where �L[N + 1] is defined inductively as follows.
1) �L[0] := �L and ϒL[0] = ϒL.
2) For any k ≥ 0, we have⎧⎨

⎩
�L[k + 1] := �L[k] ∩

(⋂
i∈I P−1

i (Pi(ϒL[k]))
)

ϒL[k + 1] := ϒL[k] ∩
(⋂

i∈I P−1
i (Pi(�L[k]))

)
.

(30)

Also, we recall the notion of conjunctive coprognosabil-
ity from [16], which is the necessary and sufficient condition
under which the conjunctive protocol satisfies (5) and (6) with
K = 0 and M = |QH|.

Definition 4: H is said to be conjunctively coprognosable
with respect to G and �o,i, i ∈ I if, ∩i∈I [P−1

i Pi(∂L)]∩
ϒL = ∅.

Remark 6: Note that, in conjunctive prognosability and
N-inference prognosability, the performance bound is consid-
ered implicitly as K = 0 and M = |QH|. Therefore, to compare
PSE-prognosability and NSE-prognosability with these two
notions, hereafter, we will also fix the performance bound as
K = 0 and M = |QH|.

The following example shows that the positive and the nega-
tive protocols may predict the fault correctly when the existing
protocols fail.

Example 6: Let us consider the system G shown in Fig. 8(a)
and the specification H shown in Fig. 8(b), where �o,1 =
{a, o} and �o,2 = {b, o}. We have ∂L = {o, bao},�L =
{o, ba, bao}, and ϒL = {ε} ∪ {a, b}{o}∗. Then we have

�L[0] = {o, ba, bao}, ϒL[0] = {ε, a, b} ∪ {ao, bo}{o}∗
�L[1] = {o, ba, bao}, ϒL[1] = {ao, bo}
�L[k] = {o, bao}, ϒL[k] = {ao, bo},∀k ≥ 2.

Therefore, ∂L �⊆ �L\�L[N+1] for any N ≥ 0, i.e., the system
is not N-inference prognosable for any N and the fault cannot
be correctly predicted by using the inference-based protocol.
Also, we have

∩i∈I
[
P−1

i Pi(∂L)
]

∩ ϒL = {ao, bo} �= ∅.

Therefore, the system is not conjunctively coprognosable,
i.e., the fault still cannot be correctly predicted by using
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the conjunctive protocol. However, one can verify, by the
proposed algorithms, that H is both PSE-prognosable and
NSE-prognosable for K = 0 and M = |QH|. Therefore, either
of the propose protocols can correctly predict the fault when
all existing protocols fail.

On the other hand, the proposed protocols may fail to
predict fault correctly when the existing protocols can do so.
This is illustrated by the following example.

Example 7: As shown in Remark 2, specification Hpos in
Fig. 3(b) is not NSE-prognosable with respect to G in Fig. 3(a).
However, we have ∂L = {o}, ϒL = {ε} ∪ {a, b}{o}∗ and

∩i∈I
[
P−1

i Pi(∂L)
]

∩ ϒL = {o, ao} ∩ {o, bo} ∩ ϒL = ∅.

Therefore, Hpos is conjunctively coprognosable with respect
to G.

Also, as shown in Remark 2, specification Hneg in Fig. 3(c)
is not PSE-prognosable with respect to G in Fig. 3(a).
However, we have ∂L = {ao, bo},�L = {a, b, ao, bo}, ϒL =
{o}∗ and

�L[1] = �L ∩
(
∩i∈IP−1

i (Pi(ϒL))
)

= ∅
∂L = {ao, bo} ⊆ �L \ �L[1] = {a, b, ao, bo}.

Therefore, Hneg is 0-inference prognosable with respect to G.
Recall that we have shown in Section III that PSE-

prognosability and NSE-prognosability are incomparable.
Moreover, as shown in [16], conjunctive coprognosability and
N-inference prognosability are also incomparable. Therefore,
we conclude that all of these four notions are incomparable in
general; each of them may apply to different systems.

Finally, it is worth remarking that, in this paper, we adopt a
state-based approach, while the results in [16], [18], and [29]
use language-based frameworks. As a consequence, the
proposed protocols strictly depend on the state-space of the
system that generates the language. In other words, it is possi-
ble that we can refine the state-space of a non-PSE-(or NSE-)
prognosable system such that the refined system is PSE-(or
NSE-) prognosable. This issue is illustrated by the following
example.

Example 8: Let us consider the system automaton G′ in
Fig. 9(a), where we have I = {1, 2}, �o,1 = {a, o} and
�o,2 = {b, o}. Let K = 0 and M = 5. For specification
automaton H′

pos shown in Fig. 9(b), we have ∂K = {4} and
ϒ>

M = {1, 2, 3, 5, 7, 8, 9}. It is NSE-prognosable, since for
string o ∈ L(H′

pos) : δ(o) ∈ ∂K , we have (∩i∈IEi(Pi(o))) ∩
ϒ>

M = ∅. However, as we have shown in Remark 2, that Hpos
in Fig. 3(b) is not NSE-prognosable with respect to Gpos in
Fig. 3(a) under the same problem parameters. Interestingly,
we see that L(G′) = L(G) and L(H′

pos) = L(Hpos), i.e., G′
and Hpos′ are just refinements of G and Hpos, respectively.
This justifies our early assertion that, even the languages of
the automata are the same, using different state-spaces of the
system may affect the results of the protocols. Intuitively, this
can be explained as follows. By splitting states of the system,
each state can carry more information. However, as a tradeoff,
more communication capacity is needed between each local
site and the coordinator.

(a) (b)

Fig. 9. H′
pos is NSE-prognosable with respect to G′, where �o,1 =

{a, o}, �o,2 = {b, o}, K = 0, and M = 5. (a) G′. (b) H′
pos.

VII. CONCLUSION

In this paper, two novel decentralized protocols were
proposed for the purpose of fault prognosis. The notions of
PSE-prognosability and NSE-prognosability were introduced,
respectively, as the necessary and sufficient conditions under
which the positive protocol and negative protocol achieve the
required performance bound, respectively. Algorithms were
provided to verify the proposed notions. We showed that the
verifications of PSE-prognosability and NSE-prognosability
are both PSPACE-hard with respect to the number of local
agents. Finally, we showed that the two proposed protocols
are incomparable with existing protocols in the literature.

The proposed algorithms are exponential in the number of
local agents, which has been shown to be unavoidable. Note
that the verification algorithm for PSE-prognosability requires
polynomial-time with respect to the size of the system model,
while the algorithm for the verification NSE-prognosability
requires exponential-time with respect to the size of the system
model. Investigating whether or not there exists a polynomial-
time algorithm for the verification of NSE-prognosability is
an interesting future direction.
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