
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 10, OCTOBER 2019 4369

Opacity Enforcement Using Nondeterministic Publicly
Known Edit Functions

Yiding Ji , Student Member, IEEE, Xiang Yin , Member, IEEE, and Stéphane Lafortune , Fellow, IEEE

Abstract—This note investigates enforcement of opacity by non-
deterministic edit functions. The edit functions alter the system’s
output by inserting fictitious events or erasing observed events.
The edit decisions are randomly made while not known by the out-
side environment a priori. There is an intruder characterized as a
passive observer with malicious goals to infer the secrets of the
system. We require that opacity be enforced when the intruder may
or may not know the implementation of edit functions. This require-
ment is termed as private and public safety. We also restrict the
operation of edit functions by defining edit constraints. Then, the
opacity enforcement problem is transformed to a three-player game
among the edit function, the environment, and a dummy player,
which helps to determine edit decisions. A game structure called
the all edit structure (AES) is introduced to characterize the interac-
tion among those players. It embeds all privately safe edit functions
and may also embed publicly safe edit functions. Based on the AES,
we present an algorithm that provably synthesizes nondeterminis-
tic edit functions that satisfy both private safety and public safety.

Index Terms—Discrete event systems (DES), edit function, non-
determinism, opacity enforcement, privacy.

I. INTRODUCTION

Opacity is an information-flow-based security property that charac-
terizes whether a system can defend its secrets from being inferred by
an outside intruder with malicious intentions. The external intruder is
often modeled as an observer that knows the structure of the system
and attempts to infer secrets of the system by passively observing the
output of the system. A system is called opaque if the intruder fails to
determine the secrets unambiguously from its observations.

Opacity has been extensively studied in computer security commu-
nity, starting with [1], and in discrete event systems (DES). In finite-
state automaton models, various opacity notions have been studied
to capture different privacy requirements, e.g., language-based opac-
ity [13], current-state opacity (CSO) [15], initial-state opacity [16],
K-step opacity, and infinite-step opacity [22]. Opacity has also been

Manuscript received October 4, 2018; revised January 17, 2019; ac-
cepted January 27, 2019. Date of publication February 5, 2019; date
of current version September 25, 2019. This work was supported in
part by the National Science Foundation under Grant CCF-1138860
(Expeditions in Computing Project ExCAPE: Expeditions in Computer
Augmented Program Engineering) and Grant CNS-1421122, in part by
the TerraSwarm Research Center, one of six centers supported by the
STARnet phase of the Focus Center Research Program a Semiconduc-
tor Research Corporation program sponsored by MARCO and DARPA,
and in part by the National Natural Science Foundation of China un-
der Grant 61803259 and Grant 61833012. Recommended by Associate
Editor K. Cai. (Corresponding author: Yiding Ji.)

Y. Ji and S. Lafortune are with the Department of Electrical Engineering
and Computer Science, University of Michigan, Ann Arbor, MI 48105
USA (e-mail:, jiyiding@umich.edu; stephane@umich.edu).

X. Yin is with the Department of Automation, Shanghai Jiao Tong
University, Shanghai 200240, China (e-mail:,yinxiang@sjtu.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2019.2897553

extended to other types of system models, including infinite-state sys-
tems [5], Petri nets [18], modular systems [14], and timed systems [3].
Recently, opacity has also been evaluated quantitatively in stochas-
tic settings, e.g., [6] and [12]. The readers are referred to the survey
paper [8] for a comprehensive review of results on opacity in DES.

Opacity may not always hold so that the problem of opacity en-
forcement arises, which has been investigated under various mecha-
nisms. One common approach is supervisory control [17], [21], where
a supervisor disables some behaviors before the disclosure of secrets.
While [23] also lies in this category and solves the problem from the
complementary perspective of maximal information release. Another
framework is sensor activation [4], where the observation of events are
dynamically changed while the system’s operation is not interrupted.
Alternatively, Falcone and Marchand [7] propose a runtime technique.

In contrast to the aforementioned approaches, Wu and Lafortune
[19] introduce insertion functions as a new method, which insert fic-
titious events into the system’s output to obfuscate the intruder. The
insertion functions serve as an interface between the system’s output
and the intruder’s observation. After that, Ji et al. [10] investigate opac-
ity enforcement under the assumption that the intruder may or may not
know the implementation of the insertion functions. To capture this sit-
uation, two concepts of private safety and public safety are defined and
studied for evaluating the performance of insertion functions. Further-
more, Ji et al. [11] discuss opacity enforcement by insertion functions
under quantitative constraints. Wu et al. [20] proceed to extend inser-
tion functions to edit functions, which modify the system’s output by
inserting, erasing, or replacing events. All these works enforce opacity
in a deterministic setting, i.e., any string is mapped to a unique string.

In this note, we assume that the edit function’s implementation is
known to the intruder and discuss how to defend secrets under such an
adversary. We improve [9], [10], [19], and [20] by considering opacity
enforcement using nondeterministic (ND) edit functions, whose out-
come is randomly chosen from a precalculated set and the intruder does
not know the result a priori. Both private safety and public safety are
defined for edit functions to characterize their performance. Although
ND edit functions seem to release more information to the intruder by
allowing more potential outcomes, they essentially provide the system
more plausible denial of secret disclosure, which contributes to opacity
enforcement. It is shown that an ND edit function may still achieve
private and public safety even when its deterministic counterpart fails
to do so. To the best of our knowledge, this note is the first to consider
nondeterminism of the defender in opacity enforcement. We introduce
a three-player game structure termed all edit structure (AES) to embed
edit functions. An algorithm is developed to synthesize privately and
publicly safe ND edit functions based on the AES.1

The remaining sections are organized as follows. Section II presents
the system model. Section III formally introduces the notions of ND edit
functions, private safety, and public safety. Section IV defines the three-
player observer (TPO), discusses its properties and introduces edit
constraints. Section V defines a special TPO called AES and presents
its construction algorithm. Section VI develops an algorithm for syn-

1A preliminary version of a subset of the results in this note, for deterministic
edit functions only, appears in [9].

0018-9286 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2678-7051
https://orcid.org/0000-0003-1944-1570
https://orcid.org/0000-0002-7526-6642
mailto:jiyiding@umich.edu
mailto:stephane@umich.edu
mailto:yinxiang@sjtu.edu.cn

4370 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 10, OCTOBER 2019

thesizing ND publicly and privately safe edit functions based on the
reachability tree of the AES. Finally, Section VII concludes this note.

II. SYSTEM MODEL

We consider opacity in the framework of DES modeled as determin-
istic finite-state automata [2]

G = (X, E, f, x0)

where X is the finite set of states, E is the finite set of events, f :
X × E → X is the partial state transition function, and x0 ∈ X is the
initial state. Specifically, we denote by XS ⊂ X the set of secret states.
The transition function is extended to domain X × E∗ in the standard
manner [2]. Given two strings s, u, we denote by s � u if s is a prefix
u and t ∈ s if t is a substring of s. The language generated by G is
defined as L(G) = {s ∈ E∗ : f (x0 , s)!} where ! means “is defined.”

For simplicity, we write x
e−→ x′, if x′ = f (x, e) for x, x′ ∈ X and

e ∈ E . Given system G, a run is a sequence of alternating states and
events x1

e1−→ x2
e2−→ · · · en −1−−−→ xn , where ∀i ≤ n, xi ∈ X and ei ∈

E . A run contains a cycle if ∃1 ≤ i < j ≤ n, s.t. xi = xj .
The system is partially observed with the event set E partitioned

as E = Eo ∪ Euo , where Eo is the set of observable events and Euo

is the set of unobservable events. Given a string t ∈ E∗, its natural
projection P : E∗ → E∗

o is recursively defined as P (t) = P (t′e) =
P (t′)P (e), where t′ ∈ E∗ and e ∈ E . The projection of an event is
P (e) = e if e ∈ Eo and P (e) = ε if e ∈ Euo ∪ {ε}, where ε is the
empty string. Then, by the standard technique in [2], the observer of G
is defined as: Obs(G) = (Xobs, Eo , δ, xobs,0), where Xobs ⊆ 2X is the
state space, Eo is the set of observable events, δ : Xobs × Eo → Xobs

is the transition function, and xobs,0 ∈ Xobs is the initial state. An
observer state can be viewed as an estimate of the system’s current
states. Therefore, the observer is often called “state estimator” in the
literature, e.g., [19].

III. EDIT FUNCTIONS AND OPACITY NOTIONS

In this section, we formally define ND edit functions and discuss
the edit mechanism. We also define private safety and public safety to
further characterize how the edit function defends the secrets of the
system against intruders with different knowledge.

A. Edit Mechanism

We first review the concept of deterministic edit function in [9]:
fe : E∗

o × Eo → E∗
o E

ε
o , where Eε

o = Eo ∪ {ε}. Given s ∈ P [L (G)],
eo ∈ Eo , fe (s, eo) = sI eo if sI is inserted before eo ; fe (s, eo) = ε if
eo is erased; fe (s, eo) = sI if sI is inserted and eo is erased.

By definition, the outcome of a deterministic edit function is unique.
Then, we extend it and define an ND edit function: fne : E∗

o × Eo →
2E ∗

o E ε
o that outputs a string nondeterministically from a set of potential

outcomes. Its output is based on the past observed string and the cur-
rent observed event. Given an observable string s ∈ P [L (G)] and an
observable event eo ∈ Eo , a potential outcome of an ND edit function
may be sI eo if sI is inserted before eo or ε if eo is erased or sI if sI

is inserted and eo is erased. In contrast to deterministic edit functions
in [9], the outcome is not precalculated and is chosen randomly when
the ND edit function is implemented. Notice that sI may be ε so that
nothing is inserted. The outcome of such a function is not known by the
intruder before it is observed. With a slight abuse of notation, we also
define a string based ND edit function fne recursively as: fne(ε) = {ε}
and fne(seo) = {lp ls ∈ E∗

o : lp ∈ fne(s), ls ∈ fne(s, eo)}.
An edit function is an interface between the system’s output and

the outside world, which includes the intruder eavesdropping on the
system. The edit function works as follows: upon observing a string, it
makes a decision to insert fictitious events before the last observed event
or to erase the last observed event; then, the edited string is emitted as
the actual output. We assume that all observable events Eo are allowed

to be inserted or erased, and the intruder cannot distinguish between
an inserted event and its genuine counterpart. We define Er

o = {eo →
ε : eo ∈ Eo} to be the set of “event erasure” events. In this note, if we
concatenate an “event erasure” event eo → ε with the observable event
eo , the result is simply ε.

Given an ND edit function fne, the intruder infers secrets from its
current state estimate Efne : P [L(G)] → 2X obs and Efne(s) = {xobs ∈
Xobs : ∃t ∈ fne(s), s.t. xobs = δ(xobs,0 , t)}. Since fne is ND, Efne(s) is
generally a set of states in Xobs.

B. Private Safety and Public Safety

In this section, we first review the well-studied concept of CSO and
then derive two concepts from it.

Definition 1 (Current-state opacity): System G is CSO w.r.t. pro-
jection P and secret states XS if ∀t ∈ LS := {t ∈ L(G) : f (x0 , t) ∈
XS }, ∃t′ ∈ LNS := {t ∈ L(G) : f (x0 , t) ∈ (X\XS)} s.t. P (t) =
P (t′).

A system is current-state opaque if for every string reaching a secret
state, there exists another string reaching a nonsecret state and both
strings share the same projection. CSO can be verified by building
the observer and checking whether any observer state contains solely
secret states. If CSO is violated, an edit function may be used to enforce
opacity, which is the problem studied in this note.

Based on CSO, we define the safe language [19] as: Lsafe =
P [L(G)]\{[P [L(G)]\P (LNS)]E∗

o}, which is prefix closed, whereas
the unsafe language is Lunsafe = P [L(G)]\Lsafe. Intuitively, we view
all observable continuations of P [L(G)]\P (LNS) as “unsafe.” If we
delete all states violating CSO from Obs(G), i.e., all observer states
that solely contain secret states, and then take the accessible part, the
resulting automaton just generates Lsafe. We call it desired observer:
Obsd (G) = (Xobsd , Eo , δd , xobsd ,0), see [10] and [19] for more details.

Inspired by private safety and public safety of insertion functions
in [10], we redefine those two concepts for ND edit functions and call
them ND private safety and ND public safety, respectively.

Definition 2 (ND private safety): Consider system G with P , Lsafe,
and Obsd (G), an ND edit function fn e is privately safe, if ∀s ∈
P [L (G)], fn e (s) ⊆ Lsafe.

If fne is privately safe, we denote it by fne � ϕndpri, where ϕndpri stands
for ND private safety. ND private safety is based on the assumption that
the intruder does not know about the implementation of edit functions.
Thus, as long as for a given string s and an edit function fne, every
element in fne(s) is also in Lsafe, then, the intruder’s state estimate
would never reveal the secrets of the system.

Definition 3 (ND public safety): Consider a system G, Lsafe, and
Lunsafe, an ND edit function fn e is publicly safe, if ∀s ∈ Lunsafe, ∀s̃ ∈
fn e (s), ∃t ∈ Lsafe, s.t. s̃ ∈ fn e (t).

If fne is publicly safe, we denote it by fne � ϕndpub, where ϕndpub

stands for ND public safety. ND public safety is based on the assump-
tion that the implementation of edit functions is known to the intruder.
A sophisticated intruder may learn the implementation of the edit func-
tion and potentially does some reverse engineering to infer the source of
the edited string. Thus, for ND public safety, we require that no matter
how an unsafe string is edited, it should share the same edited behavior
with some safe string. As the intruder does not know how a string is
edited before it makes an observation, ND public safety and ND private
safety guarantee that the system’s secrets are never disclosed. A ND
edit function fne is ND-public-private enforcing (ND-PP-enforcing),
denoted by fne � ϕndpp, if fne � ϕndpri and fne � ϕndpub. In this note,
we require that an edit function should be able to map every string in
P [L(G)] to some strings and we term this property as admissibility.

IV. THREE-PLAYER OBSERVER

In this section, we propose the TPO, which is a three-player game
structure that provides a systematic way of embedding edit functions

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 10, OCTOBER 2019 4371

and evaluating their performance. Then, we discuss some properties of
the TPO and define edit constraints.

The TPO is an information-state-based structure, whose current state
contains enough information for analysis of opacity enforcement and
no future information is necessary. We denote the set of information
states as I . The formal definition is as follows.

Definition 4 (Three-player observer): Given a system G, its ob-
server Obs(G) and desired observer Obsd (G), let I ⊆ Xobsd ×
Xobs be the set of information states. A TPO is the tuple T =
(QY , QZ , QW , Eo , E

r
o , Θ, fy z , fz z , f in

z w , f er
z w , f in

w y , f er
w y , y0), where

we have the following.
1) QY ⊆ I is the set of information states.
2) QZ ⊆ I × Eo is the set of information states augmented with

observable events. Let I(z) and E(z) denote the information
state component and observable event component of z ∈ QZ ,
respectively, so that z = (I(z), E(z)).

3) QW ⊆ I × (Eo ∪ Er
o) is the set of information states augmented

with observable events or event erasure events. Let I(w) and
A(w) denote the information state component and edit action
component of w ∈ QW , respectively, so that w = (I(w), A(w)).

4) Eo ⊆ E is the set of observable events.
5) Er

o is the set of “event erasure” events.
6) Θ ⊆ Eo ∪ {ε} ∪ Er

o is the set of edit decisions at QZ -states.
7) fy z : QY × Eo → QZ is the transition function from QY -states

to QZ -states. For y = (xd , xf) ∈ QY , eo ∈ Eo , we have

fy z (y, eo) = z ⇒ [δ(xf , eo)!] ∧ [I(z) = y] ∧ [E(z) = eo].

8) fz z : QZ × Θ → QZ is the transition function from QZ -states
to QZ -states. For z = ((xd , xf), eo) ∈ QZ , θ ∈ Θ, we have

fz z (z, θ) = z ′ ⇒ [θ ∈ Eo] ∧ [I(z ′) = (x′
d , xf)]

∧ [x′
d = δd (xd , θ)] ∧ [E(z ′) = eo].

9) f in
z w : QZ × Θ → QW is the ε-insertion transition from QZ -

states to QW -states. For z = ((xd , xf), eo) ∈ QZ , θ ∈ Θ we
have

f in
z w (z, θ) = w ⇒ [θ = ε] ∧ [I(w) = I(z)] ∧ [A(w) = eo]

∧ [δd (xd , eo)!] ∧ [δ(xf , eo)!].

10) fer
z w : QZ × Θ → QW is the event erasure transition from QZ -

states to QW -states. For z = ((xd , xf), eo) ∈ QZ , θ ∈ Θ, we
have

fer
z w (z, θ) = w ⇒ [θ = eo → ε] ∧ [I(w) = I(z)]

∧ [A(w) = eo → ε] ∧ [δ(xf , eo)!].

11) f in
w y : QW × Eo → QY is the transition function from QW -

states whose edit action component is in Eo to QY -states. For
w = ((xd , xf), eo) ∈ QW , we have

f in
w y (w, eo) = y ⇒ [y = (x′

d , x′
f)] ∧ [x′

d = δd (xd , eo)]

∧ [x′
f = δ(xf , eo)].

12) fer
w y : QW × Eo → QY is the transition function from QW -

states whose edit action component is in Er
o to QY -states. For

w = ((xd , xf), eo → ε) ∈ QW , we have

fer
w y (w, eo) = y ⇒ [y = (xd , x′

f)] ∧ [x′
f = δ(xf , eo)].

13) y0 ∈ QY is the initial QY -state, where y0 = (xobsd ,0 , xobs ,0).
xobsd ,0 and xobs,0 are the initial states of Obsd (G) and Obs(G),
respectively.

The TPO is defined to describe the game among a “dummy” player,
“edit function,” and “system/environment.” All three players have com-
plete information in the sense that they know exactly the actions of each
other at any moment of the game.

A QY -state (Y -state) is an information state, from which the
“dummy” player executes observable events. A Y -state contains both
the intruder’s estimate and the system’s estimate. Actually, the events
from Y -states do not really occur and they are the events to be observed
by the edit function player. fy z is defined only to help determine what
edit decisions can be made by the edit function in the next step. That is
why we call this player a dummy player.

A QZ -state (Z-state) is an information state augmented with the
event executed by the dummy player, where the edit function makes
decisions. If the edit function chooses to insert an event, a succeeding
Z-state will be reached under an fz z transition. If another event is in-
serted following the last inserted event, then another succeeding Z-state
is reached until the edit function stops inserting. This corresponds to
insertion of multiple events. If the edit function keeps inserting events,
we can expect that a cycle of Z-states and fz z transitions is formed
in the TPO. When an event is inserted, only the intruder’s estimate
is updated, whereas the system’s estimate remains the same, which
is reflected in defining fz z . This is consistent with the edit function’s
mechanism as the edit function serves as an interface to modify the in-
truder’s observation but does not interfere with the system’s operation.
When the edit function decides to stop insertion or to erase the last ob-
served event, the turn of the game is passed to the system/environment
player by f in

z w and f er
z w transitions. We denote by fz w = f in

z w ∪ f er
z w ,

where f in
z w stands for ε-insertion (termination of insertion) and f er

z w

stands for erasure of the observable event executed by the dummy
player. We will use fz w for simplicity in the following discussion if
there is no confusion. There may be multiple transitions defined out of
a Z-state, i.e., multiple edit decisions, and we let Θ(z) be the set of
edit decisions defined at z ∈ QZ in a TPO.

A QW -state (W -state) is an information state augmented with an
observable event or an “event erasure” event, from which the system
plays. If a W -state contains an observable event that means that the
edit function player has inserted ε from its preceding Z-state. When
that event is executed, it will be observed by the intruder. Thus, a
f in

w y transition leads to a Y -state, whose first- and second-state compo-
nents are both updated. If a W -state contains an “event erasure” event
that means that the edit function has decided to erase the observable
event. So, when the event is executed, it will not be observed by the
intruder. Hence, an f er

w y transition leads to a Y -state, whose first-state
component (intruder’s estimate) is updated, whereas the second state
component (system’s estimate) remains unchanged. We just denote by
fw y = f in

w y ∪ f er
w y and will use fw y when there is no confusion.

Given two TPOs T1 and T2 , T1 is a subsystem of T2 , de-
noted by T1 � T2 , if QT 1

Y ⊆ QT 2
Y , QT 1

Z ⊆QT 2
Z , QT 1

W ⊆ QT 2
W , and

∀y ∈ QT 1
Y , ∀z, z ′ ∈ QT 1

Z , ∀w ∈ QT 1
W , ∀eo ∈ Eo , ∀θ, θ′ ∈ Θ, we have:

first, fT 1
y z (y, eo) = z ⇒ fT 2

y z (y, eo) = z; second, fT 1
z z (z, θ) = z ′ ⇒

fT 2
z z (z, θ) = z ′; third, fT 1

z w (z, θ′) = w ⇒ fT 2
z w (z, θ′) = w; fourth,

fT 1
w y (w, eo) = y ⇒ fT 2

w y (w, eo) = y.

A run in a TPO is of the form: r = y0
e0−→ z1

0

θ 1
0−→ z2

0

θ 2
0−→

· · · θ
m 0 −1
0−−−−→ zm 0

0

θ
m 0
0−−→ w0

e0−→ y1
e1−→ z1

1

θ 1
1−→ z2

1

θ 2
1−→ · · · zm 1

1

θ
m 1
1−−→

w1
e1−→ y2 · · · en−→ z1

n

θ 1
n−→ · · · zm n

n

θ m n
n−−−→ wn

en−→ yn +1 , where y0 is
the initial state of T , ei ∈ Eo , θj

i ∈ Θ(zj
i), ∀0 ≤ i ≤ n, 1 ≤ j ≤ mi ,

and n ∈ N, mi ∈ N+ . It characterizes the information flow in a
TPO and we denote the set of runs in a TPO T by Run(T). We also
write yi ∈ r (zi ∈ r or wi ∈ r) if yi (zi or wi) is a state in r. A run
corresponds to an unedited string and an edited string, then we have
the following definitions.

Definition 5 (String generated by a run): Given a run r = y0
e0−→

z1
0

θ 1
0−→ z2

0

θ 2
0−→ · · · θ

m 0 −1
0−−−−→ zm 0

0

θ
m 0
0−−→ w0

e0−→ y1
e1−→ z1

1

θ 1
1−→ z2

1

θ 2
1−→ · · ·

zm 1
1

θ
m 1
1−−→ w1

e1−→ y2 · · · en−→ z1
n

θ 1
n−→ · · · zm n

n

θ m n
n−−−→ wn

en−→ yn +1 , the

4372 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 10, OCTOBER 2019

string generated by r is defined as: lg (r) = θ1
0 θ2

0 · · · θm 0 −1
0 θm 0

0
e0θ

1
1 · · · θm 1

1 e1 · · · en−1θ
1
n · · · θm n

n en , where ∀i ≤ n, θm i
i ei = ε if

θm i
i = ei → ε.

Definition 6 (Edit projection): In a TPO T , given a run r = y0
e0−→

z1
0

θ 1
0−→ z2

0

θ 2
0−→ · · · θ

m 0 −1
0−−−−→ zm 0

0

θ
m 0
0−−→ w0

e0−→ y1
e1−→ z1

1

θ 1
1−→ z2

1

θ 2
1−→

· · · zm 1
1

θ
m 1
1−−→ w1

e1−→ y2 · · · en−→ z1
n

θ 1
n−→ · · · zm n

n

θ m n
n−−−→ wn

en−→ yn +1 ,
edit projection Pe : Run(T) → P [L(G)] is defined such that
Pe (r) = e0e1 · · · en .

That is, the edit projection projects away the edit decisions in a run
and “recovers” the unedited string, whereas the generated string of a
run is just the string after considering the edit decisions.

From a given TPO, we may extract an edit function from it and we
define the edit function embedded in a TPO. With a slight abuse of
notation, we write fne ∈ T if fne is embedded in T .

Definition 7 (ND edit function embedded in TPO): Given a TPO
T , ND edit function fn e is embedded in T if ∀s ∈ P [L(G)], ∀s̃ ∈
fn e (s), ∃r ∈ Run(T), s.t. Pe (r) = s, and lg (r) = s̃.

In a TPO, y ∈ QY is a terminating state if �eo ∈ Eo , s.t. fy z (y, eo)!
and w ∈ QW is a deadlocking state if �eo ∈ Eo , s.t. fw y (w, eo)!. Also,
z ∈ QZ is a deadlocking state if �θ ∈ Θ, s.t. fz z (z, θ)! or fz w (z, θ)!.
We call a TPO complete if: first, there are no deadlocking W or Z states;
second, ∀s ∈ P [L(G)], ∃r ∈ Run(T), s.t. Pe (r) = s. In a complete
TPO, all embedded edit functions are admissible and they can always
make a decision no matter what event occurs; also the events executed
by the system cannot be blocked from happening. From now on, we
will only consider complete TPOs. Notice that a complete TPO only
terminates at Y -states, being consistent with the definition of run.

In practice, the edit functions may be constrained by the outside
environment or the preference of the system’s designer so that certain
edit decisions may not be taken and some Y -states may not be preferred.
Thus, we introduce constraints on edit decisions and constraints on Y -
states, both in a generic form.

Definition 8 (Constraints on edit decisions): The constraint on edit
decisions is a binary function φdec : Θ → {0, 1} and an edit decision
θ ∈ Θ satisfies the constraint if φdec (θ) = 1.

Definition 9 (Constraints on Y -states): The constraint on Y -states
is a binary function φy : QY → {0, 1} and a Y-state y ∈ QY satisfies
the constraint if φy (y) = 1.

Both constraints are problem-dependent and will be specified when
a problem is discussed. They will reduce the state space of the TPO and
bring in deadlocking states. In the following section, we will define the
“largest” TPO satisfying both constraints.

V. ALL EDIT STRUCTURE

In this section, we define a complete TPO such that: [∀y ∈
QY : φy (y) = 1] ∧ [∀θ ∈ Θ : φdec(θ) = 1] and T is “as large as
possible.” We call this structure the AES. The property of be-
ing as large as possible is as follows: if T1 and T2 are two
TPOs satisfying edit constraints, then their union, in the graph
merging sense, is also a TPO satisfying edit constraints. The
union of T1 and T2 is defined as: first, QT 1 ∪T 2

Y = QT 1
Y ∪ QT 2

Y ,
QT 1 ∪T 2

Z = QT 1
Z ∪ QT 2

Z , and QT 1 ∪T 2
W = QT 1

W ∪ QT 2
W ; second, ∀y ∈

QT 1 ∪T 2
Y , ∀z, z ′ ∈ QT 1 ∪T 2

Z , ∀w ∈ QT 1 ∪T 2
W , ∀θ, θ′ ∈ Θ, and ∀eo ∈

Eo , we have: fT 1 ∪T 2
y z (y, eo) = z ⇔ ∃i ∈ {1, 2} : fT i

y z (y, eo) = z,
fT 1 ∪T 2

z z (z, θ′) = z ′ ⇔ ∃i ∈ {1, 2} : fT i
z z (z, θ′) = z ′, fT 1 ∪T 2

z w (z, θ) =
w ⇔ ∃i ∈ {1, 2} : fT i

z w (z, θ) = w and fT 1 ∪T 2
w y (w, eo) = y ⇔ ∃i ∈

{1, 2} : fT i
z w (w, eo) = y.

Definition 10 (All edit structure): Given system G, edit constraints
φdec and φy , the AES is the largest complete TPO: AES =
(QA

Y , QA
Z , QA

W , Eo , E
r
o , Θ, fA

y z , fA
z z , fA

z w , fA
w y , y0), where ∀y ∈ QA

Y :
φy (y) = 1 and∀θ ∈ Θ : φdec (θ) = 1. The largest TPO is such that: for
all TPO T satisfying the above-mentioned two conditions, T � AES.

Algorithm I shows a general procedure for constructing the AES
and it calls Algorithms II and III in its operation. In Algorithm II, we

Algorithm I: Construction of the AES.

Input :Obs(G), Obsd (G), Er
o , φdec , φy

Output :AES
1: QA

Y = {y0} = {(xobsd ,0 , xobs ,0)}, QA
Z = ∅, QA

W = ∅;
2: AESpr e = DoDFS(y0 , φdec , φy , Obs(G), Obsd (G), Er

o);
3: AES = Prune(AESpr e);

start searching from y0 = (xobsd,0 , xobs,0) and expand the state space
recursively by computing all possible successors of the current state.
We terminate searching on a path when a Y -state violates the edit
constraint, i.e., φy (y) = 0 or an edit decision is not allowed by the
constraints, i.e., φdec(θ) = 0. This is an iterative procedure that allows
us to build the whole reachable state space. We also add transitions in
this process.

Specifically, at a newly added Z-state, we need to determine feasible
edit decisions. There may be consecutive Z-states between a Y -state
and a W -state. Then, we search them in the procedure EXTEND −
Z , which is also a depth-first search process. In EXTEND − Z , we
add succeeding Z-states until no more fz z transitions are defined and no
more insertions are made. In this process, for each z ∈ QA

Z , we define
Zext(z) to be the set of Z-states that can be reached from z through fz z

transitions. We keep growing Zext(z) until no more Z-states are added

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 10, OCTOBER 2019 4373

and no new fz z transitions are defined at states in Zext(z). Consecutive
Z-states may form a cycle in the AES, which indicates that a loop is
inserted by the edit function. Since the information state component
of a Z-state comes from 2X × 2X and its event component comes
from Eo , both of which are finite sets, then only a finite number of Z-
states is added in each iterate and EXTEND − Z always terminates.
Similarly, the information state components of Y -states and W -states
also come from 2X × 2X , whereas the edit action components of W -
states come from Eo or Er

o . All of them are finite sets. Overall, only
finite states will be added to AESpre until some states or transitions
violate the edit constraints. Thus, Algorithm II terminates after a finite
number of steps and returns a finite structure.

We denote the output of Algorithm II by AESpre, which may con-
tain deadlocking states since edit constraints preclude transitions out
of them or their succeeding states. We prune away deadlocking states
as well as their predecessor states in Algorithm III in an iterative
manner until the structure converges. If a state is deadlocking, then
the edit decisions leading to it should not be considered for synthe-
sizing edit functions. Thus, we also prune away its preceding states.
This process is similar to calculating the supremal controllable sublan-
guage in nonblocking supervisory control under full observation [2],
by viewing the deadlocking states as undesired marked states and fA

y z

and fA
w y transitions as uncontrollable, whereas fA

z z and fA
z w transi-

tions as controllable. Algorithm III also terminates after a finite num-
ber of steps when no more states are to be removed, then it returns
the AES after it is called in Algorithm I. The following theorem

reveals the correctness and completeness of the AES, namely, the
AES embeds all ND privately safe edit functions satisfying the edit
constraints.

Theorem 1: Given system G, an ND edit function fn e is ND pri-
vately safe if and only if fn e ∈ AES.

Proof: (⇒) By contradiction. Suppose fne � ϕndpri but fne /∈ AES.
Then, there should exist a TPO T such that fne ∈ T . This means that
∃s ∈ P [L(G)], ∃r ∈ Run(T), s.t. Pe (r) = s, lg (r) ∈ fne(s) but r /∈
Run(AES). Thus, there are some states or transitions in r that are not
in the AES. However, this implies that the union of T and the AES is
strictly larger than the AES, which contradicts with the definition that
the AES is the largest TPO satisfying the edit constraints.

(⇐) Suppose that fne ∈ AES, then ∀s ∈ P [L(G)], ∀s̃ ∈ fne(s),
∃r ∈ Run(T), s.t. Pe (r) = s ∧ lg (r) = s̃. Since ∀y = (xd , xf) ∈ r,
xd ∈ Xobsd, we know fne(s) ⊆ L(Obsd (G)) = Lsafe and fne is pri-
vately safe. �

Remark 1: We briefly analyze the complexity of constructing the
AES. First, we evaluate the complexity of Algorithm II. Here, we
define Qen t

Z = {z ∈ QA
Z : ∃y ∈ QA

Y , ∃eo ∈ Eo s.t. fy z (y, eo) = z} as
the Z-states that can be reached from certain Y -states by fy z transi-
tions. Given system G with |X |-states, its observer Obs(G) has at most
|Xobs | = 2|X | states. Since QA

Y ⊆ Xobsd × Xobs , |QA
Y | ≤ |Xobs |2 .

Also, each Y -state can execute at most |Eo | observable events in
line 1, so |Qen t

Z | ≤ |Eo ||Xobs |2 . In DoDFS, we apply procedure
EXTEND − Z at each Qen t

Z in line 8 to determine edit choices
step by step. This procedure creates at most (|Xobs | − 1)-states
for each Qen t

Z -state. Thus, |QA
Z | ≤ |Eo ||Xobs |2 (|Xobs | − 1 + 1) =

|Eo ||Xobs |3 . Furthermore, every Z-state may lead to a W -state by
fz w transition, so |QA

W | ≤ |Eo ||Xobs |3 . Thus, the state space com-
plexity of AESpr e is O(|Xobs |3). The complexity of Algorithm III is
quadratic in the size of AESpr e as one state is visited at most once in
an iteration. Overall, the space complexity of constructing the AES is
polynomial in terms of |Xobs |.

Remark 2: It can be shown by induction on the length of strings that
if the AES is not empty, then all edit functions embedded in it are ad-
missible. This is a consequence of the pruning process in Algorithm III
and we omit the proof here. By the same argument, no admissible
edit function exists if the AES is empty. Hence, we will rule out this
situation in the remainder of the note.

Example 1: We show an AES. The observer of system G is de-
picted in Fig. 1. All events {a, b, c, d} are observable and observer
state 4 is solely composed of secret states from G. The desired ob-
server Obsd (G) is simply without state 4 and we omit its figure here.
To begin with, we follow the first two steps of Algorithm I and build

4374 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 10, OCTOBER 2019

Fig. 1. Observer in Example 1.

Fig. 2. AESpre in Example 1 (without dashed states and transitions).

Fig. 3. AES in Example 1.

AESpr e in Fig. 2, where squared states, oval states, and diamond states
stand for Y , Z , and W states, respectively.

The game is initialized at y0 = (0, 0), where the dummy player
executes b and d since both events are defined at state 0 in Obs(G).
If b is executed, Z-state ((0, 0), b) is reached, where the edit function
plays and there are two edit decisions. At ((0, 0), b), if the edit function
chooses to erase b, then the system plays at W -state ((0, 0), b → ε);
if the edit function inserts d, then Z-state ((1, 0), b) is reached since
δd (0, d) = 1. If a is also inserted after d is inserted, then another
Z-state ((2, 0), b) is reached. Then, at Z-state ((2, 0), b), if the edit
function decides to stop inserting, W -state ((2, 0), b) is reached. When
the system plays, say, at ((0, 0), b → ε), b occurs and leads to Y -
state (0, 4), since b is not observed by the intruder and the first-state
component is not updated. When the system plays at ((2, 0), b), b
occurs and leads to Y -state (3, 4) since δd (2, b) = 3 and δ(0, b) = 4.
The whole structure is interpreted in a similar way.

In this example, the edit constraints prohibit the edit function from
erasing b at ((1, 0), b) and ((3, 2), b), also φy ((0, 1)) = φy ((1, 2)) =
φy ((2, 3)) = 0. We use dashed lines in Fig. 2 to indicate the transitions
and states that violate edit constraints. Those transitions/states are not
in AESpr e . In Fig. 2, there are some deadlocking W -states, such as
((0, 0), d → ε), ((1, 0), a → ε), and ((2, 2), b → ε) and no deadlock-
ing Z-states exist. Then, we prune away those deadlocking states by
Algorithm III and finally obtain the AES in Fig. 3.

Then, it is natural to ask when there exists an ND-PP-enforcing edit
function in the given AES. The key point is every unsafe string shares

the same edited behavior with some safe string. However, the state
information in the AES is insufficient to verify this condition as a Y -
state may appear in multiple runs and different strings may be edited to
the same one by different edit decisions. Therefore, additional analysis
is necessary, which is discussed in the following section.

VI. SYNTHESIS OF ND PRIVATELY SAFE AND PUBLICLY

SAFE EDIT FUNCTIONS

In this section, we synthesize ND-PP-enforcing edit functions. From
Theorem 1, any edit function embedded in the AES is ND privately safe
so we only need to consider ND public safety. Unfortunately, we cannot
only consider the state information in the AES for synthesis. Thus, we
introduce the reachability tree of the AES, which is the “unfolded”
AES with respect to unedited strings and edited strings. Then, we have
access to strings before/after edit and develop a synthesis algorithm
based on the tree.2

A. Reachability Tree of the AES

The reachability tree of the AES is denoted by AESt =
(QA T

Y , QA T
Z , QA T

W , Eo , E
r
o , Θ, fA T

y z , fA T
z z , fA T

z w , fA T
w y , y0) and con-

structed in Algorithm VI. It is built by unfolding the state space in
a breadth-first search manner in line 2. The AESt is an acyclic struc-
ture by construction, so all its runs are finite. The transitions in the
AESt are defined in a similar way as in the AES. Within DoDFS,
if an examined state is visited again, we stop searching on the current
path and know there is a cycle in the AES. Since the number of states
in the AES is finite, DoBFS stops after a finite number of steps when
all states in the AES are examined. In line 3, we call Algorithm III and
achieve two goals: first, all leaf states in the AESt are Y -states; second,
no deadlocking states exist in the AESt . We denote by QA T

Y −leaf the leaf
states in the AESt . Since states are completely split in terms of state
and string components, there is a unique run from the root y0 to every
state in the AESt . Finally, we label each Y -state in the tree with both
the edited string and the original string in line 6.

Edit functions embedded in the AESt only make finite insertion
choices. However, this does not compromise the performance of edit
functions in opacity enforcement. We use Example 1 to illustrate this
point. If we build the reachability tree for this example, the cycle
between Z-states ((3, 0), b) and ((2, 0), b) is broken and the transition
c is removed. Thus, if we consider edit functions embedded in the
AESt , then string b can only be mapped to dab. However, all strings of
the form da(bc)n b where n ≥ 1 reach state 2. It does not really matter
whether b is edited to a string containing a loop or not.

In the following discussion, we let the edit function make the same
decisions every time a Z-state in the AES is reached. Hence, if there
exists a cycle in the AES, the edit function does not change decisions
whenever the cycle is visited. Therefore no information is lost if we
consider edit functions embedded in the AESt and repeat the same edit
decisions when two states share the same state components.

Remark 3: We briefly analyze the space complexity of the AESt .
First, let Q = max{|QA T

Y |, |QA T
Z |, |QA T

W |}. The number of nodes
reached by the initial state in one step transition in the AES is at
most Q. Also, each node may have at most Q succeeding nodes by
one step transition in the AES. Thus, the number of states reached by
y0 by two transitions is at most Q2 . The same process goes on and
we know that there may be at most |QA T

Y | + |QA T
Z | + |QA T

W | states
between the root y0 and any leaf state in the tree. Thus, the number of
states in the AESt is at most in the order of Q|Q A T

Y
|+ |Q A T

Z
|+ |Q A T

W
|+1 .

From aforementioned section’s discussion, we know that the com-
plexities of Q and |QA T

Y | + |QA T
Z | + |QA T

W | are both of the order
(O(|Xobs |3)). Therefore, the complexity of the AESt does not exceed
O(|Xobs |3(|X o b s |3 +1)).

2The terminology of reachability tree is from the Petri net literature; it is
employed here as it is well suited to the construction procedure in this note.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 10, OCTOBER 2019 4375

In the AESt , some Y -states are labeled by an unsafe string and
a safe string, whereas others by two safe strings. We partition Y -
states as: QA T 1

Y = {((xd , xf), (t, s)) ∈ QA T
Y : t ∈ Lsafe, s ∈ Lunsafe}

and QA T 2
Y = {((xd , xf), (t, s)) ∈ QA T

Y : t, s ∈ Lsafe}.
Next, we define the last preserved QA T 2

Y state as: QA T 2
Y −lp = {y2

t ∈
QA T 2

Y : ∃y1
t ∈ QA T 1

Y , ∃θ1 , . . . θm ∈Θ, ∃eo ∈Eo , s.t. fA T
w y (fA T

z w (fA T
z z

. . . (fA T
z z (fA T

y z (y1
t , eo), θ1), · · · θm −1), θm), eo) = y2

t }, which serves
as the “boundary” between QA T 1

Y and QA T 2
Y states.

Define QA T 1
Y −leaf = QA T

Y −leaf ∩ QA T 1
Y and QA T 2

Y −leaf = QA T
Y −leaf ∩ QA T 2

Y

as leaf states that contain and do not contain unsafe string components.
Besides, we define QA T 2

Y −l = QA T 2
Y −leaf ∪ QA T 2

Y −lp . Then, we define

Lu
leaf = {l ∈ Lunsafe : ∃y1

leaf = ((xd , xf), (t, s)) ∈ QA T 1
Y −leaf, s.t. s = l}

Ls
leaf = {l ∈ Lsafe : ∃y2

leaf = ((xd , xf), (t, s)) ∈ QA T 2
Y −leaf, s.t. s = l}

Ls
lp = {l ∈ Lsafe : ∃y2

lp = ((xd , xf), (t, s)) ∈ QA T 2
Y −lp , s.t. s = l}

as the set of unsafe strings appearing in QA T 1
Y −leaf, the set of safe strings

appearing in QA T 2
Y −leaf and QA T 2

Y −lp , respectively. We further group some
Y -states by their components of original strings (safe or unsafe)

QA T 1
Y −leaf(l) = {((xd , xf), (t, s)) ∈ QA T 1

Y −leaf : s = l ∈ Lu
leaf}

QA T 2
Y −leaf(l) = {((xd , xf), (t, s)) ∈ QA T 2

Y −leaf : s = l ∈ Ls
leaf}

QA T 2
Y −lp (l) = {((xd , xf), (t, s)) ∈ QA T 2

Y −lp : s = l ∈ Ls
lp}

QA T 2
Y −l (l) = {((xd , xf), (t, s)) ∈ QA T 2

Y −l : s = l ∈ Ls
lp ∪ Ls

leaf}.
In this note, we assume that events are inserted or erased one by one,

so observed one at a time. Also, both the observer’s language and the
safe language are prefix closed. Therefore, if a string s is mapped to
string l, then all the prefixes of s are mapped to some prefixes of string
l. This result is formally stated as follows.

Lemma 1: Consider an ND edit function fn e , if s, t ∈ P [L(G)]
satisfy fe (s) ⊆ fe (t), then ∀s′ � s, ∃t′ � t, s.t. fe (s′) ⊆ fe (t′).

This lemma has the implication that we can restrict attention to
unsafe strings in Lu

leaf since all the other unsafe strings in the AESt ,
being their prefixes, can be mapped to safe strings if strings in Lu

leaf can
be mapped to safe strings. Besides, we can focus on safe strings in Ls

lp ∪
Ls

leaf for opacity enforcement as the other safe strings in the AESt are
their prefixes. This result further justifies why we build the reachability
tree AESt : since the AESt explicitly contains unsafe strings in some
of its leaf states, we can evaluate those leaf states and determine how
those unsafe strings are edited.

B. Synthesis Algorithm

We proceed to synthesize ND-PP-enforcing edit functions based on
the AESt . We will give a condition for verifying the existence of ND-
PP-enforcing edit functions and show that the verification problem is
closely related with the synthesis problem. Then, we will solve these
two problems together. To begin with, we derive the following result
from Theorem 1, which shows that ND private safety is always ensured
by the AES.

Lemma 2: If the AES is not empty, then there exists a privately safe
ND edit function.

The ND public safety case is more challenging and we start by
evaluating the unsafe strings in the leaf states of the AESt . For
each unsafe string li ∈ Lu

leaf, we define the set of PP-enforcing can-
didate states as Spp(li) = {((xd , xf), (t, li)) ∈ QA T 1

Y −leaf(li) : ∃y2 =
((x′

d , x′
f), (t′, l′)) ∈ QA T 2

Y −l , s.t. t � t′}. That is, we search through
AESt to find ((x′

d , x′
f), (t′, l′)) where some prefix of the edited string

t′ is just t, whereas the unedited unsafe string is also li . So, if the edit
function reaches those states, it will be publicly safe by definition. On
the other hand, if Spp(li) = ∅ for some li , then, we know we cannot
find a safe string that shares the same edited behavior with unsafe string
li , in which case no ND-PP-enforcing edit function exists.

Besides, we call states in QA T 1
Y −leaf(li)\Spp(li) bad candidate states

since the edited behaviors of li indicated in those states cannot be
matched with edited behaviors of any other safe string. Thus, if those
states are reached by the edit function, ND public safety cannot be
achieved. Those states are expected to be avoided when synthesizing
ND-PP-enforcing edit functions.

Based on those concepts, we propose Algorithm V for synthesis.
First, we group the leaf states by their unsafe string components li ∈
Lu

leaf in line 2. Each state in QA T 1
Y −leaf(li) corresponds to a potentially

different edited behavior of li . Then, we search through the AESt to find
bad candidate states and remove them from the AESt . As the removal of
those states may bring in deadlocking states, we apply Algorithm III to
resolve deadlocking states in line 7 and denote the remaining structure
by AESr

t . In this process, some states in Spp(li) may also be removed.
We use QA T 1

Y −r e and QA T 2
Y −r e to denote the Y -states with and without

unsafe string components in the AESr
t , respectively. For unsafe string

li , we define Sr
pp(li) in line 5 as the set of PP-enforcing candidate

states remaining in the AESr
t after pruning. We claim that if Sr

pp(li) is
not empty for each li , then there exist ND-PP-enforcing edit functions
in the AESt . Finally, we may extract the edit function by following
transitions in the AESr

t

Theorem 2: Given the AESr
t , ND-PP-enforcing edit functions exist

if and only if ∀li ∈ Lu
leaf, Sr

pp (li) �= ∅.
Proof: (⇒) By contradiction. Suppose ∃fne ∈ AESr

t , fne � ϕndpp,
and ∃li ∈ Lu

leaf, s.t. Sr
pp(li) = ∅. Then, we can find s ∈ fne(li), s.t.

�t ∈ Lsafe and s ∈ fne(t), which contradicts fne � ϕndpp.
(⇐) Given the AESt and the AESr

t , it is sufficient to consider unsafe
strings in Lu

leaf and safe strings in Ls
leaf ∪ Ls

lp for synthesis. Besides, we
only need to check ND public safety since the AES is not empty.
If ∀li ∈ Lu

leaf, Sr
pp(li) �= ∅, we know ∀y1 (li) = ((xd , xf), (t, li)) ∈

Sr
pp(li), ∃y2 = ((x′

d , x′
f), (t′, l′)) ∈ QA T 2

Y −l ∩ QA T 2
Y −r e , s.t. t � t′. Since

fne ∈ AESr
t , fne ∈ AES also holds. We let all the players make the

same decisions specified at states in the AESr
t whenever a state is

reached again in the AES. So, we can design an edit function fne

such that fne(li) = {t : ∃y1 (li) = ((xd , xf), (t, li)) ∈ Sr
pp(li)} and

t′ ∈ fne(l′). Since t � t′, we know fne(li) ⊆ Lsafe, ∀li ∈ Lu
leaf. There-

fore, fne is both privately safe and publicly safe. �
Theorem 2 gives a necessary and sufficient condition for verifying

the existence of ND-PP-enforcing edit functions. It also shows the
completeness and soundness of Algorithm V, so the synthesis of ND-
PP-enforcing edit functions is reduced to finding Sr

pp(li) for every
li ∈ Lu

leaf in the AESr
t . When running Algorithm V, we collect all

edited strings appearing in states from Sr
pp(li) and include them as

the potential edited behavior of li ∈ Lu
leaf. In that way, the synthesized

ND edit function is “most permissive” in the sense that it preserves
all feasible edit decisions to achieve ND private safety and ND public
safety.

Remark 4: Compared with deterministic edit functions, ND edit
functions perform better at enforcing public safety. The intuition is
as follows. Consider the case when a safe string is edited to multiple
(safe) strings, which may be the edited behaviors of several unsafe
strings. In the deterministic case, every string is mapped to a unique
one so in the above-mentioned case, we are only able to guarantee that
one unsafe string shares the same edited behavior with a safe string,
hence, public safety is violated. Thus, a deterministic PP-enforcing
edit function may not always exist. However, if nondeterminism is
allowed, as long as we find an edited string whose edited behaviors
correspond to the edited behaviors of (potentially multiple) unsafe
strings, then ND public safety is satisfied. The above-mentioned ar-
gument further justifies why we explore ND edit functions, given
that both deterministic and ND edit functions may enforce private
safety.

Example 2: Let the observer in Fig. 4 be with Eo = {a, b, c, d},
states 7 and 8 are composed of only secret states from the system. We
omit the steps of building the AES and the AESt , instead we directly
show the AESt in Fig. 5 . While we only label leaf states with strings
here and QA T 1

Y −leaf states are marked in red (those states contain an unsafe

4376 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 10, OCTOBER 2019

Fig. 4. Observer in Example 2.

Fig. 5. AESt in Example 2.

string label). Due to the edit constraints (not explicitly stated here), the
edit function can only make decisions and reach states as indicated
in the AESt . We can see that ((6, 8), (ab, b)) shares the first string
component with ((6, 4), (ab, dabc)), ((4, 7), (dabc, abc)) shares the
first string component with ((4, 4), (dabc, dabc)). Also, unsafe string
b is edited to ab, unsafe string abc is edited to dabc, and safe string
dabc is edited to dabc or ab.

It is interesting to notice that if we let the edit function be determin-
istic, i.e., every string is mapped to a unique one, then no PP-enforcing
edit functions exist here since unsafe strings b and abc cannot share the
same modified behavior with safe string dabc simultaneously. However,
an ND-PP-enforcing edit function exists by Algorithm V. No states are
removed from the AESt and we have Sr

pp (b) = {((6, 4), (ab, dabc)}
and Sr

pp (abc) = {((4, 4), (dabc, dabc)}. So, the edit function inserts
a before event b occurs from state 0; inserts d before event a occurs
from state 0; inserts nothing before event d occurs from state 0 or just
erases that d. This example reveals that introducing nondeterminism
to edit functions may contribute to opacity enforcement by allowing
more plausible denial for the intruder’s inference, compared with the
deterministic counterpart.

VII. CONCLUSION

We discussed opacity enforcement by edit functions in ND settings.
Based on the knowledge of the adversary, we defined private safety
and public safety of ND edit functions and then investigated their
enforcement. This note is the first to apply ND edit functions to enforce
opacity. The concept of edit constraint was introduced to restrict the
choices of edit functions. Then, we reformulated the problem as a three-
player game and proposed the AES, which embedded all privately safe
edit functions satisfying edit constraints. Finally, an algorithm was
presented for synthesizing ND-PP-enforcing edit functions based on
the reachability tree of the AES.

REFERENCES

[1] J. W. Bryans, M. Koutny, and P. Y. A. Ryan, “Modelling opacity using
Petri nets,” Electr. Notes Theor. Comput. Sci., vol. 121, pp. 101–115, 2005.

[2] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems,
2nd ed. Berlin, Germany: Springer, 2008.

[3] F. Cassez, “The dark side of timed opacity,” in Int. Conf. Inf. Secur.
Assurance, 2009, pp. 21–30.

[4] F. Cassez, J. Dubreil, and H. Marchand, “Synthesis of opaque systems
with static and dynamic masks,” Formal Methods Syst. Des., vol. 40,
no. 1, pp. 88–115, 2012.

[5] S. Chédor, C. Morvan, S. Pinchinat, and H. Marchand, “Diagnosis and
opacity problems for infinite state systems modeled by recursive tile sys-
tems,” Discrete Event Dyn. Syst., Theory Appl., vol. 25, no. 1/2, pp. 271–
294, 2015.

[6] J. Chen, M. Ibrahim, and R. Kumar, “Quantification of secrecy in partially
observed stochastic discrete event systems,” IEEE Trans. Autom. Sci. Eng.,
vol. 14, no. 1, pp. 185–195, 2017.

[7] Y. Falcone and H. Marchand, “Enforcement and validation (at runtime)
of various notions of opacity,” Discrete Event Dyn. Syst., Theory Appl.,
vol. 25, no. 4, pp. 531–570, 2015.

[8] R. Jacob, J.-J. Lesage, and J.-M. Faure, “Overview of discrete event sys-
tems opacity: Models, validation, and quantification,” Annu. Rev. Control,
vol. 41, pp. 135–146, 2016.

[9] Y. Ji and S. Lafortune, “Enforcing opacity by publicly known edit func-
tions,” in Proc. 56th IEEE Conf. Decis. Control, 2017, pp. 4866–4871.

[10] Y. Ji, Y.-C. Wu, and S. Lafortune, “Enforcement of opacity by public and
private insertion functions,” Automatica, vol. 93, pp. 369–378, 2018.

[11] Y. Ji, X. Yin, and S. Lafortune, “Opacity enforcement by insertion func-
tions under energy constraints,” in Proc. 14th Int. Workshop Discrete Event
Syst., 2018, pp. 291–297.

[12] C. Keroglou and C. N. Hadjicostis, “Probabilistic system opacity in dis-
crete event systems,” Discrete Event Dyn. Syst., Theory Appl., vol. 28,
pp. 289–314, 2018.

[13] F. Lin, “Opacity of discrete event systems and its applications,” Automat-
ica, vol. 47, no. 3, pp. 496–503, 2011.

[14] T. Masopust and X. Yin, “Complexity of detectability, opacity and A-
diagnosability for modular discrete event systems,” Automatica, vol. 101,
pp. 290–295, 2019.

[15] A. Saboori and C. N. Hadjicostis, “Notions of security and opacity in
discrete event systems,” in Proc. 46th IEEE Conf. Decis. Control, 2007,
pp. 5056–5061.

[16] A. Saboori and C. N. Hadjicostis, “Verification of initial-state opacity
in security applications of discrete event systems,” Inf. Sci., vol. 246,
pp. 115–132, 2013.

[17] S. Takai and Y. Oka, “A formula for the supremal controllable and opaque
sublanguage arising in supervisory control,” SICE J. Control, Meas., Syst.
Integr., vol. 1, no. 4, pp. 307–311, 2008.

[18] Y. Tong, Z. Li, C. Seatzu, and A. Giua, “Verification of state-based opacity
using Petri nets,” IEEE Trans. Autom. Control, vol. 62, no. 6, pp. 2823–
2837, Jun. 2017.

[19] Y.-C. Wu and S. Lafortune, “Synthesis of insertion functions for enforce-
ment of opacity security properties,” Automatica, vol. 50, no. 5, pp. 1336–
1348, 2014.

[20] Y.-C. Wu, V. Raman, B. C. Rawlings, S. Lafortune, and S. A. Seshia,
“Synthesis of obfuscation policies to ensure privacy and utility,” J. Autom.
Reason., vol. 60, no. 1, pp. 107–131, 2018.

[21] X. Yin and S. Lafortune, “A uniform approach for synthesizing property-
enforcing supervisors for partially-observed discrete-event systems,”
IEEE Trans. Autom. Control, vol. 61, no. 8, pp. 2140–2154, Aug. 2016.

[22] X. Yin and S. Lafortune, “A new approach for the verification of infinite-
step and K-step opacity using two-way observers,” Automatica, vol. 80,
pp. 162–171, 2017.

[23] B. Zhang, S. Shu, and F. Lin, “Maximum information release while en-
suring opacity in discrete event systems,” IEEE Trans. Autom. Sci. Eng.,
vol. 12, no. 3, pp. 1067–1079, Jul. 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

