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1. INTRODUCTION

State estimation is one of the most fundamental problems
in the systems and control theory. In many real-world sys-
tems, it is not always possible to access the full information
of the system due to measurement noises/uncertainties
and the existence of adversaries. Therefore, how to esti-
mate the state of the system is crucial when one wants
to make decisions based on the limited and incomplete
information.

Given a system, one of the most important questions
is to prove/disprove the correctness of the system with
respect to some desired requirement (or specification). In
particular, we would like to check the correctness of the
system in a formal manner in the sense that the checking
procedures are algorithmic, and results have provable
correctness guarantees. Such a formal satisfaction check-
ing problem is referred to as the verification problem.
Performing formal property verification is very important
for many complicated but safety-critical infrastructures.

This article considers state estimation and verification
problems for an important class of man-made cyber-
physical systems called discrete-event systems (DESs).
Roughly speaking, DESs are dynamic systems with dis-
crete state spaces and event-triggered dynamics. DES
models are widely used in the study of complex automated
systems where the behavior is inherently event driven,
as well as in the study of discrete abstractions of con-
tinuous, hybrid, and/or cyber-physical systems. Over the
past decades, the theory of DES has been successfully
applied to many real-world problems, for example, the
control of automated systems, fault diagnosis/prognosis,
and information-flow security analysis.

The main purpose of this article is to provide a tuto-
rial and an overview of state estimation techniques and
their related property verification problems for partially
observed DES. Specifically, we focus on the verification of
observational properties, that is, information-flow proper-
ties whose satisfactions are based on the observation of the
system. The outline of this article is as follows:

• In Section 2, we briefly introduce some necessary ter-
minologies and the partially observed DES model con-
sidered in this article.

• In Section 3, we introduce three types of state-
estimation problems, namely, current-state estimation,
initial-state estimation, and delayed-state estimation.
Then, we provide state estimation techniques for
different state-estimation problems.

• In Section 4, we introduce several important observa-
tional properties that arise in the analysis of partially
observed DES. In particular, we consider detectability,
diagnosability, prognosability, distinguishability, and
opacity, which cover most of the important properties
in partially observed DES. One feature of this section is

that we study all these properties in a uniform manner
by defining them in terms of state estimates introduced
in Section 3.

• In Section 5, we provide verification procedures for all
properties introduced in Section 4. All verification pro-
cedures are summarized as detailed algorithms using
state estimation techniques provided in Section 3.

• In Section 6, some related problems and further read-
ings on estimation and verification of partially observed
DES are provided.

The entire article is self-contained. Related references
are provided in each section.

2. PARTIALLY OBSERVED DISCRETE-EVENT SYSTEMS

This section provides the basic model of partially observed
DES and some related terminologies. The reader is
referred to the textbook (1) for more details on DES.

Let Σ be a finite set of events. A string s = 𝜎1 … 𝜎n, 𝜎i ∈
Σ is a finite sequence of events. We denote by Σ∗ the set
of all strings over Σ including the empty string 𝜖. For any
string s ∈ Σ∗, we denote by |s| its length with |𝜖| = 0. A
language L ⊆ Σ∗ is a set of strings. For any string s ∈ L in
language L, we denote by L∕s the postlanguage of s in L,
that is, L∕s ∶= {w ∈ Σ∗ ∶ sw ∈ L}. The prefix closure of lan-
guage L is defined by L = {s ∈ Σ∗ ∶ ∃w ∈ Σ∗ s.t. sw ∈ L};
L is said to be prefix closed if L = L.

A DES is modeled as a nondeterministic finite-state
automaton (NFA)

G = (X,Σ, 𝛿,X0) (1)

where X is a finite set of states; Σ is a finite set of events;
𝛿 ∶ X × Σ → 2X is the (partial) nondeterministic transi-
tion function, where for any x, x′ ∈ X, 𝜎 ∈ Σ, x′ ∈ 𝛿(x, 𝜎)
means that there exists a transition from state x to
state x′ with event label 𝜎; and X0 ⊆ X is the set of ini-
tial states. The transition function is also extended to
𝛿 ∶ X × Σ∗ → 2X recursively by: (i) 𝛿(x, 𝜖) = {x} and (ii) for
any x ∈ X, s ∈ Σ∗, 𝜎 ∈ Σ, we have 𝛿(x, s𝜎) = ∪x′∈𝛿(x,s)𝛿(x′, 𝜎).
For the sake of simplicity, we write 𝛿(s) = ∪x0∈X0

𝛿(x0, s).
We define (G, x) = {s ∈ Σ∗ ∶ 𝛿(x, s)!} as the set of strings
that can be generated by G from state x ∈ X, where “!”
means “is defined”. We define (G) ∶= ∪x0∈X0

(G, x0)
the language generated by system G. System G is
a deterministic finite-state automaton (DFA) if (i)|X0| = 1 and (ii) ∀x ∈ X, 𝜎 ∈ Σ ∶ |𝛿(x, 𝜎)| ≤ 1. We say that
a sequence of state x0x1 … xn forms a cycle in G if (i)
∀i = 0, … ,n − 1,∃𝜎 ∈ Σ ∶ xi+1 ∈ 𝛿(xi, 𝜎) and (ii) x0 = xn.

Let G1 = (X1,Σ1, 𝛿1,X0,1) and G2 = (X2,Σ2, 𝛿2,X0,2) be two
automata. The product of G1 and G2, denoted by G1 × G2,
is defined as the accessible part of a new NFA

G1 × G2 = (X1 × X2,Σ1 ∪ Σ2, 𝛿1,2,X0,1 × X0,2) (2)

where the transition function is defined by: for any
(x1, x2) ∈ X1 × X2, and for any 𝜎 ∈ Σ1 ∩ Σ2, we have

𝛿1,2((x1, x2), 𝜎) =
{

𝛿1(x1, 𝜎) × 𝛿2(x2, 𝜎) if 𝜎 ∈ Σ1 ∩ Σ2
undefined otherwise (3)
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In the partial-observation setting, not all events generated
by the system can be observed. Formally, we assume that
the event set is partitioned as follows:

Σ = Σo∪̇Σuo (4)

where Σo is the set of observable events; and Σuo is the set
of unobservable events. The natural projection from Σ to
Σo is a mapping P ∶ Σ∗ → Σ∗

o defined recursively as follows:

P(𝜖) = 𝜖 and P(s𝜎) =
{

P(s)𝜎 if 𝜎 ∈ Σo
P(s) if 𝜎 ∉ Σo

(5)

That is, for any string s ∈ Σ∗, P(s) is obtained by erasing
all unobservable events in it. We denote by P−1 ∶ Σ∗

o → 2Σ∗

the inverse projection, that is, for any 𝛼 ∈ Σ∗
o, we have

P−1(𝛼) = {s ∈ Σ∗ ∶ P(s) = 𝛼}. Note that the codomain of P−1

is 2Σ∗ as the inverse projection of a string is not unique
in general. We also extend the natural projection to
P ∶ 2Σ∗ → 2Σ∗o by: for any L ⊆ Σ∗, P(L) = {P(s) ∈ Σ∗

o ∶ s ∈ L}.
The inverse mapping is also extended to P−1 ∶ 2Σ∗o → 2Σ∗

analogously.
Hereafter, we make the following standard assumptions

in the analysis of partially observed DES:

A1 System G is live, that is, ∀x ∈ X,∃𝜎 ∈ Σ ∶ 𝛿(x, 𝜎)! and
A2 System G does not contain an unobservable cycle,

that is, ∀x, x′ ∈ X, s ∈ Σ∗
uo∖{𝜖} ∶ x′ ∉ 𝛿(x, s).

3. STATE ESTIMATION UNDER PARTIAL OBSERVATION

3.1. State-Estimation Problems

Since the system is partially observed, one important ques-
tion is what do we know about the system’s state when a
(projected) string is observed? This is referred to as the
state-estimation problem in the system’s theory.

One of the most fundamental state-estimation problems
is the current-state-estimation problem, that is, we want to
estimate all possible states the system can be in currently
based on the observation.

Definition 1 (Current-State Estimate) Let G be a
DES with observable events Σo ⊆ Σ and 𝛼 ∈ P((G)) be
an observed string. The current-state estimate upon the
occurrence of 𝛼, denoted by X̂G(𝛼), is the set of states
the system could be in currently based on observation 𝛼,
that is,

X̂G(𝛼) = {x ∈ X ∶ ∃x0 ∈ X0, s ∈ (G, x0)

s.t. x ∈ 𝛿(x0, s) ∧ P(s) = 𝛼} (6)

Instead of knowing the current state of the system, in
some applications, one may also be interested in know-
ing which initial states the system may start from. This is
referred to as the initial-state-estimation problem defined
as follows.

Definition 2 (Initial-State Estimate) Let G be a DES
with observable events Σo ⊆ Σ and 𝛼 ∈ P((G)) be an

observed string. The initial-state estimate upon the occur-
rence of 𝛼, denoted by X̂0,G(𝛼), is the set of initial states
the system could start from initially based on observation
𝛼, that is,

X̂0,G(𝛼) = {x0 ∈ X0 ∶ ∃s ∈ (G, x0) s.t. P(s) = 𝛼} (7)

Note that, in the current-state estimate, we use the
observation up to the current instant to estimate the
set of all possible states the system can be in at this
instant. If we keep observing more events in the future,
our knowledge of the system’s state at that instant may
be further improved as some states in the current-state
estimate may not be consistent with the future observa-
tion. In other words, we can use future information to
further improve our knowledge about the system’s state
for some previous instant. This is also referred to as the
“smoothing” process; such a smoothed state estimate is
also called the delayed-state estimate defined as follows.

Definition 3 (Delayed-State Estimate) Let G be a
DES with observable events Σo ⊆ Σ and 𝛼𝛽 ∈ P((G)) be an
observed string. The delayed-state estimate for the instant
of 𝛼 upon the occurrence of 𝛼𝛽, denoted by X̂G(𝛼 ∣ 𝛼𝛽), is
the set of states the system could be in |𝛽| steps ago when
𝛼𝛽 is observed, that is,

X̂G(𝛼 ∣ 𝛼𝛽)

=
{

x ∈ X ∶ ∃x0 ∈ X0, sw ∈ (G, x0)s.t.
P(s) = 𝛼 ∧ P(sw) = 𝛼𝛽 ∧ x ∈ 𝛿(x0, s)

}
(8)

Example 1 Let us consider system G shown in Figure 1a,
where Σo = {a, b, c} and X0 = {0,2}. Let us consider the
observable string aa ∈ P((G)). We have P−1(aa) ∩ (G) =
{aa,uuaa}. Then we know that the system may start from
state 0 or 2, that is, X̂0,G(aa) = {0,2}. Also, the system may
be currently in states 4 or 6, that is, X̂G(aa) = {4,6}. From
string aa, if we further observe event c in the next instant,
then we know that X̂G(aa ∣ aac) = {6}, since event c cannot
occur from state 4.
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Figure 1. An arrow labeled with event 𝜎 from state x to state x′

means that x′ ∈ 𝛿(x, 𝜎). States with arrows having no predeces-
sor state denote initial states. (a) System G with Σo = {a, b, c}; (b)
Obs(G).
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3.2. State Estimation Techniques

In this section, we provide techniques for computing dif-
ferent notions of state estimates.

Computation of Current-State Estimate. The general idea
for computing the current-state estimate is to construct a
structure that tracks all possible states consistent with the
current observation. This construction is well known as the
subset construction technique that can be used to convert
an NFA to a DFA. In the DES literature, this structure is
usually referred to as the observer automaton.

Definition 4 (Observer) Given system G = (X,Σ, 𝛿,X0)
with observable events Σo ⊆ Σ, the observer is a new DFA

Obs(G) = (Xobs,Σo, 𝛿obs, xobs,0) (9)

where Xobs ⊆ 2X∖∅ is the set of states, xobs,0 = {x ∈ X ∶ ∃x0 ∈
X0,w ∈ Σ∗

uos.t. x ∈ 𝛿(x0,w)} is the unique initial state, and
𝛿obs is the deterministic transition function defined by: for
any q ∈ Xobs, 𝜎 ∈ Σo, we have

𝛿obs(q, 𝜎) = {x′ ∈ X ∶ ∃x ∈ q,∃w ∈ Σ∗
uos.t. x′ ∈ 𝛿(x, 𝜎w)}

(10)
For the sake of simplicity, we will only consider the acces-
sible part of Obs(G).

Intuitively, the observer state tracks all possible states
the system can be in currently based on the observation.
Formally, we have the following result.

Proposition 1 For any system G with Σo ⊆ Σ, its
observer Obs(G) has the following properties:

1. (Obs(G)) = P((G)) and
2. For any 𝛼 ∈ P((G)), we have X̂G(𝛼) = 𝛿obs(xobs,0, 𝛼).

Therefore, given an observation 𝛼 ∈ P((G)), its
current-state estimate can simply be computed by Algo-
rithm 1. Note that the complexity of building Obs(G) is
O(|Σ|2|X|), which is exponential in the size of G. However,
we can update the current-state estimate recursively
online, and each update step only requires a polynomial
complexity.

Algorithm 1 Current-State Estimation

Inputs: G and 𝛼 ∈ P((G))
Output: X̂G(𝛼)
1: Build Obs(G) = (Xobs,Σo, 𝛿obs, xobs,0)
2: X̂G(𝛼) ← 𝛿obs(xobs,0, 𝛼)
3: return X̂G(𝛼)

Computation of Initial-State Estimate. We provide two
approaches for the computation of initial-state estimate.

The first approach is based on the augmented automa-
ton that augments the state space of the original system
by tracking where each state starts from. This approach
sometimes is also referred to as the trellis-based approach
in the literature.

Formally, given a system G, its augmented automaton
is a new NFA

Gaug = (Xaug,Σ, 𝛿aug,X0,aug) (11)

where Xaug ⊆ X0 × X is the set of states, 𝛿aug ∶ Xaug × Σ →
2Xaug is the transition function defined by: for any (x0, x) ∈
Xaug, 𝜎 ∈ Σ, we have 𝛿aug((x0, x), 𝜎) = {(x0, x

′) ∈ X0 × X ∶ x′ ∈
𝛿(x, 𝜎)}, and X0,aug = {(x0, x0) ∈ Xaug ∶ x0 ∈ X0} is the initial
state.

We can see easily that (G) = (Gaug), and for each
state in Gaug, its first component contains its initial-state
information and its second component contains its current-
state information. Let Obs(Gaug) = (Xaug

obs ,Σo, 𝛿
aug
obs , x

aug
obs,0) be

the observer of Gaug. We can easily show that

X̂0,G(𝛼) = I0(𝛿
aug
obs (x

aug
obs,0, 𝛼))

Algorithm 2 Initial-State-Estimation-Aug

Inputs: G and 𝛼 ∈ P((G))
Output: X̂0,G(𝛼)
1: Build Gaug
2: Build Obs(Gaug) = (Xaug

obs ,Σo, 𝛿
aug
obs , x

aug
obs,0)

3: X̂0,G(𝛼) ← I0(𝛿
aug
obs (x

aug
obs,0, 𝛼))

4: return X̂0,G(𝛼)

where for any q ∈ Xaug
obs , I0(q) denotes the projection

to its first component, that is, I0(q) = {x0 ∈ X0 ∶ ∃x ∈
X s.t. (x0, x) ∈ q}. This observation suggests Algorithm 2
for computing the initial-state estimate.

The idea of the augmented-automaton-based approach
is also very useful for many other purposes, for example,
control synthesis for initial-state estimation, as it only
uses the dynamic of the system up to the current point.
However, the complexity of Algorithm 2 is O(|Σ|2|X|2 ) as
the size of Gaug is quadratic in the size of G. Here, we pro-
vide the second approach for computing the initial-state
estimate with a lower complexity based on the reversed
automaton of G.

For any NFA G = (X,Σ, 𝛿,X0), its reversed automaton is
a new NFA

GR = (X,Σ, 𝛿R,X) (12)

where the transition function 𝛿R ∶ X × Σ → 2X is defined
by: ∀x, x′ ∈ X, 𝜎 ∈ Σ ∶ x′ ∈ 𝛿R(x, 𝜎) ⇐⇒ x ∈ 𝛿(x′, 𝜎). Note
that the initial state of GR is the entire state space. For
any string s = 𝜎1𝜎2 … 𝜎n ∈ Σ∗, we denote by sR its reversed
string, that is, sR = 𝜎n … 𝜎2𝜎1. Then, the following result
shows that the initial-state estimate of a string in G can
be computed based on the current-state estimate of its
reversed string in the reversed automaton GR.

Proposition 2 (2) For any 𝛼 ∈ P((G)), we have
X̂0,G(𝛼) = X̂GR

(𝛼R) ∩ X0.

Based on the above result, Algorithm 3 is proposed to
compute the initial-state estimate, and its complexity is
only O(|Σ|2|X|).
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Algorithm 3 Initial-State-Estimation-Rev

Inputs: G and 𝛼 ∈ P((G))
Output: X̂0,G(𝛼)
1: Build GR
2: Build Obs(GR) = (XR

obs,Σo, 𝛿
R
obs,X)

3: X̂GR
(𝛼R) ← 𝛿R

obs(X, 𝛼R)
4: return X̂0,G(𝛼) ← X̂GR

(𝛼R) ∩ X0

Computation of Delayed-State Estimate. For any 𝛼𝛽 ∈
P((G)), the delayed-state estimate X̂G(𝛼 ∣ 𝛼𝛽) involves
two parts of information: the current information 𝛼 and
the future information 𝛽. Recall that we are interested
in estimating states for the instant of 𝛼. The following
result shows that the delayed-state estimate can simply
be separated as two parts that do not depend on each
other.

Proposition 3 (3) For any 𝛼𝛽 ∈ P((G)), we have

X̂G(𝛼 ∣ 𝛼𝛽) = X̂G(𝛼) ∩ X̂0,G(𝛽) = X̂G(𝛼) ∩ X̂GR
(𝛽R)

Based on Proposition 3, Algorithm 4 can be used to com-
pute the delayed-state estimate, and its complexity is also
O(|Σ|2|X|).

Algorithm 4 Delayed-State-Estimation

Inputs: G and 𝛼𝛽 ∈ P((G))
Output: X̂G(𝛼 ∣ 𝛼𝛽)
1: Build Obs(G) = (Xobs,Σo, 𝛿obs, xobs,0)
2: X̂G(𝛼) ← 𝛿obs(xobs,0, 𝛼)
3: Build GR
4: Build Obs(GR) = (XR

obs,Σo, 𝛿
R
obs,X)

5: X̂GR
(𝛽R) ← 𝛿R

obs(X, 𝛽R)
6: return X̂G(𝛼 ∣ 𝛼𝛽) ← X̂G(𝛼) ∩ X̂GR

(𝛽R)

Example 2 We still consider system G shown in
Figure 1a, where Σo = {a, b, c} and X0 = {0,2}. Its

observer Obs(G) is shown in Figure 1b. For example,
string aa reaches state {4, 6} from the initial state in
Obs(G). Therefore, we have X̂G(aa) = {4, 6}. To perform
initial-state estimation and delayed-state estimation,
we need to build the reversed automaton GR and its
observer Obs(GR) shown in Figures 2a and b, respec-
tively. For example, string cba reaches state {0, 1,8}
from the initial state in Obs(GR). Therefore, we have
X̂0,G(abc) = X̂GR

((abc)R) ∩ X0 = {0,1,8} ∩ {0,2} = {0}, that
is, we know for sure that the system was initially
from state 0. To compute the delayed-state estimate
X̂G(a ∣ aac), we have X̂G(a ∣ aac) = X̂G(a) ∩ X̂GR

(ca) =
{3,4,8} ∩ {0,1,2,3,5} = {3}.

4. PROPERTIES OF PARTIALLY OBSERVED DES

In this section, we discuss several important properties in
partially observed DES. As we mentioned before, we will
only focus on observational properties.

4.1. Detectability

In the previous section, we have provided algorithms for
computing state estimates. Then, the natural question
arises as to can the state estimation algorithm (eventu-
ally) provide precise state information? This is referred to
as the detectability verification problem. Here, we consider
three most fundamental types of detectability:

Definition 5 (Detectability (4–6)) Let G be a DES
with Σo ⊆ Σ. Then, G is said to be

• current-state detectable if (∃n ∈ ℕ)(∀𝛼 ∈ P((G)) ∶ |𝛼|
≥ n)[|X̂G(𝛼)| = 1];

• initial-state detectable if (∃n ∈ ℕ)(∀𝛼 ∈ P((G)) ∶ |𝛼|
≥ n)[|X̂0,G(𝛼)| = 1];

• delayed detectable (w.r.t. parameters k1,k2 ∈ ℕ) if
(∀𝛼𝛽 ∈ P((G)) ∶ |𝛼| ≥ k1, |𝛽| ≥ k2)[|X̂G(𝛼 ∣ 𝛼𝛽)| = 1].

Intuitively, the current-state detectability (respectively,
initial-state detectability) requires that the current state
(initial state) of the system can always be detected unam-
biguously within a finite delay. Note that, for initial-state
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Figure 2. Initial-state estimation using the reversed automaton. Note that all states in GR are initial. (a) GR with Σo = {a,b, c}; (b)
Obs(GR).
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estimate, once the initial state is detected, we know it for
sure forever, which is not the case for current-state estima-
tion. Delayed detectability requires that, for any specific
instant after k1 steps, we can always unambiguously deter-
mine the precise state of the system at that instant with at
most k2 steps of information delay. That is, one is allowed
to use future information to “smooth” the state estimate of
a previous instant.

The concept of detectability was initially proposed by
Shu and Lin in Reference 4, which generalizes the concept
of observability studied in Reference 7. There are also
other notions of detectability proposed in the literature.
For example, weak detectability (4) requires that the state
of the system can be detected for some path generated
by the system. Also, Reference 4 proposed the notion of
periodic detectability, which requires that the state of the
system can be detected periodically. In Reference 8, the
authors proposed the notion of K-detectability by replac-
ing the detection condition |X̂G(𝛼)| = 1 as |X̂G(𝛼)| ≤ K,
where K ∈ ℕ is a positive integer specifying the detection
precision. A generalized version of detectability, in the
sense of detection condition, was proposed in Reference
9. The reader is referred to References 10–16 for more
references on detectability.

4.2. Diagnosability and Prognosability of Fault

Another important application of partially observed DES
is the fault diagnosis/prognosis problem. In this setting,
we assume that system G may have some fault modeled as
fault events ΣF ⊆ Σ. For any string s ∈ Σ∗, we write ΣF ∈ s
if s contains a fault event in ΣF. We define Ψ(ΣF) ∶= {sef ∈
(G) ∶ ef ∈ ΣF} as the set of strings that end up with fault
events. In the fault diagnosis problem, we assume that all
fault events are unobservable; otherwise, it can be diag-
nosed trivially. Without loss of generality, we can further
assume that the state space of G is partitioned as fault
states and nonfault states

X = XN∪̇XF (13)

such that

• ∀x0 ∈ X0,∀s ∈ (G, x0) ∶ ΣF ∉ s ⇒ 𝛿(x0, s) ⊆ XN and
• ∀x0 ∈ X0,∀s ∈ (G, x0) ∶ ΣF ∈ s ⇒ 𝛿(x0, s) ⊆ XF.

This assumption can be fulfilled by taking the product
between G and a new automaton with two states capturing
the occurrence of fault; see, for example, Reference 1.

To diagnose the occurrence of fault, the current-state-
estimation technique can be applied. Specifically, for any
observation 𝛼 ∈ P((G)), we know that

• the fault has occurred for sure if X̂G(𝛼) ⊆ XF;
• the fault has not occurred for sure if X̂G(𝛼) ⊆ XN ; and
• the fault may have occurred, but it is uncertain if

X̂G(𝛼) ∩ XN ≠ ∅ and X̂G(𝛼) ∩ XF ≠ ∅.

Then, the natural question arises as to can we always
determine the occurrence of fault within a finite number
of delays? This is captured by the notion of diagnosability
as follows.

Definition 6 (Diagnosability) System G is said to be
diagnosable w.r.t. Σo and ΣF if (∀s ∈ Ψ(ΣF))(∃n ∈ ℕ)(∀t ∈
(G)∕s ∶ |t| ≥ n)[X̂G(P(st)) ⊆ XF].

Remark 1 For the sake of simplicity, our definition of
diagnosability is based on the current-state estimate and
the prespecified fault states. Diagnosability was originally
defined by Reference 17 purely based on languages as fol-
lows:

(∀s ∈ Ψ(ΣF))(∃n ∈ ℕ)(∀t ∈ (G)∕s ∶ |t| ≥ n)

(∀w ∈ P−1(P(st)) ∩ (G))[ΣF ∈ w]

One can easily check that the language-based defini-
tion and the current-state-estimate-based definition are
equivalent. Also, in general, the nonfault behavior can be
described as a specification language rather than fault
events; this formulation can also be transformed to our
event-based fault setting by refining the state space of the
system; see, for example, Reference 18.

The concept of diagnosability of DES was first intro-
duced in Reference 19, where state-based faults are
considered. In Reference 17, the authors introduced the
language-based formulation of diagnosability. Since then,
many variations of diagnosability have been studied in
the literature. For example, model reduction for diag-
nosability was studied in Reference 20. Diagnosability of
repeated/intermittent faults was studied in References
21–23. The reader is referred to the recent survey (24) for
more references on diagnosability analysis.

In some applications, we may want to predict the
occurrence of fault before it actually occurs. This problem
is referred to as the fault prognosis problem. Still, we
assume that ΣF ⊆ Σ is the set of fault events and XN ⊆ X
is the set of nonfault states. However, in the fault prog-
nosis problem, a fault event need not be unobservable. To
formulate the problem, we define the following two sets of
states:

• boundary states, 𝜕(G) = {x ∈ XN ∶ ∃ef ∈ ΣF s.t. 𝛿(x, ef )!}
and

• indicator states, ℑ(G) = {x ∈ XN ∶ ∃n ∈ ℕ,∀s ∈ (G, x)
s.t. |s| > n ⇒ ΣF ∈ s}.

Intuitively, a boundary state is a nonfault state from
which a fault event may occur in the next step, and an indi-
cator state is a state from which a fault event will occur
for sure within a finite number of steps. With the help of
indicator states, we can also use current-state-estimation
algorithm to perform online fault prognosis. Specifically,
for any observation 𝛼 ∈ P((G)), we know that

• the fault will occur for sure in a finite number of steps
if X̂G(𝛼) ⊆ ℑ(G) and

• the fault is not guaranteed to occur within any finite
number of steps if X̂G(𝛼) ⊈ ℑ(G).

Similarly, the natural question arises as to can we suc-
cessfully predict the occurrence of fault in the sense that:
(i) there is no missed fault and (ii) there is no false alarm?
This is captured by the notion of prognosability as follows.
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Definition 7 (Prognosability) System G is said to be
prognosable w.r.t. Σo and ΣF if (∀s ∈ (G) ∶ 𝛿(s) ∩ 𝜕(G) ≠ ∅)
(∃t ∈ {s})[X̂G(P(t)) ⊆ ℑ(G)].

Prognosability is also referred to as predictability in
the literature. Intuitively, prognosability requires that, for
any string that reaches a boundary state, it has a prefix for
which we can claim unambiguously that fault will occur
for sure in the future, that is, we can issue a fault alarm.
Still, for the sake of simplicity, here we characterize prog-
nosability using current-state estimate, boundary states,
and indicator states. Our definition is also equivalent to
the language-based definition in References 25 and 26,
where predictability was originally introduced. Prognos-
ability also has several variations in the literature. For
example, in Reference 27, two performance bounds were
proposed to characterize how early a fault alarm can be
issued and when a fault is guaranteed to occur once an
alarm is issued.

4.3. State Disambiguation and Observability

In some applications, the purpose of state estimation is
to distinguish some states. This problem is referred to as
the state disambiguation problem (28–30). Formally, the
specification of this problem is defined as a set of state
pairs Tspec ⊆ X × X, and we want to make sure that we can
always distinguish between every pair of states in Tspec.

Definition 8 (Distinguishability) System G is said
to be distinguishable w.r.t. Σo and Tspec ⊆ X × X if
(∀𝛼 ∈ P((G)))[(X̂G(𝛼) × X̂G(𝛼)) ∩ Tspec = ∅].

Distinguishability is very useful as many impor-
tant properties in the literature can be formulated as
distinguishability. For example, one can check that prog-
nosability can actually be rewritten as distinguishability
with specification Tspec = 𝜕(G) × (XN∖ℑ(G)). Observability
is another important property in partially observed DES,
which together with controllability provide the necessary
and sufficient conditions for the existence of a supervisor
achieving a desired language. The reader is referred to
References 31 and 32 for formal definition of observability.
This property is also a special case of distinguishability
(possibly after state-space refinement) as it essentially
requires that we can distinguish two states at which
different control actions are needed; see, for example,
Reference 28.

4.4. Opacity

Finally, state estimation is also useful in information-flow
security analysis, which is an important topic in cyber-
physical systems. In this setting, we assume that the sys-
tem is also monitored by a passive intruder (eavesdrop-
per) that can observe the occurrences of events in Σo. Fur-
thermore, we assume that the system has a “secret” that
does not want to be revealed to the intruder. In general,
what is a secret is problem dependent. Here, we consider
a simple scenario where the secret is modeled as a set of

secret states XS ⊆ X. Then, we use the notion of opacity to
characterize whether or not the secret can be revealed to
the intruder.

Definition 9 (Opacity (2, 3, 33, 35)) Let G be a DES
with Σo ⊆ Σ and secret states XS ⊆ X. Then, G is said to be

• current-state opaque if, for any 𝛼 ∈ P((G)), we have
X̂G(𝛼) ⊈ XS;

• initial-state opaque if, for any 𝛼 ∈ P((G)), we have
X̂0,G(𝛼) ⊈ XS; and

• infinite-step opaque if, for any 𝛼𝛽 ∈ P((G)), we have
X̂G(𝛼 ∣ 𝛼𝛽) ⊈ XS.

Essentially, opacity is a confidentiality property cap-
turing the plausible deniability of the system’s “secret”
in the presence of an outside observer that is potentially
malicious. More specifically, current-state opacity (respec-
tively, initial-state opacity) requires that the intruder
should never know for sure that the system is currently
at (respectively, initially from) a secret state. The system
is said to be infinite-step opaque if the intruder can never
determine for sure that the system was at a secret state for
any specific instant even based on the future information.

Opacity was originally introduced in the computer sci-
ence literature (36). Then, it was introduced to the frame-
work of DES by References 37–39. There are also many
variations of opacity studied in the literature. For example,
in Reference 40, Lin formulated opacity using a language-
based framework, where the notions of strong opacity and
weak opacity are proposed. In Reference 2, a concept called
initial-and-final-state opacity was provided; the authors
also studied the transformations among several notions of
opacity. When one is only allowed to use a bounded delayed
information to improve the state estimate for a previous
instant (or we do not care about the secret anymore after
some delays), infinite-step opacity becomes to K-step opac-
ity (41), where K is a nonnegative integer capturing the
delay bound. Opacity is also closely related to another two
information-flow security properties called anonymity (42)
and noninterference (43, 44). The reader is referred to the
survey (45) for more references on opacity.

5. VERIFICATION TECHNIQUES

In this section, we provide techniques for verifying
observational properties introduced in the previous
section. First, we show that most of the properties in
partially observed DES can be verified using the observer
structure, and some important properties can be more
efficiently verified using the twin-plant technique in
polynomial time.

5.1. Observer-Based Verification

Verification of Detectability. First, we study the
verification of current-state detectability. Recall that,
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current-state detectability requires that (∃n ∈ ℕ)(∀𝛼 ∈
P((G)) ∶ |𝛼| ≥ n)[|X̂G(𝛼)| = 1]. In other words, a system
is not current-state detectable if there is an arbitrarily
long observation string such that the current-state esti-
mate is not always a singleton starting from any instant.
Since P((G)) is a regular language, due to the Pumping
lemma, the existence of such an arbitrarily long string is
equivalent to the existence of a cycle in Obs(G) in which a
state is not a singleton. This immediately suggests Algo-
rithm 5 for the verification of current-state detectability.
Initial-state detectability can also be checked in the same
manner using Gaug. The only differences from Algorithm 5
are (i) we need to consider Obs(Gaug) rather than Obs(G)
in line 1 and (ii) in line 2, we need to check the existence
of a cycle q0q1 … qn in Obs(Gaug) such that |I0(qi)| > 1 for
some i = 1, … ,n.

Algorithm 5 Cur-State-Dect-Ver-Obs

Inputs: G
Output: Current-State Detectable or Not
1: Build Obs(G) = (Xobs,Σo, 𝛿obs, xobs,0)
2: if there exists a cycle q0q1 …qn in Obs(G) such that|qi| > 1 for some i = 1,… ,n then
3: return G is not current-state detectable
4: else
5: return G is current-state detectable
6: end if

To check delayed detectability (for parameters k1,k2
∈ ℕ), first we recall that the delayed-state estimate can
be computed by X̂G(𝛼 ∣ 𝛼𝛽) = X̂G(𝛼) ∩ X̂GR

(𝛽R). Therefore,
delayed detectability can be checked by the following
steps:

• First, we compute all possible current-state estimate
X̂G(𝛼) reachable via some string 𝛼 whose length is
greater than or equal to k1;

• Then, we compute all possible current-state estimate
of X̂GR

(𝛽R) in GR reachable via some string 𝛽R whose
length is greater than or equal to k2;

• Finally, we test whether or not there exist such X̂G(𝛼)
and X̂GR

(𝛽R) such that |X̂G(𝛼) ∩ X̂GR
(𝛽R)| > 1. If so, then

it means that some instant after k1 steps cannot be
determined within k2 steps of delay, that is, the system
is not delayed detectable.

This procedure is formalized by Algorithm 6, where
states in lines 3 and 4 can be computed by a simple
depth-first search or a breath-first search.

Verification of Diagnosability. The verification of diag-
nosability is very similar to the case of current-state
detectability. Specifically, a system is not diagnosable if
there is an arbitrarily long string after the occurrence of
fault such that the current-state estimate is not a subset of
XN starting from any instant. Therefore, the general idea
is to replaced condition |qi| > 1 in Algorithm 5 by qi ⊈ XF.
However, we need to do a little bit more here since we

Algorithm 6 Delay-State-Dect-Ver-Obs

Inputs: G
Output: Delayed Detectable or Not
1: Build Obs(G) = (Xobs,Σo, 𝛿obs, xobs,0)
2: Build Obs(GR) = (XR

obs,Σo, 𝛿
R
obs,X)

3: for all q1 ∈ Xobs that be can reached by a string longer
than k1 in Obs(G) do

4: for all q2 ∈ XR
obs that be can reached by a string

longer than k2 in Obs(GR) do
5: if |q1 ∩ q2| > 1 then
6: return G is not delayed detectable
7: end if
8: end for
9: end for

10: return G is delayed detectable

are only interested in arbitrarily long uncertain strings
after the occurrence of fault; this is also referred to as an
indeterminate cycles in the literature (17). In other words,
the existence of an arbitrarily long uncertain but nonfault
string does not necessarily violate diagnosability.

To this end, we need to compose Obs(G) with the
dynamic of the original system G. Specifically, let Obs(G)
be the observer of G. We define

Õbs(G) = (Xobs,Σ, 𝛿obs, xobs,0) (14)

as the DFA by adding self-loops of all unobservable events
at each state in Xobs. One can easily check that (G) =
(G × Õbs(G)). Then, by looking at the first component of
each state in G × Õbs(G), we know whether a fault event
has occurred or not. Therefore, we can check diagnosability
based on G × Õbs(G) by Algorithm 7.

Algorithm 7 Diag-Ver-Obs

Inputs: G and ΣF
Output: Diagnosable or Not
1: Build Obs(G) = (Xobs,Σo, 𝛿obs, xobs,0)
2: Augment Obs(G) as Õbs(G) = (Xobs,Σ, 𝛿obs, xobs,0) by

adding unobservable self-loops
3: Compute G × Õbs(G)
4: if there exists a cycle (x0,q0)(x1,q1)… (xn,qn) in G ×

Õbs(G) such that xi ∈ XF and qi ⊈ XF for some i =
1,… ,n then

5: return G is not diagnosable
6: else
7: return G is diagnosable
8: end if

Verification of Distinguishability and Opacity. The veri-
fication of distinguishability is straightforward using the
observer. Specifically, we just need to check whether or not
there exists a state q ∈ Xobs in Obs(G) such that (q × q) ∩
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Tspec ≠ ∅. If so, the system is not distinguishable; other-
wise, it is distinguishable. Since we have discussed that
prognosability is a special case of distinguishability, it can
also be checked in the same manner.

Similarly, current-state opacity can be verified by check-
ing whether or not there exists a state q ∈ Xobs in Obs(G)
such that q ⊆ XS. If so, the system is not opaque; otherwise,
it is opaque. To check initial-state opacity, we need to con-
struct Obs(GR), and to check whether or not there exists a
state q ∈ XR

obs in Obs(GR) such that q ∩ X0 ⊆ XS.
The verification of infinite-step opacity is similar to the

case of delayed detectability; both involve delayed-state
estimate that can be computed according to Proposi-
tion 3. The verification procedure for infinite-step opacity
is provided in Algorithm 8 with complexity O(|Σ|4|X|).

Algorithm 8 Inf-Opa-Ver-Obs

Inputs: G
Output: Infinite-Step Opaque or Not
1: Build Obs(G) = (Xobs,Σo, 𝛿obs, xobs,0)
2: Build Obs(GR) = (XR

obs,Σo, 𝛿
R
obs,X)

3: for all q1 ∈ Xobs do
4: for all q2 ∈ XR

obs do
5: if ∅ ≠ q1 ∩ q2 ⊆ XS then
6: return G is not infinite-step opaque
7: end if
8: end for
9: end for

10: return G is infinite-step opaque

5.2. Twin-Plant-Based Verification

In the previous section, we have shown that the observer
can be used for the verification of all properties introduced.
However, the size of the observer is exponential in the
size of the system. Then, the natural question arises as
to can we find polynomial-time algorithms for verifying
these properties? Unfortunately, it has been shown in
Reference 46 that deciding opacity is PSPACE complete;
hence, no polynomial-time algorithm exists. However, it
is indeed possible to check diagnosability, detectability,
and distinguishability in polynomial time using the twin-
plant structure. This structure was originally proposed
in Reference 47 for the verification of observability; later
on, it has been used for verifying diagnosability (under
the name of “verifier”) by References 48 and 49 and for
verifying detectability (under the name of “detector”) by
Reference 50.

Definition 10 (Twin-Plant) Given system G =
(X,Σ, 𝛿,X0) with observable events Σo ⊆ Σ, the twin plant
is a new NFA V(G) = (XV ,ΣV , 𝛿V ,X0,V ), where

• XV ⊆ X × X is the set of states;
• ΣV = (Σo × Σo) ∪ (Σuo × {𝜖}) ∪ ({𝜖} × Σuo) is the set of

events;

• X0,V = X0 × X0 is the set of initial states; and
• 𝛿V ∶ XV × ΣV → 2XV is the partial transition function

defined by: for any state (x1, x2) ∈ XV and event 𝜎 ∈ Σ

(a) If 𝜎 ∈ Σo, then the following transition is defined:

𝛿V ((x1, x2), (𝜎, 𝜎)) = 𝛿(x1, 𝜎) × 𝛿(x2, 𝜎) (15)

(a) If 𝜎 ∈ Σuo, then the following transitions are defined:

𝛿V ((x1, x2), (𝜎, 𝜖)) = 𝛿(x1, 𝜎) × {x2} (16)

𝛿V ((x1, x2), (𝜖, 𝜎)) = {x1} × 𝛿(x2, 𝜎) (17)

Hereafter, we only consider the accessible part of V(G).

Intuitively, the twin plant V tracks all pairs of observa-
tion equivalent strings in G. Specifically, if s1, s2 ∈ (G) are
two strings in G such that P(s1) = P(s2), then there exists
a string s ∈ (V(G)) in V(G) such that its first and second
components are s1 and s2, respectively. On the other hand,
for any string s = (s1, s2) ∈ (V(G)) in V(G), we have that
P(s1) = P(s2).

The twin plant can be applied directly for the verifica-
tion of distinguishability. Specifically, we need to check if
V(G) contains a pair of states in the specification. This pro-
cedure is presented in Algorithm 9.

Algorithm 9 Dist-Ver-TP

Inputs: G and Tspec
Output: Distinguishable or Not
1: Build V(G) = (XV ,ΣV , 𝛿V ,X0,V )
2: if there exists a state (x1, x2) ∈ XV in V(G) such that

(x1, x2) ∈ Tspec then
3: return G is not distinguishable
4: else
5: return G is distinguishable
6: end if

According to the definition of detectability, we know
that the system is not detectable if and only if there
exist two arbitrarily long strings having the same
observation, such that these two strings lead to two
different states. As we discussed above, all such string
pairs can be captured by the twin plant. This sug-
gests Algorithm 10 for the verification of current-state
detectability.

The case of diagnosability is similar. Specifically, a
system is not diagnosable if there exist an arbitrarily
long fault string and a nonfault string such that they
have the same observation. This condition can be checked
by Algorithm 11. Note that, we have already assumed
that there is no unobservable cycle in G. Otherwise, we
need to add the following condition to the “if condition” in
line 2 of Algorithm 11 to obtain an arbitrarily long fault
string:

∃ j = 0,… ,n − 1,∃𝜎V ∉ Σuo × {𝜖}∶(x1
j+1, x

2
j+1) ∈ 𝛿V ((x

1
j , x

2
j ), 𝜎V )
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Algorithm 10 Cur-State-Dect-Ver-TP

Inputs: G and ΣF
Output: Current-State Detectable or Not
1: Build V(G) = (XV ,ΣV , 𝛿V ,X0,V )
2: if there exists a cycle (x1

0, x
2
0)(x1

1, x
2
1)… (x1

n, q
2
n) in V(G)

such that ∃i=0,… ,n ∶ x1
i ≠x2

i then
3: return G is not current-state detectable
4: else
5: return G is current-state detectable
6: end if

Algorithm 11 Diag-Ver-TP

Inputs: G and ΣF
Output: Diagnosable or Not
1: Build V(G) = (XV ,ΣV , 𝛿V ,X0,V )
2: if there exists a cycle (x1

0, x
2
0)(x1

1, x
2
1)… (x1

n, q
2
n) in V(G)

such that
3: ∀i = 0,… ,n ∶ x1

i ∈ XN ∧ x2
i ∈ XF then

4: return G is not diagnosable
5: else
6: return G is diagnosable
7: end if

Since the size of the twin plant is only quadratic in the size
of G, distinguishability, detectability, and diagnosability
can all be checked in polynomial time, which is better than
the observer-based approach.

6. RELATED PROBLEMS AND FURTHER READINGS

6.1. State Estimation under General Observation Models

Throughout this article, we assume that the observation
of the system is modeled as a natural projection. The
natural projection mapping is essentially static in the
sense that an event is always either observable or unob-
servable. One related topic is the sensor selection problem
for static observations (51–55), that is, we want to decide
which events should be observable by placing with sen-
sors such that a given observational property is fulfilled.
Another related topic in the static observation setting is
the robust state estimation problem when the observation
is unreliable. This problem has been investigated in the
context of detectability analysis (56), diagnosability anal-
ysis (57–60), and supervisory control (61–66) for partially
observed DES.

In many situations, due to information communica-
tions and acquisitions, the observation mapping may be
dynamic, that is, whether or not an event is observable
depends on the trajectory of the system. One example
is the dynamic sensor activation problem, where we can
decide to turn sensors on/off dynamically online based on
the observation history. In References 67–70, the fault
diagnosis problem is studied under the dynamic obser-
vation setting. In References 71 and 72, observability

is studied under the dynamic observation setting. In
References 50 and 73, the authors investigated the ver-
ification and synthesis of detectability under dynamic
observations. Opacity under dynamic observations is also
studied in References 46, 74, 75. A general approach for
dynamic sensor activation for property enforcement is
proposed by Reference 76. In References 77 and 78, it has
been shown that (co)diagnosability and (co)observability
can be mapped from one to the other in the general
dynamic observation setting. The reader is referred to the
recent survey (79) for more references on state-estimation
problem under dynamic observations.

6.2. State Estimation in Coordinated, Distributed,
and Modular Systems

In the setting of this article, we only consider the sce-
nario where the system is monitored by a single observer,
which is referred to as the centralized state estimation.
In many large-scale systems, sensors can be physically
distributed, and the system can be monitored by multi-
ple local observers that have incomparable information.
Each local observer can perform local state estimation
and send it to a coordinator. Then, the coordinator will
fuse all local information according to some prespec-
ified protocol in order to obtain a global estimation
decision. This is referred to as the decentralized esti-
mation and decision-making problem under coordinated
architecture.

In the context of DES, the decentralized estimation and
decision-making problem was first studied by References
32, 80, 81 in the context of decentralized supervisory
control, where the notion of coobservability is proposed.
In References 82, 83, the problem of decentralized fault
diagnosis problem was studied, and a corresponding prop-
erty called codiagnosability was proposed; the verification
codiagnosability has also been studied in the literature
(84, 85). The decentralized fault prognosis has also been
studied in the literature; see, for example, References
27, 86–88. Note that, in decentralized decision-making
problems, one important issue is the underlying coordi-
nated architecture. For example, References 80 and 85
only consider simple binary architectures for control and
diagnosis, respectively; more complicated architectures
can be found in References 27, 89–96.

When each local observer is allowed to communi-
cate and exchange information with each other, the
state-estimation problem is referred to as the distributed-
estimation problem. Works on distributed state estimation
and property verification can be found in References
97–100. Finally, state estimation and verification of par-
tially observed modular DES have also been considered
in the literature (12, 15, 101–104), where a modular sys-
tem is composed of a set of local modules in the form of
G = G1 × · · · × Gn.

6.3. Estimation and Verification of Petri Nets and Stochastic
DES

In this article, we focus on DES modeled as finite-state
automata. Petri nets, another important class of DES
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models, are widely used to model many classes of con-
current systems. In particular, Petri nets provide a
compact model without enumerating the entire state
space, and it is well known that Petri net languages
are more expressive than regular languages. The prob-
lems of state estimation and property verification have
also drawn many attentions in the context of Petri nets.
For example, state (marking) estimation algorithms for
Petri nets have been proposed in References 105–108.
Decidability and verification procedures for diagnosability
(109–113), detectability (114, 115), prognosability (116),
and opacity (117, 118) are also studied in the literature
for Petri nets.

Another important generalization of the finite-state
automata model is the stochastic DES (or labeled Markov
chains). Stochastic DES can not only characterize whether
or not a system can reach a state, it can also capture the
possibility of reaching a state. Hence, it provides a model
for the quantitative analysis and verification of DES. State
estimation and verification of many important properties
have also been extended to the stochastic DES setting;
this includes, for example, diagnosability (119–121),
detectability (11, 14, 56, 122), prognosability (123), and
opacity (124–126).

6.4. Control Synthesis of Partially Observed DES

So far, we have only discussed property verification prob-
lems in partially observed DES. In many applications,
when the answer to the verification problem is negative, it
is important to synthesize a supervisor or controller that
provably enforces the property by restricting the system
behavior but as permissive as possible. This control syn-
thesis problem has been studied in the literature in the
framework of the supervisory control theory initiated by
Ramadge and Wonham (127). The reader is referred to the
textbooks (1–128) for more details on supervisory control
of DES. Supervisory control under partial observation
was originally investigated by References 31 and 32.
Since then, many control synthesis algorithms for partial-
observation supervisors have been proposed (129–133).
In particular, Reference 134 solves the synthesis problem
for maximally permissive nonblocking supervisors in the
partial-observation setting.

In the context of enforcement of observational prop-
erties, in Reference 135, an approach was proposed for
designing a supervisor that enforces diagnosability. Con-
trol synthesis algorithms have also been proposed in the
literature for enforcing opacity; see, for example, Ref-
erences 136–138. In Referene 139, the authors studied
the problem of synthesizing supervisors that enforce
detectability. A uniform approach for control synthesis for
enforcing a wide class of properties was recently proposed
by Yin and Lafortune in a series of papers (134, 140–142).
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