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Abstract— In this paper, we investigate the problem of
planning an optimal infinite path for a single robot to achieve
a linear temporal logic (LTL) task with security guarantee.
We assume that the external behavior of the robot, specified
by an output function, can be accessed by a passive intruder
(eavesdropper). The security constraint requires that the in-
truder should never infer that the robot was started from a
secret location. We provide a sound and complete algorithmic
procedure to solve this problem. Our approach is based on
the construction of the twin weighted transition systems (twin-
WTS) that tracks a pair of paths having the same observation.
We show that the security-aware path planning problem can
be effectively solved based on graph search techniques in the
product of the twin-WTS and the Büchi automaton representing
the LTL formula. The complexity of the proposed planning
algorithm is polynomial in the size of the system model. Finally,
we illustrate our algorithm by a simple robot planning example.

I. INTRODUCTION

A. Motivation

Path planning is a fundamental problem in robotics which
asks to generate a planned trajectory from an initial location
such that some desired requirements are fulfilled. Classical
planning problems usually focus on low-level tasks such as
obstacle avoidance or point-to-point navigation [1]. In the
past decades, temporal-logic-based high-level path planning
for complex tasks has drawn considerable attention in the
literature; see, e.g., [2], [3]. In this framework, the plan-
ning task is specified by linear temporal logic (LTL) or
computation tree logic (CTL) formulae. By using automata-
theoretic approach, algorithmic procedures are developed
to automatically generate correct-by-construction plans to
achieve the given temporal logic tasks.

While the temporal-logic-based planning has been ex-
tensively investigated for safety requirements, security and
privacy requirements are left as an afterthought in many
applications. For instance, in robot data collecting problem, a
robot needs to visit different locations in order to gather data
and then to transmit collected data to the cloud. However, the
data transmission may not be secure in the sense that there
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may exist an eavesdropper “listening” to the communication.
Such information leakage may reveal some crucial secret be-
havior of the robot, e.g., some information, the robot does not
intend to transmit, may be inferred by the intruder. Therefore,
one also needs to incorporate such a security constraint in
the path planning algorithm. Due to its importance, security
and privacy concerns have been attracting attentions in the
robot path planning literature; see, e.g., [4], [5].

B. Our Contributions

In this paper, we formulate and solve a security-aware opti-
mal path planning problem with respect to LTL requirements.
Specifically, we consider a single robot whose mobility is
modeled as a weighted transition system (WTS). We consider
an intruder modeled as an outside observer (or eavesdropper)
who accesses the external behaviors of the system specified
by an output function. We consider the planning problem of
achieving a task specified by a general LTL formula, while
hiding the secret initial location of the robot. We adopt the
notion of an information-flow security property called initial-
state opacity [6], [7]. Specifically, a planed path from a secret
initial-state is said to be secure if there exists another path
from a non-secret initial-state such that those two paths are
observationally equivalent from the intruder’s point of view.

Our approach is different from the standard initial-state
opacity verification procedure [6], which requires to build the
initial-state estimator whose size is exponential in the number
of system states. Instead, we propose a computationally more
efficient approach by constructing the twin-WTS structure
which synchronizes the system with its copy based on the
observation. We show that the security-aware path planning
problem can be effectively solved by a graph search in the
product of the twin-WTS and the Büchi automaton that
accepts the given LTL task.

C. Related Works

Optimal LTL path planning problem was originally for-
mulated in [8], where the optimization objective is to mini-
mize the worst cost between each satisfying instances. This
framework has been extended to the case of multi-robot [9],
[10], where each robot may have a local task or a team of
robots need to collaborate to achieve a global task. Recently,
sampling-based techniques have been applied to improve the
scalability of optimal path planning algorithm [11], [12].
Optimal temporal logic path planning problems have also
been studied for stochastic systems modeled as MDPs; see,
e.g., [13]–[15]. However, none of the above mentioned works
considers security constraints.
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Fig. 1. Work space of the single robot.

In the context of security-aware path planning, our work
is mostly related to [16]. The differences between our work
and [16] are as follows. First, the planning task considered in
our work is expressed as a general LTL formula, while [16]
considers a simple reachability task. Second, no optimality is
consider in [16]. Finally, the security requirement considered
in our work is different with that in [16]. Consequently, the
complexity of our planning algorithm is independent from
the number of secret states and is always quadratic in the
number of system states. However, the complexity of the
planning algorithm in [16] is based on the structure of K-
detector, whose size grows exponentially in the number of
secret states.

In the computer science literature, the concept of hyper-
properties [17] has attracted many attentions in the past
years, e.g., HyperLTL [18]. Very recently, the authors of
[19] show that initial-state opacity planning problem can be
specified as an instant of the HyperLTL planning problem.
This result is closely related to ours. However, initial-state
opacity considered in [19] is based on the equivalence of
atomic propositions. In our setting, atomic propositions are
only used to specify the desired temporal logic task, while
the observation equivalence is specified by a new output
function. This setting is more general as the atomic proposi-
tions and the output sets can be different. Furthermore, our
planning algorithm is tailored to initial-state security, which
avoids the general large complexity in HyperLTL synthesis.

Finally, our work is also related to opacity-enforcing
supervisory control in the context of discrete-event systems
[20]–[24]. However, the opacity-enforcing control problem
is essentially a reactive synthesis problem under security
constraint whose complexity is exponential in the size of the
system. Here, we consider a security-aware path planning
problem that can be solved more efficiently. Furthermore,
no LTL specification and optimality were considered in the
opacity control problem.

II. MOTIVATING EXAMPLE

Before we formally formulate the main problem in this
paper, we first consider a motivating example. Suppose that
a single mobile robot moves in a workspace with grass
and sand lands as shown in Figure 1. The workspace is
partitioned to six regions of interest and black regions denote
obstacles. At each instant, the robot can only move to regions
that are adjacent to its current region (sharing at least an
edge). We assume that the robot always knows exactly its
current location. On the other hand, we assume that there is
an outside observer that knows whether the robot is currently
at a grass or a sand land. The mobility model of the robot can
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Fig. 2. The LTS model of the motivating example. The intruder has two
observations on the robot: the robot is at sand or grass land. The robot
can start from A (secret) or B (non-secret). Bidirectional transition means
that the robot can move in both directions; the numbers associated to each
transition represents its cost.

be represented by the transition system shown in Figure 2.
Furthermore, we assume that there is a cost moving from
one region to another, which is specified by the number
associated to each bidirectional transition in Figure 2.

The task of the robot is to deliver goods between regions
F (representing, e.g., a factory) and E (representing, e.g.,
a warehouse), i.e, visit F and E infinitely often. The robot
may initially start from regions A or B. However, it does
not want the outside observer to know that it started from
region A (if so). This may because, for example, starting
from different locations implies that different robot-types
are used, which may further reveal which kind of goods the
factory is delivering.

Now, suppose that the robot is starting from region A. The
optimal plan achieving the temporal logic task is

A→ C → (F → E)ω,

where notation ω over parentheses means the infinite repeti-
tion of the finite execution inside them. However, this plan
is not secure in the sense that the observer will know for
sure that the robot started from region A after observing two
consecutive Grass. This is because there is no feasible path
from region B that can generate the same observation. On
the other hand, the robot may take the plan below

A→ D → (F → E)ω.

This plan is more expensive as the robot will incur higher
cost when moving from A to D. However, this plan is secure
in the sense that there exists another path

B → D → (F → E)ω,

starting from region B that generates the same observation.
Therefore, although more cost is paid, the robot is able to
hide the secret about its initial location.

III. TEMPORAL LOGIC TASK PLANNING

In this section, we define basic notations that we use in the
rest of the paper and introduce some necessary preliminaries.
For a set A, we denote by |A| and 2A its cardinality and
its power set, respectively. A finite sequence over A is a
sequence in the form of a1 · · · an, where ai ∈ A; we denote
by A∗ the set of all finite sequences over A. Similarly, we
denote by Aω the set of all infinite sequences over A.
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A. Weighted Transition Systems

We consider a scenario where single mobile robot works
in a workspace W ⊆ R2. The workspace is partitioned
as n disjoint regions of interest denoted by r1, . . . , rn and
we denote by I := {1, · · · , n} the index set. In general,
workspace regions can be of any arbitrary shape partitioned
based on the task properties and the dynamic of the robot;
see, e.g., [25], [26] for details on region partition. In this
work, we focus on the task planning problem; hence, we
model the mobility of the robot in the workspace as a
Weighted Transition System (WTS) defined as follows.

Definition 1: (Weighted Transition System) A weighted
transition system is a 6-tuple

T = (Q,Q0,→, w,AP, L),

where

• Q = {qi : i ∈ I} is the set of states and each state qi
indicates that the robot is at location ri;

• Q0 ⊆ Q is the set of initial states representing all
possible starting locations of the robot;

• →⊆ Q × Q is the transition relation such that
(qi, qj) ∈→ means that there exists a controller that can
drive robot from region ri to rj without going through
any other regions;

• w : Q × Q → R+ is a cost function that assigns to
each transition (qi, qj) ∈→ a positive weight w(qi, qj)
representing the cost incurred for driving the robot from
region ri to rj , e.g., the distance between ri and rj ;

• AP is the set of atomic propositions used for represent-
ing some basic properties of interest;

• L : Q→ 2AP is the labeling function that assigns each
state to a set of atomic propositions.

Given a WTS T , an infinite internal path is an infinite
sequence of states τ = τ(1)τ(2)τ(3) · · · ∈ Qω such that
τ(1) ∈ Q0 and (τ(i), τ(i + 1)) ∈→,∀i ∈ N+. A finite
internal path of a WTS is defined analogously. Hereafter,
an internal path will just be referred to as path for the sake
of simplicity. We denote by Pathω(T ) and Path∗(T ) the
set of all infinite and finite paths in T , respectively. The cost
function w is considered to be additive; therefore, the cost
of a finite path τ ∈ Path∗(T ), denoted by J(τ), is defined
by

J(τ) =

|τ |−1∑
i=1

w(τ(i), τ(i+ 1)), (1)

where |τ | is the length of the path. In words, the cost J(τ)
captures the total cost incurred during the execution of finite
path τ . The trace of an infinite path τ ∈ Qω denoted
by trace(τ) is an infinite sequence over 2AP such that
trace(τ) = L(τ(1))L(τ(2))L(τ(3)) · · · . Given a set of
states Q′ ⊆ Q, we denote by Reach(Q′) the set of states
reachable from Q′. We say a state q ∈ Q is in a cycle
of T if there exists a sequence q1q2 . . . qk ∈ Q∗ such that
q1 = qk = q and (qi, qi+1) ∈→,∀i ∈ N+. We denote by
cycle(T ) the set of all states that are in some cycles of T .

B. Linear Temporal Logic and Büchi Automata

Let AP be the set of atomic propositions. A Linear Tem-
poral Logic (LTL) formula is constructed based on atomic
propositions, Boolean, and temporal operators. Specifically,
an LTL formula φ is recursively defined by

φ ::= true | p | φ1 ∧ φ2 | ¬ϕ | ©φ | φ1Uφ2,

where p ∈ AP is an atomic proposition; © and U denote,
respectively, “next” and “until”. The above syntax also in-
duces temporal operators ♦ (“eventually”) and � (“always”),
where ♦φ := trueUφ and �φ := ¬♦¬φ.

LTL formulas are used to evaluate whether or not infinite
words satisfy some properties. Formally, an infinite word σ ∈
(2AP)ω is an infinite sequence over alphabet 2AP . We denote
by σ |= φ if σ satisfies the LTL formula φ. For example,
�♦φ means that property φ should be satisfied infinitely
often. The reader is referred to [27] for more details about the
syntax and the semantics of LTL, which are omitted here for
the sake of brevity. We define Words(φ) = {σ ∈ (2AP)ω :
σ |= φ} as the set of all words satisfying LTL formula φ.

Definition 2: (Nondeterministic Büchi Automaton) A
Nondeterministic Büchi Automaton (NBA) is a 5-tuple B =
(QB , Q0,B ,Σ,→B , FB), where QB is the set of states,
Q0,B ⊆ QB is the set of initial states, Σ is an alphabet,
→B⊆ QB×Σ×QB is the transition relation and FB ⊆ QB
is the set of accepting states.

Given an infinite word σ = π0π1π2 · · · ∈ Σω , an infinite
run of B over σ is an infinite sequence ρ = q0q1q2 · · · ∈ QωB
such that q0 ∈ Q0,B and (qi, πi, qi+i) ∈→B for any i ∈ N.
An infinite run ρ ∈ QωB is said to be accepted by B if
Inf(ρ) ∩ FB 6= ∅, where Inf(ρ) denotes the set of states
that appears infinite number of times in ρ. Then, an infinite
word σ is said to be accepted by B if it induces an infinite
run accepted by B. We denote by LB ⊆ Σω the set of all
accepted words by NBA B.

For any LTL formula φ, it is well-known [28] that there
always exists an NBA over Σ = 2AP that accepts exactly
all infinite words satisfying φ, i.e., LB = Words(φ).
Throughout this paper, B = (QB , Q0,B , 2

AP ,→B , FB) is
used to denote the NBA corresponding to the LTL formula
φ of interest.

C. Temporal Logic Path Planning

The standard LTL path planning problem asks to find
an infinite path τ ∈ Pathω(T ) of system T such that
trace(τ) |= φ. Due to the structure of the accepting
condition in Büchi automata, it suffices to find an infinite
path with the following prefix-suffix structure

τ = q1 · · · qk[qk+1 · · · qk+m]ω ∈ Pathω(T )

such that trace(τ) ∈ LB . Intuitively, qk+1 · · · qk+m is the
suffix that forms a cycle such that the robot should execute
infinitely often, while q1 · · · qk is the prefix representing the
transient path that leads to the cyclic path. Such a prefix-
suffix structure is also referred to a plan. In this work, we
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consider the cost of a plan, which is an infinite path, as the
cost of its prefix and suffix, i.e.,

Ĵ(τ) = J(q1 · · · qkqk+1 · · · qk+mqk+1). (2)

In order to find an optimal plan with the least cost, one can
perform modified shortest path search in the product system
composed by T and B; see, e.g., [10].

Remark 1: The cost function defined in (2) essentially
treats the transient cost Jpre = J(q1 · · · qkqk+1) and the
steady-state cost Jsuf = J(qk+1 . . . qk+mqk+1) equivalently.
In general, we can define the cost function as Ĵ(τ) =
αJpre+(1−α)Jsuf , where α ∈ [0, 1] is a parameter adjusting
the weight of each part. Our work considers the case of
α = 0.5 for the sake of simplicity; all results can be easily
extended to the general case.

Remark 2: Given an infinite path (plan), depending on
how we decompose prefix and suffix, the plan may have
different costs. For example, q1(q2q3)ω and q1q2(q3q2)ω are
the same path but have different costs. Hereafter, for a plan
τ , Ĵ(τ) is always considered as the cost for the prefix-suffix
structure of τ having the minimum cost.

IV. SECURITY-AWARE PATH PLANNING PROBLEM

As we discussed in the motivating example, the solution to
the standard LTL path planning problem does not necessarily
provide security guarantees. In this section, we present the
considered information-flow security model and formulate
the security-aware path planning problem.

Given WTS T = (Q,Q0,→, w,AP, L), we assume that
the internal state of the system is not available to the intruder
(malicious observer) directly. Instead, the intruder can only
infer the behavior of the system via its outputs. Formally, we
model the intruder’s observation of the system as an output
function

H : Q→ Y,

where Y is the set of outputs. The execution of any infinite
internal path τ = τ(1)τ(2)τ(3) · · · ∈ Pathω(T ) will gener-
ate an infinite external path H(τ(1))H(τ(2))H(τ(3)) · · · ∈
Y ω; we also denote this external path by H(τ) with a
slight abuse of notation. A finite external path is defined
analogously.

In this work, we consider the problem of protecting secret
initial location of the robot. To this end, we assume that
QS ⊂ Q0 is the set of secret initial states. Hereafter, a WTS
T equipped with output function H and secret initial states
QS is also written as T = (Q,Q0,→, w,AP, L,H, Y,QS)
for simplicity. To guarantee security, we want to make sure
that the intruder is not able to infer confidentially that the
robot started from a secret location. This requirement is
formalized as follows.

Definition 3: (Security) Let T = (Q,Q0,→, w,AP, L,
H, Y,QS) be a WTS. An infinite path τ ∈ Pathω(T ) is said
to be secure if there exists an infinite path τ ′ ∈ Pathω(T )
such that τ ′(1) /∈ QS and H(τ) = H(τ ′).

Remark 3: The above definition of security is related to
the notion of initial-state opacity proposed in [6]. Essentially,

initial-state opacity is a system property such that all paths
generated by the system are secure in our sense. However, as
we are considering path planning problem, security is defined
only for a specific path rather than the entire system.

Problem 1: (Security-Aware Optimal LTL Path Planning
Problem) Given a WTS T , secret states QS ⊂ Q, output
function H : Q→ Y and LTL formula φ, for each possible
initial-state q0 ∈ Q0, determine a plan τ ∈ Pathω(T ) with
τ(1) = q0 such that the following conditions hold:

1) trace(τ) |= φ;
2) τ is secure;
3) For any other plan τ̃ ∈ Pathω(T ) satisfying the above

requirements, we have Ĵ(τ) ≤ Ĵ(τ̃).
Remark 4: (Intruder Model) In the above problem for-

mulation, it essentially assumes that the intruder knows the
followings:

1) the mobility model of the robot, i.e., WTS T ; and
2) the external path generated by the robot, i.e., H(τ).

However, it does not know the exact internal state of the
robot, which has to be inferred by observing outputs. On the
other hand, the robot is assumed to know exactly its initial
and current state; therefore, this is still a planning problem
under perfect information from the robot’s point of view.
This setting is reasonable in many applications because: (i)
the system usually has more ability to acquire information
about itself than the intruder; and (ii) the intruder’s informa-
tion sometimes comes from eavesdropping the information
transmission which is a partial information of the robot’s
knowledge.

Remark 5: According to Definition 3, if a path τ is started
from a non-secret initial state q0 ∈ Q0\QS , then it is always
secure as we can choose τ ′ = τ . Therefore, for non-secret
initial states, we just need to solve the standard optimal LTL
path planning problem; see, e.g., [8]. However, for those
secret initial states, the security constraint has to be taken
into account. This issue will be addressed in the next section.

V. PLANNING ALGORITHM

In this section, we present the security-aware path planning
algorithm. Our approach is based on constructing a new tran-
sition system that effectively captures the security constraint.

A. Twin-WTS

In order to handle the security constraint, one needs to
track the information of the outside observer based on the
external path. Such an information-tracking task can be
achieved by constructing the initial-state estimator [6]. How-
ever, the size of an initial-state estimator grows exponentially
as the number of states in the system increases due to the
subset construction.

Here, we present a computationally more efficient ap-
proach that does not rely on the construction of the initial-
state estimator. Instead, we propose a new structure called the
twin-WTS, which is used to track all current states pairs of
two paths that have the same external path from the intruder’s
point view. This structure is formally defined as follows.
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Definition 4: (Twin-WTS) Given a WTS T = (Q,Q0,→,
w,AP, L, H, Y,QS), its twin-WTS is a new WTS

V = (X,X0,→V , wV ,AP, LV ),

where
• X ⊆ Q×Q is the set of states;
• X0 = {(q1, q2) ∈ Q0 × Q0 : H(q1) = H(q2)} is the

set of initial-states;
• →V⊆ X ×X is the transition relation defined by: for

any x = (q1, q2) ∈ X and x′ = (q′1, q
′
2) ∈ X , we have

(x, x′) ∈→V if the followings hold:
– (q1, q

′
1) ∈→;

– (q2, q
′
2) ∈→;

– H(q′1) = H(q′2).
• wV : X ×X → R+ is the cost function defined by: for

any x = (q1, q2) ∈ X and x′ = (q′1, q
′
2) ∈ X , we have

wV (x, x′) = w(q1, q
′
1);

• LV : X → 2AP is the labeling function defined by: for
any x = (q1, q2) ∈ X , we have LV (x) = L(q1).

Remark 6: Intuitively, the twin-WTS tracks two inter-
nal paths that generate the same external path. Specif-
ically, the first component is used to represent the tra-
jectory in the real system, while the second component
is used to represent a copy that mimics the real sys-
tem in the sense of output equivalence. Therefore, for
any path (τ1(1), τ2(1))(τ1(2), τ2(2)) · · · in V , we have
H(τ1(1))H(τ1(2)) · · · = H(τ2(1))H(τ2(2)) · · · . On the
other hand, for any two paths τ1, τ2 in T such that H(τ1) =
H(τ2), we can find a path τ in V such that its first component
is τ1 and the second component is τ2. Also, we note that the
cost function wV and the labeling function LV are all defined
based on the states in the first component, which is the part
for the real system. Finally, the size of V is polynomial in
the size of T as it contains at most |Q|2 states.

B. Planning Algorithm

The twin-WTS can be used to capture the security con-
straint based on the following observation. For any secure
path starting from a secret initial state qs,0, there must exist
an observation-equivalent path from a non-secret initial state
qns,0. Furthermore, such a path-pair should exist in the
twin-WTS V from state (qs,0, qns,0). Therefore, to perform
security-aware path planing, it suffices to perform planning
from an initial-state in V in which the first component is
the real (secret) initial-state and the second component is
a non-secret state. Furthermore, in order to incorporate the
temporal task, we need to synchronize the twin-WTS with
the NBA B that accepts φ; this is defined as the product
system.

Definition 5: (Product System) Given twin-WTS V =
(X,X0,→V , wV ,AP, L) and NBA B = (QB , Q0,B ,Σ,
→B , FB), the product of V and B is a new (unlabeled)
WTS

T⊗ = (Q⊗, Q0,⊗,→⊗, w⊗),

where
• Q⊗ ⊆ X ×QB is the set of states;

• Q0,⊗ = X0 ×Q0,B is the set of initial states;
• →⊗⊆ Q⊗ × Q⊗ is the transition relation defined by:

for any q⊗ = (x, qB) ∈ Q⊗ and q′⊗ = (x′, q′B) ∈ Q⊗,
we have (q⊗, q

′
⊗) ∈→⊗ if the followings hold:

– (x, x′) ∈→V ; and
– (qB , LV (x), q′B) ∈→B .

• w⊗ : Q⊗ ×Q⊗ → R+ is the cost function defined by:
for any q⊗ = (x, qB) ∈ Q⊗ and q′⊗ = (x′, q′B) ∈ Q⊗,
we have w⊗(q⊗, q

′
⊗) = w(x, x′).

Essentially, the product system further restricts the dynam-
ic of V such that each movement should satisfy the LTL
task φ, i.e., (qB , LV (x), q′B) ∈→B . Note that the original
WTS T is not synchronized with B as the dynamic of T has
already been encoded in the first component of V . For each
state ((q, q′), qB) ∈ Q⊗, we denote by Π[((q, q′), qB)] =
q the projection to the state space of T ; we also write
Π[((q0, q

′
0), q0,B) · · · ((qn, q′n), qn,B)] = q0 · · · qn.

For each initial-state q0 ∈ Q0 in T , we denote by
INTq0(T⊗) ⊆ Q0,⊗ the set of initial-states in T⊗ whose first
components are q0 while the second component are non-
secret states in T , i.e.,

INTq0(T⊗) = {((q0, q′0), qB) ∈ Q0,⊗ : q′0 /∈ QS}.

Also, we define GOAL(T⊗) ⊆ Q⊗ as the set of states in
T⊗ whose last components are in FB and they are in some
cycles of T⊗, i.e.,

GOAL(T⊗) =

{((q, q′), qB)∈Q⊗ : qB∈FB ∧ ((q, q′), qB)∈cycle(T⊗)}.

In order to find an optimal path from initial state q0 in T , it
suffices to find an optimal path in the form of

INTq0(T⊗)→ (GOAL(T⊗)→ GOAL(T⊗))ω

in T⊗. Note that both sets INTq0(T⊗) and GOAL(T⊗) are
non-singleton in general. Therefore, we need to consider all
possible combinations in order to determine an optimal path.
This idea is formalized by Algorithm 1.

Specifically, lines 1-3 construct the NBA B, the twin-WTS
V and the product system T⊗. Line 4 aims to determine if
there is a feasible path from q0 satisfying both the LTL con-
straint and the security constraint. In particular, if INTq0(T⊗)
cannot reach any goal state in cycle, then this means that
there does not exist an infinite path accepted by φ that has
an observation equivalent path from a non-secret initial state,
i.e., there exists no feasible path starting from q0. Otherwise,
we consider, in lines 7 and 8, each combination of state qI in
INTq0(T⊗) and state qG in Reach({qI})∩GOAL(T⊗), which
is a goal state reachable from q1 and in some cycles. In lines
9-10, we determine the shortest path from qI to qG and the
shortest path from qG back to itself; the projection onto T
by Π then gives us an infinite path satisfying both the LTL
and the security constraint. Then among all such feasible
combinations, we determine the optimal pair (q∗I , q

∗
G) that

minimizes the path cost function defined in (2) and the
optimal plan τ = τ q

∗
I ,q

∗
G [τ q

∗
G,q

∗
G ]ω is returned.
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Algorithm 1: Security-Aware Optimal LTL Plan
input : LTL formula φ, WTS T with H and QS ,

initial state q0
output: Optimal plan τ from q0 ∈ Q0

1 Convert φ to NBA B = (QB , Q0,B ,Σ,→B , FB);
2 Construct twin-WTS
V = (X,X0,→V , wV ,AP, LV );

3 Construct the product of V and B
T⊗ = (Q⊗, Q0,⊗,→⊗, w⊗);

4 if Reach(INTq0(T⊗)) ∩ GOAL(T⊗) = ∅ then
5 return “no feasible plan from q0”;
6 else
7 for qI ∈ INTq0(T⊗) do
8 for qG∈Reach({qI})∩GOAL(T⊗) do
9 τ qI ,qG = Π[Shortpath(qI , qG)];

10 τ qG,qG = Π[Shortpath(qG, qG)];
11 end
12 end
13 (q∗I , q

∗
G) = arg min(qI ,qG) Ĵ(τ qI ,qG [τ qG,qG ]ω);

14 return optimal plan τ = τ q
∗
I ,q

∗
G [τ q

∗
G,q

∗
G ]ω for q0;

15 end

Remark 7: Let us discuss the complexity of Algorithm 1.
First, we note that the product system T⊗ contains at most
|Q|2|QB | states, where |Q| is the number of states in the
WTS model and |QB | is the number of states in the Büchi
automaton. Algorithm 1 involves at most |Q|4|QB |2 (very
roughly estimated) shortest path problems which can be
solved in polynomial-times in the number of states in T⊗.
Therefore, the overall planning complexity is polynomial in
both the number of states in the plant and the number of
states in the Büchi automaton. Note that, in general, |QB |
is the length of φ. However, in practice, the size of the LTL
formula φ is usually very small and Q, which represents the
state-space, is usually the main factor for scalability.

C. Correctness of the Planning Algorithm
Now, we prove the correctness of the proposed planning

algorithm. Hereafter, we assume that the robot is starting
from initial state q0 and τ is the optimal plan from q0
returned by Algorithm 1. First, we show that the resulting
plan satisfies the LTL task φ.

Proposition 1: trace(τ) |= φ.
Second, we show that the planned path is secure.
Proposition 2: τ is secure.
Finally, we show that the planned path is optimal.
Proposition 3: For any other secure path τ̃ = τ̃pre[τ̃suf ]ω

such that trace(τ̃) |= φ, we have Ĵ(τ) ≤ Ĵ(τ̃).
The above three propositions show that the proposed

algorithm is sound in the sense that the solution is correct if
it finds one. Note that Algorithm 1 may return “no feasible
plan from q0”. Next we show that the proposed algorithm is
also complete.

Proposition 4: If Algorithm 1 returns “no feasible plan
from q0”, then no solution to Problem 1 exists.

Finally, we summarize Propositions 1, 2, 3 and 4 by the
following theorem.
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Fig. 3. An NBA translated from φ = �♦P1 ∧ �♦P2.
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Fig. 4. Twin-WTS V of T in Figure 2.

Theorem 1: For any WTS T = (Q,Q0,→, w,AP, L)
with output function H : Q → Y , secret states QS and
LTL formula φ, Algorithm 1 correctly solves the optimal
security-aware LTL planning problem defined in Problem 1.

VI. CASE STUDY

We go back to the motivating example in Section II to
illustrate the proposed planning algorithm. Consider again
the WTS in Figure 2. To formalize the LTL task, we consider
two atomic propositions AP = {P1, P2} with labeling
function L : Q → 2AP defined by L(F ) = {P1}, L(E) =
{P2} and L(q) = ∅ for other states. Then the task of the
robot is expressed by the LTL formula

φ = �♦P1 ∧�♦P2.

The observation mapping is H : Q → {Grass, Sand} as
specified in Figure 2. We define QS = {A} ⊆ Q, i.e., state
A is the unique secret initial state.

To achieve the planning task, first we convert φ to NBA
B = (QB , Q0,B ,Σ,→B , FB), which is shown in Figure 3;
such a conversion can be done by, e.g., the tool developed
in [29]. Then we construct the corresponding twin-WTS
V , which is shown in Figure 4. Specifically, V contains
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Fig. 5. Example of the construction of the T⊗. Red transitions represent
the optimal feasible path. Due to limited space, some states and transitions
are omitted and part of the product system is shown.
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four initial states (A,A), (B,B), (A,B) and (B,A) since
H(A) = H(B) = Sand and four combination are all
valid initial states. Then, for example, starting from (A,B),
only state (D,D) can be reached as A → D,B → D
and H(D) = H(D) = Grass. Also, from state (C,C),
we can reach (A,F ) as C → A,C → F and H(A) =
H(F ) = Sand. Finally, we need to construct the product
system T⊗; for the sake of simplicity, we just show part
of T⊗ in Figure 5, which is sufficient for the purpose of
planning.

Now, we assume that the robot is starting from
secret initial state A. Then we have INTA(T⊗) =
{((A,B), q2)}, which is a singleton. Also, we have
((F, F ), q2) ∈ Reach({((A,B), q2)}) ∩ GOAL(T⊗). One
can check that such a state pair is indeed the one that
minimizes the cost function if we draw the complete
product system. Therefore, we obtain an optimal plan
τ = Π[((A,B), q2)((D,D), q1)((F, F ), q1)(((E,E), q0)
((F, F ), q2))ω] = AD(FE)ω , which is highlighted by red
transitions in Figure 5.

VII. CONCLUSION

In this paper, we solved a security-aware optimal
path planning problem for linear temporal logic tasks.
A polynomial-time algorithm was proposed based on the
product of the twin-system and the Büchi automaton. The
synthesized solution is secure-by-construction in the sense
that it provides provably security guarantees for the designed
systems against temporal logic tasks. Note that, in this work,
we consider security requirement for protecting the initial
secret location of the system. In the future, we would like
to extend the proposed algorithm to other types of security,
e.g., infinite-step opacity [30]–[32]. Also, we are interested
in investigating optimal LTL path planning for multi-robot
systems with security guarantees.
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