
On Attack Mitigation in Supervisory Control Systems:
A Tolerant Control Approach

Jingshi Yao, Xiang Yin and Shaoyuan Li

Abstract— This paper investigates attack mitigation problem
in supervisory control of discrete event systems. We consider
the scenario where the system is subject to actuator enablement
attack. We explicitly distinguish between controllable events
and defendable events; the former are events that can be
disabled by the normal supervisor but may be subject to attack,
while the latter are events that can be defensed (disabled
definitely) by the mitigation module but possibly with higher
costs. The objective is to design an attack mitigation strategy to
prevent serious damage from attack. We formulate the attack
mitigation problem as a tolerant control problem under partial
observation. Particularly, in addition to guarantee safety, we
aim to maximize the desirable behavior (normal specification)
while minimize the tolerable behavior (safe but not desirable).
We provide an effective online algorithm for solving this
problem, which yields a novel attack mitigation strategy that
generalizes the existing one in the literature. Specifically, we
show that the proposed strategy may still prevent damage even
when the safe-controllability condition, which is required by
the existing strategy, does not hold.

I. INTRODUCTION

Cyber-attacks are increasingly becoming pervasive in
safety-critical cyber-physical systems (CPSs) such as indus-
trial control systems, intelligent transportation systems and
smart grids. To describe high-level behaviors of CPSs, cyber
or cyber-physical control systems are usually abstracted
as transition systems with discrete state spaces and event-
driven dynamics, or discrete event systems (DESs). Due to
the importance of security and safety concerns in CPSs,
detection and mitigation of attacks has been becoming a
very active research area in the past few years under the
framework of supervisory control of DESs; see, e.g., [1]–
[16] and the recent survey [17].

In the context of DES, the study of attack detection
and mitigation dates back to the work of Thorsley and
Teneketzis [18], where a language-measure-based dynamic
programming approach is proposed to synthesize an optimal
supervisor in the presence of an attacker that may allow
the occurrences of disabled events, i.e., actuator enablement
attack. The problem of synthesizing supervisor under sensor
insertion attack and removal attack is considered in [14]. In
[15], the authors consider both sensor attacks and actuator
attacks in a unified model. The problem of synthesizing
attack-robust supervisor is studied in [4], [8], [19]. In [2], [3],

This work was supported by the National Natural Science Foundation
of China (61803259, 61833012) and by Shanghai Jiao Tong University
Scientific and Technological Innovation Funds.

J. Yao, X. Yin and S. Li are with Department of Automation
and Key Laboratory of System Control and Information Process-
ing, Shanghai Jiao Tong University, Shanghai 200240, China. E-mail:
{yaojingshi,yinxiang,syli}@sjtu.edu.cn.

[11], the authors investigate, from the attacker point of view,
how to synthesize successful attacks such that the system
can be damaged while preventing itself from been detected.

Recently in [1], Carvalho et al. proposed a general frame-
work for attack detection and mitigation for supervisory
control systems, where four types of attacks are considered.
Automaton model is provided to describe the closed-loop
system under each type of attacks. A generic attack detec-
tion and mitigation strategy, which is independent from the
specific attack type, is also proposed. The strategy consists
of the following two parts: (i) first, a diagnoser is used to
detect whether or not the system has been attacked; and
(ii) once the the diagnoser detects attack unambiguously, the
mitigation module will disable/defend all controllable events
to prevent the system from reaching unsafe states. Whether
or not such a mitigation strategy works is characterized by
the condition of safe-controllability that was modified based
on the original concept proposed in [20] for the purpose of
fault-tolerant control.

Essentially, the attack mitigation strategy in [1] follows the
philosophy that “take action to defend after detecting attack
for sure”. However, such a strategy may be unnecessarily
conservative in the sense that it may be too late to take
actions when the attack is detected. In general, the attack
mitigation module may start to take early actions in advance
when it is possible that the system has been attacked. In
fact, this point has been mentioned in [1] that “we adopt
simple and conservative approach to defend attacks, and
have left the refinement of our methodology to account for
more sophisticated defense mechanisms”. Our work aims to
fill in this gap and to improve the existing mitigation strategy.

In this paper, we follow the basic framework of [1] for
attacks in supervisory control systems. However, we consider
a more general setting by explicitly distinguishing between
controllable events and defendable events, where controllable
events stand for events that can be disabled by the normal
supervisor but may be subject to attack, but defendable events
stand for events that can be defensed (disabled definitely) by
the mitigation module but possibly with higher costs. Also,
different from the mitigation strategy in [1], we propose a
more general attack mitigation strategy that allows the system
to defend even before the attack is precisely detected.

More specifically, we formulate the attack mitigation prob-
lem as a tolerant control problem. We treat the system under
possible attacks as a new plant and our goal is to strictly
prevent the new system from reaching unsafe states while
maximizing the desirable behavior, which is the closed-loop
language without attack. Behavior between the desirable be-

2020 59th IEEE Conference on Decision and Control (CDC)
Jeju Island, Republic of Korea, December 14-18, 2020

978-1-7281-7446-4/20/$31.00 ©2020 IEEE 4504

havior and the unsafe behavior is considered as the tolerable
behavior for which we further need to minimize. We show
that our approach is more general than that of [1] in the sense
that the proposed strategy may successfully prevent damage
from attack even when the safe-controllability condition does
not hold.

Our approach is motivated by the tolerant control prob-
lem studied in [21]. However, the solution in [21] is only
applicable for systems with full observation. In our setting
for attack mitigation, we need to solve a tolerant control
problem under partial observation which has never been
solved in the literature to our knowledge. Technically, our
approach methodology also generalizes existing techniques
for solving the standard supervisory control problem under
partial observation [22]–[25] to the tolerant control setting by
considering both desirable language and tolerable language
into account. Finally, we emphasize that we only focus on
actuator enablement attack in this paper to state our main
results. However, the proposed tolerant control approach is
generic and can be applied to any type of attack given the
attacked behavior can be modeled.

II. PRELIMINARIES

We use standard notations in discrete-event systems [26].
A discrete-event system is modeled as a deterministic finite-
state automaton (DFA) G = (X,Σ, δ, x0), where X is the
finite set of states, Σ is the finite set of events, δ : X ×
Σ → X is the (partial) transition function and x0 ∈ X is
the initial state. The transition function is also extended to
δ : X × Σ∗ → X in the usual manner [26]. For simplicity,
δ(x0, s) is abbreviated as δ(s). The language generated by
G is L(G) = {s ∈ Σ∗ : δ(s)!}, where “!” means “is defined”
and Σ∗ denotes the set of all finite strings over Σ including
the empty string ε. The prefix closure of language L is L =
{t ∈ Σ∗ : ∃u ∈ Σ∗ s.t. tu ∈ L}. We denote by s ≤ t if
s ∈ {t} and by s < t if s ≤ t and s 6= t.

In the supervisory control framework, the event set is
partitioned as: Σ = Σc∪̇Σuc, where Σc and Σuc are the
sets of controllable and uncontrollable events, respectively.
We denote by Γ = {γ ∈ 2Σ : Σuc ⊆ γ} the set of admissible
control decisions or control patterns. The event set is further
partitioned as Σ = Σo∪̇Σuo, where Σo and Σuo are the
sets of observable and unobservable events, respectively. The
natural projection P : Σ∗ → Σ∗o is defined as the mapping
that replaces each unobservable event in a string by ε.

A partial-observation supervisor is a mapping SP :
P (L(G)) → Γ that enables/disables events dynamically
based on its observation. We denote by L(SP /G) the closed-
loop language under control, which is defined recursively by:
• ε ∈ L(SP /G); and
• for any s ∈ Σ∗, σ ∈ Σ, we have sσ ∈ L(SP /G) iff
s ∈ L(SP /G), sσ ∈ L(G) and σ ∈ SP (P (s)).

In the problem of attack mitigation, it is assumed that there
already exists a designed supervisor and the supervisor is
assumed to be recognized by a DFA H = (XH ,Σ, δH , x0,H)
such that:

(i) ∀σ ∈ Σuc, x ∈ XH : δH(x, σ)!; and

(ii) ∀x, x′ ∈ XH , σ ∈ Σuo : δH(x, σ)=x′ ⇒ x=x′.
Intuitively, the first condition says that the supervisor cannot
disable uncontrollable events and the second condition says
that only observable events can trigger decision changes.
Therefore, H‖G is essentially the model of the closed-loop
system, i.e., L(H‖G) = L(SP /G), where “‖” is the standard
parallel composition operator.

III. ATTACK MODEL AND MITIGATION STRATEGIES

A. Actuator Enablement Attack Model

We first review the model of actuator enablement attack
(AE-attack) proposed in [1]. In this setting, we assume that
Σv ⊆ Σc is a set of vulnerable actuator events, which can
be either observable or unobservable. The attacker is able to
enable (attack) a vulnerable event even when it is disabled
by the supervisor, e.g., by replacing the control command in
the communication channel. Then the set of attacked actuator
events is defined by Σac,v = {σa : σ ∈ Σv} and we define
Σa = Σ ∪ Σac,v . Intuitively, σa represents the occurrence
of σ when it is originally disabled by the supervisor but
is enabled by the attacker. We also define the compression
operator C : Σa → Σ by: C(σ) = σ if σ ∈ Σ and C(σa) =
σ if σa ∈ Σac,v . The compression operator is also extended
to C : Σ∗a → Σ∗ and to C : 2Σ∗a → 2Σ∗ . Also, we define the
dilation operator D : Σ → 2Σa as the inverse of C, which
is also extended to D : Σ∗ → 2Σ∗a and to D : 2Σ∗ → 2Σ∗a .

In order to model the closed-loop system under possi-
ble AE-attacks, one can construct two new DFAs Ga and
Ha based on G and H , respectively. Specifically, Ga =
(X,Σa, δa, x0) is a DFA such that

∀x ∈ X,σ ∈ Σa : δ(x,C(σ))!⇒ δa(x, σ)=δ(x,C(σ)).

Intuitively, Ga is obtained by adding a parallel transition
labeled by σa ∈ Σac,v for each feasible transition labeled by
σ ∈ Σv , which captures the possibility of AE-attack on σ.
Also, DFA Ha = (XH ,Σa, δH,a, x0,H) is defined by: for
any x ∈ XH , σ ∈ Σa, we have

δH,a(x, σ) =

{
δH(x, σ) if δH(x, σ)!

x if σ ∈ Σac,v ∧ δH(x, σ)¬!

Intuitively, Ha is obtained by adding self-loop labeled by
σa ∈ Σac,v for each σ ∈ Σc that is originally disabled by the
supervisor. This captures the fact that σ is AE-attacked.

As shown in [1], the closed-loop system under all possible
AE-attacks with the given supervisor can be computed by
taking the parallel composition of the modified plant Ga and
the modified supervisor recognizer Ha. We denote by

GM = Ha‖Ga = (XM ,Σa, δM , x0,M)

the closed-loop system under attack.

B. Mitigation Strategy in [1] and its Limitation

In the framework of [1], all strings in L(SP /G) are
considered as desirable. That is, the normal supervisor SP
is designed to achieve the desirable specification. However,
not all strings outside of L(SP /G) are considered unsafe

4505

1 2 3

4 5

𝑎 𝑏

𝑐

𝑑

1 2 3

4 5

𝑎 𝑏

𝑐𝑎

𝑑𝑎

1 2 3

4 5

𝑎

𝑐

𝑑

𝑑
1 2 3

4 5

𝑎

𝑐𝑎

𝑑

𝑑

1 2

4 6

𝑎 𝑏

𝑐

𝑑
5

𝑏

3 𝑑 1 2

4 6

𝑎 𝑏

𝑐𝑎

𝑑
5

𝑏

3 𝑑

1 2 6
𝑎 𝑐

8
𝑎

11
𝑒

9 10
𝑒

4 7
𝑐

12
𝑎

3

5

13
𝑑

𝑑

𝑏

𝑎

𝑎
1 2 6

𝑎 𝑐

9 10
𝑒

4 7
𝑐

𝑑

𝑎

1 2 6
𝑎𝑎 𝑐

8
𝑎𝑎

11
𝑒

9 10
𝑒

4 7
𝑐

12
𝑎𝑎

3

5

13
𝑑

𝑑

𝑏𝑎

𝑎𝑎

𝑎𝑎

1 2 6
𝑎𝑎 𝑐

8
𝑎𝑎

4 7
𝑐

12
𝑎𝑎

𝑎𝑎

(a) G

1 2 3

4 5

𝑎 𝑏

𝑐

𝑑

1 2 3

4 5

𝑎 𝑏

𝑐𝑎

𝑑𝑎

1 2 3

4 5

𝑎

𝑐

𝑑

𝑑
1 2 3

4 5

𝑎

𝑐𝑎

𝑑

𝑑

1 2

4 6

𝑎 𝑏

𝑐

𝑑
5

𝑏

3 𝑑 1 2

4 6

𝑎 𝑏

𝑐𝑎

𝑑
5

𝑏

3 𝑑

1 2 6
𝑎 𝑐

8
𝑎

11
𝑒

9 10
𝑒

4 7
𝑐

12
𝑎

3

5

13
𝑑

𝑑

𝑏

𝑎

𝑎
1 2 6

𝑎 𝑐

9 10
𝑒

4 7
𝑐

𝑑

𝑎

1 2 6
𝑎𝑎 𝑐

8
𝑎𝑎

11
𝑒

9 10
𝑒

4 7
𝑐

12
𝑎𝑎

3

5

13
𝑑

𝑑

𝑏𝑎

𝑎𝑎

𝑎𝑎

1 2 6
𝑎𝑎 𝑐

8
𝑎𝑎

4 7
𝑐

12
𝑎𝑎

𝑎𝑎

(b) GM

Fig. 1: Systems for Examples 1, 2 and 3, where dashed states
denote states that are not desirable but tolerable and red states
denote unsafe states.

immediately. Specifically, Xbad ⊆ X is assumed to be the
set of unsafe states capturing states in which the plant is
physically damaged. Behavior between unsafe and desirable
is called tolerable. When the system is attacked, unsafe
states may be reachable in L(GM) (in terms of the second
component for the plant).

In order to prevent the system from reaching unsafe states,
[1] proposes an attack mitigation strategy. Specifically, the
mitigation module is assumed to be able to defend all
controllable events Σc; its observation mapping is specified
by PC : Σ∗a → Σ∗o, where PC := P ◦ C, since it cannot
distinguish between σ and σa.

Then a simple diagnoser-based mitigation strategy was
proposed by [1] as follows. First, a diagnoser is used to infer,
based on mapping PC , whether an event σa has occurred.
The mitigation module will remain silent before the attack is
detected. Once the attack is detected, the mitigation module
will defend by (possibly physically) disabling all events in
Σc for the purpose of safety. It is shown that such a strategy
can successfully prevent unsafe states when the system is
GF-safe controllable.

However, as we mentioned earlier, the mitigation strategy
in [1] as reviewed above is conservative as it follows the idea
of “start to defend only when knows attack for sure”. This
setting unnecessarily restricts the power of the mitigation
module. In some cases, it may be worthwhile taking early
actions even when the attack is just suspected. This point is
illustrated by the following example.

Example 1: Let us consider system G shown in Fig-
ure 1(a). We assume that Σc = {c, d} and Σo = {a, b, d}.
We assume that the plant is controlled by supervisor SP
that always disables event c in order to achieve desirable
specification {ab}{d}∗. Now we assume that Σv = {c, d}
are vulnerable events and unsafe state is Xbad = {6}.
Then the closed-loop system under AE-attack is shown in
Figure 1(b). The strategy in [1] cannot prevent the system
from reaching Xbad. This is because the diagnoser cannot
infer the occurrence of ca for sure as it is unobservable.
When the attack is detected by observing ad, it is already
too late as unsafe state will be reached uncontrollably via b.
Therefore, this system is not safe controllable. However, one

possible solution is to defend event c in advance when a is
observed; in the case, the mitigation module can prevent the
system from reaching unsafe state even without detecting the
attack precisely. This example is straightforward as we are
defending at the boundary for c. In the following subsection,
we will consider a more general setting where boundary
events may not be defendable.

Remark 1: (Mitigation Module v.s. Supervisor) Here we
would like to emphasize that, although both the original
supervisor and the mitigation module can disable/defend
events in Σc, their physical interpretations are different. A
normal disablement in the supervisory control framework is
usually done by sending a disable decision to actuators via
control channels which may be attacked. On the other hand,
the mitigation module may take physical actions forcing to
disable (defend) events in Σc; this is more reliable, in the
sense of non-attackable, but is also more costly in general.
This is why one need to separate the roles of the supervisor
and the mitigation module, although the latter can also be
treated as a supervisor mathematically.

C. Defendable Events

In the framework of [1], it is assumed that the mitigation
module can “disable” exactly the same set of events as
the supervisor can do, i.e., Σc are both normal controllable
events and dependable events. As we discussed earlier, the
physical meaning of disable decision issued by the mitigation
module and disable decision issued by the supervisor can
be different. Here, we consider a more general setting
by precisely distinguish between these two sets of events.
Specifically, we assume that Σd is a set of defendable events,
where we have

Σd ⊆ Σv ⊆ Σc.

That is, Σd are vulnerable in the original closed-loop system
but can be forced to be disabled (defended) possibly with
higher costs by the mitigation module. Then controllable
events are essentially partitioned into three categories in
terms of their controllability:
• Σc \ Σv: events that can be disabled directly by the

supervisor in the normal manner as they are not subject
to attack.

• Σv \ Σd: events that cannot be reliably disabled, i.e.,
for any σ ∈ Σv \Σd, σa can always be enabled by the
attacker even when σ is disabled by the supervisor.

• Σd: events that can be reliably disabled (defended) by
the mitigation module (but possibly in a more costly
manner).

Then the mitigation module is essentially a new supervisor
M that treats Ga as a new plant. 1

We illustrate our setting with the role of defendable events
by the following examples.

1One can also consider GM as a new plant; this has no essentially
difference from the synthesis point of view. Here we consider Ga as a
plant to directly synthesize the combined decision of the supervisor and the
mitigation module. Then, at each instant, one can compare the synthesized
decision and the original decision to distinguish whether a disable decision
is made by the normal supervisor or by the mitigation module.

4506

Example 2: Consider again the system in Figure 1(a) with
Σc = {c, d} and Σo = {a, b, d}. We assume that Σv = {c, d}
and Σd = {d}; hence, the previous strategy in Example 1
for depending the boundary c cannot be applied. Yet, we
can design a mitigation strategy M by defending d when
a is observed. In this case, although M does not know the
occurrence of ca for sure, it still defends d for the purpose
of safety. This strategy yields language {ab}{d}∗ ∪ {ac}.
Although ac is outside of the desirable behavior, it is still
tolerable as it does not reach Xbad. More interestingly, no
desirable behavior is sacrificed as L(SP /G) = {ab}{d}∗ ⊂
{ab}{d}∗ ∪ {aca}. This example shows that the failure of
the mitigation strategy in [1] does not necessarily imply the
non-existence of a successfully strategy that can guarantee
safety without compromising the desirable behavior.

The following example shows a more general scenario, in
which such a “non-sacrifice” solution does not exist but we
may allow the mitigation module to sacrifice some desirable
behavior in order to guarantee safety.

Example 3: Let us still consider system G shown in Fig-
ure 1(a). However, we assume Σc = {c, d} and Σo = {a, d};
note that event b is unobservable now. The plant is also
controlled by a normal supervisor SP that always disables
event c in order to achieve desirable specification {ab}{d}∗.
We assume that Σv = {c, d} and Σd = {d}. In this case,
it is not possible to avoid reaching 6 without compromising
the desirable behavior. For the purpose of safety, one can
choose to defend d when a is observed. However, since b
is unobservable, event d at state 3 is also disabled. This
strategy yields language {ab, ac}. In this case, desirable
strings abdd . . . are sacrificed to avoid reaching Xbad.

IV. A GENERAL ATTACK MITIGATION PROBLEM

With the previous discussions, we now formally formulate
the general attack mitigation problem as a tolerant control
problem under partial observation in this section.

Specifically, we consider the system under possible attacks
Ga = (X,Σa, δa, x0). In order to distinguish the desirable
behavior and the safe behavior, we define

Kdes = D(L(SP /G)) = D(L(H‖G))

as the desirable language, which is the normal language
generated by SP /G without attack. Note that we put the
dilation operator D(·) because σ and σa are the same event
in Ga when the supervisor is to be specified. Also, not
all strings outside of Kdes is considerable as unsafe; those
strings between the desired language and the unsafe language
are considered tolerable. Therefore, we define

Ktol = {s ∈ L(Ga) : ∀t ≤ s, δa(x0, t) 6∈ Xbad}

as the tolerable language. Clearly, we have Kdes ⊆ Ktol as
the normal language should not reach unsafe states.

For the sake of simplicity, we assume that the state space
of Ga is partitioned as

X = XD∪̇XT ∪̇XF

such that Kdes = {s ∈ L(Ga) : δa(x0, s) ∈ XD} and
Ktol = {s ∈ L(Ga) : δa(x0, s) /∈ XF }. Therefore, XD, XT

and XF represent, respectively, desirable states, tolerable
states and unsafe states. Note that this assumption is without
loss of generality as we can always refine the state-space of
Ga in linear-time such that the partition holds.

In our approach, since the mitigation module is to be
determined and we do not need to detect the attack precisely,
there is no need to distinguish between σ and σa. Therefore,
we simplify Ga as

G̃a = (X,Σa, δ̃a, x0)

which is obtained by only keeping the transition labeled with
σa for each pair of transitions in G̃a labeled with σ and
σa. Or equivalently, G̃a is obtained by replacing each event
σ ∈ Σv by σa in G. Then the set of controllable events for
G̃a is defined by

Σc,a = {σa : σ ∈ Σd} ∪ (Σc \ Σv)

and we denote by Γa the set of control patterns w.r.t. Σc,a.
The set of uncontrollable events in G̃a is denoted by Σuc,a.
The observation is specified by mapping PC = P ◦ C.

Our goal is to design M : PC(L(G̃a)) → Γa which can
be considered as the combined strategy of the mitigation
module and the original supervisor such that (i) the new
closed-loop system is safe; and (ii) it affects the original
closed-loop language Kdes in a least-restrictive manner. This
is formulated as the following problem.

Problem 1: (Attack Mitigation Problem) Given plant G̃a
with controllable Σc,a and observation mapping PC : Σ∗a →
Σ∗o, desirable language Kdes and tolerable language Ktol,
find a supervisor M : PC(L(G̃a))→ Γa such that
(1) L(M/G̃a) ⊆ Ktol;
(2) For any M ′ such that L(M ′/G̃a) ⊆ Ktol, we have

L(M/G̃a) ∩Kdes 6⊂ L(M ′/G̃a) ∩Kdes.

(3) For any M ′ such that L(M ′/G̃a) ⊆ Ktol and
L(M/G̃a) ∩Kdes = L(M ′/G̃a) ∩Kdes, we have

L(M ′/G̃a) 6⊂ L(M/G̃a).

The first condition in Problem 1 says that no unsafe
state should be reachable, i.e., the system should always
be within the tolerable language. The second condition says
that the system should achieve as much desirable behavior as
possible. Finally, the third requirement says that the behavior
of the system should be as restrictive as possible outside of
Kdes. Later in our solution, we will show that condition (2)
can only be achieved in a maximal manner rather than a
supremal manner. However, condition (3) can be achieved in
an infimal manner in the sense that L(M ′/G̃a) 6⊂ L(M/G̃a)
can be replaced by L(M/G̃a) ⊆ L(M ′/G̃a).

Note that, to guarantee safety, the system should not only
avoid reaching XF but also avoid reaching states that can
reaching XF uncontrollably. Therefore, we define

X+
F = {x ∈ X : ∃s ∈ (Σ \ Σc,a)∗ s.t. δ̃a(x, s) ∈ XF }

4507

as the set of extended unsafe states. To avoid the case of no
solution, we assume that the initial state x0 cannot reach XF

via uncontrollable events, i.e., x0 /∈ X+
F .

Finally, we define some operators that will be used to
solve the problem. The unobservable reach of a set of states
q ⊆ X under a set of events γ ∈ Γa is defined by

URγ(q)=

{
x∈X :

∃x′∈q,∃w∈γ∗ s.t.
x= δ̃a(x′, w) ∧ PC(w) = ε

}
.

The observable reach of a set of states q ⊆ X upon the
occurrence of event σ ∈ Σo is defined by

NXσ(q)={x∈X : ∃x′∈q s.t. x= δ̃a(x′, σ)∨x= δ̃a(x′, σa)}.

Then the extended unobservable reach of a set of states q ⊆
X under a set of events γ ∈ Γa is defined by

UR+
γ (q)= URγ(q) ∪

(
∪σ∈Σo∩C(γ)NXσ(URγ(q))

)
.

V. GENERAL SOLUTION

In this section, we provide an online solution to Problem 1.
Our approach is motivated by the standard online supervisory
control algorithm for safety only [22], [23]. However, in our
case, we need to handle both desirable behavior and tolerant
behavior.

A. Online Mitigation Strategy

The proposed online mitigation strategy is described in
Algorithm 1. The general idea is to iteratively estimate the
current state of the closed-loop system based on the decision
and observation history by using operators UR(·) and NX(·)
in an alternative manner. Specifically, we use parameter α to
track the current observation, and E(α) and Ê(α) represent,
respectively, the current-state estimate with and without the
unobservable tail. The initial setting is α = ε since no event
is observed and Ê(α) = {x0} which is the initial state. Once
a new control decision γ is issued, Ê(α) is updated to E(α) =
URγ(Ê(α)), and once a new event σ is observed, Ê(α) is
updated to Ê(α) = NXσ(Ê(α)).

Algorithm 1: Online Mitigation M
Input: AE-attacked model Ga = (X,Σa, δa, x0)

with Σuc,a, observation mapping PC
Output: control decision γ at each instant

1 α← ε ;
2 Ê(α)← {x0};
3 γ ← CHOOSEACTION(Ê(α));
4 defense by disabling events not in γ;
5 E(α)← URγ(Ê(α));
6 while new event σ ∈ Σo is observed do
7 α← ασ;
8 Ê(α)← NXσ(Ê(α));
9 γ ←CHOOSEACTION(Ê(α));

10 defense by disabling events not in γ;
11 E(α)← URγ(Ê(α));

The key of Algorithm 1, which is also the main part
different from the previous supervisory control algorithm,
is how to choose a control decision γ at each instant
based on the state estimate Ê(α); this part is done by
procedure CHOOSEACTION(·). To describe the functionality
of CHOOSEACTION(·), for each state estimate Ê(α) ∈ 2X ,
we define Γdesγ (Ê(α)) as the set of events that are feasible
in XD via Ê(α) under γ, i.e.,

Γdesγ (q) =

{
σ ∈ Σa :

∃x∈Ê(α), sσ∈γ∗ s.t.
δ̃a(x, sσ)∈XD ∧ PC(s) = ε

}
Similarly, we define

Γγ(Ê(α)) =

{
σ ∈ Σa :

∃x∈Ê(α), sσ∈γ∗ s.t.
δ̃a(x, sσ)! ∧ PC(s) = ε

}
as the set of events that are feasible within its unobservable
reach. Then CHOOSEACTION(Ê(α)) essentially returns a
control decision γ ∈ Γa satisfying the following properties:

(i) UR+
γ (Ê(α)) ∩X+

F = ∅;
(ii) For any γ′ such that UR+

γ′(Ê(α)) ∩X+
F = ∅, we have

Γdesγ (Ê(α)) 6⊂ Γdesγ′ (Ê(α)).

(iii) For any γ′ such that UR+
γ′(Ê(α)) ∩ X+

F = ∅ and
Γdesγ (Ê(α)) = Γdesγ′ (Ê(α)), we have

Γγ(Ê(α)) ⊆ Γγ′(Ê(α)).

Therefore, CHOOSEACTION(Ê(α)) essentially search for a
control decision γ in a greedy manner such that (i) no unsafe
state can be reached within its extended unobservable reach;
and (ii) no safe decision can activate more feasible events
than γ in the desirable language; and (iii) γ is the smallest
set within those safe decisions activating same feasible events
in the desirable language as γ. Note that such a decision γ
may not be unique as decisions are compared in terms of set
inclusion. To find such a γ, one direct approach is to perform
a brute force search to test whether each γ ∈ Γa satisfies
the above three properties. Such a search take exponential
time in the number of controllable events. Here we provide
a more efficient approach to find such a decision γ, which
is specified in Algorithm 2.

The basic idea for finding γ is to “add-and-test”. We start
to grow γ from the set of uncontrollable events by incremen-
tally adding new controllable events in it. Specifically, we use
set EventList to denote the set of potential events to be
added. At each instant, we pick its ith event EventList[i]
in the list to test whether it can be added and then take one
of the following three actions:
• Delete the event from the list: this situation is captured

by lines 6 and 7, which happens when adding the event
may lead to unsafe states;

• Add the event to the control decision: this situation is
captured by lines 9-11, which happens when adding the
event is safe and it indeed introduces a new desirable
behavior;

• Skip the event currently: this situation happens when
adding an event is safe but do not introduce anything

4508

desirable: either it is not feasible or it only introduces
tolerable but not desirable strings. Note that we just skip
the event rather than deleting it because it may become
useful when some other events are added. This case is
captured by line 14 in which we only add the counter.

Note that, once a new event is added, the counter i is reset to
0 in line 12. However, the counter increases when the event
is skipped. The while-loop terminates when all events are
added or the counter achieves the cardinality of the event
list. The latter means that we have tested all events in the
current list and nothing can be added anymore.

Algorithm 2: CHOOSEACTION

Input: estimate Ê(α), controllable events Σa,c and
attacked system G̃a = (X,Σa, δ̃a, x0)

Output: control action γ
1 γ ← Σuc,a;
2 i← 0;
3 EventList← Σa,c;
4 while EventList 6= ∅ and i < |EventList| do
5 σ ← EventList[i];
6 if UR+

γ∪{σ}(Ê(α)) ∩X+
F 6= ∅ then

7 EventList← EventList \ {σ};
8 else
9 if ∃x ∈ URγ(Ê(α)) : δ(x, σ) ∈ XD then

10 γ ← γ ∪ {σ};
11 EventList← EventList \ {σ};
12 i← 0;

13 else
14 i← i+ 1

B. Correctness Proof and Complexity Analysis

Now we formally prove the correctness of Algorithms 1.
Hereafter, M is always denoted as the supervisor (mitigation
strategy) synthesized by Algorithm 1.

First, we show that the synthesized supervisor M is safe.
Lemma 1: L(M/G̃a) ⊆ Ktol.
Second, we show that M achieves tolerable but not

desirable behavior in the most restrictive manner.
Lemma 2: For any M ′ such that L(M ′/G̃a) ⊆ Ktol

and L(M ′/G̃a) ∩ Kdes = L(M ′/G̃a) ∩ Kdes, we have
L(M/G̃a) ⊆ L(M ′/G̃a).

Finally, we show that M achieves the desirable behavior
in the least restrictive manner.

Lemma 3: For any M ′ such that L(M/G̃a) ⊆ Ktol, we
have L(M/G̃a) ∩Kdes 6⊂ L(M ′/G̃a) ∩Kdes.

Based on the above three lemmas, we obtain the following
theorem.

Theorem 1: Algorithm 1 correctly solve Problem 1.
Remark 2: Based on our solution, one can see that re-

quirement (3) in Problem 1 can actually be replaced by
L(M/G̃a) ⊆ L(M ′/G̃a). That is, tolerable but non-desirable

1 2 3

4 5

𝑎 𝑏

𝑐

𝑑

1 2 3

4 5

𝑎 𝑏

𝑐𝑎

𝑑𝑎

1 2 3

4 5

𝑎

𝑐

𝑑

𝑑
1 2 3

4 5

𝑎

𝑐𝑎

𝑑

𝑑

1 2

4 6

𝑎 𝑏

𝑐

𝑑
5

𝑏

3 𝑑 1 2

4 6

𝑎 𝑏

𝑐𝑎

𝑑
5

𝑏

3 𝑑

1 2 6
𝑎 𝑐

8
𝑎

11
𝑒

9 10
𝑒

4 7
𝑐

12
𝑎

3

5

13
𝑑

𝑑

𝑏

𝑎

𝑎
1 2 6

𝑎 𝑐

9 10
𝑒

4 7
𝑐

𝑑

𝑎

1 2 6
𝑎𝑎 𝑐

8
𝑎𝑎

11
𝑒

9 10
𝑒

4 7
𝑐

12
𝑎𝑎

3

5

13
𝑑𝑎

𝑑𝑎

𝑏𝑎

𝑎𝑎

𝑎𝑎

1 2 6
𝑎𝑎 𝑐

8
𝑎𝑎

4 7
𝑐

12
𝑎𝑎

𝑎𝑎

(a) G

1 2 3

4 5

𝑎 𝑏

𝑐

𝑑

1 2 3

4 5

𝑎 𝑏

𝑐𝑎

𝑑𝑎

1 2 3

4 5

𝑎

𝑐

𝑑

𝑑
1 2 3

4 5

𝑎

𝑐𝑎

𝑑

𝑑

1 2

4 6

𝑎 𝑏

𝑐

𝑑
5

𝑏

3 𝑑 1 2

4 6

𝑎 𝑏

𝑐𝑎

𝑑
5

𝑏

3 𝑑

1 2 6
𝑎 𝑐

8
𝑎

11
𝑒

9 10
𝑒

4 7
𝑐

12
𝑎

3

5

13
𝑑

𝑑

𝑏

𝑎

𝑎
1 2 6

𝑎 𝑐

9 10
𝑒

4 7
𝑐

𝑑

𝑎

1 2 6
𝑎𝑎 𝑐

8
𝑎𝑎

11
𝑒

9 10
𝑒

4 7
𝑐

12
𝑎𝑎

3

5

13
𝑑𝑎

𝑑𝑎

𝑏𝑎

𝑎𝑎

𝑎𝑎

1 2 6
𝑎𝑎 𝑐

8
𝑎𝑎

4 7
𝑐

12
𝑎𝑎

𝑎𝑎

(b) SP /G

1 2 3

4 5

𝑎 𝑏

𝑐

𝑑

1 2 3

4 5

𝑎 𝑏

𝑐𝑎

𝑑𝑎

1 2 3

4 5

𝑎

𝑐

𝑑

𝑑
1 2 3

4 5

𝑎

𝑐𝑎

𝑑

𝑑

1 2

4 6

𝑎 𝑏

𝑐

𝑑
5

𝑏

3 𝑑 1 2

4 6

𝑎 𝑏

𝑐𝑎

𝑑
5

𝑏

3 𝑑

1 2 6
𝑎 𝑐

8
𝑎

11
𝑒

9 10
𝑒

4 7
𝑐

12
𝑎

3

5

13
𝑑

𝑑

𝑏

𝑎

𝑎
1 2 6

𝑎 𝑐

9 10
𝑒

4 7
𝑐

𝑑

𝑎

1 2 6
𝑎𝑎 𝑐

8
𝑎𝑎

11
𝑒

9 10
𝑒

4 7
𝑐

12
𝑎𝑎

3

5

13
𝑑

𝑑

𝑏𝑎

𝑎𝑎

𝑎𝑎

1 2 6
𝑎𝑎 𝑐

8
𝑎𝑎

4 7
𝑐

12
𝑎𝑎

𝑎𝑎

(c) G̃a

1 2 3

4 5

𝑎 𝑏

𝑐

𝑑

1 2 3

4 5

𝑎 𝑏

𝑐𝑎

𝑑𝑎

1 2 3

4 5

𝑎

𝑐

𝑑

𝑑
1 2 3

4 5

𝑎

𝑐𝑎

𝑑

𝑑

1 2

4 6

𝑎 𝑏

𝑐

𝑑
5

𝑏

3 𝑑 1 2

4 6

𝑎 𝑏

𝑐𝑎

𝑑
5

𝑏

3 𝑑

1 2 6
𝑎 𝑐

8
𝑎

11
𝑒

9 10
𝑒

4 7
𝑐

12
𝑎

3

5

13
𝑑

𝑑

𝑏

𝑎

𝑎
1 2 6

𝑎 𝑐

9 10
𝑒

4 7
𝑐

𝑑

𝑎

1 2 6
𝑎𝑎 𝑐

8
𝑎𝑎

11
𝑒

9 10
𝑒

4 7
𝑐

12
𝑎𝑎

3

5

13
𝑑𝑎

𝑑𝑎

𝑏𝑎

𝑎𝑎

𝑎𝑎

1 2 6
𝑎𝑎 𝑐

8
𝑎𝑎

4 7
𝑐

12
𝑎𝑎

𝑎𝑎

(d) M/G̃a

Fig. 2: Examples for the online mitigation algorithm.

behavior can be achieved in an infimal manner. Howev-
er, requirement (2) in Problem 1 cannot be replaced by
L(M ′/G̃a) ∩ Kdes ⊆ L(M/G̃a) ∩ Kdes since there may
exist different incomparable but local maximal solutions. By
using different event orders for EventList, one may obtain
different solutions.

C. Illustrative Example

Finally, we explain the proposed mitigation strategy by an
illustrative example.

Example 4: Let us consider system G shown in Fig-
ure 2(a) with Σc = {a, b, d, e} and Σo = {c}. Suppose
that the system is originally controlled by SP to achieve the
desirable specification L(SP /G) = {acde, aac} and SP /G
is shown as Fig. 2(b). Specifically, the supervisor disables
event b initially and disables event a after observing c.

Now we assume that the vulnerable events set is Σv =
{a, b}, defendable events set is Σd = {b} and Xbad =
{5, 13} is the set of unsafe states. Clearly, under AE-attack,
both unsafe state 5 and 13 can be reached. Furthermore, the

4509

strategy in [1] cannot prevent unsafe states.
To apply our online mitigation strategy, first, we construct

DFA G̃a shown in Figure 2(c) with Σc,a = {ba, d, e}.
Note that the state space of G̃a is already partitioned as
XD = {1, 2, 4, 6, 7, 9, 10}, XT = {3, 8, 11, 12} and XF =
{5, 13}. Note that since state 3 can reach unsafe state 5 via
uncontrollable event aa, we have X+

F = {3, 5, 13}. Now we
construct the mitigation strategy M using Algorithm 1. To
start, we have α = ε and Ê(α) = {1}. We call procedure
CHOOSEACTION({1}) as detailed in Algorithm 2. Initially,
we have γ ← {c, aa} and we assume events in EventList
are order by [ba, d, e] First, we test whether or not event ba

can be added to γ. However, by doing so, state 3 which
is in X+

F will be reached; therefore, we delete it. Then we
test events d and e in order and both events are not feasible
within the unobservable reach. Therefore, we skip both and
return M(ε) = {c, aa}, i.e., the mitigation module needs to
defend event b initially. Next, when event c is observed, we
have α = c and Ê(α) = {6, 7}. Again, we call procedure
CHOOSEACTION({6, 7}) to compute the current decision.
First, we check event ba, which is not feasible, and we skip
it. Then by adding event d, states 13 will be reached and
we delete d. For event e, although it is feasible from state
8, which is in the unobservable reach of Ê(α) = {6, 7},
it is not feasible in XD. Therefore, event e also needs to
be skipped because it does not contributes to the desirable
behavior although it is safe. Then we obtain the returned
decision M(c) = {c, aa}. The overall closed-loop system
under the mitigate strategy M is shown in Figure 2(d). The
closed-loop system sacrifices two desirable strings acd and
acde, reaches two tolerable but not desirable states 8 and 12,
but successfully avoids reaching unsafe states.

VI. CONCLUSION

In this paper, we considered the attack mitigation problem
for a supervisory control system. Our contributions are sum-
marized as follows. First, we introduced a general framework
for attack mitigation that precisely distinguishes between
controllable events and defendable events. Second, we for-
mulated the attack mitigation problem as a tolerant control
problem under partial-observation that aims to maximize
the desirable behavior while minimizing tolerable but non-
desirable behavior. The new formulation is more general and
practical because the previous mitigation problem can easily
be unsolvable. Finally, we provided an online solution to the
attack mitigation problem. Our solution also generalizes the
existing tolerant control problem from the full observation
setting to the partial observation setting. Throughout this
paper, we consider actuator enablement attack to state our
result. In fact, our mitigation framework and solution strategy
is generic and can also to applied to other types of attacks.

REFERENCES

[1] L. Carvalho, Y.-C. Wu, R. Kwong, and S. Lafortune, “Detection
and mitigation of classes of attacks in supervisory control systems,”
Automatica, vol. 97, pp. 121–133, 2018.

[2] R. Meira-Góes, E. Kang, R. Kwong, and S. Lafortune, “Stealthy
deception attacks for cyber-physical systems,” in IEEE Conference
on Decision and Control (CDC), 2017, pp. 4224–4230.

[3] R. Meira-Góes, R. Kwong, and S. Lafortune, “Synthesis of sensor
deception attacks for systems modeled as probabilistic automata,” in
American Control Conference (ACC), 2019, pp. 5620–5626.

[4] R. Meira-Góes, H. Marchand, and S. Lafortune, “Towards resilient
supervisors against sensor deception attacks,” in IEEE Conference on
Decision and Control (CDC), 2019, pp. 5144–5149.

[5] P. Lima, L. Carvalho, and M. Moreira, “Detectable and undetectable
network attack security of cyber-physical systems,” in International
Workshop on Discrete Event Systems (WODES), 2018, pp. 179–185.

[6] R. Fritz, P. Schwarz, and P. Zhang, “Modeling of cyber attacks and
a time guard detection for ICS based on discrete event systems,” in
European Control Conference (ECC), 2019, pp. 4368–4373.

[7] R. Fritz and P. Zhang, “Modeling and detection of cyber attacks on
discrete event systems,” in International Workshop on Discrete Event
Systems (WODE), 2018, pp. 285–290.

[8] R. Su, “Supervisor synthesis to thwart cyber attack with bounded
sensor reading alterations,” Automatica, vol. 94, pp. 35–44, 2018.

[9] Y. Zhu, L. Lin, and R. Su, “Supervisor obfuscation against actuator
enablement attack,” in European Control Conference (ECC), 2019, pp.
1760–1765.

[10] L. Lin, Y. Zhu, and R. Su, “Towards bounded synthesis of resilient
supervisors against actuator attacks,” in IEEE Conference on Decision
and Control (CDC), 2019, pp. 7659–7664.

[11] L. Lin, S. Thuijsman, Y. Zhu, S. Ware, R. Su, and M. Reniers,
“Synthesis of supremal successful normal actuator attackers on normal
supervisors,” in American Control Conference (ACC), 2019, pp. 5614–
5619.

[12] Q. Zhang, Z. Li, C. Seatzu, and A. Giua, “Stealthy attacks for partially-
observed discrete event systems,” in IEEE Conference on Emerging
Technologies and Factory Automation (ETFA), 2018, pp. 1161–1164.

[13] C. Gao, C. Seatzu, Z. Li, and A. Giua, “Multiple attacks detection
on discrete event systems,” in IEEE Conference on Systems, Man and
Cybernetics (SMC), 2019, pp. 2352–2357.

[14] M. Wakaiki, P. Tabuada, and J. Hespanha, “Supervisory control of
discrete-event systems under attacks,” Dynamic Games and Applica-
tions, vol. 9, no. 4, pp. 965–983, 2019.

[15] Y. Wang and M. Pajic, “Supervisory control of discrete event systems
in the presence of sensor and actuator attacks,” in IEEE Conference
on Decision and Control (CDC), 2019, pp. 5350–5355.

[16] A. Khoumsi, “Sensor and actuator attacks of cyber-physical systems:
A study based on supervisory control of discrete event systems,” in
International Conference on Systems and Control (ICSC), 2019, pp.
176–182.

[17] A. Rashidinejad, B. Wetzels, M. Reniers, L. Lin, Y. Zhu, and R. Su,
“Supervisory control of discrete-event systems under attacks: an
overview and outlook,” in European Control Conference (ECC), 2019,
pp. 1732–1739.

[18] D. Thorsley and D. Teneketzis, “Intrusion detection in controlled
discrete event systems,” in IEEE Conference on Decision and Control
(CDC), 2006, pp. 6047–6054.

[19] Y. Wang and M. Pajic, “Attack-resilient supervisory control of discrete-
event systems,” in IEEE Conference on Decision and Control (CDC),
2019, pp. 2015–2020.

[20] A. Paoli and S. Lafortune, “Safe diagnosability for fault-tolerant
supervision of discrete-event systems,” Automatica, vol. 41, no. 8, pp.
1335–1347, 2005.

[21] S. Lafortune and F. Lin, “On tolerable and desirable behaviors in su-
pervisory control of discrete event systems,” Discrete Event Dynamic
Systems, vol. 1, no. 1, pp. 61–92, 1991.

[22] N. Hadj-Alouane, S. Lafortune, and F. Lin, “Centralized and distribut-
ed algorithms for on-line synthesis of maximal control policies under
partial observation,” Discrete Event Dynamic Systems, vol. 6, no. 4,
pp. 379–427, 1996.

[23] X. Yin and S. Lafortune, “A uniform approach for synthesizing
property-enforcing supervisors for partially-observed discrete-event
systems,” IEEE Transactions on Automatic Control, vol. 61, no. 8,
pp. 2140–2154, 2016.

[24] ——, “Synthesis of maximally permissive supervisors for partially-
observed discrete-event systems,” IEEE Transactions on Automatic
Control, vol. 61, no. 5, pp. 1239–1254, 2016.

[25] ——, “Synthesis of maximally-permissive supervisors for the range
control problem,” IEEE Transactions on Automatic Control, vol. 62,
no. 8, pp. 3914–3929, 2017.

[26] C. Cassandras and S. Lafortune, Introduction to Discrete Event Sys-
tems, 2nd ed. Springer, 2008.

4510

