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Abstract— This paper studies the marking diagnosis problem
in labeled Petri nets, i.e., to determine whether a plant has
reached a given set of faulty markings or not in the past, from
the observation history. We observe that the conventional basis
reachability graphs cannot be used for marking diagnosis due
to the existence of partially faulty basis markings. To overcome
such a problem, we propose a notion called the diagnostic
basis partition such that the corresponding basis reachability
graphs does not contain any partially-faulty basis markings.
By properly selecting a set of explicit transitions, a diagnostic
agent is synthesized to perform the online diagnosis.

I. INTRODUCTION

Fault diagnosis [1] in discrete event systems (DESs) has
drawn considerable attention over the past decades. The aim
of fault diagnosis is to determine whether some particular
events called faults have occurred or not according to the
observation history. In recent years, abundant results on fault
diagnosis in Petri nets have been achieved [2], [3], [4], [5].
In particular, in [6], an automaton-like structure called the
basis reachability graph was developed for diagnosis with
the assumption that the unobservable subnet is acyclic.

The works in the literature consider faults as the occur-
rence of certain events (in automata) and the firings of tran-
sitions (in Petri nets). On the other hand, in many practical
situations, an operator of a plant may be not interested in
tracking the occurrence of events in the system but wants
to determine if the plant has reached some certain states
(i.e., markings) in the past. For example, in an automated
production line, when the content in a buffer exceeds a
threshold, an alarm is expected to be issued in a finite
number of future steps such that some actions of maintenance
are properly taken. This motivates the problem of marking
diagnosis. In plain words, the goal of marking diagnosis is
to determine if the plant has reached a given set of markings
of physical importance, namely faulty markings, according
to the observation history.

Event-based and state-based diagnosis are equivalent in
automaton models [7]. However, in Petri nets, methods
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for transition-based fault diagnosis are not applicable for
marking diagnosis. The fact that the firing of a transition
at one marking yields a faulty marking does not necessary
mean that the firing of such a transition at any marking
always leads to a faulty marking. Therefore, one cannot
simply convert the marking diagnosis problem to a transition
diagnosis problem based on the original net. Hence, for
Petri nets, it is desirable to investigate the marking diagnosis
problem in a more efficient way using structural analysis
techniques.

In this paper, we investigate the marking diagnosis prob-
lem in plants modeled by labelled Petri nets. To efficiently
perform marking diagnosis without constructing the entire
reachability graph, we develop a method based on the basis
reachability graphs (BRGs), which have been proved to be
an efficient tool for abstracting the state space of a Petri
net [6], [8], [9], [10], [11], [12]. However, the conventional
BRG-based methods designed for transition diagnosis cannot
be used for marking diagnosis due to the existence of
partially-faulty basis markings (which will be defined in
Section III). To overcome such a problem, we propose a
notion called the diagnostic basis partition such that the
corresponding BRG, called the diagnostic BRG, does not
contain any partially-faulty basis markings. We then develop
a structure called the marking basis diagnoser for marking
diagnosis. Since the number of basis markings is generally
much smaller than the number of reachable markings, the
proposed method for marking diagnosability verification in
LPNs is of efficiency.

The rest of this paper is organized as follows. Basic
notions of Petri nets and BRGs are recalled in Section II.
The marking diagnosis problem is formulated in Section III.
In Section IV, some useful notions for marking diagnosis
in the BRGs are introduced. In Section V, diagnostic basis
partition and diagnostic BRGs are defined, and a method
for marking diagnosis using basis diagnoser is developed.
Section IV draws the conclusion.

II. PRELIMINARIES

A. Petri Nets

A Petri net is a four-tuple N = (P, T, Pre, Post), where
P is a set of m places represented by circles; T is a set of
n transitions represented by bars; Pre : P × T → N and
Post : P×T → N are the pre- and post-incidence functions,
respectively, specifying the arcs in the net and can also be
represented as matrices in Nm×n (here N = {0, 1, 2, . . .}).
The incidence matrix of a net is defined by C = Post −
Pre ∈ Zm×n (here Z = {0,±1,±2, . . .}).
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A marking is a function M : P → N that assigns each
place of a Petri net a non-negative integer number of tokens,
represented by black dots; a marking can also be represented
as an m-component vector. We denote by M(p) the number
of tokens in place p at marking M . A marked net G =
〈N,M0〉 is a net N with an initial marking M0. Marking
[x1, . . . , xm]T is also denoted as x1p1 + · · ·+ xmpm.

A transition t is enabled at a marking M if M ≥ Pre(·, t).
If t is enabled at M , then it may fire and reach a new marking
M ′ = M + C(·, t). We write M [t〉 and M [t〉M ′ to denote,
respectively, that transition t is enabled at M and its firing
yields M ′. We denote by T ∗ the set of all finite sequences of
transitions over T . Then, M [σ〉M ′ analogously denotes that
a sequence σ = t1t2 . . . tk ∈ T ∗ is enabled (sequentially) at
M and its firing finally yields M ′. In this case we say that
M ′ is reachable from M . We denote by R(N,M0) the set
of all markings reachable from the initial marking M0. The
language of 〈N,M0〉 is defined as L(N,M0) = {σ ∈ T ∗ |
M0[σ〉}. For any sequence σ ∈ T ∗, yσ denotes its firing
vector, i.e., yσ(t) = k if transition t occurs k times in σ.

Given a sequence σ ∈ T ∗, the prefix-closure of σ is
defined as Pr(σ) = {σ′ ∈ T ∗ | (∃σ′′ ∈ T ∗)σ = σ′σ′′}.

Given a Petri net N = (P, T, Pre, Post), net N̂ =
(P̂ , T̂ , P̂ re, P̂ ost) is a subnet of N if P̂ ⊆ P , T̂ ⊆ T ,
and P̂ re, P̂ ost are the restriction of Pre, Post to P̂ × T̂ ,
respectively (i.e., only rows and columns associated with P̂
and T̂ are kept). In particular, N̂ is called the T̂ -induced
subnet if N̂ = (P, T̂ , P̂ re, P̂ ost).

B. Labeled Petri Nets
A labeled Petri net (LPN) is a 4-tuple G = (N,M0, E, `),

where 〈N,M0〉 is a marked net, E is the alphabet (a set of
labels), and ` : T → E ∪ {ε} is the labeling function that
assigns each transition t ∈ T either a symbol from E or
the silent label ε. This naturally leads to a partition of the
transition set as T = To∪̇Tuo, where To = {t ∈ T | `(t) ∈
E} is the set of observable transitions and Tuo = T \ To =
{t ∈ T | `(t) = ε} is the set of unobservable transitions.

The labeling function can be extended to ` : T ∗ → E∗

recursively by: (i) `(ε) = ε; and (ii) `(σt) = `(σ)`(t) with
σ ∈ T ∗ and t ∈ T . The inverse projection of an observation
w ∈ E∗ with respect to G = (N,M0, E, `) is defined as:
`−1(w) = {σ ∈ L(N,M0) | `(σ) = w}. The language of an
LPN G = (N,M0, E, `) is defined as L(G) = {`(σ) | σ ∈
L(N,M0)}. The set of consistent markings of an observation
w ∈ L(G) is defined as C(w) = {M ∈ R(N,M0) | (∃σ :
`(σ) = w) M0[σ〉M}.
C. Basis Reachability Graph

Definition 1: [8] Given a Petri net N =
(P, T, Pre, Post), a pair π = (TE , TI) is called a
basis partition of T if (1) TI ⊆ T , TE = T \ TI ; and (2)
the TI -induced subnet is acyclic. The sets TE and TI are
called the set of explicit transitions and the set of implicit
transitions, respectively. �

Definition 2: Given a Petri net N = (P, T, Pre, Post), a
basis partition π = (TE , TI), a marking M , and a transition
t ∈ TE , we define:

• Σ(M, t) = {σ ∈ T ∗I |M [σ〉M ′,M ′ ≥ Pre(·, t)} as the
set of explanations of transition t at marking M ;

• Y (M, t) = {yσ ∈ N|T | | σ ∈ Σ(M, t)} as the set of
explanation vectors of transition t at marking M ;

• Ymin(M, t) denotes the set of all minimal elements of
Y (M, t), i.e., the minimal explanation vectors.

�
Definition 3: Given a Petri net N = (P, T, Pre, Post)

with an initial marking M0 and a basis partition π =
(TE , TI), its set of basis markings M is defined as follows:
• M0 ∈M;
• If M ∈M, then ∀t ∈ TE , ∀y ∈ Ymin(M, t),

(M ′ = M + C · y + C(·, t))⇒ (M ′ ∈M).

The basis reachability graph (BRG) is a non-deterministic
finite state automaton B output by an algorithm presented in
[8]. The BRG B is a quadruple (M, T rB ,∆B ,M0), where:
• the state set M is the set of basis markings;
• the event set TrB is the set of pairs (t,y) ∈ TE×N|T |;
• the transition relation ∆B is:

∆B = {(M, (t,y),M ′) | y ∈ Ymin(M, t),

t ∈ TE ,M ′ = M + C · y + C(·, t)}
• initial marking M0 ∈M is the initial state.

�
For the convenience of presentation, in the sequel of

this paper, we use φ = (ti1 ,yi1)(ti2 ,yi2) · · · (tin ,yin) to
denote a sequence of labels of arcs in a BRG, i.e., a path
Mb,1 →Mb,2 → · · · →Mb,n, where the arcs on this path are
sequentially labeled by (ti1 ,yi1), (ti2 ,yi2), · · · , (tin ,yin).
Let `(φ) = `(ti1ti2 · · · tin) and φ↑TE

= (ti1ti2 · · · tin)↑TE

(↑ is the natural projection operator).
Definition 4: [8] Given a net G = 〈N,M0〉 with π =

(TE , TI), the implicit reach of a marking M is a set of
markings: RI(M) = {M ′ |M [σ〉M ′, σ ∈ T ∗I }. �

Proposition 1: [8] Given a Petri net N =
(P, T, Pre, Post), let B = (M, T r,∆,M0) be the
BRG with respect to π = (TE , TI). The following two
statements are equivalent:

1) there exist a marking M and a firing sequence in the
form of σ = σ1ti1 · · ·σntinσn+1, where σj ∈ T ∗I ,
tij ∈ TE for all j ∈ {1, . . . , n+1}, such that M0[σ〉M ;

2) there is a following path in the BRG B

M0

(ti1 ,y1)−−−−−→Mb,1

(ti2 ,y2)−−−−−→ · · · (tin ,yn)−−−−−→Mb,n

such that M ∈ RI(Mb,n);

III. MARKING DIAGNOSABILITY PROBLEM
FORMULATION AND BASIS REACHABILITY GRAPHS

The goal of marking diagnosis is to determine if the plant
has reached a given set of markings of physical importance,
namely faulty markings F ⊆ N|P |, according to the obser-
vation history. As we have mentioned in the introductory
section, the fact that the firing of a transition at one marking
yields a faulty marking does not necessary mean that the
firing of such a transition at any marking always leads to a
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faulty marking. Therefore, one cannot simply transform the
marking diagnosis problem to a transition diagnosis problem
by manipulating the original net. Such a transformation is
only possible if the entire reachability graph of the system
is constructed (which is quite exhaustive) and being treated
as an automaton.

To simplify the presentation, in the sequel of this paper,
we assume that a plant LPN G = (N,M0, E, `) with N =
(P, T, Pre, Post) satisfies the following assumptions that are
widely used in the literatures of fault diagnosis [6], [13], [10]:
• A1: G is deadlock-free;
• A2: G is bounded;
• A3: the Tuo-induced subnet is acyclic;

A. Marking Diagnosability Problem Formulation

In this paper, the set of faulty markings F we consider
are defined by a generalized mutual exclusion constraint
(GMEC).

Definition 5: [14] A generalized mutual exclusion con-
straint is a pair (w, k), where w ∈ Zm and k ∈ Z, that
defines a set of markings:

L(w,k) = {M ∈ Nm | wT ·M ≤ k}.

The token count of GMEC (w, k) at a marking M is defined
as the quantity of wT ·M . �

Definition 6: Given an LPN G = (N,M0, E, `) and a set
of faulty markings F ⊆ N|P |, we define the fault language
of a marking M with respect to F as LM,F :

LM,F = {σ ∈ L(N,M) | ∃σ̄ ∈ Pr(σ),M [σ̄〉M ′ ∈ F}.

�
In plain words, fault language of LM,F consists of all such

sequences σ’s that have at least one prefix that reaches set F .
Note that this definition does not mean that the final marking
reached by the firing σ ∈ LM,F is in F .

Similar to the set-ups of transition-based diagnosis, in the
marking diagnosis, a diagnostic agent that runs in parallel
with the plant and reports if the plant has reached some mark-
ing in F in the past. A diagnostic agent can be considered
as a function A : L(G) → {0, 1, 2}. Given an observation
w ∈ L(G), the corresponding diagnostic state A(w) is in
either of the following three cases:

1) A(w) = 0: the plant must have not passed any faulty
markings, i.e., `−1(w) ∩ LM0,F = ∅;

2) A(w) = 1: the plant may have or have not passed
some faulty marking, i.e., `−1(w) ∩ LM0,F 6= ∅ and
`−1(w) ∩ (L(G) \ LM0,F ) 6= ∅;

3) A(w) = 2: the plant must have passed some faulty
markings, i.e., `−1(w) ⊆ LM0,F ;

Notice that given an observation w ∈ L(G), to determine
the value of A(w) it is sufficient to determine if `−1(w) ∩
LM0,F = ∅ and if `−1(w) ⊆ LM0,F . Now we can introduce
the problem of marking diagnosis in LPNs as the following.

Problem 1 (Marking Diagnosis): Given a plant LPN G =
(N,E, `,M0) with N = (P, T, Pre, Post), a set of faulty
markings F = L(w,k), and an observation w ∈ L(G),

determine (1) if `−1(w) ∩ LM0,F = ∅, and (2) if `−1(w) ⊆
LM0,F . �
Note the aim of marking diagnosis is not to determine if the
plant is currently at a faulty marking but to determine if the
plant was at a fault marking some time ago.

Before we proceed, let us briefly recall the result on
marking estimations using BRGs.

Definition 7: Given an LPN G = (N,M0, E, `) with
N = (P, T, Pre, Post), let B = (M, T r,∆,M0) be the
BRG with respect to π = (TE , TI). The set of consistent
basis markings of an observation w ∈ L(G), denoted as
M(w), is the set of basis markings Mi’s such that there
exists a path φ from M0 to Mi in the BRG such that
`(φ) = w. �

Proposition 2: [15] Given an LPN G = (N,M0, E, `)
with N = (P, T, Pre, Post), let the BRG with respect to
π = (To, Tuo) be B = (M, T r,∆,M0). For an observation
w ∈ L(G), it holds:

C(w) =
⋃

Mb∈M(w)

Ruo(Mb)

=
⋃

Mb∈M(w)

{M |M = Mb + Cuo · y}
(1)

where Cuo is the incidence matrix of the unobservable
subnet.

IV. ENCODING THE INFORMATION OF FAULTS INTO
BRGS

In this section we show that the conventional BRGs cannot
be used for marking diagnosis. To see this, the following
definition is useful.

Definition 8: Given an LPN G = (N,M0, E, `), a BRG
B = (M,Tr,∆,M0) with respect to TE = To, and a set of
faulty markings F = L(w,k):
• the set of faulty basis markings is defined as: F =
{Mb ∈M | Ruo(Mb) ⊆ F};

• the set of partially-faulty basis markings is defined as:
P = {Mb ∈M | Ruo(Mb) * F ∧Ruo(Mb) ∩ F 6= ∅};

• a basis marking Mb ∈M\(F∪P) is called a non-faulty
basis marking.

In short words, a basis marking is faulty (Mb ∈ F) if all
markings in its unobservable reach belong to F , and a basis
marking is partially- faulty (Mb ∈ P) if not all but at
least one marking in its unobservable reach belongs to F .
Both sets F and P can be computed using the following
proposition.

Proposition 3: Given an LPN G = (N,M0, E, `), a BRG
B = (M, T r,∆,M0) with respect to π = (To, Tuo), and a
set of faulty markings F = L(w,k),

1) a basis marking Mb ∈ F if and only if the following
integer linear constraint Eq. (2) is not feasible:

Mb + Cuo · y ≥ 0

wT · (Mb + Cuo · y) ≥ k + 1

y ≥ 0.

(2)
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(t5, 0)

t4(ε)

(b)

Fig. 1: The LPNs used in Example 1.

2) a basis marking Mb ∈ P if and only if integer
constraint Eq. (2) is feasible and the following integer
constraint Eq. (3) is also feasible:

Mb + Cuo · y′ ≥ 0

wT · (Mb + Cuo · y′) ≤ k
y′ ≥ 0.

(3)

Proof: The acyclicity of the unobservable subnet en-
sures that the state equation gives a sufficient and necessary
condition for reachability. On one hand, a basis marking
Mb ∈ F if and only if Eq. (2) is not feasible, i.e., there
is no marking M ∈ Ruo(Mb) such that M /∈ F . On the
other hand, Mb ∈ P if and only if Eqs. (2) and (3) are both
feasible, i.e., there exists two markings M,M ′ ∈ Ruo(Mb)
such that M ∈ F and M ′ /∈ F . �

One may intuitively conjecture that marking diagnosis can
be done by inspecting if the consistent paths in the BRG
passes faulty and/or partially-faulty basis markings, which
is proved to be an efficient technique for transition-based
diagnosis. Precisely speaking, given an observation w, one
may think that:

1) “A(w) = 1 if there exists a consistent path of w in the
BRG which passes F ∪ P”;

2) “A(w) = 2 if and only if all consistent paths of w in
the BRG pass F”.

Unfortunately, the following example shows that both con-
jectures are false.

Example 1: Consider the LPN G with a set of faulty
markings F = {M | M(p3) ≥ 2} shown in Figure 1
(a). Its BRG with respect to TE = {t1, t3, t4}, shown in
the same figure, has three basis markings such that F = ∅
and P = {M1} where M1 = 2p2. The consistent path of

observation w = ab is

M0
(t1,0)−−−→M1

(t3,yt2t2 )−−−−−−→M2.

One can readily verify that all trajectories coinciding with
ab necessarily pass set F : to generate event b, transition t3
must fire, which implies that place p3 necessarily holds two
tokens before firing t3.

As another example, consider the LPN G with a set of
faulty markings F = {M | M(p4) ≥ 1} shown in Figure 1
(b). Its BRG with respect to TE = {t1, t2, t3, t5}, shown in
the same figure, has four basis markings such that F = {M3}
and P = {M1} where M1 = p2. The consistent path of
observation w = ab is

M0
(t1,0)−−−→M1

(t2,0)−−−→M2.

However, all trajectories coinciding with ab are t1t2tn3 and
hence necessarily do not pass set F . �

Example 1 shows that, given a path in a BRG that
passes a partially-faulty basis marking, there may or may
not exist a consistent trajectory that pass F , and there may
or may not exist a consistent trajectory that does not pass
F . Hence a consistent path in a BRG passes P does not
provide us any information on the passage of set F . The
existence of trajectories passing or not passing F can only be
verified by exploring all unobservable trajectories from these
partially-faulty basis markings. However, to fully explore the
unobservable reach of a basis marking is quite exhaustive.
As a result, in the next section we propose a notion of basis
partition called the diagnostic basis partition, and we prove
that a BRG with respect to a diagnosis basis partition does
not contain any partially-faulty basis markings.

V. MARKING DIAGNOSIS USING DIAGNOSTIC BRGS
AND BASIS DIAGNOSERS

A. Diagnostic Basis Partition

Definition 9: Given an LPN in which the set of transitions
is T = To ∪ Tuo and a set of faulty markings F = L(w,k),
the basis partition πd = (TE,d, TI,d) is called a diagnostic
basis partition if

TE,d = To ∪ {t ∈ T | wT · C(·, t) 6= 0}. (4)

The BRG with respect to the diagnostic basis partition πd is
called the diagnostic BRG and is denoted as Bd. �

In plain words, in the diagnostic basis partition, the set
of explicit transitions consists of all observable transitions
and all transitions whose influence on (w, k) are non-zero.
The following proposition shows that in the corresponding
diagnostic BRG there is no partially-faulty basis markings.

Proposition 4: Given an LPN G = (N,M0, E, `) and
a set of faulty markings F = L(w,k), the corresponding
diagnostic BRG Bd does not contain any partially-faulty
basis markings, i.e., P = ∅.

Proof: Let Mb be an arbitrary basis marking in the
diagnostic BRG. Since by Eq. (4), for all transitions t ∈ TI ,
wT · C(·, t) = 0 holds, we have wT ·M = wT ·M ′ for all
M,M ′ ∈ RI(Mb). Hence Mb ∈ F if and only if all marking
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M ∈ RI(Mb) belongs to M ∈ F holds, which concludes
the proof. �

Since TE,d is a (possibly proper) superset of To, the size
of a diagnostic BRG is in general larger than the conven-
tional BRG with respect to partition (To, Tuo). However,
the following proposition shows that, the passage of faulty
markings can be identified by examining the consistent paths
in the diagnostic BRG, since the interfere of partially-faulty
basis markings is excluded.

Proposition 5: Given an LPN G = (N,M0, E, `), a set
of faulty markings F , and the diagnostic BRG Bd,
• (i) there exists a sequence σ ∈ LM0,F if and only if

there exists a path M0
φ−→ in B such that `(σ) = `(φ)

and passes at least one faulty basis marking in F ;
• (ii) there exists a sequence σ /∈ LM0,F if and only if

there exists a path M0
φ−→ in B such that `(σ) = `(φ)

and does not pass any faulty basis marking in F .
Proof: By Proposition 1, the “⇐” for (i) and (ii) are

both trivial. Now we prove “⇒”.
For (i), let σ = σ1ti1 · · ·σntinσn+1 be a sequence in

LM0,F , i.e., M0[σ〉M passes some faulty marking MF ∈
F . By the argument of [6], there exists another sequence
σ′ = σ′1ti1 · · ·σ′ntinσ′n+1 that also yields M where σ′j ∈ T ∗I
such that each σ′j is a minimal explanation of tij , i.e.,

M0[σ′1ti1〉Mb1 · · · [σ′ntin〉Mbn [σ′n+1〉M

and all Mbj ’s are basis markings. By Proposition 1, there
necessarily exists a basis marking Mbj such that MF ∈
RI(Mbj ). Then, by Proposition 5 Mbj ∈ F , i.e., Mbj is
a fully-faulty basis marking. Hence, there exists a path in
the BRG that is consistent with σ and passes F .

For (ii), Let σ = σ1ti1 · · ·σntinσn+1 where σj ∈ T ∗I and
tij ∈ TE . Thus we have the following trajectory:

M0[σ1ti1〉M1 · · · [σntin〉Mn[σn+1〉M

By the argument of [6], there exists another sequence σ′ =
σ′1ti1 · · ·σ′ntinσ′n+1 that also yields M where σ′j ∈ T ∗I such
that σ′j is a minimal explanation of tij , i.e.,

M0[σ′1ti1〉Mb1 · · · [σ′ntin〉Mbn [σ′n+1〉M

where all Mbj ’s are basis markings. Since all transitions
t ∈ TI has zero-influence on (w, k), such a rearrangement of
transitions does not modify the token count of the trajectories
after the firing of each explicit transitions. Hence, all Mbj /∈
F . As a result, there exists a path in the BRG that is
consistent with σ and does not pass F . �

Proposition 5 shows that any faulty (resp., non-faulty)
trajectory of a plant can be associated to a path in the
diagnostic BRG that passes at least one faulty basis marking
(resp., does not pass any faulty basis marking). Therefore,
a diagnostic agent can keep track of the consistent basis
markings to determine the passage of set F .

B. Diagnostic Agent Design

Based on Proposition 5, it is not difficult to understand
that a correct diagnostic agent A : L(G)→ {0, 1, 2} can be

presented as the following:

A(w) =


0, if all consistent paths of w do not pass F
2, if all consistent paths of w pass F
1, otherwise

Such an agent can be presented as a closed-form structure
called the basis diagnoser as follows. The construction of
a basis diagnoser can be done according to the design of
the conventional diagnoser automata in [1] which is omitted
here due to the limit of space.

Definition 10: Given a plant LPN G = (N,M0, E, `), a
set of faulty markings F = L(w,k), and the diagnostic BRG
Bd = (M, T r,∆,M0), let (Mb, γ) ∈M× {0, 2} be a pair.
The next function Next : M× {0, 2} × E → 2M×{0,2} is
defined as a set Next((Mb, γ), e) such that: for all arcs in
the BRG

Mb
(t,y)−−−→M ′b

with `(t) = e, (M ′b, γ
′) ∈ Next((Mb, γ), e), where γ′ = 0

if Mb /∈ F ∧M ′b /∈ F , otherwise γ′ = 2. Specifically, we
define Next((Mb, γ), ε) = {(Mb, γ)}. �

.
Definition 11: Given a plant LPN G = (N,M0, E, `), a

set of faulty markings F = L(w,k), and the diagnostic BRG
Bd = (M, T r,∆,M0), the corresponding basis diagnoser
is a deterministic finite automaton D = (D,E, δ, d0) where
(1) D ⊆ M× {0, 2} is a set of states, (2) E is the set of
events, (3) d0 = Next((M0, 0), ε) is the initial state, and
(4) δ : D × E → D is the transition function: δ(d, e) =⋃

(Mb,γ)∈dNext((Mb, γ), e). �
An algorithm to compute the basis diagnoser from a

diagnostic BRG can be designed according to Definition 10.
In a basis diagnoser, we say state d ∈ D is
• normal, if for all (M,γ) ∈ d, γ = 0;
• faulty, if for all (M,γ) ∈ d, γ = 2;
• ambiguous, if there exist (M,γ), (M ′, γ′) ∈ d with γ =

0 and γ′ = 2, respectively.
The following theorem shows that a basis diagnoser can be
used to solve the marking diagnosis problem.

Theorem 1: Given a plant LPN G = (N,M0, E, `), a set
of faulty markings F = L(w,k), and the basis diagnoser D =
(D,E, δ, d0), the following diagnostic function is correct:

A(w) =


0, if d is normal;
1, if d is ambiguous;
2, if d is faulty.

where d = δ∗(d0, w) is the consistent state in the basis
diagnoser.

Proof: Straightforward from Proposition 5. �

C. Illustrative Example

Consider the LPN in Figure 2 (a) with a set of faulty
markings F = {M | M(p2) + 2M(p3) ≥ 2}. Although
π = (To, Tuo) is a valid basis partition, the corresponding
BRG has 6 basis markings (not drawn), two of which are
partially-faulty. As a result, such a BRG cannot be used for
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Fig. 2: (a) the LPN used in Section V-c, (b) its diagnostic
BRG, (c) its basis diagnoser.

marking diagnosis in this case. On the other hand, since To =
{t1, t3, t7} and the transitions with non-zero influence are t2
and t4, the diagnostic basis partition is πd = (TE , TI) with
TE = {t1, t2, t3, t4, t7}. The corresponding diagnostic BRG
and the basis diagnoser are depicted in Figure 2 (b) and (c),
respectively.

Consider observation aa. Since in the basis diagnoser it
holds δ∗(d0, aa) = {(M4, 0), (M5, 2), (M7, 2), (M9, 2)}, the
output of the diagnostic agent is A(aa) = 1, which means
that the plant may or may have not passed some faulty
markings. In fact, two trajectories M0[t1t1〉 and M0[t1t1t2〉
coincide with observation aa while the former does not pass
F and the latter passes F . On the other hand, consider
observation aac such that δ∗(d0, aac) = {(M3, 2)}, the
diagnostic output is A(aac) = 2, which means that the plant
must have passed some faulty markings. In fact, the possible

firing sequences that coincide with observation aac are:
t1t1t2t3, t1t2t1t3, t1t2t1t2t3, and t1t1t2t2t3, all of whose
trajectories pass F .

The structure complexity of a basis diagnoser is 2|M|

where M is the set of basis markings in the diagnostic
BRG. Since the number of basis markings is generally much
smaller than the number of reachable markings, the proposed
method for marking diagnosability verification in LPNs is of
efficiency.

VI. CONCLUSION

We proposed a method for marking diagnosis in labeled
Petri nets using basis reachability graphs. By properly se-
lecting a set of explicit transitions, a particular BRG called
the diagnostic BRG is computed. Then we have develop an
algorithm based on the basis diagnoser.
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