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Abstract:
This work investigates optimal stabilization with guaranteed worst-case performance of stochas-
tic discrete event systems by supervisory control. We formulate the problem on probabilistic
weighted automata. The system is driven to a specified set of target states after a finite number of
transitions, thus stabilized. The cost of stabilization is concerned with the accumulative weight
of transitions reaching target states. Our goal is to optimize the expected cost of reaching target
states, while ensuring that the worst-case individual cost is bounded by a given threshold. Then
we transform the supervisory control problem to a two-player stochastic game between the
supervisor and the environment, which properly encodes the worst-case requirement. Finally an
algorithm is presented to synthesize the optimal supervisor by leveraging results from Markov
Decision Processes, which turns out to provably solve the original problem.
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1. INTRODUCTION

Supervisory control in discrete event systems (DES) has
been well investigated since it was proposed. In this
framework, a supervisor controls the plant by enabling
and disabling events dynamically, so that the plant fulfills
a given specification; see, e.g., Cassandras and Lafortune
[2008], Wonham and Cai [2018].

In practice, the supervisor may not have perfect obser-
vation of the system, which brings in uncertainty and
gives rise to supervisory control under partial observation.
There is a rich literature on this topic, see, e.g., Alves et al.
[2019], Shu and Lin [2015], Yin and Lafortune [2016a,b,
2017], Komenda and Masopust [2017], Mohajerani et al.
[2017], Ji et al. [2018], Ma et al. [2019, 2018], Rashidinejad
et al. [2018], Lin et al. [2019] for some recent discussions.

The uncertainties in system modeling also lead to super-
visory control of stochastic DES, where events are associ-
ated with probabilities of occurrence. Both deterministic
and probabilistic supervisory control frameworks were dis-
cussed, depending on whether events are enabled for sure
or with certain probabilities, see, e.g., Kumar and Garg
[2001], Pantelic et al. [2009]. More recently, learning-based
supervisor synthesis was considered in Wu et al. [2019]
and Meira-Góes et al. [2019] discussed deception attacks
for supervisors in probabilistic settings.

In many applications, some states of the system called
target states are of particular interest as they indicate the
fulfillment of some important tasks. Meanwhile, one may
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apply the supervisory control theory to drive the system to
those target states within a bounded number of transitions
and stay there afterwards. This problem is referred to
as stabilization or state attraction, which was originally
proposed in Brave and Heymann [1990] and generalized
by Schmidt and Breindl [2014]. A matrix-based approach
of optimal stabilization for nondeterministic DES was pro-
vided in Han et al. [2019] recently. Additionally, optimal
stabilization problem considers minimizing the cost of driv-
ing the system to target states. This topic was initialed
by Brave and Heymann [1993] for the full observation case
and extended in Marchand et al. [2002], Pruekprasert and
Ushio [2016b] for the partial observation case. As a vari-
ant, Pruekprasert and Ushio [2016a] considered optimal
stabilization under the influence of disturbances.

All existing works on optimal stabilization focus on op-
timizing the system’s worst possible performance when
being stabilized. On the other hand, optimal supervisory
control of probabilistic discrete event systems aims to
ensure a good expected overall performance. Both frame-
works suffer from some drawbacks. The worst-case analysis
may ignore overall performance, while good expectation
may not rule out some extreme individual behaviors that
are not very likely but indeed possible. The conventional
settings of optimal supervisory control may be insufficient
to provide formal guarantees under multiple scenarios.

Let us consider an everyday situation when a student
commutes between home and campus. There are three
possible options: subway, car and on foot. Usually subway
is the fastest option with potential risk of severe delay. Self-
driving has more expected arriving time, while guarantees
to reach campus within a tolerable amount of time under
all traffic circumstances. Then it is more reasonable to



drive instead of taking the risk of the subway, when the
student could not afford to be late for some activity.

Motivated by the above situation, we investigate optimal
stabilization under an acceptable upper bound for worst-
case cost. We formulate this problem in the context of
probabilistic weighted automata, where each event is as-
signed a cost and a probability of occurrence. Next we
propose the probabilistic weighted bipartite transition sys-
tem (PWBTS) and transform the problem to a two-player
stochastic game between the supervisor and the environ-
ment. Then we construct the largest PWBTS which con-
tains all enforcing the worst cost, reformulated as a safety
condition over the new information space. Furthermore,
it turns out that the game is an Markov Decision Process
(MDP). Finally we synthesize the optimal supervisor from
the game, which provably solves the proposed stabilization
problem. Our solution procedure leverages results from
beyond worst-case synthesis in Bruyere et al. [2017] and
optimal control of MDPs in Filar and Vrieze [2012].

The rest of the work is organized as follows. Section 2
introduces the system model. Section 3 formulates the
problem of optimal stabilizing supervisory control with
guaranteed worst cost. In Section 4, a two-player stochastic
game is defined to encode the worst-case requirement.
Then in Section 5, the optimal supervisor is synthesized to
solve the problem. Finally, Section 6 concludes the paper.

2. SYSTEM MODEL

We consider the weighted finite-state automaton model:

G = (X,E, f, x0, ω)

where X is the finite state space, E is the finite set of
events, f : X × E → X is the (partial) deterministic
transition function and event e is active at a state x
if f(x, e)! where ! means “is defined”, x0 ∈ X is the
initial state and ω : E → N+ is the weight function
which represents the event costs. The domain of f can be
extended to X × E∗ in the standard manner Cassandras
and Lafortune [2008] and we still denote the extended
function by f . The language generated by G is defined as
L(G) = {s ∈ E∗ : f(x0, s)!}. We denote by s ≤ u if string s
is a prefix of u, and s < u if s ≤ u and s 6= u. The function
ω is additive and its domain can be extended to E∗ by
letting ω(ε) = 0, ω(se) = ω(s) + ω(e) for all s ∈ E∗ and
e ∈ E. Given s = e1e2 · · · en ∈ L(G), its (accumulative)
cost is the sum of each event’s weight (cost), i.e., ω(s).

Given an automaton G, for x1, x2 ∈ X and e ∈ E, we

write x1
e−→ x2 if f(x1, e) = x2, for simplicity. A run in

G is a sequence of states and events: r = x1
e1−→ x2

e2−→
· · · en−1−−−→ xn and it may be infinitely long. We denote by
Run(G) the set of runs in G. A run is initial if its initial
state is the initial state of the system. We say a run forms
a cycle if x1 = xn and we call a system acyclic if it does
not contains cycles, otherwise, it is called cyclic.

In system G, x ∈ X is a terminating state if @e ∈ E
s.t. f(x, e)!, i.e., no outgoing transition is defined. We let
XT ⊆ X be the set of target states where ∀x ∈ XT , x
is terminating. We further denote by L(XT , G) = {t ∈
L(G) : f(x0, t) ∈ XT } the set of strings reaching XT .
The target states indicate the completion of some essential
tasks and ideally, the system should be attracted to them.

A stochastic discrete event system is modeled by a proba-
bilistic weighted finite-state automaton (G, p) where G is
a weighted finite-state automaton and p : X × E → [0, 1]
is the probability of event occurrence. Specifically, for any
x ∈ X, e ∈ E, we denote by p(e|x) the probability that
event e occurs from state x. In this work, we assume that:
(i) for every non-terminating state x,

∑
e∈E p(e|x) = 1;

(ii) ∀x ∈ X, e ∈ E: p(e|x) > 0⇔ f(x, e)!.

For a string s ∈ L(G), we introduce Pr(s) as the probabil-
ity that s occurs, which is defined recursively as: Pr(ε) = 1
and Pr(se) = Pr(s)p(e|f(x0, s)) for all s ∈ E∗, e ∈ E.
Thus, the occurrence probability of a set of strings L is
Pr(L) =

∑
s∈L Pr(s) and L is the so called probabilistic

language in Kumar and Garg [2001].

A standard supervisor is a function S : L(G) → 2E

that controls the system to achieve certain specification
by dynamically enabling/disabling events. The event set
E is partitioned as E = Ec ∪ Euc, where Ec is the set of
controllable events and Euc is the set of uncontrollable
events. Furthermore, all events are observable in this
context. We denote by S the set of supervisors. Notice
that a supervisor never disables uncontrollable events and
a control decision γ ∈ 2E is admissible if Euc ⊆ γ. We
also say a control decision γ is non-redundant at state x if
∀e ∈ γ, f(x, e)! in G, i.e., all enabled events are defined at
x. Denote by Γ the set of all admissible and non-redundant
control decisions, then we only consider Γ in this work. We
also use S/G to represent the supervised system under S,
where L(S/G) and Run(S/G) stand for the language and
the set of runs in S/G, respectively.

In this work, the supervisors are deterministic in the sense
that control commands are issued for sure. Here we make
the same assumption on the supervisor as in Kumar and
Garg [2001] for the sake of following discussion.

Assumption 1. Given system (G, p) and supervisor S, af-
ter S issues γ 6= ∅ at x ∈ X, the occurrence probability of

event e ∈ γ becomes p(e|x)∑
e′∈γ

p(e′|x)
in the supervised system.

In other words, after some events are disabled at a state,
the probability of each enabled event increases proportion-
ally so that the probabilities of enabled events at non-
terminating states still sum up to 1. Additionally, if the
supervisor disables all events at a state, then that state will
become a terminating state. From the results in Kumar
and Garg [2001], the language in the supervised system is
still a probabilistic language under this assumption.

A finite discrete Markov decision process (MDP) is a tuple:

M = (XM , A,∆, ωm)

Here XM is the finite state space partitioned as Xns
M ∪Xs

M
where Xns

M is the set of non-stochastic states and Xs
M is

the set of stochastic states. A is the set of actions from Xns
M

to Xs
M . ∆ : Xs

M × Xns
M → [0, 1] is the probability of the

transition between a stochastic state and a non stochastic
state. ωm : Xs

M ×Xns
M → R is the reward or cost function.

An MDP may be seen as a special two-player stochastic
game: one player plays from Xns

M against a probabilistic
adversary which makes randomized decisions characterized
by ∆ from Xs

M . Hence, MDPs are sometimes termed “1 1
2 -

player games” in the literature, e.g., Bruyere et al. [2017].



3. PROBLEM FORMULATION

Stability is critical for control systems. Intuitively, a sys-
tem is stable if all its trajectories are driven to certain
region after a while and remain there afterwards. Addi-
tionally, certain cost may be entailed by those trajectories.
For DES, the open-loop system G may not end up in target
states or the cost of reaching target states is excessively
high, either for a single string or the expectation of mul-
tiple strings. In this section, we introduce the stabilizing
supervisor and formulate the key problem of this work.

Definition 1. (Stabilizing Supervisor). Given G and tar-
get states XT , a supervisor S is stabilizing if ∀s ∈ L(S/G),
∃t ∈ E∗ and ∃N ∈ N+ s.t. |t| ≥ N ⇒ f(x0, st) ∈ XT .

A stabilizing supervisor drives every string in the super-
vised system to target states and it should never disable all
events at a non-target state by definition. We call a system
as stabilizable if there exists a stabilizing supervisor and
denote by L(XT , S/G) = {s ∈ L(S/G) : f(x0, s) ∈ XT }
the set of strings reaching target states under S.

Then we evaluate the expected cost of strings reaching
XT as ES(XT ) =

∑
s∈L(XT ,S/G) ω(s)Pr(s), which is also

called the expectation of stabilization under S. Since all
strings in L(XT , G) are finite and their costs are bounded,
the expectation is well defined. Lower ES(XT ) is preferred
in practice. We also claim that Pr(L(XT , S/G)) = 1 holds
for a stabilizing supervisor under Assumption 1, while we
omit the argument here due to space limitation.

However, one severe shortage of the expected cost is the
failure to rule out certain extreme cases. A stabilizing
supervisor with good expectation of stabilization may still
permit strings with exceptionally high cost to occur, which
is troublesome. Thus we have to ensure an acceptable
worst-case performance, i.e., upper bound of individual
string cost when optimizing the expectation. That is, our
supervisors is risk aware of high individual cost. This gives
rise to the following problem of Optimal Stabilization by
Supervisory Control with Guaranteed Worst Cost.

Problem 1. Given probabilistic system (G, p) with target
states XT and cost threshold µ ∈ N+, design a supervisor
S∗ such that ES∗(XT ) = minS∈Sa ES(XT ) where Sa =
{S ∈ S : S is stabilizing and ∀s ∈ L(XT , S/G), ω(s) ≤ µ}

Here the condition ∀s ∈ L(XT , S/G), ω(s) ≤ µ is equiva-
lent with the maximum (worst) string cost of reaching XT

being bounded. Thus, we synthesize the optimal supervisor
under the constraint of worst-case cost. The stabilizing
supervisor should settle for trade-offs between optimal ex-
pectation and acceptable worst-case cost. Since event costs
are always positive and target states are terminating, the
resulting stabilizing supervisor leads to an acyclic system.

Example 1. The system is shown in Figure 1. Here XT =
{x6} so x6 is the only target state. The set of controllable
events is Ec = {a, b, c, d, e, f} and the set of uncontrollable
events is Euc = {u1, u2, u3, u4, u5}. The event weights and
probabilities are labeled with the events. For example,
(a, 1, 0.5) at x0 means ω(a) = 1 and p(a|x0) = 0.5.

We set the worst-case cost threshold as µ = 100. Appar-
ently, some strings do not reach the target state while
some others violate the threshold. Our goal is to design
an optimal supervisor to solve Problem 1 on the system.
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Fig. 1. The probabilistic system in Example 1

4. PROBABILISTIC WEIGHTED BIPARTITE
TRANSITION SYSTEM

In this section, we transform Problem 1 to a two-player
stochastic game between the supervisor and the envi-
ronment.For this purpose, a novel information structure
called probabilistic weighted bipartite transition system
(PWBTS) was proposed to characterize the game.

Definition 2. (PWBTS). A PWBTS w.r.t. (G, p) is a tuple

T = (QY , QZ , E,Γ, ω, fyz, fzy, pw, y0)

where:QY ⊆ X×N is the set of states where the supervisor
plays, for y ∈ QY , we write y = (Sta(y), Lev(y)); QZ ⊆
X×N×Γ is the set of states where the environment plays,
for z ∈ QZ , we write z = (Sta(z), Lev(z),Γ(z)); E is the
set of events;Γ is the set of control decisions; ω : E → N+

is the weight function of G and labels transitions between
QZ and QY states; fyz : QY × Γ → QZ is the transition
function from QY states to QZ state where for y ∈ QY ,
γ ∈ Γ and z ∈ QZ , we have: fyz(y, γ) = z ⇒ [z = (y, γ)];
fzy : QZ × E → QY is the transition function from QZ
states to QY states where for z = (y, γ) ∈ QZ , e ∈ E
and y′ ∈ QY , we have: [fzy(z, e) = y′] ⇔ [e ∈ γ] ∧
[y′ = f(y, e)] ∧ [Lev(y′) = Lev(z) + ω(e)]; pw : QZ ×
E → (0, 1] is the probability function for transitions where
for z = (y, γ) ∈ QZ , e ∈ γ, we have: fzy(z, e)!⇒ pw(e|z) =

p(e|Sta(z))∑
e′∈γ p(e

′|Sta(z))
; y0 = (x0, 0) ∈ QY is the initial state.

The game on a PWBTS starts from the initial state y0 and
the two players (supervisor and environment) take turns
to play. We refer to a QY -state as a Y -state for simplicity,
where the supervisor issues control decisions. A Y -state
contains a state Sta(y) from G and a positive integer
Lev(y) indicating the cost of a string reaching Sta(y). We
also refer to aQZ-state as a Z-state where the environment
executes the events enabled by the supervisor. A Z-state
contains a state Sta(z), a positive integer component
Lev(z) and a control decision Γ(z). fzy are defined from
Y -states to Z-states to reflect the control decisions issued
by the supervisor. For y ∈ QY in a PWBTS T , we let
CT (y) be set of control decisions defined at y. While
fzy transitions are defined from Z-states to Y -states to
indicate the occurrence of enabled events. We put “⇔” in
defining fzy due to the fact that the supervisor is unable to
choose which enabled event to occur and we should have
them all defined at a Z-state. Notice that along with fzy,
we recalculate the occurrence probability of each enabled
event e ∈ γ following Assumption 1, which is reflected in
probability function pw. Counterparts of the PWBTS for
nonstochastic DES are defined in Ji et al. [2019a,b].

Given a PWBTS T , we say it is complete if ∀y ∈ QY ,
CT (y) 6= ∅, i.e., every Y -state has a successor. While a Z-



state z is deadlock-free if either ∃e ∈ E such that fzy(z, e)!
or Sta(z) ∈ XT . In other words, a deadlock-free Z-state
either has a outgoing transition or it has a terminating
states from G. Otherwise, we call z a deadlocking state.

In T , a run is of the form r = y1
γ1−→ z1

e1−→ y2
γ2−→ z2

e2−→
· · · γn−→ zn

en−→ yn+1. We let LastY (r) and LastZ(r) be the
last Y -state and Z-state of r. Then we denote by Runy(T )
(respectively Runz(T )) the set of initial runs whose last
states are Y -states (respectively Z-states). Also, we let
lg(r) be the string generated by run r, i.e., lg(r) = e1 · · · en.

Then we define the supervisor’s strategy (control strategy)
in T as πs : Runy(T ) → Γ and the environment’s
strategy defined as πe : Runz(T ) → Eo. Each player
selects transitions according to its strategy. We let Πs

(respectively Πe) be the set of supervisor’s (respectively
environment’s) strategies. We also define Run(πs, y) =

{y γ1−→ z1
e1−→ y2 · · ·

γn−1−−−→ zn−1
en−1−−−→ yn : ∀i < n, γi =

πs(y
γ1−→ z1

e1−→ y2 · · ·
γi−1−−−→ zi−1

ei−1−−−→ yi)} as the set of
runs starting from y and consistent with control strategy
πs, i.e., the control decisions in the run are specified by πs.
Specifically, for s ∈ L(G), we write r(πs, y0, s) as the run
in Run(πs, y0) with lg(r) = s, i.e., r(πs, y0, s) generates s.

Notice that there is no difference between a control strat-
egy and a standard supervisor in their mechanisms. For
this reason, we will not distinguish between them from
now on. Given a control strategy πs and string s, we
use notations πs/G and πs(s) to stand for the supervised
system under πs and the control decision of πs on oc-
currence of s, respectively. Then πs is included in T if
∀s ∈ L(πs/G), πs(s) ∈ CT (LastY (r(πs, y0, s))), in other
words, the control decisions of πs on any string are defined
in T . Besides, πs is memoryless if ∀r, r′ ∈ Runy(T ) with
LastY (r) = LastY (r′), πs(r) = πs(r

′) holds. That is, a
memoryless strategy only depends on the last state of runs.

5. SYNTHESIZE THE OPTIMAL SUPERVISOR

We proceed to solve Problem 1 sequentially based on the
PWBTS in this section. First we resolve the worst-case
cost requirement, then synthesize the optimal supervisor.

We may compare the “size” of PWBTSs in graph sense.
Consider T1 = (Q1

Y , Q
1
Z , E,Γ, ω

1, f1yz, f
1
zy, p

1
w, y

1
0) and

T2 = (Q2
Y , Q

2
Z , E,Γ, ω

2, f2yz, f
2
zy, p

2
w, y

2
0), T1 is a subgame

of T2, denoted by T1 v T2, if Q1
Y ⊆ Q2

Y , Q1
Z ⊆ Q2

Z and for
all y ∈ Q1

Y , z ∈ Q1
Z , γ ∈ Γ, e ∈ E, we have that f1yz(y, γ) =

z ⇒ f2yz(y, γ) = z and f1zy(z, e) = y ⇒ f2zy(z, e) = y.

We call a set of states Q in T as a closed set to the
supervisor if we have: (i) for all y ∈ (Q ∩ QY ) and for
all γ ∈ Γ, fyz(y, γ)! ⇒ fyz(y, γ) ∈ Q, i.e., all successors
of the supervisor’s states in Q are also in Q; (ii) for all
z ∈ (Q ∩QZ), there exists e ∈ E such that fzy(z, e) ∈ Q,
i.e., every environment’s state in Q has a successor in Q.
Intuitively, if the supervisor reaches a closed set, then the
environment is able to “trap” its opponent there forever.
A closed set to the environment is defined analogously.

Afterwards, we construct the maximum complete PWBTS
where (i) all Z-states are deadlock-free and (ii) all the
control strategies lead to the target states without ex-
ceeding the worst-case cost threshold µ. We denote this
structure by Tµm = (QmY , Q

m
Z , E,Γ, ω, f

m
yz, f

m
zy, p

m
w , y0) and

formally define it by construction in Algorithm 1. Here
being maximum means that for all PWBTS T satisfying
the above two conditions, T v Tµm always holds.

Algorithm 1 Construct Tµm with respect to G

Input: G, p, µ
Output: Tµm = (QmY , Q

m
Z , E,Γ, ω, f

m
yz, f

m
zy, p

m
w , y0)

1: QmY = {y0}, QmZ = ∅;
2: Tpre = DoDFS(y0, G, p, µ);
3: while there exist Y -states that have no successor do
4: Remove all such Y -states and their predecessor Z-

states, take the accessible part;

5: return Tµm;
6: procedure DoDFS(y,G, p, µ)
7: for γ ∈ Γ do
8: z = fyz(y, γ);
9: if z is deadlock-free then

10: add transition y
γ−→ z to fmyz;

11: if z /∈ QmZ then
12: QmZ = QmZ ∪ {z};
13: for e ∈ γ do
14: y′ = fzy(z, e);

15: add z
e−→ y′ to fmzy, calculate pmw (e|z);

16: if y′ /∈ QmY then
17: QmY = QmY ∪ {y′};
18: if Lev(y′) ≤ µ then
19: DoDFS(y′, G, p, µ);
20: else
21: stop searching;

Algorithm 1 builds Tµm in a depth-first search manner.
We start construction from y0. Then we run DoDFS
recursively to add new states and transitions following
Definition 2. The costs of strings are integrated into the
states and their values are updated. We track the cost until
it exceeds µ, then stop construction in line 21. Otherwise,
we repeat DoDFS in line 19 until no states are added.

After DoDFS, there may be two types of Y -states that
have no successors: Y -states whose integer components are
above µ or whose only feasible control decision leads to
deadlocking Z-states. We prune away such states together
with their predecessor states since the supervisor may not
choose which enabled event to occur. In other words, this
results in a subgame of Tpre, whose states have cost levels
no greater than µ and are closed to the environment.

Remark 1. Let | · | be the cardinality of a set. By con-
struction, the complexity of Tµm is polynomial in the size
of system G: the states in Tµm have components from X
and 2E . Furthermore, it is also polynomial in the threshold
µ as we stop construction when the cost exceeds µ. So it
takes pseudo-polynomial time O(|X| ·µ ·2|E|) to build Tµm.

Example 2. We build Tµm with respect to the system in
Example 1. After DoDFS in Algorithm 1, part of Tpre is in
Figure 2. The square states are Y -states and the oval states
are Z-states. For simplicity, we only show the transition
probabilities in the figure and omit the transition weights.

The game is initialed at Y -state (x0, 0). Since both events
a and b are controllable, the supervisor has four choices: to
enable a or b alone, to enable them both or to disable them.
Thus, there are four fyz transitions defined at (x0, 0).
Here we show the enabled events under each control



decision and use {} for enabling no event. Only enabled
events that are also active at that state are included in
a control decision. Notice that if the supervisor chooses
γ0 from (x0, 0), then the successor Z-state (x0, 0, {}) is a
deadlocking state since no event may occur from it and x0
is not a target state. For this reason, (x0, 0, {}) is not added
to the structure in DoDFS and we make this state shaded.
Similarly, another deadlocking Z-state (x3, 6, {}) is also
shaded and not included. If the supervisor chooses γ2, then
two fzy transitions are defined at the Z-state (x0, 0, γ2).
Meanwhile, the transition probabilities for events a and
b at (x0, 0, γ2) are pw((x0, 0, γ2), a) = pw((x0, 0, γ2), b) =
0.5. We also update the cost levels when we reach new Y -
states (x1, 1) and (x2, 5) since ω(a) = 1 and ω(b) = 5. The
remaining game graph is interpreted in a similar way.

Notice thatDoDFS stops at the two red Y -states (x6, 101)
and (x6, 115) since Lev((x6, 101)) and Lev((x6, 115)) are
above µ = 100. Also we calculate transition probabilities
following Definition 2. For example, at Z-state (x1, 1, γ4),
since only u1 and u4 are enabled in γ4, the probability

of u1 becomes p(u1|x1)
p(u1|x1)+p(u4|x1)

= 0.1 and the probability

of u2 becomes p(u2|x1)
p(u1|x1)+p(u4|x1)

= 0.9. While at Z-state

(x1, 1, γ5), since u1, u4 and c are all enabled, the transition
probabilities in Figure 2 are the same as the occurrence
probabilities of those events at state x1 in Figure 1.

Then we prune states from Figure 2 by Algorithm 1. Ac-
tually, there should be more states after the dashed state
(x5, 45) by DoDFS. However, all such states together with
(x5, 45) become inaccessible after (x6, 115), (x4, 45, γ8) and
(x4, 45, γ9) are removed. We do not draw them in Figure 2.
Finally, Tµm is shown in Figure 3. As is seen, every leaf state
in Tµm is with the target state x6 and has cost level less
that 100. Hence, each control strategy in Tµm is stabilizing
and meets the worst-case cost threshold µ. 2

Notice that it is possible that Algorithm 1 returns nothing,
which indicates that no supervisor satisfies the worst-case
cost requirement. If that is the case, there is no need to
search for the optimal strategy and Problem 1 has no
solution. When Tµm is not empty, we justify Algorithm 1.

Lemma 1. A control strategy πs is stabilizing and ∀s ∈
L(XT , πs/G), ω(s) ≤ µ if and only if πs is included in Tµm.

Lemma 1 implies that any control strategy in Tµm stabilizes
the system without violating the worst-case cost threshold
µ. The proof is omitted here. Also by construction, the
leaf stats of Tµm are such that {z ∈ QmZ : Sta(z) ∈
XT , Lev(z) ≤ µ}. We are particularly interested in those
states and the supervisor should only reach them on Tµm.
Since the supervisor plays by making control decisions and
the antagonistic environment plays by assigning proba-
bility distributions to the enabled events, the game on
Tµm is actually an Markov Decision Process (MDP). Then
our goal is to search for an optimal control strategy on
Tµm and the dynamic/linear programming method for the
stochastic shortest path problem suffices. By established
results in Filar and Vrieze [2012], the optimal supervisor
is memoryless. To proceed, we present Algorithm 2.

The following theorem captures the main result of this
work. Since it takes polynomial time in the size of an MDP
to search for an optimal strategy Filar and Vrieze [2012],
Algorithm 2 requires polynomial time in the size of Tµm.
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Algorithm 2 Find an optimal control strategy

Input: Tµm
Output: An optimal control strategy π∗s

1: Find QT = {z ∈ QmZ : Sta(z) ∈ XT , Lev(z) ≤ µ};
2: View QT as the set of states to reach in the MDP Tµm;
3: Apply the method of solving stochastic shortest path

problem to search for an optimal control strategy π∗s ;

Theorem 2. π∗s returned by Algorithm 2 solves Problem 1.

Example 3. We continue Example 2 to solve Problem 1
following Algorithm 2. We view Tµm as an MDP and
synthesize an optimal supervisor, which reaches the leaf
states in Figure 3. The expectation of stabilization is 42.6
for the optimal supervisor shown in Figure 4.



It is interesting to notice that if the supervisor disables b
but enables a at x0, then we get an even lower expectation
of stabilization, given that the probability of u1 is fairly
low. However, the worst-case cost is greater than 100 since
u1 is uncontrollable. This reveals the trade-off between the
expected cost and the worst cost of stabilization.
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Fig. 4. The optimal supervisor solving Problem 1

6. CONCLUSION

This work was the first to study optimal stabilization
on stochastic DES by supervisory control with a guaran-
tee of worst-case performance. To transform the control
problem to a two-player stochastic game between the su-
pervisor and the environment, we proposed probabilistic
weighted bipartite transition system (PWBTS). Then we
constructed the largest PWBTS to encode the worst-case
cost. We further illustrated that the game is an Markov De-
cision Process (MDP). Finally we synthesized the optimal
control strategy by solving the MDP. For future work, we
would consider more complicated performance measures
and the potential application of our developed method.
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