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Abstract—We investigate the problem of synthesizing dy-
namic masks that preserve the infinite-step opacity in the
context of discrete-event systems. Dynamic mask is an in-
formation acquisition mechanism that controls the observ-
ability of the system’s events dynamically online, e.g., by
turning sensors on/off. A system equipped with a dynamic
mask is said to be infinite-step opaque if an outside intruder
that can access all acquired information can never infer that
the system was at some secret state for any specific previ-
ous instant. Existing works on the dynamic mask synthesis
problem can only preserve the current-state opacity. How-
ever, synthesizing dynamic masks for the infinite-step opac-
ity, which is stronger than the current-state opacity, is much
more challenging. The main reason is that the delayed infor-
mation is involved in this problem and whether or not a cur-
rent secret can be revealed depends on sensing decisions
to be synthesized in the future. In this paper, a new type of
information state is proposed to capture all the delayed in-
formation in the infinite-step opacity synthesis problem. An
effective algorithm is then presented to solve the synthesis
problem, which extends existing dynamic mask synthesis
techniques from the current-state opacity to infinite-step
opacity. Additionally, an information-state-reduction-based
approach is proposed to further mitigate the computational
complexity of the synthesis procedure. Finally, we discuss
how to generalize our results to a class properties with de-
layed information including infinite-step K-anonymity and
infinite-step indistinguishability.

Index Terms—Delayed information, discrete-event sys-
tems (DESs), dynamic masks, infinite-step opacity.

I. INTRODUCTION

S ECURITY and privacy are increasingly important issues
in the analysis of networked cyber-physical systems. In

this paper, we investigate an information-flow security property
called opacity in the context of discrete-event systems (DESs),
an important class of man-made cyber-physical systems with
discrete state-spaces and event-triggered dynamics [7]. Roughly
speaking, opacity is a confidentiality property that captures the

Manuscript received August 24, 2018; revised March 20, 2019; ac-
cepted May 11, 2019. Date of publication May 15, 2019; date of current
version March 27, 2020. This work was supported by the National Natu-
ral Science Foundation of China (61803259, 61833012). Recommended
by Associate Editor C. Seatzu. (Corresponding author: Xiang Yin.)

The authors are with the Department of Automation and Key Lab-
oratory of System Control and Information Processing, Shanghai Jiao
Tong University, Shanghai 200240, China (e-mail:,yinxiang@sjtu.edu.cn;
syli@sjtu.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2019.2916940

plausible deniability of the system’s “secret behavior.” In other
words, an opaque system should be secure in the sense that its
secret should never be revealed to a passive observer (intruder)
that is potentially malicious.

In the context of a DES, opacity has drawn considerable
attention in the past decade; see, e.g., [1], [5], [17], [18], [24]–
[26]. In particular, different notions of opacity were proposed in
the literature in order to capture different secret requirements.
This includes, for example, the current-state opacity [41], initial-
state opacity [32], K-step opacity [29], and infinite-step opacity
[31], [46]. Verifications of different notions of opacity have
also been investigated in different system models. For example,
Basile et al. [2], [6], [12], [36], [37] investigated how to verify
different notions of opacity for the DES modeled by Petri nets. In
[3], [11], and [21], the verification of opacity in a stochastic DES
was investigated. Opacity has also been studied in infinite-state
systems modeled by recursive tile systems [10] and pushdown
systems [23]. More recently, Noori-Hosseini et al. [27], [51]
investigated how to reduce the verification complexity of opacity
using abstraction-based approaches. The reader is referred to
[18] and [24] for a more comprehensive literature review.

Among many different notions of opacity, one most simple
version is the current-state opacity. Specifically, a system is said
to be current-state opaque if the intruder cannot determine for
sure that the system is currently at a secret state based on its lim-
ited observation. Therefore, whether or not a system is opaque
purely depends on the current information of the system. How-
ever, in many situations, even if the intruder cannot determine
the secret of the system currently, it can keep observing the
behavior of the system and use additional future information
to improve its knowledge of the system in the past. This is es-
sentially an information smoothing process. Therefore, even if
a system is current-state opaque, the intruder may still be able
to know that it was at a secret state after some delay. In order
to capture this issue, infinite-step opacity was proposed by re-
quiring that the intruder should never know for sure that the
system was/is at a secret state for any specific instant. Clearly,
infinite-step opacity is stronger than current-state opacity. Veri-
fication algorithms for infinite-step opacity have been provided
in [31] and [46] for systems modeled as finite-state automata.
More recently, infinite-step opacity has also been studied in the
context of a stochastic DES [49].

When a system is verified to be nonopaque, another important
problem in opacity is to synthesize an opaque system. This
problem has recently been widely studied in the literature and
several different synthesis/enforcement mechanisms have been

0018-9286 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 28,2020 at 18:20:52 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1944-1570
https://orcid.org/0000-0003-3427-2912
mailto:yinxiang@sjtu.edu.cn
mailto:syli@sjtu.edu.cn


1430 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 4, APRIL 2020

proposed. For example, Darondeau et al. [14], [15], [30], [35],
[38], [45] investigated how to synthesize a feedback supervisory
controller to restrict the behavior the system such that the closed-
loop system is opaque. In [19], [22], [39], [40], and [42], the
problem of synthesizing insertion/edit functions that enforce
opacity was studied. In [16], a runtime mechanism was used
to enforce opacity K-step opacity. More recently, Barcelos and
Basilio[20] proposed an approach for enforcing current-state
opacity using events shuffle.

In this paper, we consider the problem of synthesizing dy-
namic masks that preserve infinite-step opacity. Dynamic mask
is an information acquisition mechanism that acquires informa-
tion from the system by dynamically turning ON/OFFthe asso-
ciated sensors. Therefore, it can also be treated as a controller
for sensors that can be controlled ON/OFFdynamically online.
The dynamic mask synthesis problem is also referred to as the
dynamic sensor activation problem in the DES literature; see,
e.g., [9], [13], [34], [47], and [50]. The goal of this problem is
to synthesize dynamic masks such that some system properties
hold. In particular, in [8], the problem of synthesizing dynamic
masks that preserve current-state opacity was investigated; an
algorithm with an exponential complexity was also provided.
The general idea is to reduce the synthesis problem to a two-
player reach-avoid game in a suitably defined arena that captures
all possible current-state information of the system.

As we discussed above, infinite-step opacity requires that the
intruder should never know that the system was at a secret state
for any specific previous instant with any possible future infor-
mation. Therefore, to synthesize dynamic masks for infinite-step
opacity, the following main difficulty arises. In the infinite-step
opacity, whether or not a secret can be revealed not only de-
pends on the current information, but also on the information
in the future. This future information is known in the verifica-
tion problem when the mask (either dynamic or static) is given.
Therefore, the verification algorithms for infinite-step opacity
proposed in [31] and [46] take the advantage that we can “bor-
row” the future information to check whether or not a secret can
be revealed. However, in the synthesis problem, this future in-
formation depends on the sensing decisions in the future, which
are unknown and to be synthesized. Moreover, the correctness
of any future decision again depends on other actions in its fur-
ther future. Therefore, this future dependency is, in fact, the key
difference between the synthesis problem for the current-state
opacity and the synthesis problem for infinite-step opacity.

In this paper, we tackle the problem of synthesizing dynamic
masks for the infinite-step opacity by addressing the above-
mentioned key difficulty. The main contributions of this paper
are as follows. First, we propose a new type of information
state in order to capture the delayed information in this syn-
thesis problem. Specifically, each information state is used to
represent the set of all possible delayed state estimates for all in-
stants along the decision trajectory. We show that such a choice
of information state summarizes all information needed in the
synthesis problem in a finite domain. Moreover, the newly pro-
posed information state can also be updated recursively upon
the information change. Our new information state is more gen-
eral than the subset-based information state that is widely used

in partially observed synthesis problems related to current in-
formation. An effectively algorithm is then presented to solve
the dynamic mask synthesis problem. Moreover, we show that
the proposed novel information state is applicable to the synthe-
sis problem for a class of properties with delayed information,
including infinite-step K-anonymity and infinite-step indistin-
guishability, whose synthesis problems have never been consid-
ered in the literature.

To the best of our knowledge, most of the synthesis problems
solved in the literature (for supervisory control, dynamic masks,
or insertion functions) only consider the current-state-type prop-
erty. One exception is the study in [30], where how to synthesize
supervisors that enforce infinite-step opacity was investigated.
The general idea of the study in [30] is to design a finite bank of
supervisors where each supervisor enforces initial-state opac-
ity for a type of current-state estimate encountered. Then, all
supervisors in the bank work together to enforce infinite-step
opacity, such that an event is disabled if some supervisor dis-
ables it. However, this “divide and conquer” approach does not
work for the dynamic mask synthesis problem since dynamic
masks do not restrict the behavior of the system; it does not
make sense to obtain an overall dynamic mask from a bank of
masks as the case of supervisors. Therefore, we need to han-
dle all possible instant history and their dependencies within a
single information structure using the approach proposed in the
paper. Finally, applications of opacity can also be found in, for
example, web services [4], location-based services [43], ship
information systems [44], and mobile robots [28]. However,
most of the applications only consider the current-state opacity.
The proposed method can potentially be used to enforce the
infinite-step opacity for these systems.

The rest of this paper is organized as follows. In Section II,
we present some necessary preliminaries and formulate the dy-
namic mask synthesis problem for the infinite-step opacity.
In Section III, we present a new class of information states
for properties with delayed information. Using the newly pro-
posed information state, we present a synthesis algorithm for
the infinite-step opacity in Section IV. In Section V, we discuss
how to reduce the complexity of the synthesis procedure and
how to generalize the proposed approach to other properties.
Finally, we conclude the paper in Section VI. Preliminary and
partial versions of some of the results in this paper are presented
in [48]. Compared with [48], this paper contains 1) all technical
proofs omitted in [48]; 2) additional detailed explanations and
examples; 3) an approach to further reduce the complexity of the
synthesis algorithm; and (iv) discussion on how to generalize
the proposed approach to other properties.

II. PRELIMINARY

A. System Model

Let Σ be a finite set of events; a string s = σ1 . . . σn , σi ∈ Σ
is a finite sequence of events, where |s| denotes its length. We
denote by Σ∗ the set of all strings over Σ including the empty
string ε. A language L ⊆ Σ∗ is a set of strings; L = {s∈Σ∗ :
∃t∈Σ∗ s.t. st∈L} denotes its prefix-closure.
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A DES is modeled as a finite-state automaton (FSA)

G = (X,Σ, δ,X0)

where X is the set of states, Σ is the set of events, δ : X × Σ→
X is the transition function, and X0 ⊆ X is the set of ini-
tial states. Transition function δ is also extended to X × Σ∗

in the usual manner by: ∀x ∈ X, s ∈ Σ∗, σ ∈ Σ : δ(x, sσ) =
δ(δ(x, s), σ). For any state x ∈ X , we denote by L(G, x) =
{s ∈ Σ∗ : δ(x, s)!} the set of all strings defined from x, where
“!” means “is defined.” We denote byL(G) = ∪x0 ∈X 0L(G, x0)
the language generated by G. We denote by Acc(G) the acces-
sible part of G; see, e.g., [7]. Let G1 = (X1 ,Σ, δ1 ,X0,1) and
G2 = (X2 ,Σ, δ2 ,X0,2) be two FSAs. We say that G1 is a subau-
tomaton of G2 , denoted by G1 	 G2 , if X1 ⊆ X2 ,X0,1 ⊆ X0,2
and ∀x0 ∈ X0,1 ,∀s ∈ L(G1 , x0), δ2(x0 , s) = δ1(x0 , s).

In this paper, we consider a general dynamic observation
mechanism. Specifically, we assume that the event set is parti-
tioned as Σ = Σo ∪̇Σuo ∪̇Σs , where

1) Σo is the set of events whose occurrences can always be
observed;

2) Σuo is the set of events whose occurrences never be ob-
served; and

3) Σs is the set of events whose occurrences can potentially
be observed. Whether or not the occurrence of an event
in Σs can be observed depends on whether or not it is
monitored, e.g., by turning ON its associated sensor.

A sensing decision θ, where Σo ⊆ θ ⊆ Σo ∪ Σs , is a set of
events that determines which events are monitored. We denote
by O := {θ ∈ 2Σ : Σo ⊆ θ ⊆ Σo ∪ Σs} the set of sensing de-
cisions.

The observation of the system is then controlled by a dynamic
mask Ω = (R,Θ), where R = (AR,Σ, δR , {a0,R}) is a deter-
ministic automaton such that L(R) = Σ∗ and Θ : AR → O is
a mapping that determines the sensing decision of each state.
Furthermore, we require that

(∀a, a′ ∈AR, σ∈Σ:δR (a, σ) = a′)[a �=a′⇒σ∈Θ(a)].

This condition essentially says that the sensing decision can
be updated (by updating the state of R) only when a moni-
tored event occurs. In other words, events that are not moni-
tored are defined as self-loops in R. Then, for any s ∈ L(G),
Θ(δR (a0,R , s)) is the set of currently observable (monitored)
events; for the sake of simplicity, we also write Θ(δR (a0,R , s))
by Ω(s).

The projection induced by a dynamic mask Ω = (R,Θ) is a
mapping PΩ :L(G)→(Σo ∪ Σs)∗ defined recursively by: ∀s ∈
Σ∗, σ ∈ Σ

PΩ(ε) = ε, PΩ(sσ) =
{

PΩ(s)σ if σ ∈ Ω(s)
PΩ(s) if σ �∈ Ω(s) .

For any L ⊆ Σ∗, we define PΩ(L) = {PΩ(s) : s∈L}. Note
that, for any s ∈ L(G), we have Ω(s) = Ω(PΩ(s)) since it is
string PΩ(s) that triggers state changes in Ω. Therefore, Ω(α)
also represents the current sensing decision upon the occurrence
of any string s such that PΩ(s) = α.

Let Ω = (R,Θ) and Ω′ = (R′,Θ′) be two dynamic masks.
We write that Ω′ ≤ Ω if ∀s ∈ L(G) : Ω′(s) ⊆ Ω(s) and write

Fig. 1. For G, we have Σo = {a}, Σu o = {u}, Σs = {e}. The observa-
tion mapping Ω : AR → O is specified by each sensing decision associ-
ated with each state in R. (a) G with XS = {5}. (b) Ω = (R, Ω).

that Ω′ < Ω if Ω′ ≤Ω and ∃s∈L(G) :Ω′(s) �=Ω(s). Therefore,
Ω′ < Ω implies that Ω acquires strictly more information than
Ω′.

B. Infinite-Step Opacity

Let Ω be a dynamic mask and αβ ∈ PΩ(L(G)) be an observ-
able string. We define

X̂Ω(α | αβ) :=

⎧⎨
⎩x ∈ X :

∃x0 ∈ X0 ,∃st ∈ L(G, x0)
s.t. x = δ(x0 , s)∧

PΩ(s) = α ∧ PΩ(s.t.) = αβ

⎫⎬
⎭ .

Intuitively, X̂Ω(α | αβ) is the delayed state estimate that cap-
tures the set of all possible states the system could be in at the
instant when α is observed given the entire observation αβ,
where β is a future information for the instant of α. We de-
fine X̂Ω(α) := X̂Ω(α | α) as the current state estimate upon
the occurrence of α ∈ PΩ(L(G)).

The information acquired by the dynamic mask is usually
transmitted to other modules for different purposes, e.g., for the
purpose of supervisory control or for the purpose of fault diag-
nosis. However, the transmission channel between the dynamic
mask and the utility module may be unreliable and could be
“listened” by a passive intruder that is potentially malicious. In
the context of opacity, we assume that the system has a “secret,”
which is modeled as a set of secret states XS ⊂ X . We want
that the secret should never be revealed to the intruder, which
can access the information acquired by the dynamic mask. In
particular, infinite-step opacity requires that the intruder should
never know that the system was at a secret state for some specific
instant, which is formally defined as follows.

Definition 1: System G is said to be infinite-step opaque
w.r.t. XS and Ω if ∀αβ ∈ PΩ(L(G)) : X̂Ω(α | αβ) �⊆ XS .

Example 1: Let us consider system G shown in Fig. 1(a) with
Σo = {a},Σuo = {u}, and Σs = {e}. Let us consider dynamic
mask Ω shown in Fig. 1(b). Assume that state 5 is the unique
secret state, i.e., XS = {5}. Then, G is not infinite-step opaque
w.r.t. Ω and XS . To see this, we consider string eaae ∈ L(G)
with PΩ(eaae) = aae. Note that the first occurrence of event e
is not observable since the sensing decision at state 1 in R is
{a}, while the second occurrence of e is observable since the
dynamic mask is then at state 2. Then, we know that X̂Ω(a |
aae) = {5} ⊆ XS , i.e., the system is not infinite-step opaque.
Intuitively, this says that when string aae is observed, we know
for sure that the system was at a secret state two steps ago.
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Given a system G, algorithms have been proposed in [31]
and [46] for the verification of infinite-step opaque for the case
of static observation; the algorithms can be easily modified for
the case of dynamic observation when Ω is given. In this paper,
we consider the synthesis problem, i.e., we want to synthesize
a dynamic mask that controls the information acquisition pro-
cess such that the entire system is infinite-step opaque. Clearly,
the less information acquired, the system is more likely to be
opaque. An extreme case is to consider a dynamic mask that
never monitors any event; such a system is clearly infinite-step
opaque. However, in addition to the security constraint, dy-
namic mask is also an interface that acquires information for
the user. Therefore, for the purpose of utility, we also want that
the dynamic mask monitors as many events as possible when
the opacity constraint is satisfied. To this end, we formulate the
optimal dynamic mask synthesis problem that we solve in this
paper.

Problem 1: Given system G and a set of secret states XS ⊂
X , synthesize a dynamic mask Ω such that

1) G is infinite-step opaque w.r.t. XS and Ω; and
2) For any Ω′ satisfying 1), we have Ω �< Ω′.
Remark 1: Note that, for the synthesized solution, we re-

quire that ∀Ω′ : Ω �< Ω′, which is weaker than ∀Ω′ : Ω′ < Ω. In
the literature, the former is referred to as a maximal solution,
while the latter is referred to as the supremal solution. How-
ever, it is well-known [33] that the supremal solution does not
exist in general in the sensor activation problem. Instead, it is
possible that there are two incomparable maximal solutions Ω1
and Ω2 , i.e., none of them can be improved but Ωi �< Ωj , i �= j.
Our goal here is to find one maximal solution for infinite-step
opacity. There may also have other maximal solutions that are
incomparable with our solution, but none of them can be strictly
better than the synthesized one.

Finally, we introduce several operators that will be used in
the paper. Let q ∈ 2X be a set of states, θ ∈ O be a sensing
decision, and σ ∈ Σo ∪ Σs be an event. We define

URθ (q) = {x∈X : ∃x′ ∈q,∃w∈(Σ \ θ)∗ s.t. x = δ(x′, w)}
NXσ (q) = {x∈X : ∃x′ ∈q s.t. x = δ(x′, σ)} .

Intuitively, URθ (q) is the set of states that can be reached from
states in q via strings that are unobservable under θ; and NXσ (q)
is the set of states that can be reached immediately from states
in q upon the occurrence of σ.

Example 2: Let us still consider system G shown in Fig. 1(a).
Let {2, 6} ∈ 2X be a set of states. Then, upon sensing decision
{a} ∈ O, we have UR{a}({2, 6}) = {2, 3, 6, 7}. Then, upon
observable event a ∈ Σo ∪ Σs , we have NXa({2, 3, 6, 7}) =
{1, 5}.

Similarly, let ρ ∈ 2X×X be a set of state pairs, θ ∈ O be a
sensing decision, and σ ∈ Σo ∪ Σs be an event. We define

ŨRθ (ρ) =
{

(x1 , x3)∈X ×X :
∃(x1 , x2)∈ρ,w∈(Σ \ θ)∗

s.t. x3 = δ(x2 , w)

}

ÑXσ (ρ) = {(x1 , x3)∈X×X :∃(x1 , x2)∈ρ, x3 = δ(x2 , σ)} .

Note that, each element in ρ is a state pair; we use the second
state in the pair to represent the current state of the system
and use the first state in the pair to represent where the current
state comes from. This is why, in the definitions of ŨRθ (ρ) and
ÑXσ (ρ), only states in the second components are changed.

Still, let q ∈ 2X be a set of states. We define

�θ (q) = {(x, x′) ∈ q × q : ∃w ∈ (Σ \ θ)∗ s.t. δ(x,w) = x′} .

Intuitively,�θ (q) maps q to a set of state pairs such that, in each
pair of states, the first state can reach the second state via strings
that are unobservable under θ.

Example 3: We still consider system G shown in Fig. 1(a).
Let {(1, 2), (5, 6)} ∈ 2X×X be a set of state pairs, which
represents that the system is either 1) currently at state 2 by
initialing from state 1; or 2) currently at state 6 by initialing
from state 5. Then, upon sensing decision {a} ∈ O, we
have UR{a}({(1, 2), (5, 6)}) = {(1, 2), (1, 3), (5, 6), (5, 7)}.
Then, upon observable event a ∈ Σo ∪ Σs , we have NXa

({(1, 2), (1, 3), (5, 6), (5, 7)}) = {(1, 1), (5, 5)}. Additionally,
for {2, 3, 6, 7} ∈2X , {a}∈O, we have �{a}({2, 3, 6, 7}) =
{(2, 2), (2, 3), (3, 3), (6, 6), (6, 7), (7, 7)}.

III. INFORMATION STATE FOR INFINITE-STEP OPACITY

In this section, we discuss how to select suitable informa-
tion state for infinite-step opacity and describe the information
evolution of a dynamic mask.

A. Choice of Information State

Given a dynamic mask Ω = (R,Θ), it works as follows. Ini-
tially, it provides an initial sensing decision Ω(ε). Then, only
some feasible and monitored event σ ∈ Ω(ε) can be observed.
Upon the occurrence of σ, the transition function of R is trig-
gered and it changes its sensing decision to Ω(σ) and waits for
the occurrence of the next monitored event, and so forth.

Let α = σ1σ2 . . . σn ∈ PΩ(L(G)) be an observable string.
Then, the information available upon the occurrence of α is an
alternating sequence, called a run, defined by

RΩ(α) := Ω(ε)σ1Ω(σ1)σ2 . . . σnΩ(σ1 . . . σn ). (1)

Although a run contains the complete information available,
it requires infinite memory when the length of the observed
string goes to infinite. In order to efficiently solve the synthesis
problem, we need more compact ways to summarize the infor-
mation available; this is usually referred to as information state
in the systems theory. Roughly speaking, information states are
(mostly finite) sufficient statistics that contain all useful (poten-
tially infinite) information. The choice of information states is
problem dependent. For example, in many synthesis problems
for a partially observed DES, 2X is a suitable set of information
states when only current-state-type properties are considered;
see, e.g., the supervisory control problem [45] and the sensor
activation problems for current-state opacity [8] and diagnos-
ability [13]. However, 2X is not sufficient for our purpose, since
infinite-step opacity not only requires that the secret is not re-
vealed currently, but also requires that the secret will not be
revealed at any instant in the future.
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In this paper, we propose to use the following set of informa-
tion states:

I := 2X × 22X ×X ×O
and each information state ı ∈ I has the form of ı =
(C(ı),D(ı), O(ı)) such that

1) the first component C(ı) ∈ 2X is a set of states repre-
senting the current state estimate of the system.

2) the second component D(ı) ∈ 22X ×X
is a set of state-

pair-sets representing all possible delayed state estimates
for all previous instants. More specifically, each ele-
ment ρ ∈ D(ı) is a set of state pairs in the form of
ρ = {(x1 , x

′
1), . . . , (x|ρ|, x

′
|ρ|)} ∈ 2X×X , where xi rep-

resents a state the system could be in at some previous
instant and x′i represents a state the system could be in
currently from xi ; and set D(ı) contains all possible such
ρ for all previous instants.

3) the third component O(ı) ∈ O is a sensing decision rep-
resenting the set of events being monitored currently.

B. Information State Evolution

Next, we describe how information states evolve. Now, sup-
pose that we are at information-state

ı = (C(ı),D(ı), O(ı)) ∈ 2X × 22X ×X ×O
and suppose that a monitored event σ ∈ O(ı) is observed and
a new sensing decision θ ∈ O is made immediately after the
occurrence of σ. Then, we move to a new information state
ı′ = (C(ı′),D(ı′), O(ı′)) as follows:⎧⎪⎪⎨

⎪⎪⎩

C(ı′) = URθ (NXσ (C(ı)))
D(ı′) = {ŨRθ (ÑXσ (ρ))∈2X×X : ρ ∈ D(ı)}

∪{�θ (C(ı′))}
O(ı′) = θ

. (2)

Equation (2) is the key of this paper and it is also referred to as

the information state updating rule and we denote by ı
(σ,θ)−−−→ ı′

if ı, ı′ and (σ, θ) satisfy this rule. Intuitively, C(ı′) is the updated
current state estimate upon the observation of σ and the newly
issue sensing decision θ. This is done by the unobservable reach
as the standard observer automaton. The computation of D(ı′)
is more involved. Specifically, the first part essentially smooths
the delayed state estimates for all previous instants using the
new information obtained and the second part mainly adds the
current state estimate, which will become delayed state estimate
for future instants. Finally, O(ı′) simply remembers the latest
sensing decision θ.

Now, let Ω be a dynamic mask and α = σ1 . . . σn ∈
PΩ(L(G)) be an observable string. Then, run RΩ(α) induces
the following information states evolution:

ı0
(σ1 ,Ω(σ1 ))−−−−−−→ ı1

(σ2 ,Ω(σ1 σ2 ))−−−−−−−−→ · · · (σn ,Ω(σ1 ...σn ))−−−−−−−−−−→ ın

where

ı0 = (URΩ(ε)(X0), {�Ω(ε)(URΩ(ε)(X0))},Ω(ε)) (3)

is the initial information state. We denote by IΩ(α) the infor-
mation state reached by the run of α, i.e., IΩ(α) = ın .

Example 4: Again, let us consider system G in Fig. 1(a) and
dynamic mask Ω in Fig. 1(b). Let us consider observable string
aa ∈ PΩ(L(G)). Initially, we have

IΩ(ε) = (URΩ(ε)(X0), {�Ω(ε)(URΩ(ε)(X0))},Ω(ε))

= ({0, 4}, {{(0, 0), (4, 4)}}, {a}).
Once event a is observed and new sensing decision Ω(a) =
{e, a} is made, the information state is updated to

IΩ(a) = ({1, 5}, {{(0, 1), (4, 5)}, {(1, 1), (5, 5)}}, {e, a})
which is computed by

C(IΩ(a)) = UR{e,a}(NXa({0, 4})) = {1, 5}
D(IΩ(a)) = {ŨR{e,a}(ÑXa({(0, 0), (4, 4)}))}

∪{�{e,a}({1, 5})}
= {{(0, 1), (4, 5)}} ∪ {{(1, 1), (5, 5)}}

O(IΩ(a)) = {e, a}.
Similarly, we have IΩ(aa) =
({2, 3, 6}, {{(0, 2), (0, 3), (4, 6)},{(1, 2),
(1, 3), (5, 6)}, {(2, 2), (2, 3), (3, 3), (6, 6)}}, {e, a}), which is
computed by

C(IΩ(aa)) = UR{e,a}(NXa({1, 5})) = {2, 3, 6}
D(IΩ(aa)) = {ŨR{e,a}(ÑXa({(0, 1), (4, 5)}))}

∪{ŨR{e,a}(ÑXa({(1, 1), (5, 5)}))}
∪{�{e,a}({2, 3, 6})}

= {{(0, 2), (0, 3), (4, 6)}}∪{{(1, 2), (1, 3), (5, 6)}}
∪{{(2, 2), (2, 3), (3, 3), (6, 6)}}

O(IΩ(aa)) = {e, a}.
Next, we show that the information states selected together

with the updating rule defined in (2) and the initial information
state defined in (3) indeed capture all relevant information in the
infinite-step opacity synthesis problem. First, we characterize
each component in IΩ(α).

Proposition 1: Let Ω be a dynamic mask, α ∈ PΩ(L(G))
be an observable string, and IΩ(α) be the information state
reached. Then, we have

1) C(IΩ(α)) = X̂Ω(α); and
2) D(IΩ(α)) = {ρβ,α ∈ 2X×X : β ∈ {α}}, where

ρβ,α =

⎧⎨
⎩(x, x′) ∈ X×X :

∃x0 ∈X0 , st∈L(G, x0) s.t.
PΩ(s) = β ∧ PΩ(st) = α∧

δ(x0 , s) = x ∧ δ(x0 , st) = x′

⎫⎬
⎭ .

Proof: In the first component of the updating rule,
URθ (NXσ (C(·))) is actually the recursive computation of the
current state estimate in the dynamic observation setting; see,
e.g., [13]. This gives 1). Hereafter, we prove 2) by induction on
the length of α.

Induction Basis: Suppose that |α| = 0, i.e., α =
ε. Then, we know that IΩ(ε) = ı0 and D(IΩ(ε)) =
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{�Ω(ε)(URΩ(ε)(X0))}, where

�Ω(ε) (URΩ(ε)(X0))

=

{
(x, x′)∈X×X :

∃x∈URΩ(ε)(X0),w∈(Σ \ Ω(ε))∗

s.t. δ(x,w) = x′

}

=

{
(x, x′)∈X×X :

∃x0 ∈ X0 ,∃st∈(Σ \ Ω(ε))∗

s.t. δ(x0 , s) = x ∧ δ(x, t) = x′

}

=

⎧⎪⎨
⎪⎩(x, x′)∈X×X :

∃x0 ∈ X0 ,∃st ∈ L(G, x0) s.t.

PΩ(s) = PΩ(st) = ε∧
δ(x0 , s) = x ∧ δ(x0 , st) = x′

⎫⎪⎬
⎪⎭

= ρε,ε .

Therefore, D(IΩ(ε)) = {ρε,ε} and the induction basis holds.
Induction Step: Now, let us assume that, for |α| = k,

2) holds. We need to prove that 2) still holds for any ασ ∈
PΩ(L(G)), where |α| = k and σ ∈ Σo ∪ Σs .

By the updating rule in (2), we know that

D(IΩ(ασ)) = {ŨRΩ(ασ )(ÑXσ (ρ))∈2X×X :ρ∈D(IΩ(α))}
∪ {�Ω(ασ )(X̂Ω(ασ))}. (4)

Since |α| = k, by the induction hypothesis, we know

D(IΩ(α)) = {ρβ,α ∈ 2X×X : β ∈ {α}}. (5)

Additionally, by the definition of ŨR and ÑX , we have

ŨRΩ(ασ )(ÑXσ (ρβ,α ))

=

{
(x1 , x3)∈X×X :

∃(x1 , x2)∈ρβ,α ,∃w∈(Σ \ Ω(ασ))∗

s.t. x3 = δ(x2 , σw)

}

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x1 , x3) ∈ X ×X :

∃x0 ∈ X0 ,∃st∈L(G, x0),

∃w∈(Σ \ Ω(ασ))∗ s.t.

PΩ(s) = β ∧ PΩ(st) = α∧
δ(x0 , s) = x1 ∧ δ(x0 , stσw) = x3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎨
⎪⎩(x1 , x3) ∈ X ×X :

∃x0 ∈ X0 ,∃st′ ∈L(G, x0) s.t.

PΩ(s) = β ∧ PΩ(st′) = ασ

∧δ(x0 , s) = x1 ∧ δ(x0 , st
′) = x3

⎫⎪⎬
⎪⎭

= ρβ,ασ . (6)

Combining (5) and (6), we have

{ŨRΩ(ασ )(ÑXσ (ρ)) ∈ 2X×X : ρ ∈ D(IΩ(α))}
= {ŨRΩ(ασ )(ÑXσ (ρβ,α )) ∈ 2X×X : β ∈ {α}}
= {ρβ,ασ ∈ 2X×X : β ∈ {α}}. (7)

Moreover, we have

�Ω(ασ ) (X̂Ω(ασ))

=
{

(x, x′)∈X ×X :∃x∈X̂G (ασ),∃w∈(Σ \ Ω(ασ))∗

s.t. δ(x,w) = x′

}

=

⎧⎪⎨
⎪⎩(x, x′)∈X ×X :

∃x0 ∈ X0 ,∃s∈L(G, x0),

∃w∈(Σ \ Ω(ασ))∗ s.t. PΩ(s) = ασ

∧δ(x0 , s) = x ∧ δ(x0 , sw) = x′

⎫⎪⎬
⎪⎭

=

⎧⎪⎨
⎪⎩(x, x′)∈X ×X :

∃x0 ∈ X0 ,∃sw∈L(G, x0) s.t.

PΩ(s) = PΩ(sw) = ασ

∧δ(x0 , s) = x ∧ δ(x0 , sw) = x′

⎫⎪⎬
⎪⎭

= ρασ,ασ . (8)

Therefore, by combining (4), (7), and (8), we have

D(IΩ(ασ)) = {ρβ,ασ ∈2X×X : β ∈ {α}} ∪ {ρασ,ασ}
= {ρβ,ασ ∈2X×X : β ∈ {ασ}}.

This completes the induction step. �
Recall that, each information state ı is in the form of ı =

(C(ı),D(ı), O(ı)), where D(ı) is a set of state-pair-sets. Then,
we define

D1(ı) := {{x ∈ X : (x, x′) ∈ ρ} : ρ ∈ D(ı)}
which consists of the first component of each state pairs in
D(ı). For example, for ı = ({1, 5}, {{(0, 1), (4, 5)}, {(1, 1),
(5, 5)}}, {e, a}), we have D1(ı) = {{0, 4}, {1, 5}}. Then, we
have the following corollary.

Corollary 1: Let Ω be a dynamic mask, α ∈ PΩ(L(G)) be an
observable string, and IΩ(α) be the information state reached.
Then, we have

D1(IΩ(α)) = {X̂G (β | α)∈2X : β ∈ {α}}.
Proof: By Proposition 1, we know that D(IΩ(α)) =

{ρβ,α ∈ 2X×X : β ∈ {α}}. Therefore

D1(IΩ(α))

=
{
{x ∈ X : (x, x′) ∈ ρβ,α} : β ∈ {α}

}

=

⎧⎪⎨
⎪⎩

⎧⎪⎨
⎪⎩x ∈ X :

∃x0 ∈ X0 ,∃st ∈ L(G, x0)

s.t. x = δ(x0 , s)

∧PΩ(s) = β ∧ PΩ(st) = α

⎫⎪⎬
⎪⎭ : β ∈ {α}

⎫⎪⎬
⎪⎭

=
{

X̂G (β | α)∈2X : β ∈ {α}
}

. (9)

This completes the proof. �
Corollary 1 tells that, using the proposed information state

updating rule, D1(IΩ(α)) can capture all possible delayed state
estimates for all possible previous instants. Let us define

Ibad = {ı ∈ I : ∃q ∈ D1(ı) s.t. q ⊆ XS} (10)

as the set of information states in which infinite-step opacity is
violated for some previous instant. Then, to check whether or
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not a given dynamic mask Ω is infinite-step opaque, it suffices
to check whether or not Ω can reach some information state in
Ibad .

Finally, we would like to emphasize that the information-
state-based characterization is not the most efficient way for
the purpose of verification of infinite-step opacity. In particular,
to verify infinite-step opacity, we can check, for each possible
current state estimate, whether or not any string that comes
from a secret state in it has a string that comes from a nonsecret
state in the current state estimate such that they have the same
projection; see, e.g., [31] and [46]. This leads to an exponential
complexity for the verification of infinite-step opacity rather
than the doubly exponential space of our information states.
However, the idea of the above verification procedure cannot
be applied to the synthesize problem, since the existence of
such an observational equivalent “nonsecret” depends on the
sensing decisions in the future, which are unknown and are to
be determined in the synthesis problem. Therefore, we cannot
“borrow” this future information as one can do in the verification
problem. This is, in fact, the main difficulty in the infinite-
opacity synthesis problem, which is addressed by the new type
of information state proposed in this paper.

IV. SYNTHESIS PROCEDURE OF INFINITE-STEP OPACITY

In this section, we first present an approach to synthesize
a dynamic mask that preserves infinite-step opacity and then
prove its correctness.

A. Synthesis Algorithm

As we discussed earlier, to synthesize a dynamic mask Ω
satisfying the infinite-step opacity requirement, it suffices to
guarantee, by construction, that any run induced will not reach
a bad information state in Ibad .

To this end, first, we define an FSA

T = (AT ,ΣT , δT , A0,T )

that captures all possible runs and all possible reachable infor-
mation states. Specifically

1) AT = I = 2X × 22X ×X ×O is the set of states;
2) ΣT = (Σo ∪ Σs)×O is the set of events;
3) δT : AT × ΣT → AT is the transition function defined

by: for any ı, ı′ ∈ AT , (σ, θ) ∈ ΣT , δT (ı, (σ, θ)) = ı′ if

σ ∈ O(ı) and ı
(σ,θ)−−−→ ı′;

4) A0,T is the set of initial states defined by

A0,T = {(URθ (X0), {�θ (URθ (X0))}, θ)∈AT : θ∈O}.
Intuitively, T captures all possible information state evolu-

tions since its transition function is defined for any information
states that satisfy the updating rule. The initial states of T are
not unique in order to capture all possible initial sensing de-
cisions. Automaton T will serve as the basis for synthesizing
a dynamic mask satisfying infinite-step opacity. This structure
will not be constructed explicitly. Instead, we will construct a
subautomaton of T directly as a solution to Problem 1. First,
we introduce some necessary notations and concepts.

Let T 	 T be a subautomaton of T , where T = (AT ,ΣT , δT ,
A0,T). For each state ı ∈ AT , we define

Σsucc
T (ı) := {σ ∈ O(ı) : ∃θ ∈ O s.t. δT (ı, (σ, θ))!}

as the set of observable events defined at ı. For each observable
event σ ∈ Σsucc

T (ı), we define

ΘT (σ, ı) := {θ ∈ O : δT (ı, (σ, θ))!}
as the set of sensing decisions associated with σ at state ı. Note
that, since the transition function of T is defined for all events
satisfying the updating rule, Σsucc

T (ı) is the set of all possible
events that can be observed from ı. We say that subautomaton
T 	 T is

1) safe, if AT ∩ Ibad = ∅;
2) observation consistent, if ∀ı∈AT ,Σsucc

T (ı) = Σsucc
T (ı);

3) decision deterministic, if |A0,T | = 1 and ∀ı ∈ AT ,∀σ ∈
Σsucc

T (ı) : |ΘT (σ, ı)| = 1.
Intuitively, observation consistency says that any feasible ob-

servation should be defined (associated with some θ) at each
state in T . This captures the fact that a dynamic mask should be
able to react to any possible observation. Decision determinism
essentially says that 1) the initial sensing decision is unique;
and 2) upon the occurrence of a new observable event σ, the
next sensing decision is also unique, which is the unique sens-
ing decision associated with σ. Therefore, any safe, observation
consistent and decision deterministic subautomaton T 	 T can
be modified as a dynamic mask that satisfies the infinite-step
opacity requirement.

On the basis of the above discussion, Algorithm 1 is pro-
posed to solve Problem 1. Let us explain how Algorithm 1
works. Lines 1–4 aim to explore the entire reachable space of
I \ Ibad represented by automaton T , whicis a subautomaton
of T . Specifically, line 1 defines the initial configuration of T
with initial states representing all possible initial sensing de-
cisions that do not violate infinite-step opacity initially. Then,
procedure EXPAND in lines 24–34 simply traverses the entire
reachable space of I \ Ibad by a depth-first-search implemented
recursively. Note that the resulting automaton T after line 4
may not be observation consistent since some events σ may
lead to states in Ibad no matter what θ they are associated with.
Therefore, the while-loop in lines 5–7 mainly removes states
that violate observation consistency from AT . Note that remov-
ing one state from T may destroy the observation consistency
of other states; hence, the while-loop may execute at most |AT |
times and the resulting T is the largest safe and observation con-
sistent subautomaton of T . In the worst case, all initial states in
T can be removed. This implies that opacity cannot be satisfied
by any sensing strategy; this is implemented by lines 8–10.

Now, suppose that automaton T obtained after line 7 contains
initial states. However, T may still not be decision determin-
istic, i.e., for some ı ∈ AT , σ ∈ Σsucc

T (ı), σ may be associated
with multiple sensing decisions. Therefore, lines 11–18 mainly
aim to find a decision deterministic subautomaton of T . Specif-
ically, lines 11 and 12 select a single initial state from A0,T

and, similarly, lines 13–18 select a single sensing decision for
each observable event at each state in AT . Moreover, in lines 11
and 15, we select sensing decisions that are local maximal; this
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Algorithm 1: Synthesize Dynamic Mask Ω = (T,Θ).
1: Define a FSA T = (AT ,ΣT , δT , A0,T ) with
AT = A0,T =
{(URθ (X0), {�θ (URθ (X0))}, θ)∈XT : θ∈O} \ Ibad

and
δT is undefined for any transition

2: for ı0 ∈ A0,T do
3: EXPAND(ı0 , T )
4: end for
5: while ∃ı ∈ AT : Σsucc

T (ı) �=Σsucc
T (ı) do

6: Remove ı from AT and remove its associated
transitions

from δT

7: end while
8: if A0,T = ∅ then
9: return “No Solution”

10: end if
11: Find ı0 ∈ A0,T such that ∀ı′0 ∈ A0,T : O(ı0) �⊂ O(ı′0)
12: Re-define initial states of T by A0,T ← {ı0}
13: for ı ∈ AT do
14: for σ ∈ Σsucc

T (ı) do
15: Find θ ∈ ΘT (σ, ı) s.t. ∀θ′ ∈ ΘT (σ, ı) : θ �⊂ θ′

16: At state ı, remove all transitions labeled with
(σ, θ′), θ′ �= θ

17: end for
18: end for
19: T ← Acc(T )
20: Redefine ΣT = Σ and rename each event (σ, θ) by σ
21: Make the transition function of T total by adding

self-loops for
undefined events

22: Define mapping Θ : AT →O by ∀ı∈AT : Θ(ı) = O(ı)
23: return Ω = (T,Θ)
24: procedure EXPAND(ı, T )
25: for (σ, θ) ∈ (Σo ∪ Σs)×O : δT (ı, (σ, θ)) = ı′ do
26: if ı′ /∈ Ibad then
27: add transition δT (ı, (σ, θ)) = ı′ to T
28: if ı′ �∈ AT then
29: AT ← AT ∪ {ı′}
30: EXPAND(ı′, T )
31: end if
32: end if
33: end for
34: end procedure

guarantees, by construction, that no sensing decision can im-
prove the selected one. By removing transitions from T , some
states may not be reachable anymore and line 19 takes the ac-
cessible part of T . After line 19, we have obtained a safe, ob-
servation consistent and decision deterministic subautomaton
of T , i.e., T . Then, lines 20–22 modify it as a dynamic mask.
Specifically, line 20 erases the sensing decision associated with
each observation (this decision has already been encoded in the
last component of each state in T ). Line 21 simply adds self-
loops for either infeasible events or unmonitored events so that

L(T ) = Σ∗. Finally, we define the output mapping Θ by the
last component of each state in T and return Ω := (T,Θ) as the
desired dynamic mask.

We will formally show later the properties of Algorithm 1
and prove its correctness. First, we illustrate Algorithm 1 by
the following example.

Example 5: Again, let us consider system G in Fig. 1(a) with
Σo = {a},Σuo = {u},Σs = {e}, and XS = {5}. We want to
synthesize a dynamic mask Ω satisfying infinite-step opacity.
Note thatO = {{a}, {e, a}}, i.e., there are two choices for sens-
ing decision, monitor event e or not. We apply Algorithm 1 to
this system. Specifically, after the execution of line 4, we obtain
T shown in the box marked with blue-dashed lines in Fig. 2. For
the sake of clarity, we denote this intermediate automaton by
T1 and we rename each state in T1 by S1 , . . . , S10 as shown in
the figure. At state S7 , if we take transition (a, {e, a}), then
state ı′ = ({7}, {{(4, 7)}, {(5, 7)}, {(6, 7)}, {(7, 7)}}, {e, a})
is reached. However, since D1(ı′) = {{4}, {5}, {6}, {7}} and
{5} ⊆ XS , we know that ı′ ∈ Ibad . This is why transition
(a, {e, a}) is not added to T1 at state S7 according to line 26; the
same reason for state S10 . Then, we execute the while-loop in
lines 5–7. Specifically, for state S7 , we have Σsucc

T1
(S7) = {a} �=

Σsucc
T (S7) = {e, a}, i.e., feasible observable event e is not de-

fined at this state. Therefore, state S7 needs to be removed. Sim-
ilarly, we need to remove state S10 for the same reason and the
while-loop terminates. This results in T (accessible part) shown
in the box marked with red-dashed lines in Fig. 2; for the sake of
clarity, we denote this intermediate automaton by T2 . Note that,
for state S3 in T2 , although the transition to state S7 is removed,
it does not violate observation consistency since (a, {a}) is de-
fined and event e is not a feasible observation at this state. Then,
we proceed to lines 11–19 to find a decision deterministic subau-
tomaton of T2 . Initially, we choose initial state S1 and remove
S2 from initial states, since {a} = O(S2) ⊂ O(S2) = {e, a}.
Then, at state S1 , for event e ∈ Σsucc

T (S1), we choose transition
(e, {e, a}) and remove (e, {a}); for event a ∈ Σsucc

T (S1), the
choice is unique, i.e., (a, {e, a}). Then, for states S3 , S4 , S5 ,
and S6 , only event a is feasible and at each state the sensing
decision associated with a is unique. This gives automaton T
shown as the red highlighted part in Fig. 2. Finally, by adding
self-loops and renaming event names, we obtain dynamic mask
Ω = (T,Θ) shown in Fig. 3, which is a solution to Problem 1.

Remark 2: At state S2 in Fig. 2, event (a, {a}) should also
be defined according to the updating rule. However, this sensing
decision is equivalent to (a, {e, a}) at this state since event
e is redundant in the sense that it is not feasible within the
unobservable reach encountered, i.e., e cannot be observed from
{1, 5} even if we choose to monitor it. Hence, taking (a, {a})
from S2 will reach an information state that has exactly the same
future behavior as state S3 . Therefore, for the sake of simplicity,
we only depict one transition with all redundant events included
instead of depicting all equivalent decisions.

Let us discuss the computational complexity of Algorithm 1.
In the worst case, automaton T contains at most 2|X | · 22 |X |×|X | ·
2|Σs | states and |Σ| · 2|X | · 22 |X |×|X | · 4|Σs | transitions. The run-
ning time of procedure EXPAND is linear in the number of tran-
sitions in T and the running time of the while-loop is quadratic
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Fig. 2. For the sake of clarity, we put the sensing decision as the second component of each state in the figure.

Fig. 3. Solution Ω = (T, Θ).

in the number of states in T . Therefore, the overall complexity
is doubly exponential in the number of states of G and expo-
nential in the number of events. For current-state opacity, only
exponential complexity is required for the synthesis of dynamic
masks; see, e.g., [8]. Our higher complexity comes from the
fact that infinite-step opacity is fundamentally more difficult
than current-state opacity and delayed information is involved
in this problem.

B. Correctness of the Synthesis Algorithm

In this section, we show that Algorithm 1 correctly solves
Problem 1, in the sense that

1) Algorithm 1 is sound, i.e., any solution returned by Al-
gorithm 1 is indeed maximal and infinite-step opaque;
and

2) Algorithm 1 is complete, i.e., it will not return “no solu-
tion” when a solution to Problem 1 exists.

Throughout this section, we use Ω = (T,Θ) to denote the
dynamic mask returned by Algorithm 1.

First, we show the soundness of Algorithm 1.
Lemma 1: G is infinite-step opaque w.r.t. XS and Ω. More-

over, for any Ω′ such that G is infinite-step opaque w.r.t. XS and
Ω′, we have Ω �< Ω′.

Proof: Let αβ ∈ PΩ(L(G)) be any observable string under
Ω. By Corollary 1, we know that X̂Ω(α | αβ) ∈ D1(IΩ(α)).
By line 26 in Algorithm 1, we know that IΩ(α) /∈ Ibad , which
implies that X̂Ω(α | αβ) �⊆ XS . Since αβ is an arbitrary string,
we know that Ω is infinite-step opaque.

To see the second point, we assume, for the sake of contradic-
tion, that there exists Ω′ such that 1) G is infinite-step opaque
w.r.t. XS and Ω′; and 2) Ω < Ω′. Then, let us define a new

subautomaton of T denoted by TΩ ′ = (AΩ ′ ,ΣΩ ′ , δΩ ′ , A0,Ω ′) as
follows:

1) AΩ ′ = {IΩ ′(α)∈I :α∈PΩ ′(L(G))} is the set of states;
2) A0,Ω ′ = {(URΩ ′(ε)(X0), {�Ω ′(ε)(URΩ ′(ε)(X0))},Ω′(ε))},

i.e., the initial state is unique;
3) The transition function δΩ ′ is defined by: for any ı ∈

AΩ ′ , (σ, θ) ∈ (Σo ∪ Σs)×O, δΩ ′(ı, (σ, θ)) is defined if
there exists sσ ∈ L(G) such that IΩ ′(PΩ ′(s)) = ı, σ ∈
Ω′(s) and θ = Ω′(sσ).

Since Ω′ is infinite-step opaque, by Corollary 1, we know
that TΩ ′ is safe. Therefore, all states and transitions in TΩ ′

will be included in T after line 4 in Algorithm 1. Moreover,
TΩ ′ is observation consistent since transitions are defined for
all feasible events. Therefore, we know that no state or transi-
tion is removed in the while-loop in Algorithm 1. Hence, all
states and transitions in TΩ ′ still remain in T after line 7 in
Algorithm 1.

Now, since Ω < Ω′, we know that ∀s ∈ L(G) : Ω(s) ⊆
Ω′(s); and ∃t ∈ L(G) : Ω(t) ⊂ Ω′(t). Therefore, let us
consider a string t ∈ L(G) such that Ω(t) ⊂ Ω′(t)
and ∀s ∈ {t} \ {t} : Ω(s) = Ω′(s). Let us consider
the following two cases. If t = ε, then we know that
ı′0 := ((URΩ ′(ε)(X0), {�Ω ′(ε)(URΩ ′(ε)(X0))},Ω′(ε))) ∈ A0,T

and Ω(ε) = O(ı0) ⊂ O(ı′0) = Ω′(ε), where ı0 is the ini-
tial state chosen in line 11 of Algorithm 1. However,
this is a contradiction since we should choose at least
ı′0 in this case. If t �= ε, then we write t = t′σ, where
σ ∈ Ω(t′). Since ∀s ∈ {t} \ {t} : Ω(s) = Ω′(s), we know that
PΩ(t′) = PΩ ′(t′) =: α and IΩ(α) = IΩ ′(α). Therefore, event
(σ,Ω′(t)) is defined at IΩ(α) in T . However, this contradicts
to our choice in line 15 as Ω(t) ⊂ Ω′(t).

Next, we show the completeness of Algorithm 1. �
Lemma 2: Algorithm 1 will not return “no solution” when a

solution to Problem 1 exists.
Proof: Suppose that there exists a dynamic mask Ω′ that

solves Problem 1. Then, we define a new subautomaton of
T denoted by TΩ ′ by the same construction in the proof of
Lemma 2. As we discussed in the proof of Lemma 2, all
states and transitions in TΩ ′ still remain in T after line 7 in
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Algorithm 1. Therefore, AT ,0 is not empty and line 8 will not
return “no solution.” �

Finally, we summarize Lemmas 1 and 2 by the following
theorem.

Theorem 1: Algorithm 1 correctly solves Problem 1.
Remark 3: In the proof of Lemma 1, we show that, for any

infinite-step opaque dynamic mask Ω′, its corresponding TΩ ′ is
“included” in T after line 7 in Algorithm 1. Therefore, T after
line 7 in Algorithm 1 essentially “embeds” all possible solutions
in it. Recall that, in this paper, we aim to find one logical maxi-
mal dynamic mask for infinite-step opacity. Another interesting
question is how to compare two incomparable maximal solu-
tions. This may require us to introduce new numerical measure
for optimality, e.g., quantitative cost. This direction has actually
been explored in [8] for current-state opacity by solving a mean
payoff game. In our context, one could also apply similar tech-
niques over the structure obtained after line 7 in Algorithm 1.
This numerical optimization problem is beyond the scope of
this paper as the main purpose of this paper is to show what is
the right information structure to handle delayed information in
infinite-step opacity.

V. COMPLEXITY REDUCTION AND GENERALIZATION

In this section, we first present an approach to reduce the state
space of information states for infinite-step opacity. Then, we
discuss how to generalize the proposed synthesis algorithm to
other properties with delayed information.

A. Information-State Reduction

In the previous sections, we have provided an approach
for synthesizing dynamic masks that preserve infinite-step
opacity. The idea is to explore the information state space
2X × 22X ×X ×O following the proposed information state up-
dating rule. Nevertheless, this is still a very large state space;
the main complexity comes from the fact that we need to store
all possible delayed state estimates for each instant in order
to check whether or not the current information reveals some
secret in the past. For the purpose of preserving infinite-step
opacity, however, not all delayed state estimates along the de-
cision history are needed. It is possible that a current/delayed
state estimate of an instant does not contain a secret state. This
may correspond to the following two cases: 1) the current-state
estimate for that instant does not even contain a secret state; or
2) the possibility that the system was in a secret state for that
instant, which has been “smoothed” by the future information.
Then, for such a scenario, no matter what information is released
in the future, such an instant will not be a source that reveals the
secret. Therefore, we do not need to store state estimate and its
induced delayed state estimates in the future. This observation
allows us to further reduce the state space of the information
state.

Formally, we define

ΞS = {ρ ∈ 2X×X : ∃(x, x′) ∈ ρ s.t. x ∈ XS}
as the set of all state-pair-sets in which the first component
of some state pairs is a secret state. Then, we modified the

information state updating rule as follows. For each informa-
tion state ı = (C(ı),D(ı), O(ı)) ∈ 2X × 22X ×X ×O, suppose
a monitored event σ ∈ O(ı) is observed and a new sensing deci-
sion θ ∈ O is made immediately after the occurrence of σ. Then,
the new information state reached ı′ = (C(ı′),D(ı′), O(ı′)) is
defined by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C(ı′) = URθ (NXσ (C(ı)))

D(ı′) =
(
{ŨRθ (ÑXσ (ρ))∈2X×X : ρ ∈ D(ı)} ∩ ΞS

)
∪ ({�θ (C(ı′))} ∩ ΞS )

O(ı′) = θ

.

(11)

Equations (11) is also referred to as the reduced information
state updating rule. The difference between the reduced updat-
ing rule and the original updating rule is the second component
D(ı′). Specifically, in the original updating rule, we need to
update all previous delayed state estimates and always add the
current state estimate (after mapping) �θ (C(ı′)) to this com-
ponent. However, in the reduced updating rule, we only need
to update those delayed state estimates in which the secret be-
haviors are still possible. Note that some secret states contained
in previous delayed state estimates may be smoothed by the
new information. Therefore, we can just forget those delayed
state estimates for which the possibility of secret states has been
eliminated. Similarly, we will only add the current state estimate
when it contains a secret state. Otherwise, the current instant will
never be a source that violates infinite-step opacity in the future
and we do not need to remember this information.

In order to synthesize a dynamic mask that preserves infinite-
step opacity, we can then use exactly the same algorithm, i.e.,
Algorithm 1, except the following differences.

1) The initial states A0,T in lines 1 should be replaced by

{(URθ (X0), {�θ (URθ (X0))} ∩ ΞS , θ)∈XT : θ∈O} \ Ibad .

2) The transition function δT considered in line 25 should
follow the reduced information state updating rule, as
defined in (11), not the originally one.

Compared with the original information state updating rule
that may explore the entire 2X × 22X ×X ×O state space, the
reduced information state updating rule will only explore a sub-
space

Ireduc := 2X × (22X ×X \ 22(X \X S )×X

)×O
that contains at most 2|X |+ |Σs | · (22 |X |×|X | − 22 |X \X S |×|X |) states.
Therefore, the complexity of the synthesis algorithm can be re-
duced considerably when the number of secret states is relatively
smaller (which is usually the case for most of the applications).

Next, we illustrate how to synthesize a dynamic mask using
the reduced information state updating rule.

Example 6: Let us still consider system G in Fig. 1(a) with
Σo = {a},Σuo = {u},Σs = {e} and XS = {5}. We apply
Algorithm 1 using the reduce information state updating rule.
The synthesis procedure is depicted in Fig. 5. For example,
we consider that the initial state of T is ({0, 4}, {∅}, {e, a})
not the original one ({0, 4}, {{(0, 0), (4, 4)}}, {e, a}); this
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Fig. 4. Illustration of Algorithm 1 using the reduced information state
updating rule.

Fig. 5. Ω′ = (T ′, Θ′) obtained based on the reduced information state.

is because {(0, 0), (4, 4)} �∈ ΞS . From state S ′1 to S ′3 , we
need to add {�{e,a}({1, 5})} to the second component since
{(1, 1), (5, 5)} ∈ ΞS . However, from state S ′3 to S ′4 , we do
not need to add {�{e,a}({2, 3, 6, 7})} to the second compo-
nent since {(2, 2), (2, 3), (3, 3), (6, 7), (6, 7), (7, 7)} �∈ ΞS and
we just need to update the delayed state estimate from
{(1, 1), (5, 5)} to {(1, 2), (1, 3), (5, 6), (5, 7)}. Following the
same synthesis procedure as we discussed in Example 5, we
obtain automaton T ′ shown as the part highlight in red in Fig. 4.
By adding self-loops and renaming event names, we obtain dy-
namic mask Ω′ = (T ′,Θ′) shown in Fig. 5.

Remark 4: By comparing Ω′ = (T ′,Θ′) in Fig. 5 with Ω =
(T,Θ) in Fig. 3, we see that these two dynamic masks work
essentially the same, but T ′ contains less states than T . This il-
lustrates that some states in the dynamic mask synthesized (even
using the reduced information state updating rule) may be redun-
dant. For example, in Ω′ = (T ′,Θ′) shown in Fig. 5, since states
S ′3 and S ′5 are equivalent states in the sense that they have the
same current decision and future behaviors. This dynamic mask
can then be further reduced to Ω′′ = (T ′′,Θ′′) shown in Fig. 6
by merging states S ′3 and S ′5 without changing its functionality.
Therefore, after the execution of Algorithm 1, one can apply
the standard automaton minimization algorithm, which can be
done in polynomial-time for deterministic finite-state automata,

Fig. 6. Ω′′ = (T ′′, Θ′′) with a minimal state space.

to further reduce the state space of the synthesized dynamic
mask in order to save memory for its online implementation.

B. Synthesis for Initial-State Opacity

The proposed synthesis procedure and the reduction rule can
also be easily extended to initial-state opacity. Specifically, sys-
tem G is said to be initial-state opaque w.r.t. XS and Ω if the
intruder can never know for sure that the system is initially from
a secret state, i.e.,

∀α ∈ PΩ(L(G)) : X̂Ω(ε | α) �⊆ XS .

Similarly, to synthesize a dynamic mask that preserves initial-
state opacity, we can still use Algorithm 1 with the following
modifications.

1) The initial states A0,T in lines 1 is also replaced by

{(URθ (X0), {�θ (URθ (X0))} ∩ ΞS , θ)∈XT : θ∈O} \ Ibad .

2) The second component of the transition function δT con-
sidered in line 25, i.e., the part for D(ı), is replaced by

D(ı′) = {ŨRθ (ÑXσ (ρ))∈2X×X : ρ ∈ D(ı)} ∩ ΞS .

Intuitively, the above modification says that, when we update
the information state, we will only update the delayed-state-
estimate that corresponds to the initial state and do not need
to add any current-state estimate encountered. Therefore, for
initial-state opacity, we only need to explore a subspace 2X ×
(2X×X \ 2XS ×X )×O as D(ı) is always a singleton. Hence,
the complexity for the case of initial-state opacity is just single
exponential.

Note that, although it has been show by [41] that initial-state
opacity and current-state opacity can be mapped from one to
the other for the purpose of verification, it is not the case for
the purpose of synthesis. To the best of our knowledge, how to
synthesize a dynamic mask for initial-state opacity has never
been solved in the literature. This problem can now be solved
within our framework.

C. Generalization to a Class of Properties

In fact, the proposed information state and its updating rule
can be applied to the synthesis problems for other properties
where delayed information is involved.

For example, in the computer science literature, K-anonymity
is a property requiring that the observer should never know the
current state of the system “too precisely” in the sense that the
cardinality of the current-state estimate should always be larger
than or equal to K, i.e.,

∀α ∈ PΩ(L(G)) : |X̂Ω(α)| ≥ K.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 28,2020 at 18:20:52 UTC from IEEE Xplore.  Restrictions apply. 



1440 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 4, APRIL 2020

Note that the standard definition of K-anonymity only considers
current information; it can be enforced using the approach in
[47]. However, similar to the case of infinite-step opacity, the
observer may also use future information to better know the
state of the system for some previous instant. Therefore, we can
define infinite-step K-anonymity as a stronger condition that
takes the effect of future information into account. Specifically,
system G is said to be infinite-step K-anonymous w.r.t. a positive
integer K ∈ N if

∀αβ ∈ PΩ(L(G)) : |X̂Ω(α | αβ)| ≥ K.

Intuitively, infinite-step K-anonymity says that the intruder
should never know the state of the system at any specific in-
stant “too precisely” in the sense that, for each instant, there
always exist at least K distinct states that are indistinguish-
able even by using future information. We can also synthesize a
dynamic mask that preserves infinite-step K-anonymity using
the proposed approach. The only difference with infinite-step
opacity is that, instead of considering illegal information states
Ibad defined in (10), we need to consider the following illegal
information states:

Iano
bad = {ı ∈ I : ∃q ∈ D1(ı) s.t. |q| < K}.

According to Corollary 1, for each state in Iano
bad , there must exist

a previous instant in the trajectory reaching this information
such that the observer knows for sure that the cardinality of
the delayed state estimate is smaller than K, i.e., infinite-step
K-anonymity is violated.

Another related property that can be enforced by the pro-
posed approach is infinite-step indistinguishability. Specifically,
let X1 ,X2 ⊆ X be two disjoint sets of states. Then, infinite-step
indistinguishability requires that the intruder should never be
able to distinguish X1 and X2 for any specific instant, i.e.,

(∀αβ ∈ PΩ(L(G)))(∀i, j ∈ {1, 2} : i �= j)

X̂Ω(α | αβ) ∩Xi �= ∅ ⇒ X̂Ω(α | αβ) ∩Xj �= ∅.
Similarly, we can synthesize a dynamic mask that preserves
infinite-step indistinguishability by replacing the original illegal
information states Ibad as

I indis
bad =

{
ı ∈ I :

∃q ∈ D1(ı),∃i, j ∈ {1, 2} s.t.

q ∩Xi �= ∅ ∧ q ∩Xj = ∅

}
.

In fact, our synthesis algorithm can be applied to any property
that can be written as a safety-type predicate ϕ : 2X × 22X →
{0, 1}, where first part represents the current-state estimate of
the system and the second part represents all possible delayed-
state estimates of the system.

Example 7: Let us still consider system G in Fig. 1(a) with
Σo = {a},Σuo = {u} and Σs = {e}. However, instead of
considering infinite-step opacity, we consider infinite-step K-
anonymity for K = 2. Then, for the structure in Fig. 2, we also
have ı = ({7}, {e, a}, {{(4, 7)}, {(5, 7)}, {(6, 7)}, {(7, 7)}}) ∈
Iano
bad since {4} ∈ D1(ı) but |{4}| = 1 < 2. Therefore, both

states S7 and S10 still need to be violated. Then, the remaining
part of the synthesis procedure is exactly the same as Example 5

and we also obtain dynamic mask Ω = (T,Θ) shown in Fig. 3
but for infinite-step 2-anonymity.

VI. CONCLUSION

We investigated the problem of synthesizing dynamic masks
that preserve infinite-step opacity while maximizing the infor-
mation acquired. A new type of information state was proposed
to capture all delayed information for all previous instants. An
effective algorithm was provided to solve the synthesis problem.
Our result extends previous work on the synthesis of dynamic
masks from current-state opacity to infinite-step opacity. We
believe that the new type of information state proposed in this
paper can also be applied to the supervisor synthesis problem
and the insertion function synthesis problem for the purpose of
enforcing infinite-step opacity. We will explore these directions
in the future.

REFERENCES

[1] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, and P. Daron-
deau, “Concurrent secrets,” Discrete Event Dyn. Syst.: Theory Appl.,
vol. 17, no. 4, pp. 425–446, 2007.

[2] F. Basile and G. De Tommasi, “An algebraic characterization of language-
based opacity in labeled Petri nets,” in Proc. 14th Int. Workshop Discrete
Event Syst., 2018, pp. 340–347.

[3] B. Bérard, J. Mullins, and M. Sassolas, “Quantifying opacity,” Math.
Struct. Comput. Sci., vol. 25, no. 2, pp. 361–403, 2015.

[4] A. Bourouis, K. Klai, N. Ben Hadj-Alouane, and Y. El Touati, “On the
verification of opacity in web services and their composition,” IEEE Trans.
Services Comput., vol. 10, no. 1, pp. 66–79, Jan./Feb. 2017.

[5] J. W. Bryans, M. Koutny, L. Mazaré, and P. Ryan, “Opacity generalised to
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