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a b s t r a c t

In this paper, we investigate state estimation and detection problems with information delays in
the context of partially-observed discrete-event systems. Specifically, we study the verification of an
important detectability property called delayed detectability which is related to the state estimation
problem with information delayed. Particularly, it requires that the state of the system after k1
observations can always be detected within another k2 observation delay; delayed detectability is,
therefore, referred to as (k1, k2)-detectability. In this paper, we provide a new verification algorithm
for checking this property. The idea is to use the reversed dynamic of the system to efficiently estimate
the delayed-state information. To this end, a new information structure called the two-way verifier is
proposed. We show that our result improves the complexity of existing verification algorithms for the
property. We also illustrate our result by simple examples.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Discrete-event systems (DES) are dynamic systems with dis-
rete state–spaces and event-driven dynamics. DES are widely
sed for modeling both logic systems that are inherently event-
riven and symbolic abstractions of continuous/hybrid dynamic
ystems. In many problems, e.g., supervisory control and fault
iagnosis, the state information of the system is usually crucial
or the purpose of decision making. However, in many real world
pplications, we do not always have perfect knowledge of the sys-
em due to imperfect information or measurement uncertainties.
herefore, state estimation and detection are important issues in
he analysis and design of partially-observed DES.

In the context of DES, the problem of state estimation dates
ack to the study of the property of observability; see, e.g., Lin
nd Wonham (1988), Ramadge (1986) and Özveren and Will-
ky (1990). In this problem, it is assumed that the system’s
ehavior is only partially-known and we want to infer the sys-
em’s ‘‘state’’ based on the imperfect information. State estimate

✩ This work was supported by the National Natural Science Foundation
of China (61803259, 61833012) and Shanghai Jiao Tong University, China
Scientific and Technological Innovation Funds. The material in this paper was
not presented at any conference. This paper was recommended for publication
in revised form by Associate Editor Christoforos Hadjicostis under the direction
of Editor André L. Tits.

∗ Corresponding author.
E-mail addresses: liuyang@nyu.edu (Y. Liu), zhaocongl@sjtu.edu.cn (Z. Liu),

inxiang@sjtu.edu.cn (X. Yin), syli@sjtu.edu.cn (S. Li).
ttps://doi.org/10.1016/j.automatica.2020.109291
005-1098/© 2020 Elsevier Ltd. All rights reserved.
of DES has also been investigated for different classes of sys-
tem models including max-plus automata (Lai, Lahaye, & Giua,
2019), timed Petri nets (Ma, Li, & Giua, 2019) and stochastic Petri
nets (Ammour, Leclercq, Sanlaville, & Lefebvre, 2017).

Recently, the state estimation of DES has been investigated
in a more systematic manner in the context of detectability.
The concept of detectability was first proposed by Shu and Lin
in Shu, Lin, and Ying (2007), where several different notions of de-
tectability, e.g., strong (periodic) detectability and weak (periodic)
detectability, are defined. Specifically, the authors of Shu et al.
(2007) considered DES modeled as finite-state automata with
unobservable events. Then strong detectability captures whether
or not we can always detect the current state of the system
within a finite delay, while weak detectability captures whether
or not the current state of the system can be detected for some
path generated by the system. Verification algorithms were also
provided for different notions of detectability in Shu et al. (2007).
In Shu and Lin (2011), a polynomial-time algorithm was provided
for the verification of strong detectability. However, it has been
shown more recently by Masopust (2018) and Zhang (2017) that
verifying weak detectability is PSPACE-hard. Therefore, it is un-
likely that a polynomial-time algorithm exists for the verification
of weak detectability.

Since the seminal work of Shu and Lin, the concept of de-
tectability has been studied more extensively and has been ex-
tended to different settings. In Shu and Lin (2013a), the concept

of delayed detectability was proposed by allowing the usage of
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uture observation for information smoothing. In Keroglou and
adjicostis (2017), Zhao, Shu, Lin, and Zhang (2019), detectability
as investigated in the stochastic setting by considering the
ransition probability of the system; corresponding stochastic
otions of detectability capturing the probability of state detec-
ion were also provided. In Shu and Lin (2013b), Yin and Lafor-
une (2016), the detectability enforcement problem was studied,
here the goal is to design a maximally-permissive supervisor
uch that the controlled system is detectable. Recently, several
ew types of detectability are also proposed in the literature for
ifferent detection requirements, e.g., K -detectability (Hadjicostis
Seatzu, 2016) and trajectory detectability (Yin, Li, & Wang,

018). Detectability has also been extended to different system
odels, including nondeterministic systems (Han, Chen, & Zhao,
017; Zhang & Zamani, 2017), Petri net systems (Masopust &
in, 2019b; Tong & Lan, 2019; Zhang & Giua, 2018), networked
ystems (Alves & Basilio, 2019; Sasi & Lin, 2018) and modular
ystems (Masopust & Yin, 2019a; Yin & Lafortune, 2017b).
In some applications, we may not be interested in knowing

he current-state of the system. Instead, we may be interested in
etecting the previous state of the system with some information
elays such as the initial-state detection problem and the delayed
etection problem. For example, the concept of I-detectability
as introduced by Shu and Lin (2013c). More recently, the initial-
tate detection problem has also been studied in the stochastic
etting (Yin, 2017). In general, one may be interested in de-
ecting the state of the system at an arbitrary instant possibly
ith information delays. This is referred to as the delayed-state
stimation problem in Shu and Lin (2013a), Zhou, Shu, and Lin
2018), where the notion of delayed detectability (or (k1, k2)-
etectability) was proposed. Specifically, delayed detectability
equires that the state of the system after k1 observations can
lways be detected within another k2 observation delay. A ver-
fication algorithm for delayed detectability was also provided
n Shu and Lin (2013a).

In this paper, we revisit the verification delayed detectability
s defined in Shu and Lin (2013a). The main contributions of
his paper are as follows: We propose a new structure called
he two-way verifier (TW-verifier) for the purpose of verifying
elayed detectability. The TW-verifier essentially composes the
tandard verifier (Jiang, Huang, Chandra, & Kumar, 2001; Yoo &
afortune, 2002) and the proposed reversed verifier (Liu, Yin, & Li,
019) in an asynchronous manner to capture all possible delayed
nformation. Based on the TW-verifier, we then also provide an
mproved approach for the verification of delayed detectability,
hich reduces the complexity from O((k1 + k2)|Σ ||X |

6) in Shu
and Lin (2013a) to O(|Σ ||X |

4).1 Our constructions of the reversed
verifier and the TW-verifier are novel that combine the advan-
tages of both the verifier structure and the reversed dynamics of
the system, which yield better verification complexity compared
with all existing algorithms.

2. Preliminaries

2.1. System model

Let Σ be a finite set of events. A string s = σ1 . . . σn is a finite
sequence of events. We denote by |s| the length of the string s
with |ε| = 0, where ε is the empty string. We denote by Σ∗ the
set of all strings over Σ including the empty string ε. A language
L ⊆ Σ∗ is a set of strings. We define Σε := Σ ∪ {ε}.

1 Similar complexity reductions are also reported by Zhang and Giua (2019)
ery recently during the revision of this paper by a different approach.
2

We consider DES modeled as non-deterministic finite-state
automaton (NFA)

G = (X, Σ, δ, X0) (1)

where X is a finite set of states, Σ is a finite set of events, δ :

X × Σ → 2X is a non-deterministic (partial) transition function
and X0 ⊆ X is a set of initial-states. For any x, x′

∈ X, σ ∈ Σ ,
x′

∈ δ(x, σ ) implies that there exists a transition from x to x′

labeled with σ . Specifically, we define δ(x, ε) = x (here we also
use ε to denote the silent event for simplicity). Function δ is also
extended to δ : X × Σ∗

→ 2X recursively as follows: for any
s ∈ Σ∗ and σ ∈ Σ , we have δ(x, sσ ) = ∪x′∈δ(x,s)δ(x′, σ ). For
each state x, we denote by L(G, x) the set of strings generated
by G from x, i.e, L(G, x) = {s ∈ Σ∗

: δ(x, s)!}, where ‘‘!’’ stands
for ‘‘is defined’’. Therefore, L(G) = ∪x0∈X0L(G, x0) is the language
generated by the system.

In many applications, the occurrence of event cannot be per-
fectly observed. To capture the imperfect observation, we assume
that the event set is partitioned as

Σ = Σo∪̇Σuo,

where Σo is the set of observable events and Σuo is the set of
unobservable events. The natural projection P : Σ∗

→ Σ∗
o is

defined recursively by: ∀s ∈ Σ∗, σ ∈ Σ

P(ε) = ε, P(sσ ) =

{
P(s)σ if σ ∈ Σo
P(s) if σ ∈ Σuo

The natural projection is also extended to P : 2Σ∗

→ 2Σ∗
o by:

∀L ⊆ Σ∗
: P(L) = {P(s) ∈ Σ∗

o : s ∈ L}.
Finally, we make the following standard assumptions in the

analysis of partially-observed DES:

A1 System G is deadlock-free, i.e., ∀x ∈ X, ∃σ ∈ Σ : δ(x, σ )!;
A2 System G does not contain unobservable cycle, i.e., ∀x ∈

X, ∀s ∈ Σ∗
uo such that |s| ≥ 1 : x /∈ δ(x, s).

2.2. Delayed detectability

In Shu and Lin (2013a), delayed detectability has been pro-
posed in order to answer the following question: after observing
more than k1 observable events, can we always determine the
state of the system within at most k2 steps of delays? To formally
define delayed detectability, for any αβ ∈ P(L(G)), we define

X̂(α | αβ)=
{
x∈X :

∃x0 ∈X0, wv ∈ L(G, x0) s.t.
P(w)=α, P(wv)=αβ, x∈δ(x0, w)

}
(2)

as the delayed state estimate of the system at instant α upon the
occurrence of αβ . Then, (k1, k2)-detectability can be defined as
follows:

Definition 2.1 ((k1, k2)-detectability). A DES G is said to be (k1, k2)-
detectable if we can determine the state of the system within k2
steps of delays after observing k1 steps of observable events, that
is, for any αβ ∈ P(L(G)),

[|α| ≥ k1 ∧ |β| ≥ k2] ⇒ |X̂(α | αβ)| = 1. (3)

We illustrate (k1, k2)-detectability by the following example.

Example 1. Let us consider the system G shown in Fig. 1, where
we have X0 = {0, 1} and Σo = {a, b}. Note that both states
3 and 4 can be reached after observing a, and for any n ≥ 1,
observable string bn is also able to occur from both states. So we
have {3, 4} ⊆ X̂(a | ab2). Therefore, by Definition 2.1, we know
that system G is not (1, 2)-detectable.
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3
. Verification of (k1, k2)-detectability

In this section, we investigate the verification of (k1, k2)-
detectability. In Shu and Lin (2013a), the authors have provided
an algorithm for the verification of (k1, k2)-detectability. The
complexity of the algorithm proposed in Shu and Lin (2013a)
is O((k1 + k2)|Σ ||X |

6). In this section, we propose an improved
algorithm for the verification of (k1, k2)-detectability using a
more compact information structure called the two-way verifier.

In Yin and Lafortune (2017a), the authors have proposed the
notion of Two-Way Observer (TW-observer) for the verification of
infinite-step and K -step opacity. However, the size of the TW-
observer is exponential in the size of the system. Motivated by
the TW-observer but by incorporating the feature of delayed
detectability, we define the structure of Two-Way Verifier (TW-
verifier), which asynchronously composes the standard verifier
and the reversed verifier proposed in Liu et al. (2019), as follows:

Definition 3.1. The TW-verifier of G is an NFA

VTW (G) = (QTW , ETW , fTW ,QTW ,0) (4)

where

• QTW ⊆ X × X × X × X is a set of states;
• ETW ⊆ (Σε×Σε×{ε}×{ε})∪({ε}×{ε}×Σε×Σε)\{(ε, ε, ε, ε)}

is a set of events;
• QTW ,0 = X0 × X0 × X × X is a set of initial-states;
• fTW : QTW × ETW → 2QTW is the non-deterministic transition

function defined as follows: For any q = (x1, x2, x3, x4) ∈

QTW , σ ∈ Σ , the following transitions are defined:

(a) If σ ∈ Σo, then

fTW ((x1, x2, x3, x4), (σ , σ , ε, ε))
={(x′

1, x
′

2, x3, x4)∈QTW : x′

1 ∈δ(x1, σ ) ∧ x′

2 ∈δ(x2, σ )}
(5)

fTW ((x1, x2, x3, x4), (ε, ε, σ , σ ))
={(x1, x2, x′

3, x
′

4)∈QTW : x3 ∈δ(x′

3, σ ) ∧ x4 ∈δ(x′

4, σ )}
(6)

(b) If σ ∈ Σuo, then

fTW ((x1, x2, x3, x4), (σ , ε, ε, ε))

={(x′

1, x2, x3, x4) ∈ QTW : x′

1 ∈ δ(x1, σ )} (7)

fTW ((x1, x2, x3, x4), (ε, σ , ε, ε))

={(x1, x′

2, x3, x4) ∈ QTW : x′

2 ∈ δ(x2, σ )} (8)

fTW ((x1, x2, x3, x4), (ε, ε, σ , ε))

={(x1, x2, x′

3, x4) ∈ QTW : x3 ∈ δ(x′

3, σ )} (9)

fTW ((x1, x2, x3, x4), (ε, ε, ε, σ ))

={(x1, x2, x3, x′

4) ∈ QTW : x4 ∈ δ(x′

4, σ )} (10)

Remark 1.
The TW-verifier is motivated by the standard verifier (or twin-

machine) construction that has been widely used in the veri-
fication of partially-observed DES. In the standard verifier, the
structure tracks a pair of strings having the same observation.
However, the TW-verifier tracks two pairs of strings, i.e., we
consider the first two components as a pair and the last two com-
ponents as another pair. The common property of the two pairs is
that strings in each part have the same projection. However, the
first pair of strings follows the original dynamics of the system
while the second pair of strings follows the reversed dynamics of
3

the original system. This is why we call it ‘‘two-way’’ since the
information tracking directions in the first and the second pair
are opposite.

Before we propose the algorithm for the verification of the
(k1, k2)-detectability, we first show some properties of the TW-
verifier. We observe that in the proposed TW-verifier, the first
component is essentially the standard verifier (see, e.g., Jiang
et al., 2001; Yoo & Lafortune, 2002), while the second component
is the reversed verifier proposed in our recent work (Liu et al.,
2019), and these two parts are not synchronized. Therefore, sim-
ilar to the propositions of the reversed verifier in Liu et al. (2019),
we have the following properties of VTW (G) immediately.

Proposition 1. For any sequence

(x01, x
0
2, x

0
3, x

0
4)

(σ1
1 ,σ1

2 ,σ1
3 ,σ1

4 )

TW
- (x11, x

1
2, x

1
3, x

1
4)

(σ2
1 ,σ2

2 ,σ2
3 ,σ2

4 )

TW
-

· · ·
(σn

1 ,σn
2 ,σn

3 ,σn
4 )

TW
- (xn1, x

n
2, x

n
3, x

n
4) (11)

in VTW (G), we have

(i) ∀i = 1, 2 : σ 1
i σ 2

i . . . σ n
i ∈ L(G, x0i ); and

(ii) ∀i = 3, 4 : σ n
1 σ n−1

1 . . . σ 1
1 ∈ L(G, xni ); and

(iii) P(σ 1
1 σ 2

1 . . . σ n
1 ) = P(σ 1

2 σ 2
2 . . . σ n

2 ); and
(iv) P(σ n

3 σ n−1
3 . . . σ 1

3 ) = P(σ n
4 σ n−1

4 . . . σ 1
4 ).

Proposition 2. For any two initial states x0,1, x0,2 ∈ X0, two states
x3, x4 ∈ X, and for strings s1 ∈ L(G, x0,1), s2 ∈ L(G, x0,2), s3 ∈

L(G, x3), s4 ∈ L(G, x4) such that P(s1) = P(s2) and P(s3) = P(s4),
there must exist a sequence

(x01, x
0
2, x

0
3, x

0
4)

(σ1
1 ,σ1

2 ,ε,ε)

TW
- (x11, x

1
2, x

0
3, x

0
4)

(σ2
1 ,σ2

2 ,ε,ε)

TW
- · · ·

(σn
1 ,σn

2 ,ε,ε)

TW
- (xn1, x

n
2, x

0
3, x

0
4)

(ε,ε,σ1
3 ,σ1

4 )

TW
- (xn1, x

n
2, x

1
3, x

1
4)

(ε,ε,σ2
3 ,σ2

4 )

TW
- · · ·

(ε,ε,σm
3 ,σm

4 )

TW
- (xn1, x

n
2, x

m
3 , xm4 ) (12)

in VTW (G) such that

(i) (x01, x
0
2, x

m
3 , xm4 ) = (x0,1, x0,2, x3, x4); and

(ii) For any i = 1, 2, si = σ 1
i σ 2

i . . . σ n
i ; and

(iii) For any i = 3, 4, si = σm
i σm−1

i . . . σ 1
i .

Next, we show that, for any state (x1, x2, x3, x4) reached in
VTW (G), if {x1, x2} ∩ {x3, x4} ̸= ∅, the first component of strings
and the second component of strings corresponding to the above
state can be ‘‘connected’’ at a state in {x1, x2} ∩ {x3, x4}.

Proposition 3. Let s = (s1, s2, s3, s4) ∈ L(VTW (G)) be a string in
the TW-verifier and (x1, x2, x3, x4) be a state reached by s. Suppose
P(s1) = P(s2) = α and P(sR3) = P(sR4) = β . Then we have:

(i) if {x1, x2} ∩ {x3, x4} ̸= ∅, then αβ ∈ P(L(G)); and
(ii) for any x ∈ {x1, x2} ∩ {x3, x4}, there exist an initial state

x0 ∈ X0 and a string wv ∈ L(G) such that P(w) = α, P(v) =

β, x ∈ δ(x0, w) and δ(x, v)!.

Proof. By the construction of VTW (G), we know that

∃x0,1 ∈ X0 : x1 ∈ δ(x0,1, s1)
∃x0,2 ∈ X0 : x2 ∈ δ(x0,2, s2)

∃x′

3 ∈ X : x′

3 ∈ δ(x3, s3)
∃x′

∈ X : x′
∈ δ(x , s )
4 4 4 4
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p
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V

ithout loss of generality, we suppose that x1 = x3 so that
1 ∈ {x1, x2}∩{x3, x4}. Then we have x1 ∈ δ(x0,1, s1) and δ(x1, s3)!.
herefore, we can know that δ(x0,1, s1s3)! and P(s1s3) = αβ . This
roves both (i) and (ii). □

Before we introduce the main result for the verification of
k1, k2)-detectability, we first define some new notations. Let
TW (G) be the TW-verifier. We denote by Reachk1,k2 (QTW ,0) the

set of states that can be reached by a string whose first part is
longer than k1 and second part is longer than k2, that is:

Reachk1,k2 (QTW ,0)

=

{
q ∈ QTW :

∃s = (s1, s2, s3, s4) ∈ L(VTW (G)),
∃q0 ∈ QTW ,0 s.t. q ∈ fTW (q0, s)∧

|P(s1)| ≥ k1 ∧ |P(s3)| ≥ k2

}
. (13)

The following theorem provides an approach for the verifica-
tion of (k1, k2)-detectability.

Theorem 1. System G is (k1, k2)-detectable if and only if for
any state (x1, x2, x3, x4) in Reachk1,k2 (QTW ,0) such that (x1, x2) =

(x3, x4), we have x1 = x2 and x3 = x4.

Proof. (⇒) By contraposition. Suppose that there exists a state
(x1, x2, x1, x2) ∈ Reachk1,k2 (QTW ,0) such that (x1, x2) = (x3, x4)
but x1 ̸= x2. By the construction of Reachk1,k2 (QTW ,0) and Propo-
sition 3, we know that there exists a string (s1, s2, s3, s4) ∈

L(VTW (G)) such that P(s1) = P(s2) = α, P(sR3) = P(sR4) = β ,
|α| ≥ k1 and |β| ≥ k2, and two initial states x0,1, x0,2 ∈ X0 such
that x1 ∈ δ(x0,1, s1), x2 ∈ δ(x0,2, s2), δ(x1, s3)! and δ(x2, s4)!. By
the definition of delayed state estimate, we know that {x1, x2} ⊆

X̂(α | αβ). Therefore, x1 ̸= x2 implies that |X̂(α | αβ)| ≥ 2, which
means that system G is not (k1, k2)-detectable.

(⇐) By contraposition. Suppose that system G is not (k1, k2)-
detectable, which means that there exists αβ ∈ P(L(G)) such
that |α| ≥ k1, |β| ≥ k2 and |X̂(α | αβ)| > 1. Let x1, x2 ∈ X be
two distinct states in X̂(α | αβ). This implies that there exist
two initial states x0,1, x0,2 ∈ X0 and two strings s1, s2 such that
P(s1) = P(s2) = α, x1 ∈ δ(x0,1, s1) and x2 ∈ δ(x0,2, s2). Also, there
exist another two strings s3 ∈ L(G, x1) and s4 ∈ L(G, x2) such that
P(s3) = P(s4) = β . By Proposition 2, we know that there exists a
sequence

(x01, x
0
2, x

0
3, x

0
4)

(σ1
1 ,σ1

2 ,ε,ε)

TW
- (x11, x

1
2, x

0
3, x

0
4)

(σ2
1 ,σ2

2 ,ε,ε)

TW
- · · ·

(σn
1 ,σn

2 ,ε,ε)

TW
- (xn1, x

n
2, x

0
3, x

0
4)

(ε,ε,σ1
3 ,σ1

4 )

TW
- (xn1, x

n
2, x

1
3, x

1
4)

(ε,ε,σ2
3 ,σ2

4 )

TW
- · · ·

(ε,ε,σm
3 ,σm

4 )

TW
- (xn1, x

n
2, x

m
3 , xm4 ) (14)

in VTW (G) such that (x01, x
0
2) = (x0,1, x0,2) and (xn1, x

n
2, x

m
3 , xm4 ) =

(x1, x2, x1, x2). Besides, we have that for any i = 1, 2, si =

σ 1
i σ 2

i . . . σ n
i and for any i = 3, 4, si = σm

i σm−1
i . . . σ 1

i . Since
P(s1) = P(s2) = |α| ≥ k1 and P(s3) = P(s4) = |β| ≥ k2, we
know that (x1, x2, x1, x2) ∈ Reachk1,k2 (QTW ,0) and x1 ̸= x2. □

Next, we illustrate how to verify delayed detectability using
Theorem 1.

Example 2. Let us consider system G shown in Fig. 1. We have
discussed in Example 1 that system G is not (1,1)-detectable; here
we use Theorem 1 to verify this result. First, we construct the
TW-verifier VTW (G). For the sake of simplicity, we only consider
part of VTW (G) in Fig. 2, which is enough to disprove delayed
detectability. In Fig. 2, the state (0, 1, 3, 4) is an initial state in
4

Fig. 1. System G with Σo = {a, b}.

Fig. 2. Part of the TW-verifier VTW (G) for system G shown in Fig. 1.

TW (G) which can reach state (3, 4, 3, 4) via event (a, a, ε, ε).
Then we see that state (3, 4, 3, 4) can reach itself via event
(ε, ε, b, b). Therefore, we have (3, 4, 3, 4) ∈ Reach1,1(VTW (G)).
Since (3, 4) = (3, 4) but 3 ̸= 4, by Theorem 1, we can conclude
that G is not (1,1)-detectable.

Remark 2. We now discuss the complexity of verifying delayed
detectability using Theorem 1. First, we need to construct the
TW-verifier, which contains at most |X |

4 states and 4|Σ ||X |
4

transitions. Then we need to compute state set Reachk1,k2 (QTW ,0)
in VTW (G). Note that for any string (s1, s2, s3, s4) ∈ L(VTW (G)),
the first part (s1, s2) and the second part (s3, s4) are independent.
Therefore, we can first perform a k1-level Breadth First Search
(BFS) in the first part (first two state/event components) of VTW (G)
in order to determine states that can be reached via more than
k1 observable events in s1 or s2. Similarly, we perform a k2-
level BFS in the second part (last two state/event components) of
VTW (G) in order to determine states that can be reached via more
than k2 observable events s3 and s4. The worst-case complexity
of BFS is O(V + E) where V is the number of vertices and E is
the number of edges, which is linear no matter how large k1
and k2 are. Therefore, the overall complexity of verifying delayed
detectability using Theorem 1 is O(|Σ ||X |

4), which improves the
algorithm in Shu and Lin (2013a) whose complexity is O((k1 +

k2)|Σ ||X |
6).

4. Conclusion

In this paper, we revisited the verification of delayed de-
tectability in the context of partially-observed DES. To this end,
a new information structure called the TW-verifier was pro-
posed that handles the delayed information effectively. We then
provided an improved approach for the verification of delayed
detectability by using the TW-verifier. The complexity of the pro-
posed algorithm is O(|Σ ||X |

4) compared with complexity O((k1 +
6
k2)|Σ ||X | ) of the previous algorithm.
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