
Automatica 133 (2021) 109838

o
&
c
s
i
2
t
f

(

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Verification and enforcement of strong infinite- and k-step opacity
using state recognizers✩

Ziyue Ma a,∗, Xiang Yin b, Zhiwu Li a,c
a School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China
b Department of Automation and the Key Laboratory of System Control and Information Processing, Shanghai Jiao Tong
University, Shanghai 201108, China
c Institute of Systems Engineering, Macau University of Science and Technology, Taipa, Macau, China

a r t i c l e i n f o

Article history:
Received 3 May 2020
Received in revised form 2 June 2021
Accepted 14 June 2021
Available online xxxx

Keywords:
Discrete event system
Infinite-step opacity
k-step opacity
State recognizer

a b s t r a c t

In this paper, we study the verification and enforcement problems of strong infinite-step opacity and
k-step opacity for partially observed discrete-event systems modeled by finite state automata. Strong
infinite-step opacity is a property such that the visit of a secret state cannot be inferred by an
intruder at any instance along the entire observation trajectory, while strong k-step opacity is a
property such that the visit of a secret state cannot be inferred within k steps after the visit. We
propose two information structures called an ∞-step recognizer and a k-step recognizer to verify
these two properties. The complexities of our algorithms to verify strong infinite- and k-step opacity
are O(22·|X |

· |Eo|) and O(2(k+2)·|X |
· |Eo|), respectively, which are lower than that of existing methods in

the literature (|X | and |Eo| are the numbers of states and observable events in a plant, respectively).
We also derive an upper bound for the value of k in strong k-step opacity, and propose an effective
algorithm to determine the maximal value of k for a given plant. Finally, we note that enforcement
of strong infinite- and k-step opacity can be transformed into a language specification enforcement
problem and hence be solved using supervisory control.

© 2021 Elsevier Ltd. All rights reserved.
s
o
e

1. Introduction

Opacity (Lafortune, Lin, & Hadjicostis, 2018) is a property that
characterizes the situation whether some key information of a
system can be inferred by an external intruder or not. In the
last decades, abundant results have been done on the issue of
opacity in discrete event dynamic models. In automata models,
various notions of opacity have been proposed and analyzed,
including current state opacity, initial-state opacity (Saboori & Had-
jicostis, 2008), language-based opacity (Lin, 2011), infinite-step
pacity and k-step opacity (Falcone & Marchand, 2015; Saboori
Hadjicostis, 2011, 2012). These works are later extended to

oordinated architectures (Wu & Lafortune, 2013) and modular
ystems (Tong & Lan, 2019). Opacity problems are also studied
n the framework of Petri nets (Bryans, Koutny, Mazaré, & Ryan,
008) by checking language containment/equivalence. Recently,
he work in Tong, Li, Seatzu, and Giua (2017) studies the veri-
ication of current-state and the initial-state opacity using basis

✩ The material in this paper was not presented at any conference. This
paper was recommended for publication in revised form by Associate Editor
Christoforos Hadjicostis under the direction of Editor Christos G. Cassandras.

∗ Corresponding author.
E-mail addresses: maziyue@xidian.edu.cn (Z. Ma), yinxiang@sjtu.edu.cn

X. Yin), zhwli@xidian.edu.cn (Z. Li).
https://doi.org/10.1016/j.automatica.2021.109838
0005-1098/© 2021 Elsevier Ltd. All rights reserved.
reachability graphs (Ma, Tong, Li, & Giua, 2017) that improve
the computational efficiency. Moreover, for a non-opaque plant,
additional measures must be made to guarantee that the secret
is not leaked, which is called opacity enforcement. These methods
include supervisory control (Lan, Tong, & Seatzu, 2020; Tong, Li,
Seatzu, & Giua, 2018) and event edition (Barcelos & Basilio, 2018;
Behinaein, Lin, & Rudie, 2019; Ji, Wu, & Lafortune, 2018; Ji, Yin,
& Lafortune, 2019; Ji, Yin, & Lafortune, 2019; Mohajerani, Ji, &
Lafortune, 2019; Wu & Lafortune, 2014; Yin & Li, 2020).

Among various notions of opacity, infinite-step opacity and
k-step opacity have drawn much attention in recent years.
Infinite-step opacity is a property such that the visit of a secret
state cannot be inferred by an intruder at any instance along
the entire observation trajectory. Similarly, k-step opacity is a
property such that the visit of a secret state cannot be inferred
within k steps after leaving the secret state. In Saboori and
Hadjicostis (2011, 2012), the notions of weak infinite- and k-step
opacity are first proposed, and two algorithms based on k-delay
tate estimators are developed to verify them. The complexity
f verifying weak infinite- and k-step opacity using delay state
stimators is O(2|X |

·2|X |
2
·|Eo|), where |X | and |Eo| are the numbers

of states and observable events in a plant, respectively. In Yin
and Lafortune (2017), a more efficient method to verify weak

infinite- and k-step opacity using a two-way observer is developed

https://doi.org/10.1016/j.automatica.2021.109838
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2021.109838&domain=pdf
mailto:maziyue@xidian.edu.cn
mailto:yinxiang@sjtu.edu.cn
mailto:zhwli@xidian.edu.cn
https://doi.org/10.1016/j.automatica.2021.109838

Z. Ma, X. Yin and Z. Li Automatica 133 (2021) 109838

w
v
a
k
i
k
O

f
(
n
(
e
O
(
g
m
o

t
S
p
∞

i
m
o

2

d

G

w

T

t

hose structural complexity is O(22|X |
· |Eo|). Since the weak

ersion of opacity has some limitations in practice, in Falcone
nd Marchand (2015) a new notion of opacity called strong
-step opacity is introduced. An algorithm is also proposed to ver-
fy strong k-step opacity in Falcone and Marchand (2015) using
-delay trajectory estimators and R-verifiers whose complexity is
(2|X |

· 2|X |
2
· |Eo|).

In this paper, we are interested in the verification problem
or strong infinite-step opacity (∞-SSO) and strong k-step opacity
k-SSO) in partially observed finite state automata.1 These two
otions of opacity are first proposed in Falcone and Marchand
2015) and Saboori and Hadjicostis (2011). However, in the lit-
rature there is no method to verify ∞-SSO as far as we know.
n the other hand, for k-SSO, the work in Falcone and Marchand
2015) proposes a method to determine k-SSO of a plant for a
iven value of k. However, such a method cannot determine the
aximal value of k for a given plant. Besides, other contributions
f this paper are summarized as follows.

• For ∞-SSO, we propose a novel information structure called
an ∞-Step Recognizer in which the information of passing
the secret states is encoded. This approach results in a new
algorithm that has complexity of O(22·|X |

· |Eo|).
• We show that the ∞-step recognizer is not suitable for

the verification of k-SSO. Hence, we propose another in-
formation structure called a k-Step Recognizer and develop
an algorithm to verify k-SSO of a plant for a certain value
of k. This algorithm has complexity of O(2(k+2)·|X |

· |Eo|).
The previous algorithm reported in Falcone and Marchand
(2015) for verifying k-SSO has complexity of O(2|X |

· 2|X |
2

·

|Eo|). Therefore, our new algorithm leads to considerable
improvements in verification complexity when the size of
a plant is relatively large.

• We propose an upper bound for the value of k in k-SSO.
Precisely speaking, we prove that a system is ∞-SSO if
and only if it is (22|X |)-SSO. Then we propose an iterative
algorithm to determine the maximal value of k for a given
plant, whose complexity is O(2(k+2)·|X |

· |Eo|).
• Finally, we develop an algorithm that enforces strong

infinite- and k-step opacity by supervisory control.

This paper is organized in seven sections. Basic notions of au-
omata, partial observation, and notions of opacity are recalled in
ections 2 and 3. In Section 4, the notion of ∞-step recognizer is
roposed, based on which a new approach for the verification of
-SSO is developed. In Section 5, the notion of k-step recognizer

s proposed, as well as an iterative algorithm to determine the
aximal value of k for a given plant. In Section 6, the enforcement
f ∞-SSO and k-SSO are studied. Section 7 draws the conclusion.

. Preliminaries

We consider infinite-step and k-step opacity problems in a
eterministic finite state automaton (automaton for short)

= (X, E, δ, x0),

here X is a set of states; E is a set of events; δ : X × E → X
is the partial transition function; and x0 ∈ X is the initial state.
We use E∗ to denote the Kleene closure of E, consisting of all finite
sequences composed of the events in E and the empty sequence ε.
he language of G, denoted by L(G), is defined as L(G) = {s ∈ E∗

|

δ(x0, s) ∈ X}. Given a sequence s ∈ E∗, |s| denotes the length of s.

1 To simplify the presentation, the term ‘‘∞-SSO’’ (resp. k-SSO) is used as
he abbreviation of both ‘‘strong infinite-step opacity’’ (resp. ‘‘strong k-step
opacity’’) and ‘‘strongly infinite-step opaque’’ (resp. ‘‘strongly k-step opaque’’),
which depends on the context.
2

A sequence s̄ ∈ E∗ is a prefix of a sequence s ∈ E∗ if s = s̄s′ where
s′ ∈ E∗, which is denoted by s̄ ⪯ s. The prefix closure of s ∈ E∗ is
defined as Pr(s) = {s̄ ∈ E∗

| s̄ ⪯ s}.
A plant G is partially observable in general. Hence, the event

set E is partitioned into the set of observable events Eo and the set
of unobservable events Euo. Given a sequence s ∈ E∗, its observable
projection σ = P(s) is the output of the natural projection P :

E∗
→ E∗

o recursively defined as (1) P(ε) = ε, (2) P(e) = e if e ∈ Eo
and P(e) = ε if e ∈ Euo, (3) P(se) = P(s)P(e), where s ∈ E∗ and e ∈

E. The inverse projection P−1
: E∗

o → 2E∗

is defined as:P−1(σ) =

{s ∈ L(G) | P(s) = σ }, i.e., P−1(σ) consists of all sequences s in L(G)
whose observations are σ . The observed language of G, denoted by
P[L(G)], is defined as P[L(G)] = {σ ∈ E∗

o | (∃s ∈ L(G)) σ = P(s)}.

3. Strong infinite-step and k-step opacity

Given a plant G = (X, E, δ, x0), part of its state set is the set
of secret states that is denoted by XS with XS ⊂ X . There is an
intruder who knows the structure of G but only observes the
observable events (i.e., the events in Eo) generated by G. Hence,
for each observation s ∈ E∗

o , the intruder tries to infer if G has
visited x ∈ XS some time before, by using the knowledge of the
structure of G and observation s. This motivates the notion of
strong opacity that will be studied in this work.

Definition 3.1 (Strong k-Step Opacity Falcone & Marchand, 2015).
Given a plant G = (X, E, δ, x0), a set of observable events Eo, and
a set of secret states XS , G is strongly k-step opaque (k-SSO) with
respect to XS (where k ∈ N) if for all sequences st ∈ L(G) such
that δ(x0, s) ∈ XS and |P(t)| ≤ k, there exists a sequence w ∈ L(G)
such that:
(∀w̄ ⪯ w, |P(w)| − |P(w̄)| ≤ k) δ(x0, w̄) /∈ XS

∧ P(w) = P(st).
(1)

The physical interpretation of k-SSO is that for any string that
leads to a secret state, an intruder cannot necessarily determine
that the system is/was in a secret state at that point using up to k
observations thereafter. According to its definition, k-SSO reduces
to the current-state opacity (Saboori & Hadjicostis, 2008) when
k = 0. On the other hand, by letting k → ∞ such that conditions
‘‘|P(t)| ≤ k’’ and ‘‘|P(w)| − |P(w̄)| ≤ k’’ in Eq. (1) are trivially
satisfied, the notion of k-SSO is extended to strong infinite-step
opacity (∞-SSO) below. Such a notion of opacity is first proposed
in this work.

Definition 3.2 (Strong Infinite-Step Opacity). Given a plant G =

(X, E, δ, x0), a set of observable events Eo, and a set of secret states
XS , G is strongly infinite-step opaque (∞-SSO) with respect to XS
if for all sequence st ∈ L(G) such that δ(x0, s) ∈ XS , there exists a
sequence w ∈ L(G) such that:

(∀w̄ ⪯ w) δ(x0, w̄) /∈ XS ∧ P(w) = P(st). (2)

In plain words, ∞-SSO requires that for any secret sequence
that passes a secret state, there should exist another sequence
that looks like the former and does not pass any secret state,
which implies that an intruder can never determine that the
system is/was in a secret state using further observations.

Proposition 3.1. The following statements are true:

1. the fact that G is k-SSO with respect to XS implies that G is
k′-SSO with respect to XS for any 0 ≤ k′ < k;

2. the fact that G is ∞-SSO with respect to XS implies that G is
k-SSO with respect to XS for any k ∈ N.

Proof. By Eq. (1), if G is not k′-SSO, then for any k > k′, G is
not k′-SSO. By contrapositive, statement 1 is true. Since ∞-SSO is

k-SSO for k → ∞, statement 2 is also true. □

Z. Ma, X. Yin and Z. Li Automatica 133 (2021) 109838

o

It is worth noting that strong opacity (Definitions 3.1 and 3.2)
and weak opacity (see Saboori & Hadjicostis, 2011, 2012; Yin
& Lafortune, 2017) are incomparable, i.e., ∞- or k-step strong
pacity does not imply ∞- or k-step weak opacity, and vice versa.

Hence, the approaches for the verification of one type of opacity
verification cannot be applied to the verification of the other.

4. Verification of strong infinite-step opacity using infinite-
step recognizers

In this section we focus on the verification problem of ∞-SSO
in Definition 3.1. We first define an XS-secret language and then
define an (XS, ∞)-estimation that characterize the knowledge of
the intruder.

Definition 4.1. Given a plant G = (X, E, δ, x0) and a set of secret
states XS , we define the XS-secret language of state x as:

LS(G, x) = {s ∈ E∗
| [δ(x, s) ∈ X]∧

[(∃s̄ ⪯ s) δ(x, s̄) ∈ XS]}.
(3)

The ∞-step test function S∞(x, s) : X ×E∗
→ {0, ∞} is defined as:

S∞(x, s) =

{
0, if s /∈ LS(G, x)
∞, if s ∈ LS(G, x)

Remark 1. We denote the codomain of function S∞ as {0, ∞}

(instead of {0, 1}) to avoid possible confusions for later de-
velopments. In Section 5, the flag set in k-SSO is denoted as
{0, 1, . . . , k + 1}. The interpretation of the ‘‘∞’’ flag in an ∞-SR
is completely different with that of the ‘‘1’’ flag in a k-SR.

Definition 4.2. Given a plant G = (X, E, δ, x0), a set of observable
events Eo, and a set of secret states XS , for an observation σ ∈

P[L(G)], the (XS, ∞)-estimation of σ is defined as:

E(σ , XS, ∞) = {(x, γ) | (∃s ∈ P−1(σ))
δ(x0, s) = x, γ = S∞(x0, s)}.

(4)

Given an observation σ ∈ P[L(G)], the (XS, ∞)-estimation of σ

(i.e., E(σ , XS, ∞)) is a compact representation that characterizes
the knowledge of an intruder who observes σ . Precisely speaking,
each pair (x, γ) in E(σ , XS, ∞) represents a trajectory from initial
state x0 such that (i) the plant is currently at state x by executing
a sequence s ∈ E∗ that looks like σ , and (ii) during the execution
of s from x0 to x, some secret state has been reached/passed (if
γ = ∞) or no secret state has been reached/passed (if γ = 0).
In other words, the second component γ in (x, γ) is a flag that
denotes if a secret has passed (γ = ∞) or not (γ = 0).

The (XS, ∞)-estimation of empty observation ε, i.e., E(ε, XS,

∞), can be computed according to Definition 4.2. On the other
hand, if E(σ , XS, ∞) is known for some σ ∈ P[L(G)], then for
any event e such that σ e ∈ P[L(G)], a set E(σ e, XS, ∞) can be
computed from set E(σ , XS, ∞). Now we introduce some useful
notations before showing how it can be done. The unobservable
reach of a pair (x, γ), where x ∈ X and γ ∈ {0, 1}, is defined as:

UR(x, γ) = {(x′, γ ′) | (∃s ∈ E∗

uo)
δ(x, s) = x′, γ ′

= max{γ , S∞(x, s)}}.

We also denote by Next((x, γ), e) the set of pairs that can be
reached immediately upon the occurrence of observable event
e ∈ Eo, i.e.,

Next((x, γ), e) = {(x′, γ ′) |δ(x, e) = x′,

γ ′
= max{γ , S∞(x, e)}}.
3

Proposition 4.1. Given a plant G = (X, E, δ, x0), a set of observable
events Eo, and a set of secret states XS , for an observation σ ∈

P[L(G)] and event e ∈ Eo such that σ , σ e ∈ P[L(G)], it holds:

E(σ e, XS, ∞) =

⋃
(x,γ)∈E(σ ,XS ,∞)

UR(Next((x, γ), e))

Proof. This result is directly from the definition of functions Next
and UR. □

By the definition of E(σ , XS, ∞), it is not difficult to under-
stand that an intruder can infer that a plant necessarily has
reached/passed some secret state by observing σ ∈ P[L(G)] if and
only if the flags of all pairs (x, γ) in his/her estimation E(σ , XS, ∞)
are ∞. Now we are ready to introduce an information structure
called an ∞-step recognizer (∞-SR) in which all E(σ , XS, ∞) of all
σ ∈ P[L(G)] are encoded. In plain words, each state of an ∞-SR
is a macro-state d that consists of one or more pairs:

d = {(xi1 , γ1), (xi2 , γ2), . . . , (xin , γn)},

where each xij ∈ X is a plant state and γj ∈ {0, ∞} is a flag that
records if a secret state has been reached (γ = ∞) or not (γ = 0).
The formal definition of the ∞-SR is the following.

Definition 4.3. Given a plant G = (X, E, δ, x0), a set of observable
events Eo, and a set of secret states XS , the ∞-step recognizer (∞-
SR) of G is a deterministic automaton GD = (D, Eo, δ∞, d0) such
that: (i) the state set is D ⊆ 2X×{0,∞}; (ii) the event set is Eo; (iii)
the transition function δ∞ : D×Eo → D is recursively defined as:

δ∞(d, e) =

⋃
(x,γ)∈d

UR(Next((x, γ), e));

(iv) the initial state is d0 = UR(x0, 0).

Proposition 4.2. Given a plant G = (X, E, δ, x0), a set of observable
events Eo, and a set of secret states XS , let GD = (D, Eo, δ∞, d0) be
the ∞-SR of G. It holds:

σ ∈ P[L(G)] ⇒ E(σ , XS, ∞) = δ∞(d0, σ).

Proof. Directly from the definition of ∞-SR and Proposition 4.1.
□

Given a plant G and its ∞-SR GD, we classify the states in GD
into two types: (i) leaking states: for all (xij , γj) ∈ d, γj = ∞

holds; (ii) non-leaking states: there exists at least one (xij , γj) ∈ d
with γj = 0. Now we are ready to introduce the first main
result of this work that is: a plant is ∞-SSO if and only if its
corresponding ∞-SR does not contain any leaking state.

Theorem 4.1. Given a plant G = (X, E, δ, x0), a set of observable
events Eo, and a set of secret states XS , let GD = (D, Eo, δ∞, d0) be
the corresponding ∞-SR. Plant G is ∞-SSO with respect to XS if and
only if there is no leaking state in its ∞-SR.

Proof. (⇒) By contrapositive, suppose that there exists a leaking
state d in GD. Thus, there exists an observation σ ∈ P[L(G)]
such that δ∞(d0, σ) = d. By Proposition 4.2, E(σ , XS, ∞) = d
holds. Since all pairs (x, γ) ∈ E(σ , XS, ∞) satisfy γ = ∞, the
execution of any sequence s ∈ P−1(σ) from x0 necessarily passes
some secret state in XS . Let s0 be an arbitrary sequence in P−1(σ)
that passes XS . Sequence s0 can be written as s0 = st such that
δ(x0, s) ∈ XS . Then, since all sequences in P−1(σ) necessarily pass
a secret states, we can conclude that for all sequences w ∈ L(G)
such that P(w) = P(st), none of them satisfies δ(x0, w̄) /∈ XS for
all w̄ ⪯ w. Hence, by Definition 3.1, G is not ∞-SSO with respect

to XS .

Z. Ma, X. Yin and Z. Li Automatica 133 (2021) 109838

D
(

c

Fig. 1. The automaton for in Example 4.1.

(⇐) By contrapositive, suppose that G is not ∞-SSO. By
efinition 3.1, there necessarily exists a sequence st such that
1) δ(x0, s) ∈ XS , and (2) there does not exist a sequence w ∈ L(G)
such that P(w) = P(st) and δ(x0, w̄) /∈ XS for all w̄ ⪯ w.
The second condition implies that all sequences that look like
st necessarily pass XS , i.e., all pairs (x, γ) ∈ E(σ , XS, ∞) have
γ = ∞. By the construction of GD and Proposition 4.2, all pairs
(x, γ) in state d = δ∞(d0, P(s)) = E(σ , XS, ∞) have γ = ∞.
Hence, d is a leaking state in GD. □

Example 4.1. Consider the automaton G in Fig. 1 in which
Eo = {a, b, c}, Euo = {u}, and the secret set is XS = {x1}. The
orresponding ∞-SR GD is depicted in the same figure. In GD there
exist two leaking states d5 = {(x3, ∞)} and d6 = {(x2, ∞)}.
By Theorem 4.1, G is not ∞-SSO with respect to XS . In fact, if
the plant executes sequence s = uabb whose observation is
P(s) = abb, the intruder can infer that secret state x1 is necessarily
passed.

Since the state set D in an ∞-SR satisfies D ⊆ 2X×{0,∞}, the
structural complexity of GD is O(22|X |

· |Eo|). Hence, our approach
has the same complexity of the verification of the weak ∞-step
opacity using two-way observers (Yin & Lafortune, 2017).

5. Verification of strong k-step opacity using k-step recogniz-
ers

Since for ∞-SSO the passage of secret states is leaked when
an ∞-SR reaches a leaking state, one may intuitively conjecture
that the property of k-SSO can also be determined by inspecting
the length of ambiguous paths (i.e., a path on which all states
have both 0 and ∞ flags) in the ∞-SR. Unfortunately, such a
conjecture is false, since the ambiguous path in ∞-SR does not
contain essential information of trajectories of the plant states
on the path. Hence, in this section we first solve the verification
problem of k-SSO in Definition 3.2 using a different information
structure called k-SR.

5.1. Verification of k-SSO for a given k

We introduce some useful notions that will be used to design
an information structure called a k-step recognizer. We propose
(XS, k)-estimation that characterizes the knowledge of an intruder
if a secret state has reached/passed during the last k observations
in σ .
4

Definition 5.1. Given a plant G = (X, E, δ, x0), a set of observable
events Eo, and a set of secret states XS , for a sequence s ∈ LS(G, x),
the maximal non-secret suffix index of s is defined as

N(x, s) = |P(s)| − max {i | (s̄ ⪯ s,|P(s̄)| = i)
δ(x, s̄) ∈ XS}.

In particular, we define N(x, s) = +∞ for s ∈ L(G, x) \ LS(G, x).
The k-step test function Sk : X × E∗

→ {0, 1, . . . , k} is defined as:

Sk(x, s) = max{k − N(x, s) + 1, 0}.

Definition 5.2. Given a plant G = (X, E, δ, x0), a set of observable
events Eo, a set of secret states XS , and an integer k ∈ N, for an
observation σ ∈ P[L(G)], the (XS, k)-estimation of σ is defined as:

E(σ , XS, k) = {(x, γ) |(∃s ∈ P−1(σ))
δ(x0, s) = x, γ = Sk(x0, s)}.

(5)

An (XS, k)-estimation is a compact representation that char-
acterizes the knowledge of an intruder who memorizes the visit
of secret states for at most k steps afterwards. In a pair (x, γ) ∈

E(σ , XS, k), if state x is a secret state, the value of flag γ is set to
k+1. Moreover, such a flag has a lifespan k+1: for each observed
event thereafter, the value of γ is decreased by 1 until it reaches
zero. Hence, after observing k + 1 events thereafter, if during
this period the trajectory does not pass another secret state, γ

is reduced to zero, i.e., the intruder ‘‘forgets’’ that the plant has
visited secret state x.

Similar to the result in Section 3, for an observation σ ∈

P[L(G)], set E(σ , XS, k) can be obtained by iteratively computing
the prefix of σ , starting from E(ε, XS, k) (which can be computed
according to its definition). We define the k-unobservable reach of
a pair (x, γ), where x ∈ X and γ ∈ {0, 1, . . . , k}, as:

URk(x, γ) = {(x′,γ ′) | (∃s ∈ E∗

uo)
δ(x, s) = x′, γ ′

= max{γ , Sk(x, s)}}.

We denote by Nextk((x, γ), e) the set of states that can be reached
immediately upon the occurrence of observable event e ∈ Eo, i.e.,

Nextk((x, γ), e) = {(x′, γ ′) |δ(x, e) = x′,

γ ′
= max{γ , Sk(x, e)}}.

Proposition 5.1. Given a plant G = (X, E, δ, x0), a set of observable
events Eo, a set of secret states XS , and an integer k ∈ N, for an
observation σ ∈ P[L(G)] and event e ∈ Eo such that σ , σ e ∈ P[L(G)],
it holds:

E(σ e, XS, k) =

⋃
(x,γ)∈E(σ ,XS ,k)

URk(Nextk((x, γ), e))

Proof. This result directly follows from the definition of Nextk
and URk functions. □

By the definition of (XS, ∞)-estimation, it is not difficult to
understand that an intruder can infer that the plant necessarily
has reached/passed some secret state in the last k steps by ob-
serving σ ∈ P[L(G)] if and only if the flags of all pairs (x, γ) in
his/her estimation E(σ , XS, k) are nonzero. Now we introduce an
information structure called a k-Step Recognizer (k-SR) in which
all E(w, XS, k) of all σ ∈ P[L(G)] are encoded.

Definition 5.3. Given a plant G = (X, E, δ, x0), a set of observable
events Eo, and a set of secret states XS , the k-step recognizer
(k-SR) of G is a deterministic automaton GD,k = (Dk, Eo, δk, d0)
such that: (i) the state set is Dk ⊆ 2X×{0,1,...,k}; (ii) the event set is
E ;
o

Z. Ma, X. Yin and Z. Li Automatica 133 (2021) 109838

(

a
S
a
v
n
t
X
o

iii) the transition function δk : Dk×Eo → Dk is recursively defined
as:

δk(d, e) =

⋃
(x,γ)∈d

URk(Nextk((x, γ), e));

(iv) the initial state is d0 = URk(x0, 0).

Proposition 5.2. Given a plant G = (X, E, δ, x0), a set of observable
events Eo, and a set of secret states XS , let GD,k = (D, Eo, δk, d0) be
the k-SR of G. For any sequence σ ∈ P[L(G)], it holds:

E(σ , XS, k) = δk(d0, σ).

Proof. Directly from the definition of k-SR and Proposition 4.1.
□

Given a plant G and its k-SR GD,k, we classify the states in GD,k
into two types: (i) leaking states: for all (xij , γj) ∈ d, γj > 0 holds;
(ii) non-leaking states: there exists at least one (xij , γj) ∈ d with
γj = 0. Similar to the result in Section 4, the following theorem
indicates that a plant is k-SSO if and only if its corresponding k-SR
does not contain any leaking state.

Theorem 5.1. Given a plant G = (X, E, δ, x0), a set of observable
events Eo, and a set of secret states XS , let GD,k = (D, Eo, δk, d0) be
the corresponding k-SR. Plant G is k-SSO with respect to XS if and
only if there is no leaking state in GD,k.

Proof. (⇒) By contrapositive, suppose that there exists a leaking
secret state d in GD, i.e., there exists an observation σ ∈ P[L(G)]
such that δ∞(d0, σ) = d. By Proposition 5.1, E(σ , XS, k) = d holds.
Since all pairs (x, γ) ∈ E(σ , XS, k) satisfy γ ≥ 1, the execution of
any sequence s ∈ P−1(σ) from x0 necessarily passes some secret
state in XS in the last k observed events. Let s0 be an arbitrary
sequence in P−1(σ). Sequence s0 can be written as s0 = st such
that δ(x0, s) ∈ XS and |t| ≤ k. Then we can conclude that for all
sequences s′ ∈ L(G) such that P(s′) = P(st), none of them satisfies
δ(x0, s̄′) /∈ XS for all s̄′ ⪯ s′, |P(s′)| − |P(s̄′)| ≤ k. Hence, G is not
k-SSO with respect to XS .

(⇐) By contrapositive, suppose that G is not k-SSO. By Def-
inition 3.2, there necessarily exists a sequence st such that (1)
δ(x0, s) ∈ XS , and (2) there does not exist a sequence w ∈ L(G)
such that P(w) = P(st) and δ(x0, w̄) /∈ XS for all w̄ ⪯ w, |P(w)| −

|P(w̄)| ≤ k. The second condition implies that all sequences w

that look like st must have passed XS during the last k observed
events in w. By the construction of GD,k and Proposition 5.1, all
pairs (x, γ) in state d = δ(d0, P(s)) have γ ≥ 1. Hence, d is a
leaking state in GD,k. □

Example 5.1. Consider the automaton G in Fig. 2 in which
Eo = {a, b, c} and Euo = {u}. Suppose that we want to verify
if G is 1-SSO with respect to XS = {x5, x7}. The corresponding
1-SR GD,1 is depicted in the same figure. Since in GD,1 there is
no leaking state, by Theorem 5.1, G is 1-SSO with respect to XS ,
i.e., an intruder can never infer that G was at a secret state one
step before.

By the state set Dk ⊆ 2X×{0,1,...,k+1}, for a given k ∈ N, the
structural complexity of GD,k is O(2|X |

· 2k+2
· |Eo|). In comparison,

the existing algorithm proposed in Falcone and Marchand (2015)
to verify k-SSO has complexity O(2|X |

· 2|X |
2

· |Eo|). Hence, the
complexity of our k-SR-based verification algorithm is smaller
than that in Falcone and Marchand (2015) when the size of the

2
plant is large (i.e., |X | ≫ k + 2).

5

5.2. Determining the maximal k for k-SSO

In this subsection, we propose an iterative algorithm to deter-
mine the maximal value of k such that G is k-SSO. The integrated
lgorithm is sketched in Algorithm 1. First, we check if G is ∞-
SO using ∞-SR. If G is ∞-SSO then it is k-SSO for all k ∈ N,
nd hence Algorithm 1 outputs ‘‘∞’’. Otherwise, we sequentially
erify 0-SO, 1-SO, . . . until encounter a k̄ such that the plant G is
ot k̄-SSO. If k̄ ≥ 1, Algorithm 1 outputs ‘‘k̄ − 1’’, which means
hat the maximal value of k such that G is k-SSO with respect to
S is k = k̄ − 1. On the other hand, if k̄ = 0, then Algorithm 1
utputs ‘‘NA’’, which means that k does not exist.

Algorithm 1 Determining maximal k for k-SSO
Input: A plant G = (X, E, δ, x0), a set of observable events Eo, and

a set of secret states XS
1: compute ∞-SR GD;
2: if in GD there does not exist any leaking state, then
3: output ‘‘∞’’ and exit;
4: end if
5: let i = 0;
6: while true, do
7: compute i-SR GD,k;
8: if in GD,i there exists any leaking state, then
9: if k ̸= 0, then

10: output ‘‘i − 1’’ and exit;
11: else
12: output ‘‘NA’’ and exit;
13: end if
14: end if
15: let i = i + 1;
16: end while

Proposition 5.3. Algorithm 1 is correct, i.e., it outputs the maximal
value of k such that G is k-SSO with respect to XS .

Proof. First, if G is ∞-SSO, by Proposition 3.1, G is k-SSO for
all k ∈ N, i.e., the maximal value of k is ∞. Otherwise, there
necessarily exists an integer k̄ such that G is k-SSO for all k < k̂
and not k-SSO for all k ≥ k̂. Then by testing the existence of
leaking states in each GD,i with i = 0, 1, . . . sequentially we will
eventually reach the condition i = k̄. If k̄ ≥ 1, G is (k̄ − 1)-SSO
with XS and is not k-SSO for any k ≥ k̂. On the other hand, k̄ = 0
indicates that G is not k-SSO for any k ∈ N. □

Although Algorithm 1 seems enumerating all k’s starting from
k = 0 in a brute-force way, we point out that the gross computa-
tional load of Algorithm 1 falls into the same class of that of k-SR.
In fact:

• if G is ∞-SSO (and hence is k-SSO for any k > 0), Algo-
rithm 1 is of complexity O(22·|X |

· |Eo|) (since only ∞-SR is
constructed);

• if G is not 0-SSO (and hence is not k-SSO for any k > 0),
Algorithm 1 is of complexity O([22·|X |

+2|X |
]·|Eo|) (since only

∞-SR and 0-SR are constructed);
• if G is k-SSO for some maximal k > 0, the complexity of

Algorithm 1 is:

O(Algorithm 1) = O([2|X |
+ 22·|X |

+ · · · + 2(k+2)·|X |
] · |Eo|)

= O(|Eo| ·

k∑
i=0

2(|X |·(i+2)))

= O(
2(k+2)·|X |

· 2|X |
− 2|X |

2|X | − 1
)

(k+2)·|X | |X |

≈ O(2 · |Eo|) (assume 2 ≫ 1).

Z. Ma, X. Yin and Z. Li Automatica 133 (2021) 109838
Fig. 2. (Left) The automaton in Example 5.1, and (right) the corresponding 1-SR with XS = {x5, x7}, Eo = {a, b, c}, Euo = {u}.
In other words, the computation on 0-SR, 1-SR, . . ., (k−1)-SR
are negligible comparing with the computation of k-SR.

Example 5.2. Again consider the automaton G in Fig. 2 in which
Eo = {a, b, c}, Euo = {u}, and secret XS = {x5, x7}. By applying
Algorithm 1, the corresponding ∞-SR GD is depicted in Fig. 3(a).
Since there exists a leaking state d4 = {(x5, ∞), (x8, ∞)} in GD,
by Theorem 4.1, G is not ∞-SSO with respect to XS .

Since G is not ∞-SSO, we construct and examine i-SR for
i = 0, 1, . . . sequentially. The structure of 0-SR, 1-SR, and 2-SR
is shown in Fig. 3(b–d). In both 0-SR and 1-SR there is no leaking
state, while in 2-SR there is a leaking state d6 = {(x5, 3), (x8, 1)}.
Hence, by Theorem 5.1, G is not 2-SSO with respect to XS . In fact,
for trajectory

x0
a

−→ x3
u

−→ x4
b

−→ x5
c

−→ x5

whose observation is abc , the intruder knows that the plant must
have been visited a secret state (x5 in this case) one step before. In
other words, the maximal k that makes G be k-SSO with respect
to XS is k = 1.

It is worth noting that the ‘‘while’’ loop in Algorithm 1 (Step 6)
always terminates in finite iterations, although the complexity of
Algorithm 1 has a factor k. Moreover, in the next subsection, we
derive an upper bound for k by showing that a system is ∞-SSO
if and only if it is (|X | · (2|X |

− 1))-SSO. Hence, the ‘‘while’’ loop in
Algorithm 1 will terminate in at most |X | · (2|X |

− 1) iterations.

5.3. An upper bound of k in k-SSO

In this subsection we show that for any k′ > k ≥ |X | ·(2|X |
−1),

k-SSO and k′-SSO are equivalent, which indicates that |X |·(2|X |
−1)

is an upper bound of delay k for k-SSO.

Theorem 5.2. Given a plant G = (X, E, δ, x0), a set of observable
events Eo, and a set of secret states XS , for k′ > k ≥ |X | · (2|X |

− 1),
plant G is k-SSO if and only if G is k′-SSO.

Proof. By Proposition 3.1, G is k-SSO if G is k′-SSO. Hence, we
only need to prove that G is k′-SSO if G is k-SSO. Without loss
of generality, we assume k′

= k + 1, since the proof can be
straightforwardly generalized to k′ > k + 1. In the following,
we prove that if G is not n-SSO, then G is not (n − 1)-SSO by
contrapositive, where n ≥ |X | · (2|X |

− 1) + 1. The roadmap is
illustrated in Fig. 4.

Suppose that G is not n-SSO. There necessarily exists a se-
quence st ∈ L(G) such that |P(t)| = n, σ (x0, s) ∈ XS and for
all sequences w ∈ L(G) that satisfy P(w) = P(st), there exists
w̄ ⪯ w with |w|− |w̄| ≤ n such that σ (x0, w̄) ∈ XS . Now consider
Gd,n = (D, E0, δn, d0,n) that is the n-SR of G. Let sequence t be
denoted as t = e1e2 · · · en where ei ∈ E for i = 1, . . . , n. In Gd,n
there necessarily exists the following trajectory

d
e1
−→ d

e2
−→ · · ·

en−1
−−→ d

en
−→ d (6)
1 2 n n+1

6

where d1 = δk(d0,k, P(s)) and dn+1 is a leaking state, i.e., all pairs
(x, γ) in dn+1 are with γ > 0.

From Eq. (6) we can extract a sequence:

(x1, γ1)
e1
−→ (x2, γ2)

e2
−→ · · ·

en−1
−−→(xn, γn)

en
−→ (xn+1, γn+1).

(7)

where γ1 = n and 1 ≤ γi ≤ n for i = 2, . . . , n + 1. On the other
hand, from Eq. (6) we can extract another sequence:

dNS,1
e1
−→ dNS,2

e2
−→ · · ·

en−1
−−→ dNS,n

en
−→ dNS,n+1. (8)

where dNS,i denotes the set of pairs with zero flags in di, i.e., dNS,i
= {(x, γ) ∈ di | γ = 0}. Note that dNS,n+1 = ∅ since G is not
n-SSO. Since the lengths of the sequences in Eqs. (7) and (8) are
both n+ 1 that is greater than |X | · (2|X |

− 1)+ 1, and G does not
have any unobservable cycle, there necessarily exist two indices
j1, j2 ∈ {1, . . . , n}, j1 ̸= j2, such that xj1 = xj2 and dNS,j1 = dNS,j2 .
As a result, sequence t can be partitioned as t = uvz, where
|u| = j1−1 and |v| = j2−j1 ≥ 1. By removing the parts associated
with subsequence v from Eqs. (7) and (8):

• from Eq. (7), we have (x1, γ1)
uz
−→ (xn+1, γ

′). Since γ1 = n
and |P(uz)| ≤ |P(uvz)| = |P(t)| = n, γ ′

≥ 1 holds;
• from Eq. (8), we have dNS,1

P(uz)
−−→ d′

NS,n+1 where d′

NS,n+1 = ∅.

Hence, for sequence suz ∈ L(G), we have |P(uz)| ≤ n−1, σ (x0, s) ∈

XS , and for all sequences w ∈ L(G) that satisfy P(w) = P(suz),
there exists w̄ ⪯ w with |w|−|w̄| ≤ n−1 such that σ (x0, w̄) ∈ XS .
Therefore, G is not (n − 1)-SSO, which concludes the proof. □

Corollary 5.1. Given a plant G = (X, E, δ, x0), a set of observable
events Eo, and a set of secret states XS , G is ∞-SSO if and only if G
is (|X | · (2|X |

− 1))-SSO.

Proof. Directly from Theorem 5.2 and Proposition 3.1. □

Remark 2. At the end of this section we make the following
comments. First, one may have noticed that the propagation rule
of flag ‘‘∞’’ in an ∞-SR is similar to the propagation rule of the
fault flag in a diagnoser automaton (Cassandras & Lafortune, 2008).
In fact, since in ∞-SSO an intruder never forgets the visit of a
secret state, the secret states in an ∞-SSO problem can be viewed
as state faults. The modeling power of state faults and event faults
are proved to be equivalent in automata (Kumar & Takai, 2010).
However, the necessary and sufficient conditions of fault diagnos-
ability (which is related to the existence of indeterminate cycles in
diagnosers) and ∞-SSO property (the condition in Theorem 4.1)
are completely different.

Second, we note that the k-SR designed in Section 5 can be
viewed as the conventional observer automaton (Cassandras &
Lafortune, 2008) when k = 0. In fact, for all pairs (x, γ) in all
macro-states in GD,0, flag γ = 0 (resp., γ = 1) if and only if x /∈ XS
(resp., x ∈ XS). Thus, a plant is current-state opacity if and only if
there exists a macro-state d in GD,0 such that all plant states in d
are secret states.

Z. Ma, X. Yin and Z. Li Automatica 133 (2021) 109838

6

l
2
o
(

e

g

D
∞

L

Fig. 3. The SRs for the automaton in Example 5.1: (a) ∞-SR, (b) 0-SR, (c) 1-SR, and (d) 2-SR.
Fig. 4. Illustration of the proof of Theorem 5.2.
D

P

. Strong opacity enforcement using supervisory control

In this section we study the ∞-SSO and k-SSO enforcing prob-
em using supervisory control theory (Cassandras & Lafortune,
008; Ramadge &Wonham, 1989). We briefly recall some notions
n supervisory control in automata. For a plant automaton G =

X, E, δ, x0), the event set E is partitioned into two disjoint sub-
sets E = Ec∪Euc where Ec is the set of controllable events and Euc is
the set of uncontrollable events. In Ramadge and Wonham (1989),
the control objective, called a (language) specification, is defined
by a regular language K ⊆ E∗. In partially observed systems
(Eo ⊂ E), a supervisor Sup can be viewed as a function Sup :

P[L(G)] → 2Ec such that the closed-loop language of Sup over
G (denoted as L(Sup/G)) is restricted within K . In plain words,
Sup runs in parallel with the plant such that for each observed
sequence w = P(s) ∈ P[L(G)], Sup disables some controllable
vents accordingly.
Now we define the ∞-leaking language and the k-leaking lan-

uage as the following.

efinition 6.1. Given an ∞-SR GD = (D, Eo, δ∞, d0), the
-leaking language of Gd is defined as:

L(GD) = {σ ∈ E∗

o | δ∞(d0, σ) is a leaking state}.
7

efinition 6.2. Given a k-SR GD,k = (Dk, Eo, δk, d0), the k-leaking
language of Gd,k is defined as:

LL(GD,k) = {σ ∈ E∗

o | δk(d0, σ) is a leaking state}.

Theorem 6.1. Given a plant G = (X, E, δ, x0), a set of observable
events Eo, a set of secret states XS , and a set of controllable events
Ec ⊆ E, let GD (resp., GD,k) be the corresponding ∞-SR (resp.,
k-SR for a given k ∈ N). A supervisor Sup that enforces a maximal
controllable and observable sublanguage of L(G)\P−1

[LL(GD)] (resp.
L(G) \ P−1

[LL(GD,k)]) enforces ∞-SSO (resp. k-SSO).

Proof. We only prove the case for ∞-SSO by contrapositive. The
case for k-SSO can be analogously proved.

We prove by contrapositive that for any supervisor Sup such
that L(Sup/G) ⊆ L(G) \ P−1

[LL(GD)], Sup/G is ∞-SSO. Suppose
that Sup/G is not ∞-SSO. Following the argument ‘‘⇐’’ part of
the proof of Theorem 4.1, there necessarily exists a sequence
s ∈ L(Sup/G) such that P(s) ∈ P[LL(GD)], which indicates
that L(Sup/G) ⊈ L(G) \ P−1

[LL(GD)]. Hence, L(Sup/G) ⊆ L(G) \
−1

[LL(GD)] implies that Sup/G is ∞-SSO. Then we can conclude
that a supervisor Sup that enforces a maximal controllable and
observable sublanguage of L(G)\P−1

[LL(GD)] enforces ∞-SSO. □

Corollary 6.1. Both the ∞-SSO enforcing problem and the
k-SSO enforcing problem can be reduced to the supervisory control

Z. Ma, X. Yin and Z. Li Automatica 133 (2021) 109838

∞

K
p
∞

o
m
s
u
(
F

Fig. 5. The supervisor Sup∞ in Example 6.1.

problem of G with language specification K = E∗
\ P−1

[LL(GD)] and
K = E∗

\ P−1
[LL(GD,k)].

Proof. This corollary directly follows from Theorem 6.1. □

As a result, we can enforce ∞-SSO and/or k-SSO for a plant
G by enforcing a specification K∞ = E∗

\ P−1
[LL(GD)] (for

-SSO) or Kk = E∗
\ P−1

[LL(GD,k)] (for k-SSO). Such languages
∞ and Kk can be obtained by manipulating the ∞-SR or k-SR in
olynomial complexity (Cassandras & Lafortune, 2008), since both
-SR and k-SR are deterministic automata. Note that in partially

bserved systems, there may not exist a unique maximally per-
issive supervisor but several incomparable locally maximally
olutions. Such locally maximally solutions can be obtained by
sing synthesis techniques in Hadj-Alouane, Lafortune, and Lin
1996), Takai (2020), Ushio (1999) and Yin and Lafortune (2016).
or the limit of space, we do not address this in detail.
On the other hand, if Ec ⊆ Eo holds, then for both ∞-SSO

and k-SSO there exists a unique maximally permissive supervisor
Sup: it recognizes the supremal normal sublanguage of K∞ or Kk
with respect to L(G) (Cassandras & Lafortune, 2008). Therefore, a
supervisor can be easily obtained by removing from GD or GD,k all
leaking states and those states from which there exists a path to
some leaking state(s) labeled by uncontrollable events.

Example 6.1. Again consider the automaton G and the corre-
sponding ∞-SR GD in Fig. 1 in which Eo = {a, b, c}, Euo = {u},
and the secret set XS = {x1}. Now, let us assume Ec = {a, b}.
Since Ec ⊂ Eo, a maximally permissive supervisor can be obtained
by introducing state specification DF = {d5, d6}. By applying
a standard trimming procedure we obtain the supervisor Sup∞

depicted in Fig. 5. This supervisor disables event b whenever
observing ab(ab)n such that the closed-loop system is ∞-SSO
with respect to XS .

Remark 3. Besides supervisory control, other opacity enforce-
ment approaches such as event edition (Ji et al., 2018, 2019; Ji
et al., 2019; Mohajerani et al., 2019; Wu & Lafortune, 2014; Yin
& Li, 2020) may also be applied to enforce ∞-SSO and k-SSO.
However, event edition requires to intrusively revise the plant
structure by physically modifying the observation structure or
the output information (by implementing new sensors and/or
communication protocols), which may not be possible in some
cases.

7. Conclusions

In this paper, we have developed a method to verify strong
infinite-step opacity and k-step opacity using ∞-step recognizer
and k-step recognizer, respectively. The complexities of our algo-
rithms are O(22·|X |

·|Eo|) and O(2(k+2)·|X |
·|Eo|), respectively, that are

lower than that of previously-proposed methods in the literature.
We have also proposed an upper bound for the value of k in
strong k-step opacity. The enforcement of both strong infinite-
and k-step opacity can be solved using supervisory control. In the
future, we will combine this approach with Hu, Ma, and Li (2020)

to explore the synthesis of SSO enforcing live supervisors.

8

Acknowledgments

This work was supported in part by the National Natu-
ral Science Foundation of China under Grant Nos. 61873342,
62061136004, 61803259, 61703321, Shaanxi Provincial Natu-
ral Science Foundation, China under Grant No. 2019JQ-022, the
Fundamental Research Funds for the Central Universities, China
under Grant Nos. JB210413, JB190407, and the Science and
Technology Development Fund, MSAR, China, under Grant No.
0012/2019/A1.

References

Barcelos, R. J., & Basilio, J. C. (2018). Enforcing current-state opacity through
shuffle in event observations. IFAC-PapersOnLine, 51(7), 100–105, 14th IFAC
Workshop on Discrete Event Systems WODES 2018.

Behinaein, B., Lin, F., & Rudie, K. (2019). Optimal information release for mixed
opacity in discrete-event systems. IEEE Transactions on Automation Science
and Engineering, 16(4), 1960–1970.

Bryans, J. W., Koutny, M., Mazaré, L., & Ryan, P. Y. (2008). Opacity generalised to
transition systems. International Journal of Information Security, 7(6), 421–435.

Cassandras, C. G., & Lafortune, S. (2008). Introduction to discrete event systems.
Springer.

Falcone, Y., & Marchand, H. (2015). Enforcement and validation (at runtime) of
various notions of opacity. Discrete Event Dynamic Systems, 25, 531–570.

Hadj-Alouane, N. B., Lafortune, S., & Lin, F. (1996). Centralized and distributed
algorithms for on-line synthesis of maximal control policies under partial
observation. Discrete Event Dynamic Systems, 6(4), 379–427.

Hu, Y., Ma, Z., & Li, Z. (2020). Design of supervisors for active diagnosis in discrete
event systems. IEEE Transactions on Automatic Control, 65(12), 5159–5172.

Ji, Y., Wu, Y.-C., & Lafortune, S. (2018). Enforcement of opacity by public and
private insertion functions. Automatica, 93(7), 369–378.

Ji, Y., Yin, X., & Lafortune, S. (2019). Enforcing opacity by insertion functions
under multiple energy constraints. Automatica, 108, Article 108476.

Ji, Y., Yin, X., & Lafortune, S. (2019). Opacity enforcement using nondeterministic
publicly known edit functions. IEEE Transactions on Automatic Control, 64(10),
4369–4376.

Kumar, R., & Takai, S. (2010). Decentralized prognosis of failures in discrete event
systems. IEEE Transactions on Automatic Control, 55(1), 48–59.

Lafortune, S., Lin, F., & Hadjicostis, C. N. (2018). On the history of diagnosabil-
ity and opacity in discrete event systems. Annual Reviews in Control, 45,
257–266.

Lan, H., Tong, Y., & Seatzu, C. (2020). Verification of infinite-step opacity
using labeled Petri nets. In Proceedings of the 21st IFAC World Congress
(pp. 1729–1734).

Lin, F. (2011). Opacity of discrete event systems and its applications. Automatica,
47(3), 496–503.

Ma, Z., Tong, Y., Li, Z., & Giua, A. (2017). Basis marking representation of Petri
net reachability spaces and its application to the reachability problem. IEEE
Transactions on Automatic Control, 62(3), 1078–1093.

Mohajerani, S., Ji, Y., & Lafortune, S. (2019). Compositional and abstraction-
based approach for synthesis of edit functions for opacity enforcement. IEEE
Transactions on Automatic Control, 65(8), 3349–3364.

Ramadge, P. J., & Wonham, W. M. (1989). The control of discrete event systems.
Proceedings of IEEE, 77(1), 81–98.

Saboori, A., & Hadjicostis, C. N. (2008). Verification of initial-state opacity in
security applications of DES. In Proceedings of the 9th international workshop
on discrete event systems (pp. 328–333).

Saboori, A., & Hadjicostis, C. N. (2011). Verification of K-step opacity and analysis
of its complexity. IEEE Transactions on Automation Science and Engineering,
8(3), 549–559.

Saboori, A., & Hadjicostis, C. N. (2012). Opacity-enforcing supervisory strategies
via state estimator constructions. IEEE Transactions on Automatic Control,
57(5), 1155–1165.

Takai, S. (2020). Synthesis of maximally permissive supervisors for nondeter-
ministic discrete event systems with nondeterministic specifications. IEEE
Transactions on Automatic Control, 66(7), 3197–3204.

Tong, Y., & Lan, H. (2019). Current-state opacity verification in modular discrete
event systems. In Proceedings of the 2019 IEEE international conference on
decision and control (pp. 7665–7670).

Tong, Y., Li, Z. W., Seatzu, C., & Giua, A. (2017). Verification of state-based opacity
using Petri nets. IEEE Transactions on Automatic Control, 62(6), 2823–2837.

Tong, Y., Li, Z. W., Seatzu, C., & Giua, A. (2018). Current-state opacity enforcement
in discrete event systems under incomparable observations. Discrete Event

Dynamic Systems, 28(2), 161–182.

http://refhub.elsevier.com/S0005-1098(21)00358-7/sb1
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb1
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb1
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb1
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb1
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb2
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb2
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb2
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb2
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb2
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb3
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb3
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb3
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb4
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb4
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb4
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb5
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb5
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb5
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb6
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb6
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb6
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb6
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb6
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb7
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb7
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb7
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb8
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb8
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb8
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb9
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb9
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb9
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb10
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb10
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb10
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb10
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb10
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb11
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb11
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb11
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb12
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb12
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb12
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb12
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb12
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb13
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb13
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb13
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb13
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb13
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb14
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb14
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb14
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb15
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb15
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb15
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb15
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb15
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb16
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb16
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb16
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb16
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb16
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb17
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb17
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb17
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb19
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb19
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb19
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb19
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb19
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb20
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb20
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb20
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb20
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb20
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb21
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb21
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb21
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb21
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb21
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb23
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb23
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb23
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb24
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb24
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb24
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb24
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb24

Z. Ma, X. Yin and Z. Li Automatica 133 (2021) 109838

U

W

W

Y

t
d

S
A
(
C
C
a

shio, T. (1999). On-line control of discrete event systems with a maximally
controllable and observable sublanguage. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, 82(9), 1965–1970.

u, Y.-C., & Lafortune, S. (2013). Comparative analysis of related notions of
opacity in centralized and coordinated architectures. Discrete Event Dynamic
Systems, 23(3), 307–339.

u, Y.-C., & Lafortune, S. (2014). Synthesis of insertion functions for enforcement
of opacity security properties. Automatica, 50(5), 1336–1348.

in, X., & Lafortune, S. (2016). A uniform approach for synthesizing property-
enforcing supervisors for partially-observed discrete-event systems. IEEE
Transactions on Automatic Control, 61(8), 2140–2154.

Yin, X., & Lafortune, S. (2017). A new approach for the verification of infinite-step
and K-step opacity using two-way observers. Automatica, 80, 162–171.

Yin, X., & Li, S. (2020). Synthesis of dynamic masks for infinite-step opacity. IEEE
Transactions on Automatic Control, 65(4), 1429–1441.

Ziyue Ma received the B.S. degree and the M.S. de-
gree from Peking University, China, in 2007 and 2011,
respectively. In 2017 he got the Ph.D degree in co-
tutorship between the School of Electro-Mechanical
Engineering of Xidian University, China (in Mechatronic
Engineering), and the Department of Electrical and
Electronic Engineering of University of Cagliari, Italy
(in Electronics and Computer Engineering). He joined
Xidian University in 2011, where he is currently an
Associate Professor in the School of Electro-Mechanical
Engineering. His research interests include control

heory in discrete event systems, automaton and Petri net theories, fault
iagnosis/prognosis, resource optimization, and information security.

Dr. Ma is a member of Technical Committee Member of IEEE Control System
ociety (IEEE-CSS) on Discrete Event Systems. He is serving/has served as the
ssociate Editor of the IEEE Conference on Automation Science and Engineering
CASE’17-’21), European Control Conference (ECC’19–’21), and IEEE International
onference on Systems, Man, and Cybernetics (SMC’19–’21). He is/was the Track
ommittee Member of the International Conference on Emerging Technologies
nd Factory Automation (ETFA’17–’21).
9

Xiang Yin was born in Anhui, China, in 1991. He
received the B.Eng. degree from Zhejiang University in
2012, the M.S. degree from the University of Michigan,
Ann Arbor, in 2013, and the Ph.D. degree from the
University of Michigan, Ann Arbor, in 2017, all in
electrical engineering. Since 2017, he has been with
the Department of Automation, Shanghai Jiao Tong
University, where he is an Associate Professor. His
research interests include formal methods, discrete-
event systems, and cyber–physical systems.

Dr. Yin is serving as the co-chair of the IEEE CSS
Technical Committee on Discrete Event Systems, an Associate Editor for the Journal
of Discrete Event Dynamic Systems: Theory & Applications, and a member of the
IEEE CSS Conference Editorial Board. Dr. Yin received the IEEE Conference on
Decision and Control (CDC) Best Student Paper Award Finalist in 2016. He is
the co-chair of the IEEE CSS Technical Committee on Discrete Event Systems.

Zhiwu Li received the B.S., M.S., and Ph.D. degrees
from Xidian University in 1989, 1992, and 1995, re-
spectively. He joined Xidian University in 1992. His
interests include discrete event systems and Petri nets.
He published two monographs in Springer and CRC
Press and 150+ papers in Automatica and IEEE Trans-
actions (mostly regular). He was a Visiting Professor
at the University of Toronto, Technion (Israel Institute
of Technology), Martin-Luther University, Conservatoire
National des Arts et Métiers (Cnam), Meliksah Univer-
sitesi, and King Saud University. His work was cited by

engineers and researchers from more than 50 countries and areas, including
prestigious R&D institutes such as IBM, Volvo, HP, GE, GM, ABB, and Huawei.
Now, he is also with the Institute of Systems Engineering, Macau University of
Science and Technology, Taipa, Macau.

Dr. Li serves (served) an Associate Editor of the IEEE Trans. Automation
Science and Engineering, IEEE Trans. Systems, Man, and Cybernetics, Part A:
Systems and Human Beings, IEEE Trans. Systems, Man, and Cybernetics: Systems,
IEEE Access (also a Senior Editor), Scientific Reports, and Information Sciences
(Elsevier). He is a recipient of Alexander von Humboldt Research Grant and
Research in Paris.

http://refhub.elsevier.com/S0005-1098(21)00358-7/sb25
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb25
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb25
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb25
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb25
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb26
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb26
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb26
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb26
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb26
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb27
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb27
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb27
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb28
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb28
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb28
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb28
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb28
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb29
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb29
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb29
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb30
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb30
http://refhub.elsevier.com/S0005-1098(21)00358-7/sb30

	Verification and enforcement of strong infinite- and k-step opacity using state recognizers
	Introduction
	Preliminaries
	Strong infinite-step and k-step opacity
	Verification of strong infinite-step opacity using infinite-step recognizers
	Verification of strong k-step opacity using k-step recognizers
	Verification of k-SSO for a given k
	Determining the maximal k for k-SSO
	An upper bound of k in k-SSO

	Strong opacity enforcement using supervisory control
	Conclusions
	Acknowledgments
	References

