
Automatica 123 (2021) 109359

a

b

f
s
a
S
D
2

a
w
M
B
(

s

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Optimal supervisory control withmean payoff objectives and under
partial observation✩

Yiding Ji a, Xiang Yin b,∗, Stéphane Lafortune a

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
Department of Automation, Shanghai Jiao Tong University, Shanghai, China

a r t i c l e i n f o

Article history:
Received 14 June 2019
Received in revised form 19 May 2020
Accepted 13 October 2020
Available online xxxx

Keywords:
Discrete event systems
Supervisory control
Partial observation
Optimal control
Algorithmic game theory

a b s t r a c t

We investigate optimal mean payoff supervisory control problems on partially observed discrete event
systems modeled as weighted finite-state automata. The event weights capture variations of a given
resource (i.e., energy) expended or replenished during the operation of the system and the mean payoff
is then defined as the average of the accumulative event weights. Two supervisory control problems
are considered in this work. For the first, the system is equipped with a fixed amount of initial energy
to support its operation and the supervised system should always have a nonnegative energy level.
For the second, the limit mean payoff of any event sequence should never drop below zero in the
supervised system. We further optimize the worst case limit mean payoff of infinite event sequences
under both scenarios. The two problems are solved sequentially. In order to capture information on
both the state estimate and the energy level of the system, we define energy information states which
incorporate sufficient information for the decision making of the supervisor. Then we propose the
First Cycle Energy Inclusive Controller (FCEIC) and further transfer the supervisory control problems
into two-player games with properly defined objectives on the FCEIC. Finally, we perform a min–max
search on the game graphs to synthesize the optimal supervisors for both scenarios.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Supervisory control has been thoroughly studied under the
ramework of discrete event systems (DES). The supervisor re-
tricts the behavior of the plant (system) by enabling and dis-
bling events, so that the given specification is achieved.
upervisory control has been thoroughly discussed under various
ES models from different perspectives (Cassandras & Lafortune,
008; Wonham & Cai, 2019).
In the context of DES, due to the limited sensing capabilities

nd measurement noises, the plant is usually partially observed,
hich gives rise to supervisory control under partial observation.
any works fall into this category, see, e.g., Alves, Carvalho, and
asilio (2016), Alves, da Cunha, Carvalho, Moreira, and Basilio
2019), Cai, Zhang, and Wonham (2015), Giua, Seatzu, and Basile

✩ Research supported in part by the US National Science Foundation, China
under grant CNS-1738103, also by National Natural Science Foundation of China
under grants 61803259, 61833012. The material in this paper was partially
presented at the 57th IEEE Conference on Decision and Control, December 17–19,
2018, Miami Beach, Florida, USA. This paper was recommended for publication
in revised form by Associate Editor Christoforos Hadjicostis under the direction
of Editor Christos G. Cassandras.

∗ Corresponding author.
E-mail addresses: jiyiding@umich.edu (Y. Ji), yinxiang@sjtu.edu.cn (X. Yin),

tephane@umich.edu (S. Lafortune).
ttps://doi.org/10.1016/j.automatica.2020.109359
005-1098/© 2020 Elsevier Ltd. All rights reserved.
(2004), Gu, Wang, Li, and Wu (2018), Komenda and Masopust
(2017), Lin, Masopust, Wonham, and Su (2019), Schmidt and
Breindl (2014), Shu and Lin (2015, 2017), Takai and Ushio (2003)
and Yin and Lafortune (2017). Recently, a novel approach was
developed in Yin and Lafortune (2016a) to synthesize maximally
permissive partial-observation supervisors without assumptions
on the relationship between controllable and observable events.
It was then extended to a uniform approach in Yin and Lafortune
(2016b) for the enforcing a series of qualitative properties in DES.

In addition to logical properties, supervisory control has also
been investigated under some quantitative performance mea-
sures. Optimal supervisory control is one problem of particu-
lar interest, where different frameworks have been developed.
For example, Sengupta and Lafortune (1998) defined both event
enablement and disablement costs, then found the controller
with minimum total costs to reach the designated states. This
framework was extended in Marchand, Boivineau, and Lafortune
(2002) and Pruekprasert and Ushio (2016b) to consider partial
observation of the system. Furthermore, Pruekprasert, Ushio, and
Kanazawa (2016) solved an infinite horizon optimal supervisory
control problem under the framework of mean payoff games
with perfect information. A closely related problem of optimal
stabilization by supervisory control was investigated in Han,
Chen, and Su (2019) and Pruekprasert and Ushio (2016a, 2016b).

https://doi.org/10.1016/j.automatica.2020.109359
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2020.109359&domain=pdf
mailto:jiyiding@umich.edu
mailto:yinxiang@sjtu.edu.cn
mailto:stephane@umich.edu
https://doi.org/10.1016/j.automatica.2020.109359

Y. Ji, X. Yin and S. Lafortune Automatica 123 (2021) 109359

A
i

g
h
r
m
A
d
p
s
m
t
d
t
s
p
f
N
m

m
c
i
t
t
t
b
b
s

i
s
t
(
B
a
m
a
o
p

l
r
n

s
K
f
(
e
s
w
s
o
o
g
s
t
s
s
s

rt
long with the deterministic setting, optimal supervisory control
n probabilistic DES was studied in Pantelic and Lawford (2012).

Motivation In many engineering applications, the system may
enerate or consume some resources over a relatively long time
orizon and it is often essential to maintain a reasonable rate of
esource generation/consumption. Consider the power manage-
ent system for hybrid electric vehicles (Malikopoulos, 2014).
positive or negative torque is demanded from the powertrain
epending on the driving mode, e.g., cruising or braking. The
ower from the electric machine is regulated by tuning the torque
o that the torque complies with the driving mode. The electric
achine generates power by consuming electrical energy from

he battery in the motor mode, and it absorbs power from the
riveline to charge the battery in the generator mode. When
he vehicle is cruising, the engine should consistently provide
ufficient power so that the vehicle moves smoothly. Here the su-
ervisory control scheme may be applied to determine the power
low over a long time range when the vehicle is on the road.
ote that the supervisor’s observations may be compromised by
easurement uncertainty or noise.
Contributions The above situation inspires us to investigate

infinite horizon optimal supervisory control under partial obser-
vation, which has never been investigated in DES before to the
best of our knowledge. We term the resource associated with
the system as energy, which is a generic term. The system is
odeled as a weighted automaton and the limit average weight
haracterizes the rate of energy generation/consumption, which
s to be optimized. Specifically, we consider two cases where
he supervisor entails an optimal limit mean payoff. The first is
hat the system is granted with certain amount of initial energy
o support its operation and the energy level should never drop
elow 0. The second is that the limit mean payoff should always
e above a given threshold. Correspondingly, we formulate two
upervisory control problems and solve them in sequence.
In the first phase, energy information states are defined to

ncorporate information on state estimates and energy level of the
ystem. Next we transfer the supervisory control problems into
wo-player games between the supervisor and the ‘‘environment’’
system) on the First Cycle Energy Inclusive Controller (FCEIC).
y construction, the supervisor’s winning strategies in the FCEIC
chieve a nonnegative energy level or a sufficiently large limit
ean payoff. In the second phase, the optimal control strategies
re synthesized by solving a minimax game on a substructure
f the FCEIC. Those strategies in turn solve our proposed control
roblems after minor manipulation.
Related works Our solution methodology is inspired by the

iterature on infinite horizon optimal/stochastic control and algo-
ithmic games in computer science. Here we briefly highlight our
ovelty compared with existing research from both fields.
Infinite horizon optimal/stochastic control under partial ob-

ervation has long been a challenging problem (Bertsekas, 2012;
rishnamurthy, 2016). Optimal policy existence problem for in-
inite horizon partially observable Markov Decision Processes
MDPs) is generally undecidable, either with discounted or av-
rage reward objectives (Madani, Hanks, & Condon, 2003). To
olve the infinite horizon optimal supervisory control problems,
e make some necessary assumptions on the system (plant) and
olve the problems under two-player quantitative games. It turns
ut that we may solve the game to synthesize supervisors by
nly focusing on the ‘‘first’’ simple cycles since the mean payoff
ame is a type of first-cycle games (Aminof & Rubin, 2017),
o our game-theoretic technique is significantly different from
he existing methods to solve optimal control and MDPs (Bert-
ekas, 2012; Puterman, 2005), such as value/policy iteration or
imulation/approximation methods. To synthesize the optimal

upervisor on the FCEIC, we perform a min–max search which is

2

similar to the minimax criterion in optimal control theory (Başar &
Bernhard, 2008). This is consistent with our problem formulation
where we optimize the worst limit mean payoff. However, we
cannot directly apply the minimax criterion as our problem is dis-
cussed under partial observation. Instead, we propose the Energy
Inter Connected System to ‘‘retrieve’’ the unobservable strings in
the FCEIC. So the minimum/maximum payoffs for both players
are correctly evaluated before the optimal control strategy is
determined by a min–max search.

Our supervisory control framework is also in contrast with
algorithmic game theory for reactive synthesis (Apt & Grädel,
2011; Baier & Katoen, 2008). First, there is a plant, i.e., a system to
be controlled, and a separate supervisor (controller) in our work.
Additionally, the supervised system is closed-loop in the sense
that the ‘‘input’’ to the supervisor is the set of strings generated by
the system so far and the ‘‘output’’ of the supervisor is a control
decision to inform the system what events are allowed to occur.
Furthermore, the supervisor may allow multiple events to occur
simultaneously, then the system decides what event to execute
next. This mechanism is similar to the so-called multi-strategy
in algorithmic games (Apt & Grädel, 2011), under which one
player may choose more than one outgoing edges at its position.
In general, the supervisor may only have limited control and
observation capabilities, i.e., some events of the system can never
be disabled and some events are not observed by the supervisor.
Those limitations are usually not characterized in algorithmic
games for reactive synthesis. The above mentioned differences
impose additional difficulties on directly applying existing results
of quantitative algorithmic games to solve the supervisory control
problem in our work, thus special techniques are necessary.

Specifically, this work leverages some results from mean pay-
off games where the first player maximizes the limit average
payoffs (weights) of traversed edges while the second player
minimizes them. Well structured solutions were proposed for the
perfect information mean payoff game (Zwick & Paterson, 1996),
where both players know the complete history of the game up
to their current positions. The more challenging case is mean
payoff games with imperfect information where one player does
not know the exact state or actions of its opponent. Such games
are in general undecidable (Hunter, Pauly, Pérez, & Raskin, 2018).
Briefly speaking, the undecidability is due to the presence of
indefinite cycles with total payoffs of different signs. The game
graph is unfolded to determine the winner of the game. However,
the unfolding is never halted so no player is able to claim winning
the game. Some decidable classes were presented in Hunter et al.
(2018), which put some restrictions to eliminate the indefinite
cycles. These results motivate our problem settings.

Our work is not the first to investigate problems in DES by
leveraging results from algorithmic game theory, see, e.g., Ji, Yin,
and Lafortune (2019a), Pruekprasert and Ushio (2017), Pruekprase
et al. (2016), Yin and Lafortune (2016a) and Yin and Lafortune
(2016b). However, both Yin and Lafortune (2016a) and Yin and
Lafortune (2016b) focused on supervisory control for qualitative
properties and Pruekprasert et al. (2016) discussed optimal mean
payoff supervisory control under full observation. In contrast
to this work as well, Pruekprasert and Ushio (2017) studied
supervisory control under fixed-initial-credit energy games and a
more recent work (Ji, Yin, & Lafortune, 2019b) studied supervisory
control under local mean payoff constraints, defined over a finite
number of events. Finally, Ji et al. (2019a) discussed a different
problem, namely opacity enforcement under energy constraints.

Organization The following sections are organized as follows.
Section 2 describes the system model. In Section 3, we for-
mulate two optimal mean payoff supervisory control problems
under partial observation. Section 4 introduces energy informa-

tion states and the First Cycle Energy Inclusive Controller (FCEIC)

Y. Ji, X. Yin and S. Lafortune Automatica 123 (2021) 109359

a
s
p
t
s
p

L
o
v
c
e
w
i

2

G

f

f

a

o
G
w
e
r
P

2
t
r
b
r
m
W
d

G
b
E
s
{

r
N

w
i
∀

i
a

3

p
n
f
t

A
∀

P
t
w
t
i

i
n

l
t
L
ϵ

x
E
b
s

s the game graph for each problem. In Section 5, we analyze
ome relevant properties of the FCEIC and partially solve the two
roposed problems. Then in Section 6, we completely solve the
wo problems by finding the optimal solution from the partial
olutions obtained in Section 5. Finally, Section 7 concludes the
aper and raises potential directions for future work.
A preliminary version of this work appears in Ji, Yin, and

afortune (2018) with partial results. The major improvements
f this work are two-fold. First, we consider mean payoff super-
isory control under constraints imposed by the system’s energy
apacity, i.e., Problem 1 in Section 3, which is not discussed in Ji
t al. (2018). Second, we further investigate the optimal control of
orst-case limit mean payoffs in Section 6, which is not treated

n Ji et al. (2018) either.

. System model

The system is modeled as a weighted finite-state automaton:

= (X, E, f , x0, ω)

where X is the finite state space, E is the finite set of events,
: X × E → X is the partial transition function, x0 ∈ X

is the initial state, ω : E → Z is the weight function that
assigns an integer to each event. We view the event’s weight as
its energy payoff. A positive number stands for energy gain while a
negative number stands for energy cost. The transition function is
extended to X×E∗ in the standard manner and we still denote the
extended function by f . The language generated by G is defined as
L(G) = {s ∈ E∗

: f (x0, s)!} where ! means ‘‘is defined’’. We denote
by s ≤ u if string s is a prefix of u, and s < u if s ≤ u, s ̸= u. The
unction ω is additive and its domain can be extended to E∗ by
letting ω(ϵ) = 0, ω(seo) = ω(s) + ω(eo) for all s ∈ E∗ and e ∈ E.
The (accumulative) payoff of sinL(G) is the sum of each event’s
weight in s, i.e. ω(s). G may also have v0 ∈ N as its initial energy.

In this work, we assume that safety is satisfied a priori and
we do not include marked states in G. Instead, we consider
the (weak) liveness property: a system G is live if its generated
language L(G) is live, i.e., ∀s ∈ L(G), ∃u ∈ E, s.t. su ∈ L(G). That
is, there is a transition defined at each state in G so every finite
string may have an infinite suffix. This requirement is without
loss of generality since it can be relaxed by adding observable
self-loops at states where no active events are defined.

Given G, for x1, x2 ∈ X and e ∈ E, we write x1
e

−→ x2 if
f (x1, e) = x2. A run in G is a sequence of alternating states and
events: r = x1

e1
−→ x2

e2
−→ · · ·

en−1
−−→ xn and it may be infinitely long.

We denote the set of all runs in G by Run(G), and specifically, the
set of infinite runs by Runinf (G), so that Run(G) ⊂ Runinf (G). A run
is called initial if its initial state is the initial state of G. Run r forms
a cycle if x1 = xn, and r is called simple if ∀i, j ∈ {1, 2, . . . , n− 1},
i ̸= j ⇒ xi ̸= xj. If r is a cycle, the corresponding string
e1e2 · · · en−1 forms a loop, which is also called simple if r is simple.

Given r = x1
e1
−→ x2

e2
−→ · · ·

en
−→ xn+1, its (accumulative) payoff

is
∑n

i=1 ω(ei) and its mean payoff is 1
n

∑n
i=1 ω(ei). The system’s

energy level after r is written as EL(r) = v0 +
∑n

i=1 ω(ei). The
energy level changes dynamically with event occurrences.

For infinite runs, we also define Vmp : Runinf (G) → R as the
limit mean payoff of an infinite run. Given r = x1

e1
−→ x2

e2
−→ · · ·,

Vmp(r) = lim inf
n→∞

1
n

n∑
i=1

ω(ei) (1)

Since G is with finite state space and the weight of each event is
bounded, the limit of the infimum of the sequence {

1
n

∑n
i=1 ω(ei)}

lways exists. Notice that the value of Vmp(r) does not depend on
any sequence that appears finitely often when r is infinite. Also
3

for i ≤ j, if xi
ei
−→ xi+1

ei+1
−−→ · · ·

ej
−→ xj+1 is the only cycle that

appears infinitely often in the run r , then we have:

Vmp(r) =
1

j − i + 1

j∑
l=i

ω(el) (2)

The event set E is partitioned as E = Ec∪Euc , where Ec is the set
f controllable events and Euc is the set of uncontrollable events.
is partially observed and E is also partitioned as E = Eo ∪ Euo,
here Eo and Euo are the sets of observable and unobservable
vents, respectively. The natural projection P : E∗

→ E∗
o is

ecursively defined as: ∀t ′ ∈ E∗, e ∈ E, P(ϵ) = ϵ, P(t) = P(t ′e) =

(t ′)P(e) where P(e) = e if e ∈ Eo and P(e) = ϵ if e ∈ Euo ∪ {ϵ}.
The system G is controlled by a supervisor S : P[L(G)] →

X that dynamically enables/disables events (Cassandras & Lafor-
une, 2008). Let S be the set of supervisors. We also use S/G to
epresent the controlled system under S. Accordingly, we denote
y L(S/G) the language generated in S/G and Run(S/G) the set of
uns in S/G, respectively. A control decision γ ∈ 2E is called ad-
issible if Euc ⊆ γ , i.e., uncontrollable events are never disabled.
e let Γ = {γ ∈ 2E

: Euc ⊆ γ } be the set of admissible control
ecisions and only consider Γ in the remainder of the work.
The supervisor only has partial observation of the system.

iven G and a set of states q ⊆ X , the unobservable reach, denoted
y UR(q), is defined as: UR(q) = {x′

∈ X : ∃x ∈ q, s ∈
∗
uo, s.t. f (x, s) = x′

}. Specifically, the unobservable reach under a
et of events γ ⊆ E, denoted by URγ (q), is defined as: URγ (q) =

x′
∈ X : ∃x ∈ q, s ∈ (Euo ∩ γ)∗, s.t. f (x, s) = x′

}. The observable
each under event eo ∈ Eo, denoted by Nexteo (q), is defined as:
exteo (q) = {x′

∈ X : ∃x ∈ q s.t. f (x, eo) = x′
}.

The observer of G is defined as: Obs(G) = (Xobs, Eo, δ, xobs,0)
here Xobs ⊆ 2X is the state space; xobs,0 = UR({x0}) is the

nitial state and δ is the transition function where ∀xobs ∈ Xobs,
eo ∈ Eo: δ(xobs, eo) = UR(Nexteo (xobs)). The event weight function
s omitted here in the definition. An observer state is also termed
(current) state estimate of the system.

. Problem formulations

In this section, we formulate the optimal mean payoff su-
ervisory control problems with and without the constraint of
onnegative energy level, respectively. Before stating them, we
irst assume that there are no unobservable loops in L(G), and
his assumption holds throughout the remainder of this work.

ssumption 1 (No Unobservable Loops). Given an automaton G,
x ∈ X , ∀s ∈ E∗

\ {ϵ}, [f (x, s) = x] ⇒ [P(s) ̸= ϵ].

roblem 1 (Optimal Mean Payoff Supervisory Control Under Par-
ial Observation-nonnegative Energy Level Case). Given system G
ith initial energy v0 ∈ N, design a supervisor S∗

∈ S such
hat: (i) L(S∗/G) is live; (ii) ∀r ∈ Run(S∗/G): EL(r) ≥ 0; (iii)
nfr∈Runinf (S∗/G) Vmp(r) = supS∈S infr∈Runinf (S/G) Vmp(r).

In other words, the supervised system satisfies the follow-
ng conditions: (i) it is live; (ii) its energy level for any run is
onnegative; (iii) its worst case limit mean payoff is maximized.
As a variant, we require the supervisor to enforce nonnegative

imit mean payoffs. To study the new problem, we make Assump-
ion 2 on the system. Given an observer state xobs ∈ Xobs, we let
oop(xobs) = {l ∈ E∗

o \ {ϵ} : δ(xobs, l) = xobs and ∀l′ < l s.t. l′ ̸=

, δ(xobs, l′) ̸= xobs} be the set of non-ϵ simple loops starting from
obs. Given string l ∈ Loop(xobs), we let SimLp(xobs, l) = {t ∈
∗
\{ϵ} : ∃x ∈ xobs s.t. f (x, t) = x, P(t) = l and ∀t ′ < t, f (x, t ′) ̸= x}

e the set of non-ϵ simple loops with the same projection l and
tarting from some state in xobs.

Y. Ji, X. Yin and S. Lafortune Automatica 123 (2021) 109359

s),

c

t
e
l
s
s
E
r
p
B
i
a
i

E
s
w
q
f
T
e
(
w
d
i
s

s
d
c
s
u

Fig. 1. An automaton with unambiguous cycle payoffs.

Assumption 2 (Unambiguous Cycle Payoffs). Given G and its ob-
erver Obs(G), ∀xobs ∈ Xobs, ∀l ∈ Loop(xobs), and ∀s, s′ ∈ SimLp(xobs, l
we have either ω(s) < 0 ⇒ ω(s′) < 0 or ω(s) ≥ 0 ⇒ ω(s′) ≥ 0.

In other words, for two simple loops with the same projection,
their payoffs should have the same sign. This assumption is in-
spired by the decidable classes of mean payoff games with partial
observation in Hunter et al. (2018). Later on in Section 4, we will
see how this assumption guarantees a finite game structure for
solving Problem 2. We say that a system iswith unambiguous cycle
payoffs if it satisfies Assumption 2. Checking Assumption 2 may be
reduced to comparing the accumulative weights of every pair of
simple cycles in G. By graph theory, the number of simple cycles
in a graph may be exponential with respect to the number of
states, thus it may take exponential time to verify the assumption.

Example 1. Let the system G in Fig. 1 be with Euo = {u1, u2} and
Eo = {o1, o2, o3}. The weight of each event is shown in the figure.
There are 4 simple cycles: x0

u1
−→ x1

o1
−→ x3

o2
−→ x0 with payoff 2,

x0
u2
−→ x2

o1
−→ x4

o2
−→ x0 with payoff 1, x0

u1
−→ x1

o1
−→ x3

o3
−→ x0 with

payoff −1 and x0
u2
−→ x2

o1
−→ x4

o3
−→ x0 with payoff −2. So G is with

unambiguous cycle payoffs.

Problem 2 (Optimal Mean Payoff Supervisory Control Under Partial
Observation-nonnegative Mean Payoff Case). Given system G with
unambiguous cycle payoffs and mean payoff threshold v ∈ N,
design a supervisor S∗

∈ S such that: (i) L(S∗/G) is live; (ii)
∀r ∈ Runinf (S∗/G): Vmp(r) ≥ v; (iii) infr∈Runinf (S∗/G) Vmp(r) =

supS∈S infr∈Runinf (S/G) Vmp(r).

Compared with Problem 1, we still require that the supervised
system be live and the worst case limit mean payoff be optimized.
The difference is that we omit the requirement of nonnegative
energy level. Instead, the limit mean payoff (rate of energy gain)
of any infinite run is required to be above a given threshold v (not
necessarily 0) in (ii) . However, given v ̸= 0, we may subtract v
from the weight of each event and equivalently evaluate whether
the limit mean payoff is above 0. Hence, we simply let v = 0 in
the following discussion without loss of generality.

Specifically, we call the first two conditions in Problem 1
(respectively Problem 2) as itsmean payoff decision problemwhich
does not consider optimization. In both Problems 1 and 2, the
optimal supervisor should maximize the worst case limit mean
payoff. We may imagine that the supervisor is ‘‘playing a game’’
against an antagonistic opponent, where the supervisor is to
maximize its mean payoff while its opponent is to prevent the
supervisor. Note that the two sides may have asymmetric in-
formation since the supervisor only has partial observation of
the system. Thus, it is essential to construct proper estimates
for current states and the energy level of the system so that
the supervisor makes correct decisions. In the following dis-
cussion, we solve Problems 1 and 2 sequentially: we first find
solutions to their corresponding mean payoff decision problems,
then completely solve them by resolving the optimization issues.
4

4. First cycle energy inclusive controller

As a first step of solving Problems 1 and 2, we define energy in-
formation states and First Cycle Energy Inclusive Controller (FCEIC)
to transform both problems to two-player games between the
supervisor and the environment. The FCEIC is the game struc-
ture, which records the update of current state estimates and
the energy level of the system under control. It is inspired by
the Bipartite Transition System and All Enforcement Structure
in Yin and Lafortune (2016a, 2016b), which include supervisors
enforcing several logical properties in DES. We build two FCEICs
(one for each problem): they are similar to each other except that
we impose nonnegative energy level on the FCEIC for Problem 1.

4.1. Energy information states

In order to track state estimates and string payoffs, we de-
fine energy information states which provide a compact way of
encoding information. Here we let |·| be the cardinality of a set.

Before giving the definition, we first present some neces-
sary order relations for vectors in Zn. Given two vectors v1 =

[v1(1), v1(2), . . . , v1(n)], v2 = [v2(1), v2(2), . . . , v2(n)] ∈ Zn, we
denote by v1 ≤ v2 (respectively v1 ≥ v2) if ∀1 ≤ i ≤ n, v1(i) ≤

v2(i) (respectively v1(i) ≥ v2(i)). We also denote by v1 < v2
if ∀1 ≤ i ≤ n, v1(i) ≤ v2(i) and ∃1 ≤ j ≤ n, v1(j) < v2(j)
(respectively ∀1 ≤ i ≤ n, v1(i) ≥ v2(i) and ∃1 ≤ j ≤ n,
v1(j) > v2(j)), i.e., at least one element in v1 is strictly smaller
(larger) than the element at the same position in v2.

Definition 1 (Energy Information States). Given system G, an en-
ergy information state is a tuple qe = (q, v) ∈ 2X

× (∪|X |

k=1Z
k).

Let Est(qe) and Lev(qe) denote the state estimate and energy level
omponents of qe, respectively. So qe = (Est(qe), Lev(qe)).

Denote by Q E the set of energy information states. There are
wo components in an energy information state qe: a current
stimate of the system state and a vector representing the energy
evel of the system when reaching the states in the estimate. Each
tate in Est(qe) corresponds to a value in Lev(qe), whose dimen-
ion equals the number of states in the state estimate. Given x ∈

st(qe), we also write Lev(qe, x) as the element in Lev(qe) that cor-
esponds to x. When Est(qe) = {x1, x2 · · · xk}, Lev(qe) is usually ex-
ressed in a vector form [Lev(qe, x1), Lev(qe, x2), . . . , Lev(qe, xk)].
y convention in this work, elements in Lev(qe) are placed in an
ncreasing order w.r.t. state names in Est(qe). Let 0⃗ be the vector of
ll 0s with proper dimensions. We call qe desirable if Lev(qe) ≥ 0⃗,
.e., nonnegative energy level for every state in Est(qe).

We define an order ≼ over Q E : for qe1, q
e
2 ∈ Q E , qe1 ≼ qe2 if

st(qe1) = Est(qe2) and Lev(qe1) ≤ Lev(qe2). We also say that qe2
ubsumes qe1 if qe1 ≼ qe2, i.e., q

e
2 shares the same state estimate

ith qe1 and the energy level vector of qe2 is no less than that of
e
1 in a point-wise sense. We define another order ≺ over Q E :
or qe1, q

e
2 ∈ Q E , qe1 ≺ qe2 if Est(qe1) = Est(qe2), Lev(q

e
1) < Lev(qe2).

hat is to say, qe1 and qe2 have the same state estimate and there
xists i ≥ 1 such that Lev(qe1)(i) < Lev(qe2)(i). By Dickson’s lemma
see, e.g., Levy, 2002), ‘‘≤’’ on nonnegative integer space Nk is a
ell-quasi ordering for any k ∈ N+. We further argue that ≼ on
esirable energy information states is also a well-quasi ordering,
.e., for any infinite sequence of desirable energy information
tates qe1, q

e
2 · · ·, there exist two indexes i < j, such that qei ≼ qej .

We call qae ∈ Q E
× Γ an augmented energy information

tate, which augments an energy information state with a control
ecision. Let IE(qae), Γ (qae) denote the energy information state
omponent and control decision component of qae, respectively,
o qae = (IE(qae), Γ (qae)). With a slight abuse of notation, we also
se Lev(qae, x) to stand for Lev(I (qae), x) where x ∈ Est(I (qae)). An
E E

Y. Ji, X. Yin and S. Lafortune Automatica 123 (2021) 109359

a
L
m
o

D
γ
∀

E

t
w
l
r

D
s
E
m

p
M
a
o
d
(

D
s
i

ρ

w
γ

q

q
g

D
G
g

ugmented energy information state qae is also called desirable if
ev(IE(qae)) ≥ 0⃗. Then we discuss how (augmented) energy infor-
ation states are updated when the supervisor makes decisions
r enabled observable events occur.

efinition 2 (γ -successor). For γ ∈ Γ , qae ∈ Q E
× Γ is a

-successor of qe ∈ Q E if: (i) Est(IE(qae)) = URγ (Est(qe)); (ii)
x′

∈ Est(IE(qae)), Lev(qae, x′) = minξ {Lev(qe, x) + ω(ξ) : ∃x ∈

st(qe), ξ ∈ (Euo ∩ γ)∗ s.t. f (x, ξ) = x′
}.

If qae is a γ -successor of qe, then the state estimate of IE(aae) is
he unobservable reach of Est(qe) under γ and we append IE(aae)
ith the control decision γ . We also track the minimum energy

evel under γ , which is achieved by some unobservable string ξ
eaching a possible state in Est(IE(qae)).

efinition 3 (eo-successor). For eo ∈ Eo, qe ∈ Q E is an eo-
uccessor of qae ∈ Q E

× Γ if: (i) eo ∈ Γ (qae) = γ and
st(qe) = Nexteo (Est(IE(q

ae))); (ii) ∀x ∈ Est(qe), Lev(qe, x) =

inx′{Lev(qae, x′) + ω(eo) : ∃x′
∈ Est(IE(qae)) s.t. f (x′, eo) = x}.

If qe is an eo-successor of qae, then the state estimate com-
onent of qe is the observable reach of Est(IE(qae)) under eo.
eanwhile, we track the minimum energy level when eo occurs
nd a certain state in Est(qae) is reached. When there is a sequence
f alternating control decisions and observable events, we intro-
uce control-observation sequence to characterize the update of
augmented) energy information states.

efinition 4 (Control-observation Sequence). A control-observation
equence is a sequence of alternating energy/augmented energy
nformation states, observable events and control decisions:

ρ = qe1
γ1
−→ qae1

e1
−→ qe2

γ2
−→ qae2 · · ·

γn−1
−−→ qaen−1

en−1
−−→ qen or

′
= qe1

γ1
−→ qae1

e1
−→ qe2

γ2
−→ qae2 · · ·

γn−1
−−→ qaen−1

en−1
−−→ qen

γn
−→ qaen

here ∀i ≤ n, γi ∈ Γ , ei ∈ Eo, qei ∈ Q E , qaei ∈ Q E
× Γ , qaei is a

i-successor of qei and qei+1 is an ei-successor of qaei .

By convention, we also denote by ρk = qe1
γ1
−→ qae1

e1
−→ qe2

γ2
−→

ae
2 · · ·

γk−1
−−→ qaek−1

ek−1
−−→ qek and ρ ′

k = qe1
γ1
−→ qae1

e1
−→ qe2

γ2
−→

ae
2 · · ·

γk−1
−−→ qaek−1

ek−1
−−→ qek

γk
−→ qaek , for 1 ≤ k ≤ n. Strings are

enerated under the control decisions in such sequences.

efinition 5 (Strings Generated By a Control-observation Sequence).
iven a control-observation sequence ρ or ρ ′, the set of strings
enerated by ρ is defined recursively as: ∀1 ≤ k ≤ n,

Str(ρ1) ={ϵ}

Str(ρ ′

1) ={ξ1 ∈ E∗

uo : ∃x ∈ Est(qe1), x
′
∈ Est(IE(qae1)),

ξ1 ∈ (γ1 ∩ Euo)∗ s.t. f (x, ξ1) = x′
}

Str(ρk+1) ={s′kek : ∃x ∈ Est(qe1), x
′
∈ Est(IE(qaek)), x′′

∈ Est(qek+1),
s′k ∈ Str(ρ ′

k), s.t. f (x, s′k) = x′, f (x′, ek) = x′′
}

Str(ρ ′

k+1) ={sk+1ξk+1 : ∃x ∈ Est(qe1), x
′
∈ Est(qek+1), x

′′
∈

Est(IE(qaek+1)), sk+1 ∈ Str(ρk+1), ξk+1 ∈ (γk+1 ∩ Euo)∗,
s.t. f (x, sk+1) = x′, f (x′, ξk+1) = x′′

}

The following proposition shows that given a control-
observation sequence, the energy level vector of an energy or
augmented energy information state always tracks the minimum
payoff of strings reaching the states in the state estimate.

Proposition 1. Given a control-observation sequence ρ as in
Definition 4, we have that ∀x ∈ Est(qen):

Lev(qen, x) = min {ω(s) : ∃x̃ ∈ Est(qe1), s.t. f (x̃, s) = x} (3)

s∈Str(ρ)

5

Given a control-observation sequence ρ ′ as in Definition 4, we have
that ∀x ∈ Est(IE(qaen)):

Lev(qaen , x′) = min
s∈Str(ρ′)

{ω(s) : ∃x̃ ∈ Est(qe1), s.t. f (x̃, s) = x′
} (4)

Proof. See the Appendix. □

The proof of Proposition 1 is in a dynamic programming man-
ner. Since we account for the minimum string payoff when cre-
ating a new eo-successor or γ -successor, the minimum payoff
is computed by taking the minimal energy value of all strings
consistent with the observation. Note that those strings only
differ in their unobservable substrings.

4.2. Construction of the FCEIC

Next we transfer Problems 1 and 2 to games between the
supervisor and the environment. In general, the games are infinite
since we require livness and evaluate limit mean payoffs. To
efficiently solve the problems, we define a compact information
structure called the First Cycle Energy Inclusive Controller (FCEIC)
by considering the ‘‘first cycles’’ formed in the games.

The two variants of FCEICs are formally defined by construc-
tion, i.e., by adding feasible eo-successors and γ -successors to
the state space recursively in Algorithms 1 and 2, respectively.
The FCEICs with respect to system G for both problems are
constructed in a similar way and of the same generic form
(Q F

Y ,Q F
Z , E, f Fyz, f

F
zy, Γ , ye0,Q

F
l , v0) where:

• Q F
Y ⊆ Q E is the set of energy information states;

• Q F
Z ⊆ Q E

× Γ is the set of augmented energy information
states and for ze ∈ Q F

Z , z
e
= (IE(ze), Γ (ze));

• f Fyz : Q F
Y × Γ → Q F

Z is the transition function from Q F
Y states

to Q F
Z states, where for all ye ∈ Q F

Y , γ ∈ Γ and ze ∈ Q F
Z ,

[f Fyz(y
e, γ) = ze]⇔ [ze is a γ -successor of ye];

• f Fzy : Q F
Z × Eo → Q F

Y is the transition function from Q F
Z states

to Q F
Y states, where for all ze ∈ Q F

Z , eo ∈ Eo and ye ∈ Q F
Y ,

[f Fzy(z
e, eo) = ye]⇔[ye is an eo-successor of ze];

• Γ is the set of admissible control decisions;
• ye0 ∈ Q F

Y is the initial energy information state where
Est(ye0) = {x0} and Lev(ye0) = v0;

• Q F
l ⊂ Q F

Y is the set of leaf states where no transitions are
defined and we partition Q F

l = Q F
lg ∪ Q F

lb;
• v0 ∈ N is the initial energy of the system.

For simplicity, Q F
Y states are also named Y -states and Q F

Z states
are named Z-states in the remainder of the work. A Z-state ze is
deadlock free if ∀x ∈ Est(IE(ze)), ∃e ∈ Γ (ze), s.t. f (x, e)!, i.e., at
least one event is enabled at every state in the state estimate of
ze. Otherwise, ze is called a deadlocking state. Since there are no
unobservable loops in G by Assumption 1, a deadlock free Z-state
always has transitions defined out of it.

The FCEIC in general describes a game between the supervisor
and the environment. A Y -state is an energy information state
where the supervisor issues control decisions. If the supervisor
issues an admissible control decision γ , f Fyz transition is defined
out of a Y -state, which follows the definition of γ -successor.
A Z-state is an augmented energy information state, where the
environment selects observable events to occur from the events
enabled by the supervisor. When a particular observable event eo
is selected to occur by the environment, f Fzy transition is defined
out of a Z-state, which follows the definition of eo-successor. Then
it is again the supervisor’s turn to make the next control decision.
This is consistent with the mechanism of supervisory control

Y. Ji, X. Yin and S. Lafortune Automatica 123 (2021) 109359

1
1
1

1

1

1
1

1

1

1

2

1
1
1

1

1

1

1

1

1

1

2

b
p

t
o
a
s
s

n
F

r
F
a
l
p
f
l
l
P
b
i
p
s
S
y
r
m
F
a
a

T

P
E
s
A
i
H
e

T

Algorithm 1 Construction of the FCEIC for Problem 1

Input: G, v0
Output: FCEIC = (Q F

Y ,Q F
Z , E, f Fyz, f

F
zy, Γ , ye0,Q

F
l , v0)

1: Q F
Y = {ye0}, Q

F
Z = ∅, Q F

l = ∅, Q F
lb = ∅;

2: FirstCycle1(ye0, FCEIC);
3: Return FCEIC;
4: procedure FirstCycle1(ye, FCEIC)
5: for γ ∈ Γ do
6: Let ze be the γ -successor of ye;
7: if ze is deadlock free and energy safe then
8: Add transition ye

γ
−→ ze to f Fyz ;

9: if ze /∈ Q F
Z then

0: Q F
Z = Q F

Z ∪ {ze};
1: for eo ∈ γ ∩ Eo do
2: Let ỹe be an eo-successor of ze;
3: Add transition ze

eo
−→ ỹe to f Fzy;

4: if ỹe /∈ Q A
Y then

5: Q F
Y = Q F

Y ∪ {ỹe};
6: if ỹe is energy safe then
7: if there exists a run: ye0

γ0
−→ ze0

e0
−→

ye1 · · ·
γn−1
−−→ zen−1

e
−→ ỹe and ∃j < n, s.t. yej ≼ ỹe then

8: Stop searching from ỹe, define
Sub(ỹe) = yej , let Q

F
l = Q F

l ∪ {ỹe}, Q F
lg = Q F

lg ∪ {ỹe};
9: else FirstCycle1(ỹe, FCPEC);
0: else Stop searching from ỹe, let Q F

l = Q F
l ∪

{ỹe} and Q F
lb = Q F

lb ∪ {ỹe};

Algorithm 2 Construction of the FCEIC for Problem 2

Input: G, v0
Output: FCEIC = (Q F

Y ,Q F
Z , E, f Fyz, f

F
zy, Γ , ye0,Q

F
l , v0)

1: Q F
Y = {ye0}, Q

F
Z = ∅, Q F

l = ∅, Q F
lb = ∅;

2: FirstCycle2(ye0, FCEIC);
3: Return FCEIC;
4: procedure FirstCycle2(ye, FCEIC)
5: for γ ∈ Γ do
6: Let ze be a γ -successor of ye;
7: if ze is deadlock free and energy safe then
8: Add transition ye

γ
−→ ze to f Fyz ;

9: if ze /∈ Q F
Z then

0: Q F
Z = Q F

Z ∪ {ze};
1: for eo ∈ γ ∩ Eo do
2: Let ỹe be an eo-successor of ze;
3: Add transition ze

eo
−→ ỹe to f Fzy;

4: if ỹe /∈ Q A
Y then

5: Q F
Y = Q F

Y ∪ {ỹe};

6: if there exists a run: ye0
γ0
−→ ze0

e0
−→

ye1 · · ·
γn−1
−−→ zen−1

e
−→ ỹe and ∃j < n, s.t. yej ≼ ỹe then

7: Stop searching from ỹe, define
Sub(ỹe) = yej , let Q

F
l = Q F

l ∪ {ỹe}, Q F
lg = Q F

lg ∪ {ỹe};

8: if There exists a run: ye0
γ0
−→ ze0

e0
−→ ye1

γ1
−→

ze1 · · ·
γn−1
−−→ zen−1

e
−→ ỹe and ∃j < n, s.t. ỹe ≺ yej then

9: Stop searching from ỹe, let Q F
l = Q F

l ∪

{ỹe} and Q F
lb = Q F

lb ∪ {ỹe};
0: elseFirstCycle2(ỹe, FCEIC);
6

under partial observation where the supervisor’s decisions get
updated after the occurrence of observable events. In this manner,
the two players take turns to play and a game is formed.

The procedure FirstCyclei where i ∈ {1, 2} in either algorithm
uilds the state space of the FCEIC by a depth-first search like
rocess. We first discuss FirstCycle1 in Algorithm 1. In this process,

we only add deadlock free Z-states to the structure and ensure
hat there are events enabled at every state in the state estimate
f any Z-state. In lines 16, 17 and 18 of Algorithm 1, if the newly
dded energy safe state ỹe subsumes a non-leaf state yej on the run
tarting from the initial state, then the two energy information
tates share the same state estimate but the new state ỹe has
a higher or equal energy level vector compared with yej . We
also know that some simple cycles with nonnegative payoffs
are formed in the system for the first time. Then we terminate
searching and add the new state as a leaf state of the FCEIC. That
is why we call this structure first cycle energy inclusive controller.
In the following sections, we will explain in more detail why it
is sufficient to consider simple cycles to solve Problem 1. On the
other hand, if a new Z-state or Y -state is not energy safe, we stop
searching since the system’s energy level drops below 0 at some
state, thus the second requirement in Problem 1 is violated.

Similarly for FirstCycle2 of Algorithm 2, in lines 16 and 18, if
the newly added state ỹe subsumes or is subsumed by an existing
state on the run from initial state ye0 to ỹe, we know that the
two energy information states share the same state estimate and
ỹe has a higher, lower or equal energy level vector compared
with that state. We also know that some simple cycles with
nonnegative or negative payoffs are formed in the system for the
first time. Then we terminate searching and add the new state
ỹe as a leaf state of the FCEIC. Since Problem 2 does not require
onnegative energy level of the system, the states created by
irstCycle2 are not necessarily energy safe.
Next, we partition leaf Y -states as: Q F

l = Q F
lg ∪ Q F

lb where Q F
lg

epresents good leaf states and Q F
lb represents bad leaf states. In the

CEIC for Problem 1, a good leaf state is energy safe and subsumes
non-leaf state, while a bad leaf state is energy unsafe. If a good

eaf state is reached, there are simple cycles with nonnegative
ayoffs in the system whose energy level would be nonnegative
orever if those cycles are traversed indefinitely. However, if a bad
eaf state is reached, there exists some string so that the energy
evel of the system drops below 0. Similarly, in the FCEIC for
roblem 2, a good leaf state subsumes a non-leaf state while a
ad leaf state is subsumed by a non-leaf state. If a good leaf state
s reached, we know there exist simple cycles with nonnegative
ayoffs in the system; if bad leaf state is reached, there exist
imple cycles with negative payoffs. In both algorithms, we define
ub(ye) to store the preceding state subsumed by good leaf state
e. Actually, the supervisors in both Problems 1 and 2 should
each good leaf states and avoid bad ones, which is explained in
ore detail later on. Finally, if no state subsumes another, we call
irstCycle recursively in both algorithms until no more new states
re added to the structure. We may also show that Algorithm 1
nd Algorithm 2 return a finite and acyclic structure.

heorem 1. Algorithm 1 returns a finite structure.

roof. By contradiction. Assume that the FCEIC is infinite. Since
, Γ ⊆ 2E and Eo are finite, the number of transitions at each
tate in the structure is finite. By König’s lemma (Levy, 2002) and
lgorithm 1, there exists an infinite run ye0

γ0
−→ ze0

e0
−→ ye1

γ1
−→ ze1 · · ·

n the FCEIC and it is never the case that ∃yei , y
e
j , i < j, s.t. yei ≼ yej .

owever, this contradicts with ≼ being a well-quasi ordering on
nergy safe energy information states. □

heorem 2. Algorithm 2 returns a finite structure.

Y. Ji, X. Yin and S. Lafortune Automatica 123 (2021) 109359

T
E

y
∃

t
L
i

x

0
u

p
f
(
a
a

E

F
c
o
a
c

m
a
o

ω

y
e
s
A
t
{

Q

t
x
p

able 1
nergy and augmented energy information states in Fig. 3.
State name State components

ye0 {{x0}, 3}
ze0 {{x0, x1, x2}, [3, 1, 0], γ0}

ye1 {{x3, x4}, [2, 1]}
ze1 {{x3, x4, x5, x6, x7, x8, x9, x10}, [2, 1, 5, 2, 7, 2, 6, 5], γ1}

ye2 {{x12}, 4}
ze2 {{x12}, 4, γ0}

ye2−2 {{x12}, 6}
ze8 {{x9, x12, x14}, [0, 4, 3], γ ′

2}

ye2−3 {{x12}, −2}
ye2−4 {{x12}, 6}
ye3 {{x13}, 2}
ze3 {{x13}, 2, γ0}

ye3−2 {{x13}, 4}
ze9 {{x10, x13, x15}, [1, 2, 1], γ3}

ye3−3 {{x13}, −2}
ye3−4 {{x13}, 4}
ze4 {{x3, x4, x5, x7}, [2, 1, 5, 7], γ4}

ye1−2 {{x3, x4}, [3, 2]}
ze5 {{x3, x4, x6, x8}, [2, 1, 2, 2], γ5}

ye1−3 {{x3, x4}, [3, 2]}
ze6 {{x3, x4}, [2, 1], γ0}

ye1−4 ye1−4 = {{x3, x4}, [3, 2]}
ye1−5 ye1−5 = {{x3, x4}, [3, 2]}

Proof. By contradiction. Assume that the FCEIC is infinite. Since
E, Γ ⊆ 2E and Eo are finite, the number of transitions defined
at each state in the structure is finite. Then by König’s lemma
(see, e.g., Levy, 2002), there exists an infinite run ye0

γ0
−→ ze0

e0
−→

e
1

γ1
−→ ze1 · · · in the FCEIC such that it is neither the case that

yei , y
e
j , i < j, s.t. yei ≼ yej nor the case that yej ≺ yei . That means

here exist yei , y
e
j (i < j) and integers k ̸= l s.t. Est(yei) = Est(yej),

ev(yei)(k) ≤ Lev(yej)(k) and Lev(yei)(l) > Lev(yej)(l) for elements
n Lev(yei) and Lev(yej). Hence there exist two simple cycles in G:

1
e1
−→ x2 · · ·

en
−→ x1 and x′

1

e′1
−→ x′

2 · · ·
e′n
−→ x′

1 s.t. x1, x′

1 ∈ Est(yei),
P(e1 · · · en) = P(e′

1 · · · e′
n), ω(e1 · · · en) ≥ 0 and ω(e′

1 · · · e′
n) <

. However, this contradicts with Assumption 2 that G is with
nambiguous cycle payoffs. □

The size of the state space of the FCEIC is bounded by non-
rimitive recursive Ackermann functions (see, e.g., Rackoff, 1978)
ollowing a similar argument as Hunter et al. (2018) and Pérez
2017). Mean payoff games with incomplete information were
lso solved by evaluating first simple cycles after the game graphs
re unfolded in Hunter et al. (2018).

xample 2. In this example, we construct a first cycle energy
inclusive controller following Algorithm 1. Let the system G in
ig. 2 be with Eo = {o1, o2, o3, o4}, Euo = {a1, a2, a3, a4, b1, b2, c1,
2, c3, c4.c5}, Ec = {c1, c2, c3, c4, c5}, Euc = {a1, a2, a3, a4, b1, b2,
1, o2, o3, o4}. The weight of each event is shown in the figure
nd the system has initial energy v0 = 3. Then all admissible
ontrol decisions are: γ0 = Euc , γ1 = {c1, c2}∪Euc , γ2 = {c3}∪Euc ,

γ ′

2 = {c3, c5}∪ Euc , γ3 = {c4}∪ Euc , γ4 = {c1}∪ Euc , γ5 = {c2}∪ Euc .
For simplicity, we only include feasible controllable events at the
corresponding states in the admissible control decisions.

Then we follow Algorithm 1 to build the FCEIC in Fig. 3. For
simplicity of the graph, we do not put the energy level vectors in
the figure but show them in Table 1. The elements in each energy
level vector are placed in the same order as the order of states in

the corresponding state estimate. c

7

Fig. 2. The automaton G in Example 2.

Fig. 3. The first cycle energy controller in Example 2 (without ze7).

In the FCEIC, the game is initiated from ye0 where the only
feasible control decision is γ0. If the supervisor plays γ0, a Z-
state ze0 is reached where the environment selects observable
event o1 to occur. Then the supervisor takes the turn to play
at ye1 and the rest of the structure is interpreted in a similar
way. Notice that at ye2, if the supervisor issues control decision
γ2 (enables c3 and disables c5), then a deadlocking Z-state ze7 is
reached, where no event can occur at x14 after c5 is disabled.
Here ze7 is not included in the FCEIC by Algorithm 1 and we
mark it by a blue cross in Fig. 3. Meanwhile, we calculate the
energy level vector of each state. For example, Est(ye0) = {x0},
Lev(ye0) = v0 = 3; since ze0 is the γ0-successor of ye0, we have
that Est(IE(ze0)) = URγ0 (Est(y

e
0)) = {x0, x1, x2}, Lev(ze0, x1) =

in{ω(a1), ω(a3)} = 1, Lev(ze0, x2) = min{ω(a2), ω(a4)} = 0
nd ze0 = {{x0, x1, x2}, [3, 1, 0], γ0}; since ye1 is the o1-successor
f ze1, we have that Est(ye1) = Nexto1 ({x0, x1, x2}) = {x3, x4},

Lev(ye1, x3) = Lev(ze0, x1) + ω(o1) = 2, Lev(ye1, x4) = Lev(ze0, x2) +

(o1) = 1 and ye1 = {{x3, x4}, [2, 1]}.
From the table, we find that ye1 ≼ ye1−2, y

e
1 ≼ ye1−3, y

e
1 ≼ ye1−4,

e
1 ≼ ye1−5, y

e
2 ≼ ye2−2, y

e
2 ≼ ye2−4, y

e
3 ≼ ye3−2 and ye3 ≼ ye3−4 by

valuating their energy level vectors. We also find two unsafe
tates ye2−3 and ye3−3 since Lev(ye2−3) = −2 and Lev(ye3−3) = −2.
fter checking all states in Fig. 3, we stop adding new states from
he leaf states of the FCEIC. Then we have good leaf states Q F

lg =

ye1−2, y
e
1−3, y

e
1−4, y

e
1−5, y

e
2−2, y

e
2−4, y

e
3−2, y

e
3−4} and bad leaf states

F
lb = {ye2−3, y

e
3−3}. For example, when ye1−2 is reached, we locate

hree simple cycles with nonnegative payoffs in G: x3
c1
−→ x5

b1
−→

7
o1
−→ x3 with payoff 6, x3

o1
−→ x3 with payoff 1 and x4

o1
−→ x4 with

ayoff 1. The bad leaf states actually come from the two simple
o2 c3 c5
ycles with negative payoffs in G: x9 −→ x12 −→ x14 −→ x9 with

Y. Ji, X. Yin and S. Lafortune Automatica 123 (2021) 109359

p
t

E
a
t
a
e
p
c

5

p
o
T
s
w
a
1
t

e
p
t
f
s
(
t
Y
R
a

i
D
π

R
t
o
f
n
a
a
u
R

n
o
i

g
g
F
e
m
s

i
e
π

t

a
t
a

c
v
v
a

ayoff −6 and x10
o3
−→ x13

c4
−→ x15

b2
−→ x10 with payoff −4. Those

wo cycles should be avoided if we want to solve Problem 1.

xample 3. The system G is the same as the one in Example 2
nd we construct the FCEIC following Algorithm 2. It happens that
he FCEIC is the same as the one in Fig. 3. Specifically, ye2−3 ≺ ye2
nd ye3−3 ≺ ye3, so ye2−3 and ye3−3 are also bad leaf states in this
xample. They are due to the two simple cycles with negative
ayoffs mentioned at the end of Example 2. Again, those two
ycles should be avoided if we want to solve Problem 2.

. Mean payoff decision problems

In this section, we show that there exist solutions for the mean
ayoff decision problems mentioned at the end of Section 3 if and
nly if the supervisor has strategies to win the game on the FCEIC.
herefore the first two requirements of Problems 1 and 2 are
atisfied. The last requirement (optimization) in both problems
ill be discussed and addressed in the next section. The following
nalyses of this work apply to both FCEICs returned by Algorithm
and Algorithm 2, so we will not distinguish them but just use

he term ‘‘FCEIC’’ when there is no confusion.
By the construction process of Algorithms 1 and 2, we stop

xpanding the game graph when the first cycles with positive
ayoffs are formed or the energy level drops below 0. Therefore,
he runs in the FCEIC (defined by either Algorithm 1 or 2) are
inite control-observation sequences. We denote by Run(F) the
et of runs in the FCEIC. Given rf ∈ Run(F), we write ye ∈ rf
respectively ze ∈ rf) if ye (respectively ze) is a Y -state (respec-
ively Z-state) in rf . We also let LastY (rf) and LastZ (rf) be the last
-state and Z-state of rf , respectively. Specifically, we denote by
uny(F) (respectively Runz(F)) the set of runs whose last states
re Y -states (respectively Z-states).
Then we discuss strategies for both players in the FCEIC, which

ndicate the choices for players when it is their turn to play.
efine the supervisor’s strategy (control strategy) as a function
s : Runy(F) → Γ and the environment’s strategy as πe :

unz(F) → Eo. Both players select a transition according to
heir strategies when it is their turn to play. Since the supervisor
nly has partial observation of the system and makes decisions
rom state estimates, we call its strategy observation based. De-
ote the set of all supervisor’s strategies by Πs and the set of
ll environment’s strategies by Πe. If the supervisor plays πs
nd the environment plays πe from the initial state ye0, then a
nique initial run, denoted by rf (πs, πe), is generated. We also let
un(ye, πs) = {ye

γ1
−→ ze1

e1
−→ ye2 · · ·

γn−1
−−→ zen−1

en−1
−−→ yen : ∀i <

, γi = πs(ye
γ1
−→ ze1

e1
−→ ye2 · · ·

γi−1
−−→ zei−1

ei−1
−−→ yei)} be the set

f runs starting from ye and consistent with control strategy πs,
.e., the control decisions in the run are specified by πs.

In the FCEIC, we say the supervisor wins the game if only
ood leaf states are reached, otherwise, the environment wins the
ame if at least one bad leaf state is reached. So the game on the
CEIC is a safety game under full observation after introducing the
nergy information states. Either the supervisor or the environ-
ent has a winning strategy from any state in the FCEIC, since
afety games are determined (Apt & Grädel, 2011).
A strategy πi ∈ Πi for player i ∈ {s, e} in the FCEIC is

nformation state based if the decisions only depend on the current
nergy or augmented energy information state. In other words,
i ∈ Πi is information state based if πi(rf) = πi(r ′

f) for all rf , r
′

f ∈

Run(F) such that Last(rf) = Last(r ′

f). Therefore, information state
based strategies for the supervisor and the environment can be
represented by πs : Q F

Y → Γ and πe : Q F
Z → Eo, respectively. Such

a strategy is also called positional in the literature, see, e.g., Apt

and Grädel (2011), as it only depends on the current position of

8

the player. Since positional strategies are sufficient to win a finite
safety game (Apt & Grädel, 2011), we assume that both players
play positional strategies in the remainder of this section.

Following the transitions in the FCEIC, we can specify control
decisions from Y -states and the control decisions are updated
after observable events occur from Z-states. Thus, the control
strategies in the FCEIC work in the same way as standard super-
visors. In what follows, we will use the words ‘‘supervisor’’ and
‘‘supervisor’s strategy (control strategy)’’ interchangeably.

We define the supervisor’s winning region Wins as the set of
states fromwhich the supervisor has a strategy to only reach good
leaf states for sure regardless of the environment’s strategies. To
solve Problem 1 or Problem 2, the supervisor should only reach
good leaf states. Actually, the procedures to obtain Wins for both
problems are the same after the FCEIC is built. Hence we present
one unified algorithm, i.e., Algorithm 3, to compute Wins.
Algorithm 3 Compute the winning region of the FCEIC

Input: FCEIC returned by Algorithm 1 or Algorithm 2
Output: Wins for Problem 1 or Problem 2
1: while ∃ye ∈ Q F

Y \ Q F
lg , s.t. y

e has no successor do
2: Remove ye and all ze ∈ Q F

Z , such that f Fzy(z
e, eo) = ye for

some eo ∈ Eo;
3: Take the accessible part of the structure;
4: Denote the structure by FCEICw and return its states;

We briefly discuss the process in Algorithm 3, which calculates
the winning region in a fixed point calculation manner. All bad leaf
states are removed first as well as their preceding Z-states. Then
we further prune away Y -states that have no successor states and
heir preceding Z-states in an iterative manner. Notice that when
we remove a Y -state, we also need to remove all its preceding
Z-states, otherwise the already enabled observable events are
blocked from happening. However, when a Z-state is deleted,
we will only remove its preceding Y -state if the Y -state has no
successors. The reason is that the supervisor is still able to avoid
the removed Z-state when it has other successors. The algorithm
stops when no more states can be removed. In this way, we make
sure that only good leaf states are reached under certain control
strategies and we have the winning region. That is, any control
strategy in the FCEICw is a winning control strategy in the FCEIC,
nd all winning control strategies are in the FCEICw . It is possible
hat Algorithm 3 returns an empty set thus the environment
lways wins the game regardless of the supervisor’s strategies.
Intuitively, Algorithm 3 is similar to calculating the supremal

ontrollable sublanguage in supervisory control under full obser-
ation (Cassandras & Lafortune, 2008). The bad leaf states are
iewed as undesirable marked states while the good leaf states
re viewed as desirable ones; transitions for f Fyz are viewed as

controllable while transitions for f Fzy are viewed as uncontrollable.
Next we discuss how a supervisor solving the mean payoff

decision problem is obtained. In the FCEIC, the supervisor either
aims to achieve a nonnegative energy level (corresponding to
Algorithm 1 and Problem 1) or a nonnegative limit mean payoff
(corresponding to Algorithm 2 and Problem 2). If only good leaf
states are reached under a wining control strategy in the FCEIC,
then only simple cycles with a nonnegative payoff are formed
in the supervised system. Since the energy level vector in an
energy information state returns the minimum string payoff by
Proposition 1, the payoffs of strings with the same observation
and reaching the same state are all nonnegative if the minimum
string payoff is nonnegative.

Therefore, we let the supervisor make the same decision
whenever the state estimate of a good leaf state is reached.
Intuitively speaking, the supervisor ‘‘ignores’’ the actual energy
level of the system and just views the game starting from a good
leaf state ye as the same game that starts from the state subsumed

Y. Ji, X. Yin and S. Lafortune Automatica 123 (2021) 109359

b
s
b
m
c

s
l
p
g
s

T
d
w

P
n
n
I
3
L
m
t
s
l
n

t
π

t
S
T
w

e
y
r
d
m
t
t
t
d

s
a
s

T
d
w

o
t
u
F
i
r
p

y ye. In Algorithms 1 and 2, we define Sub(ye) as the state that
ubsumes ye. We may imagine that ye is ‘‘merged’’ with Sub(ye)
y letting all transitions going to ye lead to Sub(ye) instead. In this
anner, the game on the FCIEIC is extended to be infinite and we
all the resulting game as an extended game. This is essentially
the process of strategy transfer discussed in Aminof and Rubin
(2017) and Hunter et al. (2018), which transfers the strategies on
the induced finite game to the original infinite game. A similar
procedure is presented in Section 5 of Pruekprasert et al. (2016).
In this way, the supervisor perpetually completes cycles with
nonnegative payoffs since every simple cycle has a nonnegative
payoff. Thus, the limit mean payoff and energy level also become
nonnegative for infinite runs. The goal of the supervisor is either
to achieve a nonnegative energy level (extended game for Prob-
lem 1) or a nonnegative limit mean payoff (extended game for
Problem 2). Both objectives may be evaluated by focusing on the
first cycles formed by the supervisor and we stop expanding the
game graph when the first cycles are formed.

Overall, we claim that any control strategy in the FCEICw

olves the mean payoff decision problem of Problem 1 or Prob-
em 2. Conversely, we also claim that if the mean payoff decision
roblem has solutions, then there exist winning control strate-
ies in the FCEIC returned by either Algorithm 1 or 2. Formally
peaking, the following two theorems hold.

heorem 3. There exists a supervisor solving the mean payoff
ecision problem of Problem 1 if and only if the supervisor has a
inning strategy in the FCEIC defined by Algorithm 1.

roof. The ‘‘only if’’ part. Proof by contrapositive, i.e., if there does
ot exist a winning control strategy in the FCEIC, then there does
ot exist a supervisor solving the mean payoff decision problem.
f no winning control strategy exists, Wins is empty by Algorithm
. So ∀πs ∈ Πs, ∃πe ∈ Πe, s.t. LastY (rf (πs, πe)) ∈ Q F

l ⇒

astY (rf (πs, πe)) ∈ Q F
lb, i.e, no matter what control decisions are

ade, there always exist runs ending in bad leaf states. So for πs,
here always exists a run r consistent with πs in the supervised
ystem such that V (r) < 0, i.e., the supervised system’s energy
evel becomes negative under πs for some string. That is to say,
o supervisor solves the mean payoff decision problem.
The ‘‘if’’ part. Suppose that πs is a winning control strategy in

he FCEIC. We follow Algorithm 3 and obtain Wins and FCEICw , so
s is also in the FCEICw . In the following discussion, we imagine
hat all transitions leading to a leaf state ye in the FCEICw lead to
ub(ye) so that the game on the FCEICw becomes infinite-duration.
hat is, ∀rf = ye0

γ0
−→ ze0

e0
−→ yei · · ·

γn−1
−−→ zen−1

en−1
−−→ yen ∈ Run(ye0, πs)

here ye0 is the initial state of the FCEIC, if yen ∈ Q F
lg , then we

xtend the domain of πs by letting πs(rf) = πs(ye0
γ0
−→ ze0

e0
−→

e
i · · ·

em−1
−−→ yem) for some m < n and yem ⪯ yen. Whenever Est(yen) is

eached again, the control strategy (supervisor) makes the same
ecision as if Est(yen) is reached for the first time. By perpetually
aking the same decision whenever a state estimate is reached,

he supervisor guarantees that the energy level after any string in
he supervised system never becomes negative. The reasons are
hat all states in the FCEICw are energy safe and the energy level
oes not decrease when we form the extended games.
Finally, since there are no deadlocking Z-states and every Y -

tate has successors in the FCEICw , πs is live if we follow a similar
rgument as in Section 5 of Yin and Lafortune (2016b). Thus, πs
olves the mean payoff decision problem of Problem 1. □

heorem 4. There exists a supervisor solving the mean payoff
ecision problem of Problem 2 if and only if the supervisor has a
inning strategy in the FCEIC defined by Algorithm 2.
9

Fig. 4. The FCEICw with dashed green lines connecting good leaf states with
their subsumed states; Wins is the set of all states. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Proof. The proof is similar to that of Theorem 3 and we just
sketch it here. We show the ‘‘only if’’ part by contrapositive as
well. If no winning control strategy exists, then Wins is empty
by Algorithm 3, i.e., no matter what decisions made by the su-
pervisor, there always exist runs ending in bad leaf states. The
supervisor only form cycles with negative payoffs so that the limit
mean payoff for any run is negative and no supervisor solves the
mean payoff decision problem of Problem 2.

The ‘‘if’’ part. If there exists a winning strategy for the super-
visor in the FCEIC, then the supervisor achieves nonnegative limit
mean payoff since are cycles in the FCEICw are with nonnegative
payoffs. The supervisor is also live, so it solves the mean payoff
decision problem of Problem 2. □

Therefore, we have shown the soundness and completeness
of Algorithms 1 and 2. Overall, we transform the mean payoff
decision problem for Problem 1 (Problem 2) into a safety game
under perfect information and solve it by finding winning control
strategies. We end this section with an example.

Example 4. We revisit Example 2 (Example 3) to find the
winning regions of the FCEIC following Algorithm 3. Since the
good (bad) leaf states in both examples coincide, the winning
regions for both examples remain the same. The FCEICw is shown
in Fig. 4, where green dashed lines connect each good leaf state
with the state subsumed by it, indicating that the supervisor
always makes the same decision from the two connected states.
So the game is extended to be infinite-duration. In building the
FCEICw , shaded states ye2−3 and ye3−3 in Fig. 3 are bad leaf states,
thus are pruned by Algorithm 3. Meanwhile, good leaf states ye2−4
and ye3−4 are also removed as they become no longer accessible
from the initial state ye0 after their preceding Z-states ze8 and ze9
are removed. That means that the supervisor should not choose
γ ′

2 at ye2 or γ3 at ye3, otherwise, the environment may choose o2 at
ze8 or o3 at ze9 to reach some bad leaf states and wins the game.

Then we present a winning control strategy indicated by blue
lines in Fig. 4. As is seen, the supervisor S issues γ0 at ye0, γ1 at
ye1, γ0 at ye2 and γ0 at ye3. If S makes those decisions infinitely
ften, then only cycles with nonnegative payoffs are formed in
he supervised system. Finally we show the supervised system
nder this strategy in Fig. 5. Compared with the original system in
ig. 2, the cycles with a negative payoff have been broken. Then it
s easy to verify that the supervised system is live and all infinite
uns have a positive limit mean payoff. Thus, S solves the mean
ayoff decision problem of Problem 1 (Problem 2).

Y. Ji, X. Yin and S. Lafortune Automatica 123 (2021) 109359

6

t
p
s
m
a
t
t
u

R
G
w
s
s

r
u
t
u
p
s

n S,
q

s

x

m
(
a
m
o

w
a
c

D
c

π

g
w
t
4
m
w
v
R
m
4
t

o
f
u
l
(

Fig. 5. A supervisor solving the mean payoff decision problem.

. Mean payoff optimization problems

Based on results of the preceding section, we continue to find
he control strategy that optimizes the worst-case limit mean
ayoff to completely solve Problem 1 and Problem 2 in this
ection. Our method is inspired by the technique of solving min–
ax games (Osborne & Rubinstein, 1994), however, additional
nalysis is necessary here due to the partial observation. As
here is no difference between the procedures of synthesizing
he optimal control strategies for both problems, we present a
niform approach in the following discussion.
In the FCEICw , we denote by Run(Fw) the set of runs and

unleaf (Fw) the set of runs ending in a good leaf state, respectively.
iven a run rf = ye0

γ0
−→ ze0

e0
−→ ye1 · · ·

γn−1
−−→ zen−1

en−1
−−→ yen ∈ Run(Fw)

ith yej ≼ yen for some j < n where yen is a leaf state, we know that
imple loops with nonnegative payoffs are generated from each
tate in state estimate Est(yej).
In order to determine the mean payoffs of strings generated by

uns in the FCEICw , we need to know exactly what observable and
nobservable events are in the string. However, we only know
he observable events from transitions in the FCEICw since the
nobservable transitions are hidden within each state. For the
urpose of explicitly revealing the inner connections between
tates by unobservable strings inside each Y -state or Z-state in
the FCEICw , we introduce a new transition system called the
Energy Inter Connected System (EICS), which is inspired by the
Inter Connected System proposed in Yin and Lafortune (2016a).

Definition 6 (Energy Inter Connected System (EICS)). Given the
FCEICw with respect to G, its corresponding Energy Inter Con-
ected System (EICS) is defined as a tuple: EICS = (Q EICS, EEICS, f EIC
EICS
0 ,Q EICS

l) where

• Q EICS
⊆ (Q F

Y × X) ∪ (Q F
Z × X) is the state space such that:

– (ye, x) ∈ Q EICS if ye ∈ Q F
Y and x ∈ Est(ye);

– (ze, x) ∈ Q EICS if ze ∈ Q F
Z and x ∈ Est(IE((ze)));

• EEICS
= E ∪ Γ is the set of events in the EICS;

• f EICS : Q EICS
× EEICS

→ Q EICS is the partial transition function
defined as: ∀γ ∈ Γ , ∀e ∈ E:

– f EICS((ye, x1), γ) = (ze, x2) if x1 = x2 in G and f Fyz(y
e, γ)

= ze in the FCEICw;
– f EICS((ze, x1), e) = (ze, x2) if f (x1, e) = x2 in G and

e ∈ Γ (ze) ∩ Euo;
– f EICS((ze, x1), e) = (ye, x2) if f (x1, e) = x2 in G, e ∈

Γ (ze) ∩ Eo and f Fzy(z
e, e) = ye in the FCEICw;

• qEICS0 = {ye0, x0} is the initial state;
• Q EICS

l = {(ye, x) ∈ Q EICS
: ye ∈ Q F

lg in the FCEICw} is the set of
leaf states where no transitions are defined.
10
Intuitively, the EICS is similar to the structure after parallel
composition between the FCEICw and G. It explicitly shows both
observable and unobservable reaches between and within states
of the FCEICw . A state in the EICS contains a state from the FCEICw

and a state from G. There are three types of f EICS transitions
defined in the EICS. The first type indicates the supervisor’s de-
cisions from certain states of the system, so the first component
of an EICS state changes from a Y -state to its succeeding Z-state
in the FCEICw and the second component stays the same. The
second type indicates the unobservable reaches within Z-states
in the FCEICw , so the first state component of (ze, x1) stays the
same and the second component becomes x2 = f (x1, e) under e ∈

Γ (ze) ∩ Euo. The third type indicates observable reaches between
Y -states and Z-states in the FCEICw , so the first component gets
updated from a Z-state to its succeeding Y -state in the FCEICw

and the second component also gets updated by the enabled
observable event. With the EICS built, we are able to explicitly see
how strings are generated under control decisions in the FCEICw .

The leaf states of the EICS contain leaf states of the FCEICw ,
which also indicate simple cycles in the FCEICw . For a leaf state
(ye, x) ∈ Q EICS

l , we are able to track simple loops starting from
x ∈ Est(ye) by following transitions between (ỹe, x) and (ye, x),
where ỹe ⪯ ye. We define Lpsim(ye, x) = {t ∈ E∗

: ∃rf = ye0
γ0
−→

ze0
e0
−→ ye1 · · ·

γn−1
−−→ zen−1

en−1
−−→ ye ∈ Run(Fw), s.t. ∃j < n, yej ⪯ ye, t ∈

Str(yej
γj
−→ zej

ej
−→ · · ·

γn−1
−−→ zen−1

en−1
−−→ ye), f (x, t) = x} as the set of

imple loops starting from x. For a simple loop t ∈ Lpsim(ye, x), we
define its mean payoff as Vsl(t) =

ω(t)
|t| .

Furthermore, we define Vleaf : Runleaf (Fw) → R to characterize
the (limit) mean payoff of runs ending in a leaf state of the
FCEICw . If a run rf ends in a leaf state ye, we have Vleaf (rf) =

min
∈Est(ye)

min
t∈Lpsim(ye,x)

Vsl(t), i.e., the minimum possible mean payoff

of all simple loops formed from states in Est(ye). We take the
inimum mean payoff among simple loops to characterize the

limit) mean payoff of the run, since only the cyclic part of
run contributes to the limit mean payoff and the supervisor
aximizes the worst-case limit mean payoff. With a slight abuse
f notation, we let Vleaf (Last(rf)) stand for Vleaf (rf).
Given a pair of strategies πs ∈ Πs and πe ∈ Πe in the FCEICw ,

e let rf (πs, πe) be the unique initial run generated under (πs, πe)
nd its last state Last(rf (πs, πe)) ∈ Q F

lg . Then we define the optimal
ontrol strategy which maximizes the worst mean payoffs of runs.

efinition 7 (Optimal Control Strategy in the FCEICw). A winning
ontrol strategy π∗

s in the FCEICw is optimal if

min
e∈Πe

Vleaf (rf (π∗

s , πe)) = max
πs∈Πs

min
πe∈Πe

Vleaf (rf (πs, πe)) (5)

Since the FCEICw is acyclic and the number of positional strate-
ies for both players are finite, the optimal control strategy al-
ays exists. Here we are ready to synthesize a (positional) op-
imal control strategy from the FCEICw and present Algorithm
. From Definition 7, an optimal control strategy maximizes its
ean payoff against the antagonistic environment’s strategies,
hich minimize the supervisor’s mean payoff. So the super-
isor and the environment play a min–max game (Osborne &
ubinstein, 1994) on the FCEICw , where the supervisor is the
aximizer and the environment is the minimizer. In Algorithm
, we leverage backward induction (Osborne & Rubinstein, 1994)
o determine an optimal control strategy on the FCEICw .

First we compute the string mean payoffs from the leaf states
f the EICS. Furthermore, it is possible to calculate Vleaf (rf (πs, πe))
rom the FCEICw , with the EICS defined. Specifically, the EICS is
sed to determine the mean payoffs of simple loops from the
eaf states of the FCEICw in line 5 of Algorithm 4. For a leaf state
ye, x) ∈ Q EICS , we can always find another state (ỹe, x) ∈ Q EICS
l

Y. Ji, X. Yin and S. Lafortune Automatica 123 (2021) 109359

s
f
(
V
l
w
s
m
w

s
v
d
a
a
s
s
a
s
m
s
p
o
a

d
a
o
R
t
t
m
s
r
p
a
p

F
t
t
t
t
w
w
p
(

T
π

P
m
V
t
i

V

L
V
m
m
k

1

1

1
1
1
1

1

1
1

1

2
2

2

s

p
s

n
n
2
w

uch that ỹe ⪯ ye in the FCIECw . Then we track f EICS transitions to
ind both observable and unobservable events between (ỹe, x) and
ye, x) ∈ Q EICS

l . Afterwards, we determine Lpsim(ye, x) and calculate
sl(t) for each t ∈ Lpsim(ye, x). There may be multiple simple
oops formed from x ∈ Est(ye), with different mean payoffs. Then
e calculate Vleaf (ye), the minimum mean payoff of all possible
imple loops formed from all states in Est(ye). Vleaf (ye) is also the
inimum possible mean payoff that the supervisor may achieve
hen state estimate Est(ye) is reached.
Then we run Procedure Optimal to assign a value VF (qe) to each

tate qe in the FCEICw . In this procedure, we first determine the
alues to leaf states in line 6. Next we propagate backwards to
etermine the values of predecessor states until the root state is
ssigned a value. Specifically, if the current state is a Z-state, we
ssign the minimum value of its successor states to it in line 18,
ince the environment always minimizes the mean payoff of the
upervisor. If the current state is a Y -state (not a leaf state), we
ssign the maximum value of its successor states to it in line 21,
ince the supervisor always maximizes its mean payoff. This min–
ax procedure is consistent with Definition 7 where the optimal
upervisor maximizes the worst-case payoff it may achieve. The
rocedure goes on until a value is assigned to the initial state ye0
f the FCEICw . Since the FCEICw is finite, Algorithm 4 terminates
fter all states are assigned their values.
When Procedure Optimal is implemented, we can assign or-

ers to states in the FCEICw so that a state is evaluated after
ll its successors are evaluated. This is essentially the process
f backward induction in solving min–max games (Osborne &
ubinstein, 1994). After obtaining VF values, we specify the op-
imal control decisions at Y -states of the FCEICw , which consti-
ute the optimal control strategy. It is possible that there are
ultiple optimal control decisions at the current Y -state when
ome of the successor states have the same VF value. Then we
andomly choose a control decision. Similar min–max search
rocesses were presented in Pruekprasert et al. (2016) and Wu
nd Lafortune (2016) to synthesize optimal strategies of mean
ayoff games, for the specific problems discussed in those works.

After obtaining an optimal positional control strategy in the
CEICw , we again let the supervisor make the same decision from
he current Y -state as from the state subsumed by it. In this way,
he game is extended to be infinite and we obtain a supervisor
hat perpetually issues control decisions to generate a live sys-
em. Intuitively, the supervisor always traverses the simple cycle
ith the highest mean payoff since alternating between cycles
ith different mean payoffs does not result in a higher mean
ayoff. Hence, a positional strategy is sufficient to solve Problem 1
Problem 2), summarized in the following theorem.

heorem 5. If π∗
s is returned by Algorithm 4, then we can extend

∗
s to a supervisor S∗ that solves Problem 1 (Problem 2).

roof. By Algorithm 4, for every leaf state ye ∈ Q F
lg , Vleaf (ye) =

inx∈Est(ye) mint∈Lpsim(ye,x) Vsl(t). Let string t∗(ye) be such that
sl(t∗(ye)) = minx∈Est(ye) mint∈Lpsim(ye,x) Vsl(t) = Vleaf (ye). Suppose
hat a Z-state ze can reach k leaf states ye1, y

e
2, . . . , y

e
k ∈ Q F

lg ,
.e., ∀i ≤ k, ∃ei ∈ Eo, s.t. f Fzy(z

e, ei) = yei . Thus we know:

F (ze) = min{VF (ye1), . . . , VF (yek)} = min{Vsl(t(ye1)), . . . , Vsl(t(yek))}

et string t∗(ze) be such that Vsl(t∗(ze)) = min{Vsl(t(ye1)), . . . ,
sl(t(yek))} so it has the minimum loop mean payoff. The environ-
ent still locates the string whose simple loop has the minimum
ean payoff, by evaluating Vleaf (ye). From the EICS, we explicitly
now which cyclic string has the minimum loop mean payoff.
11
Algorithm 4 Synthesize an optimal control strategy

Input: the FCEICw and the EICS
Output: An optimal strategy πs for Problem 1 or 2
1: for leaf state ye in FCEICw do
2: for leaf state (ye, x) in EICS do
3: Get Lpsim(ye, x) following transitions in EICS;
4: for t ∈ Lpsim(ye, x) do
5: Calculate Vsl(t);
6: Calculate Vleaf (ye) = min

x∈Est(ye)
min

t∈Lpsim(ye,x)
Vsl(t);

7: for qe ∈ Q F
Y ∪ Q F

Z do
8: VF (qe) = Optimal(qe);
9: for ye ∈ Q F

Y \ Q F
l do

0: Find one γ ∈ Γ , s.t. ∃ze ∈ Q F
Z , f

F
yz(y

e, γ) = ze and
VF (ye) = VF (ze);

1: Return π∗
s (y

e) = γ ;
2: procedure Optimal(qe)
3: for qe ∈ Q F

l do
4: VF (qe) = Vleaf (qe);
5: Return VF (qe);
6: for qe ∈ (Q F

Y ∪ Q F
Z) \ Q F

l do
7: if qe ∈ Q F

Z then
8: VF (qe) = minq̃e∈Q F

Y
{Optimal(q̃e) : ∃eo ∈

Eo, s.t. f Fzy(qe, eo) = q̃e};
9: Return VF (qe);
0: if qe ∈ Q F

Y then
1: VF (qe) = maxq̃e∈Q F

Z
{Optimal(q̃e) : ∃γ ∈

Γ , s.t. f Fyz(q
e, γ) = q̃e};

2: Return VF (qe);

Suppose that one predecessor state of ze is ỹe and ỹe has
successor states ze1, . . . , z

e
m (ze is one of them). Then the super-

visor maximizes its VF value among the successor states of ỹe,
i.e., we let VF (ỹe) = maxzei VF (zei) where i ≤ m. Since VF (zei)
is the minimum mean payoff of some simple loop, VF (ỹe) still
maximizes the minimum mean payoffs of simple loops obtained
from some leaf states in the FCEICw . Thus, the supervisor loses
no information when making decisions by evaluating VF (ze). By
Algorithm 4, the supervisor chooses the control decision that
maximizes VF (zei). Then we repeat the same argument backwards
to the root state. In this way, we show that by evaluating the
VF values for Y -states or Z-states, the supervisor correctly per-
forms maximization among VF values from its successors and the
environment correctly performs minimization.

Finally VF (ye0) = maxπs∈Πs minπe∈Πe Vleaf (rf (πs, πe)) holds. Then
we extend πs to a supervisor S∗ by the same argument as in
the proof of Theorem 3, i.e., imagine that each leaf state in the
FCEICw is ‘‘merged’’ with the state subsumed by it and let the
supervisor make the same decision whenever the same state
estimate is reached. By checking the transitions in the EICS, we
find a run in S∗/G leading to VF (ye0) = infr∈Runinf (S∗/G) Vmp(r) =

upS∈S infr∈Runinf (S/G) Vmp(r). So S∗ solves Problem 1 (Problem 2). □

We analyze the complexity for Algorithm 4, which essentially
erforms a minimax search. Results in Du and Pardalos (2013)
how that the time complexity of the minimax search is O(bn) and
the space complexity is O(bn), where b is the maximum number
of choices at each point in the search tree and n is the depth
of the tree. For Algorithm 4, we have b = max{2|Ec |, |Eo|} and

= 2 · 2|X |
+ 1 in the worst case. Here 2|Ec | is the maximum

umber of control decisions at a state and there are at most
· 2|X |

+ 1 states between any two states in the FCEICw . Thus
e obtain the complexity bounds for Algorithm 4.

Y. Ji, X. Yin and S. Lafortune Automatica 123 (2021) 109359

b
t
i
r

A

t

E

a
x
V
o
w
s
w

a
A
F
A
a

t
t
γ
o
m

Fig. 6. The energy inter-connected system w.r.t. the FCEICw in Example 4. The
lue and green dashed rectangles correspond to the Y -states and Z-states in
he FCEICw , respectively. The leaf states are marked in double blue lines. (For
nterpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

We further discuss the structure of the optimal strategy from
lgorithm 4. Given strategies (πs, πe) ∈ Πs × Πe and an initial

run r ′

f ∈ Run(Fw), let rf (r ′

f ; πs, πe) be the run that has ‘‘prefix’’ r ′

f ,
continues under (πs, πe) and ends in a leaf state of the FCEICw .
Formally, rf (r ′

f ; πs, πe) = r ′

f
γ1
−→ ze1

e1
−→ ye2

γ2
−→ · · ·

en
−→ yen where

yen ∈ Q F
lg , γ1 = πs(r ′

f), e1 = πe(r ′

f
γ1
−→ ze1) and γi = πs(r ′

f
γ1
−→ ze1

e1
−→

ye2
γ2
−→ · · ·

ei
−→ yei), ei = πe(r ′

f
γ1
−→ ze1

e1
−→ ye2

γ2
−→ · · ·

γi
−→ zei) for

all 2 ≤ i ≤ n. We write rf (r ′

f ; πs, πe) as rf (Last(r ′

f); πs, πe) since
both players’ decisions only depend on their current positions.
Now we are ready to show that the optimal control strategy
enjoys a structural property resembling subgame perfect equilib-
rium in game theory (Osborne & Rubinstein, 1994) and Bellman’s
optimality principle in dynamic programming (Bertsekas, 2012).

Proposition 2. Let π∗
s be a control strategy returned by Algorithm

4, then for any initial run r ′

f ∈ Run(Fw), we have:

min
πe∈Πe

Vleaf (rf (r ′

f ; π∗

s , πe)) = max
πs∈Πs

min
πe∈Πe

Vleaf (rf (r ′

f ; πs, πe)) (6)

Proof. See the Appendix. □

This proposition illustrates the structure of the optimal control
strategy obtained from Algorithm 4. If the supervisor follows the
strategy indicated by Algorithm 4 from its current position, then
its onward decisions still constitute an optimal strategy in the
remaining game, which can be viewed as a ‘‘subgame’’ (Osborne &
Rubinstein, 1994). In other words, the supervisor has no incentive
to deviate from its optimal strategy given that the environment
does its best to minimize the supervisor’s mean payoff. As seen
from the proof, this result is due to the backward induction
process of maximization and minimization in Algorithm 4.

Example 5. We revisit Example 4 and find an optimal con-
trol strategy to solve Problems 1 and 2 completely. First we
obtain the EICS w.r.t. the FCEICw in Fig. 6. For simplicity of the
graph, we still preserve the state names from G and use dashed
rectangles to indicate the Y -states or Z-states of the FCEIC .
w

12
Fig. 7. Optimal decisions of the supervisor at each Y -state are indicated in red;
he VF values for each state of the FCEICw are also shown in the figure. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

For example, the top green dashed rectangle corresponds to
three states in the EICS, i.e. (ze0, x0), (z

e
0, x1) and (ze0, x2) where

st(IE(ze0)) = {x0, x1, x2}. Specifically, blue and green dashed
rectangles correspond to the Y -states and Z-states of the FCEICw

respectively. As is seen, the EICS is a tree-like structure whose
leaf states (ye1−2, x3), (ye1−2, x4), (ye1−3, x3), (ye1−3, x4), (ye1−4, x3),
(ye1−4, x4), (ye1−5, x3), (ye1−5, x4), (ye2−2, x12) and (ye3−2, x13) are
marked in double dark blue lines.

With the EICS built, we proceed to find the optimal control
strategy by Algorithm 4. We start by calculating the values of Vleaf
for each leaf state of the FCEICw . For example, in the EICS, there
are two simple cycles between Y -states ye1 and ye1−2, i.e., x3

o1
−→ x3

nd x3
c1
−→ x5

b1
−→ x7

o1
−→ x3. Then we obtain Vsl(o1) = 1 (for

3), Vsl(c1b2o1) = 2 and Vsl(o1) = 1 (both for x4). Therefore,
F (ye1−2) = min{1, 2} = 1. Similarly, we obtain the VT values for
ther leaf states in the FCEICw , which are shown in Fig. 7. Next,
e apply backward induction from the leaf states until the root
tate, then determine an optimal control strategy. In this process,
e always choose to minimize at Z-states and maximize at Y -

states. By Algorithm 4, we know VF (ze1) = min{2, 2
3 } =

2
3 and

VF (ze4) = VF (ze6) = 1. Thus, we have the supervisor’s decisions
t each Y -state, which are indicated by solid red lines in Fig. 7.
n optimal supervisor enables c1 upon observing o1, as shown in
ig. 8. The worst limit mean payoff is 1 in the supervised system.
ctually, it is also optimal for the supervisor to disable both c1
nd c2 at ye1, which yields the same worst case limit mean payoff.
Notice that choosing γ4 or γ6 at ye1 is optimal in the sense that

he environment also follows its ‘‘optimal strategy’’ to minimize
he supervisor’s limit mean payoff. If the supervisor deviates from
4 or γ0 and chooses γ1 at ye1, then the environment may choose
1 at ze1, which leads to leaf state ye1−5 and a potentially lower limit
ean payoff 2

3 . Interestingly, if the environment also deviates
from choosing o1 from ze1 by choosing o2 or o3, then the supervisor
should choose γ0 at ye2 and ye3, which yields a better limit mean
payoff for the supervisor compared with the case of choosing γ4
at ye1. Those two decisions are optimal in the ‘‘subgame’’ given
that ye2 or ye3 is reached and viewed as starting points of the
subgame. This is consistent with Proposition 2.

7. Conclusion

This work studied infinite horizon optimal supervisory control
under partial observation for the first time in discrete event

Y. Ji, X. Yin and S. Lafortune Automatica 123 (2021) 109359

s
m
t
E
t
p
s
s
o
i
v
u
w
d
p

A

P
e
D

o
D

i

F
E

L

t
f
a
m

m
t
z
z
s
s
i
s
m
y

t
s

T

R

A

A

A

A

Fig. 8. An optimal supervisor solving Problems 1 and 2.

ystems. We considered two optimal control scenarios, then for-
ulated two supervisory control problems correspondingly. To

his end, we defined energy information states and the First Cycle
nergy Inclusive Controller (FCEIC) for each problem. Based on
he FCEIC, each problem was transformed into a finite game with
erfect information and proper objectives. As an intermediate
olution step, we solved the mean payoff decision problems via
afety games. Finally we solved a min–max game to find the
ptimal control strategy among partial solutions. For future work,
t would be of interest to explore infinite horizon optimal super-
isory control with other quantitative performance objectives and
nder partial observation. In addition, it would also be worth-
hile to investigate the application of the theoretical framework
eveloped herein on specific engineering platforms such as the
ower management system of electric hybrid vehicles.

ppendix. Proofs of propositions

Proof of Proposition 1:

roof. Proof by induction. Consider the observable string t =

1 · · · en−1 (n ≥ 1). We also use the notations ρk and ρ ′

k from
efinition 5 in the following discussion.
Induction Basis: n = 1 and consider qe1 or qe1

γ1
−→ qae1 . The result

bviously holds for single state qe1 and also holds for qe1
γ1
−→ qae1 by

efinition 5 and the definition of γ -successor.
Inductive Hypothesis: we assume the lemma holds when n = k,

.e., for control-observation sequences ρk and ρ ′

k.
Induction Step: when n = k + 1, consider ρk+1 and ρ ′

k+1.
irst, qek+1 is an ek-successor or qaek . Let Est(IE(qaek)) = q′

k and
st(qek+1) = qk+1, then ∀x ∈ qk+1,

ev(qek+1, x) = min
x′

{Lev(qaek , x′)+ω(ek) : ∃x′
∈ q′

k, s.t. f (x′, ek) = x}

By the inductive hypothesis and Definition 5, we have:

Lev(qek+1, x) =min
x′

min
s′k

{ω(s′k) + ω(ek) : ∃x̃ ∈ Est(qe1), s
′

k ∈ Str(ρ ′

k)

s.t. f (x̃, s′k) = x′
}

=min
sk+1

{ω(sk+1) : ∃x̃ ∈ Est(ye1), sk+1 ∈ Str(ρk+1) s.t.

sk+1 = s′kek, f (x̃, sk+1) = x}

Then qaek+1 is a γk+1-successor of qek+1. Let Est(qek+1) = qk+1 and
Est(IE(qaek+1)) = q′

k+1, so ∀x′
∈ q′

k+1,

Lev(qaek+1, x
′) =min

ξk+1
{Lev(qek+1, x) + ω(ξk+1) : ∃x ∈ qk+1,

∗ ′
ξk+1 ∈ (Euo ∩ γk+1) s.t. f (x, ξk+1) = x }

13
From what we just proved,

Lev(qek+1, x
′) =min

ξk+1
{Lev(qek+1, x) + ω(ξk+1) : ∃x ∈ qk+1,

ξk+1 ∈ (Euo ∩ γk+1)∗ s.t. f (x, ξk+1) = x′
}

=min
s′k+1

{ω(s′k+1) : ∃x̃ ∈ Est(qe1), s
′

k+1 ∈ Str(ρ ′

k+1) s.t.

s′k+1 = sk+1ξk+1, f (x̃, s′k+1) = x′
}

Thus the result holds at k + 1, completing the proof. □

Proof of Proposition 2:

Proof. By definition, the FCEICw is an acyclic structure and
the depth of its runs is thus bounded. In the FCEICw , there
exists a positive integer m such that every leaf state can be
reached within m steps from the initial state. Then we prove
this proposition by induction on the number of steps for an
initial run to reach leaf states of the FCPECw . In other words,
we show that VF (Last(r ′

f)) = minπe∈Πe Vleaf (rf (r ′

f ; π∗
s , πe)) =

maxπs∈Πs minπe∈Πe Vleaf (rf (r ′

f ; πs, πe)) for any initial run r ′

f .
Induction Basis: Consider the case when the last state of r ′

f
is a leaf states in the FCPECw . Then this proposition becomes
Theorem 5, thus, it naturally holds.

Inductive Hypothesis: Suppose that the result holds for any r ′

f
hat reaches leaf states within at most k steps, where k ≤ m − 2
or some integer m > 2. In addition, the function Optimal in the
lgorithm assigns VF (Last(r ′

f)) = minπe∈Πe Vleaf (rf (r ′

f ; π∗
s , πe)) =

axπs∈Πs minπe∈Πe Vleaf (rf (r ′

f ; πs, πe)) to the last state of r ′

f .
Induction Step: Consider r ′

f that reaches leaf states within at
ost k+2 steps. Suppose that Last(r ′

f) = LastY (r ′

f) = y′e. We know
hat there exists ze = f Fyz(y

′e, γ) for some γ ∈ Γ and specifically,
˜e = f Fyz(y

′e, γ ∗) for γ ∗
= π∗

s (y
′e, γ ∗). Thus, succeeding Z-state

e
= f Fyz(y

′e, γ) of y′e reaches a leaf state within at most k + 1
teps. By Algorithm 4, VF (y′e) = VF (z̃e) = maxze VF (ze). Also
ome f Fzy transitions are defined from ze and lead to succeed-
ng Y -state ye which reaches the leaf states within at most k
teps. By the inductive hypothesis, minπe∈Πe Vleaf (rf (ye; π∗

s , πe)) =

axπs∈Πs minπe∈Πe Vleaf (rf (ye; πs, πe)) for any r ′

f with Last(r ′

f) =
e. Again from Algorithm 4, we know:

VF (ze) =min
ye

VF (ye) = min
ye

min
πe∈Πe

Vleaf (rf (ye; π∗

s , πe))

= min
πe∈Πe

Vleaf (rf (ze; π∗

s , πe)) = max
πs∈Πs

min
πe∈Πe

Vleaf (rf (ze; πs, πe))

hus the result holds for runs whose last states reach the leaf
tates of the FCEICw within k + 1 steps. Furthermore, we have:

VF (y′e) =max
ze

VF (ze) = max
ze

min
πe∈Πe

Vleaf (rf (ze; π∗, πe))

= min
πe∈Πe

Vleaf (rf (y′e
; π∗, πe))

= max
πs∈Πs

min
πe∈Πe

Vleaf (rf (y′e
; πs, πe))

herefore the result holds for k + 2, completing the proof. □

eferences

lves, M. V. S., Carvalho, L. K., & Basilio, J. C. (2016). New algorithms for
verification of relative observability and computation of supremal relatively
observable sublanguage. IEEE Transactions on Automatic Control, 62(11),
5902–5908.

lves, M. V. S., da Cunha, A. E. C., Carvalho, L. K., Moreira, M. V., & Basilio, J.
C. (2019). Robust supervisory control of discrete event systems against
intermittent loss of observations. International Journal of Control, 1–13.

minof, B., & Rubin, S. (2017). First-cycle games. Information and Computation,
254, 195–216.

pt, K. R., & Grädel, E. (2011). Lectures in game theory for computer scientists.

Cambridge University Press.

http://refhub.elsevier.com/S0005-1098(20)30561-6/sb1
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb1
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb1
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb1
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb1
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb1
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb1
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb2
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb2
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb2
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb2
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb2
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb3
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb3
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb3
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb4
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb4
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb4

Y. Ji, X. Yin and S. Lafortune Automatica 123 (2021) 109359

B
B

B

aier, C., & Katoen, J.-P. (2008). Principles of model checking. MIT press.
aşar, T., & Bernhard, P. (2008). H-infinity optimal control and related minimax

design problems: a dynamic game approach. Springer.
ertsekas, D. P. (2012). Dynamic programming and optimal control. Athena

Scientific.
Cai, K., Zhang, R., & Wonham, W. M. (2015). Relative observability of discrete-

event systems and its supremal sublanguages. IEEE Transactions on Automatic
Control, 60(3), 659–670.

Cassandras, C. G., & Lafortune, S. (2008). Introduction to discrete event systems
(2nd ed.). Springer.

Du, D., & Pardalos, P. M. (2013). Minimax and applications. Springer.
Giua, A., Seatzu, C., & Basile, F. (2004). Observer-based state-feedback control

of timed Petri nets with deadlock recovery. IEEE Transactions on Automatic
Control, 49(1), 17–29.

Gu, C., Wang, X., Li, Z., & Wu, N. (2018). Supervisory control of state-tree
structures with partial observation. Information Sciences, 465, 523–544.

Han, X., Chen, Z., & Su, R. (2019). Synthesis of minimally restrictive optimal
stability-enforcing supervisors for nondeterministic discrete event systems.
Systems & Control Letters, 123, 33–39.

Hunter, P., Pauly, A., Pérez, G. A., & Raskin, J.-F. (2018). Mean-payoff games with
partial observation. Theoretical Computer Science, 735, 82–110.

Ji, Y., Yin, X., & Lafortune, S. (2018). Mean payoff supervisory control under
partial observation. In Proceedings of the 57th IEEE conference on decision and
control (pp. 3981–3987).

Ji, Y., Yin, X., & Lafortune, S. (2019a). Enforcing opacity by insertion functions
under multiple energy constraints. Automatica, 108, Article 108476.

Ji, Y., Yin, X., & Lafortune, S. (2019b). Supervisory control under local mean payoff
constraints. In 58th IEEE conference on decision and control (pp. 1043–1049).

Komenda, J., & Masopust, T. (2017). Computation of controllable and coobserv-
able sublanguages in decentralized supervisory control via communication.
Discrete Event Dynamic Systems: Theory and Applications, 27(4), 585–608.

Krishnamurthy, V. (2016). Partially observed Markov decision processes: From
filtering to controlled sensing. Cambridge University Press.

Levy, A. (2002). Basic set theory, Vol. 13. Courier Corporation.
Lin, L., Masopust, T., Wonham, W. M., & Su, R. (2019). Automatic generation of

optimal reductions of distributions. IEEE Transactions on Automatic Control,
64(3), 896–911.

Madani, O., Hanks, S., & Condon, A. (2003). On the undecidability of probabilistic
planning and related stochastic optimization problems. Artificial Intelligence,
147(1–2), 5–34.

Malikopoulos, A. A. (2014). Supervisory power management control algorithms
for hybrid electric vehicles: A survey. IEEE Transactions on Intelligent
Transportation Systems, 15(5), 1869–1885.

Marchand, H., Boivineau, O., & Lafortune, S. (2002). On optimal control of a class
of partially observed discrete event systems. Automatica, 38(11), 1935–1943.

Osborne, M. J., & Rubinstein, A. (1994). A course in game theory. Massachusetts
Institute of Technology press.

Pantelic, V., & Lawford, M. (2012). Optimal supervisory control of probabilis-
tic discrete event systems. IEEE Transactions on Automatic Control, 57(5),
1110–1124.

Pérez, G. A. (2017). The fixed initial credit problem for partial-observation energy
games is ack-complete. Information Processing Letters, 118, 91–99.

Pruekprasert, S., & Ushio, T. (2016a). Optimal stabilizing controller for the region
of weak attraction under the influence of disturbances. IEICE Transactions on
Information and Systems, 99(6), 1428–1435.

Pruekprasert, S., & Ushio, T. (2016b). Optimal stabilizing supervisor of quanti-
tative discrete event systems under partial observation. IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences, 99(2),
475–482.

Pruekprasert, S., & Ushio, T. (2017). Supervisory control of partially observed
quantitative discrete event systems for fixed-initial-credit energy problem.
IEICE Transactions on Information and Systems, 100(6), 1166–1171.

Pruekprasert, S., Ushio, T., & Kanazawa, T. (2016). Quantitative supervisory
control game for discrete event systems. IEEE Transactions on Automatic
Control, 61(10), 2987–3000.

Puterman, M. L. (2005). Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons.

Rackoff, C. (1978). The covering and boundedness problems for vector addition
systems. Theoretical Computer Science, 6(2), 223–231.

Schmidt, K. W., & Breindl, C. (2014). A framework for state attraction of discrete
event systems under partial observation. Information Sciences, 281, 265–280.

Sengupta, R., & Lafortune, S. (1998). An optimal control theory for discrete event
systems. SIAM Journal on Control and Optimization, 36(2), 488–541.
14
Shu, S., & Lin, F. (2015). Supervisor synthesis for networked discrete event
systems with communication delays. IEEE Transactions on Automatic Control,
60(8), 2183–2188.

Shu, S., & Lin, F. (2017). Predictive networked control of discrete event systems.
IEEE Transactions on Automatic Control, 62(9), 4698–4705.

Takai, S., & Ushio, T. (2003). Effective computation of an Lm (g)-closed, control-
lable, and observable sublanguage arising in supervisory control. Systems &
Control Letters, 49(3), 191–200.

Wonham, W. M., & Cai, K. (2019). Supervisory control of discrete-event systems.
Springer.

Wu, Y.-C., & Lafortune, S. (2016). Synthesis of optimal insertion functions for
opacity enforcement. IEEE Transactions on Automatic Control, 61(3), 571–584.

Yin, X., & Lafortune, S. (2016a). Synthesis of maximally permissive supervisors
for partially-observed discrete-event systems. IEEE Transactions on Automatic
Control, 61(5), 1239–1254.

Yin, X., & Lafortune, S. (2016b). A uniform approach for synthesizing property-
enforcing supervisors for partially-observed discrete-event systems. IEEE
Transactions on Automatic Control, 61(8), 2140–2154.

Yin, X., & Lafortune, S. (2017). Synthesis of maximally-permissive supervisors
for the range control problem. IEEE Transactions on Automatic Control, 62(8),
3914–3929.

Zwick, U., & Paterson, M. (1996). The complexity of mean payoff games on
graphs. Theoretical Computer Science, 158(1–2), 343–359.

Yiding Ji received the Bachelor of Engineering degree
of Electrical Engineering and Automation from Tianjin
University, China, in 2014, the Master of Science degree
and the Ph.D degree of Electrical and Computer Engi-
neering from the University of Michigan, United States,
in 2016 and 2019, respectively. From 2019 to 2020, he
worked as a postdoc researcher at Division of Systems
Engineering, Boston University, United States.

His research interests include discrete event sys-
tems, formal methods, control systems, game theory
and cyber security. He is now a member of IEEE and the

IEEE Control Systems Society Technical Committee on Discrete Event Systems.

Xiang Yin was born in Anhui, China, in 1991. He
received the B.Eng degree from Zhejiang University in
2012, the M.S. degree from the University of Michigan,
Ann Arbor, in 2013, and the Ph.D degree from the
University of Michigan, Ann Arbor, in 2017, all in
electrical engineering.

Since 2017, he has been with the Department of
Automation, Shanghai Jiao Tong University, where he
is an Associate Professor. His research interests include
formal methods, control of discrete event systems,
model based fault diagnosis, security and their appli-

cations to cyber and cyber–physical systems. Dr. Yin received the Outstanding
Reviewer Awards from Automatica, the IEEE Transactions on Automatic
Control and the Journal of Discrete Event Dynamic Systems. Dr. Yin also
received the IEEE Conference on Decision and Control (CDC) Best Student Paper
Award Finalist in 2016. He is the co-chair of the IEEE Control Systems Society
Technical Committee on Discrete Event Systems.

Stéphane Lafortune received the B.Eng degree from
Ecole Polytechnique de Montréal in 1980, the M.Eng
degree from McGill University in 1982, and the Ph.D
degree from the University of California at Berkeley
in 1986, all in electrical engineering. Since September
1986, he has been with the University of Michigan, Ann
Arbor, where he is a Professor of Electrical Engineering
and Computer Science. Lafortune is a Fellow of the
IEEE (1999) and of IFAC (2017). He received the Pres-
idential Young Investigator Award from the National
Science Foundation in 1990 and the George S. Axelby

Outstanding Paper Award from the Control Systems Society of the IEEE in
1994 (for a paper co-authored with S.-L. Chung and F. Lin) and in 2001 (for a
paper co-authored with G. Barrett). Lafortune’s research interests are in discrete
event systems and include multiple problem domains: modeling, diagnosis,
control, optimization, and applications to computer and software systems. He co-
authored, with C. Cassandras, the textbook Introduction to Discrete Event Systems
- Second Edition (Springer, 2008). Lafortune is Editor-in-Chief of the Journal of
Discrete Event Dynamic Systems: Theory and Applications.

http://refhub.elsevier.com/S0005-1098(20)30561-6/sb5
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb6
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb6
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb6
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb7
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb7
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb7
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb8
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb8
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb8
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb8
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb8
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb9
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb9
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb9
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb10
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb11
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb11
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb11
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb11
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb11
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb12
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb12
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb12
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb13
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb13
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb13
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb13
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb13
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb14
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb14
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb14
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb16
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb16
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb16
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb17
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb17
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb17
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb18
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb18
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb18
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb18
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb18
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb19
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb19
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb19
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb20
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb21
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb21
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb21
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb21
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb21
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb22
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb22
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb22
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb22
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb22
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb23
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb23
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb23
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb23
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb23
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb24
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb24
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb24
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb25
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb25
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb25
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb26
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb26
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb26
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb26
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb26
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb27
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb27
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb27
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb28
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb28
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb28
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb28
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb28
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb29
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb29
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb29
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb29
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb29
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb29
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb29
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb30
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb30
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb30
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb30
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb30
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb31
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb31
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb31
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb31
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb31
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb32
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb32
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb32
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb33
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb33
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb33
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb34
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb34
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb34
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb35
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb35
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb35
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb36
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb36
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb36
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb36
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb36
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb37
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb37
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb37
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb38
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb38
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb38
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb38
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb38
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb39
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb39
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb39
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb40
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb40
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb40
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb41
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb41
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb41
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb41
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb41
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb42
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb42
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb42
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb42
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb42
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb43
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb43
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb43
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb43
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb43
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb44
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb44
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb44

	Optimal supervisory control with mean payoff objectives and under partial observation
	Introduction
	System model
	Problem formulations
	First cycle energy inclusive controller
	Energy information states
	Construction of the FCEIC

	Mean payoff decision problems
	Mean payoff optimization problems
	Conclusion
	Appendix. Proofs of propositions
	References

