Automatica 123 (2021) 109359

Contents lists available at ScienceDirect

automatica

Automatica

journal homepage: www.elsevier.com/locate/automatica

Optimal supervisory control with mean payoff objectives and under
partial observation™

Check for
updates

Yiding Ji?, Xiang Yin > Stéphane Lafortune?

2 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
b Department of Automation, Shanghai Jiao Tong University, Shanghai, China

ARTICLE INFO ABSTRACT

Article history:

Received 14 June 2019

Received in revised form 19 May 2020
Accepted 13 October 2020

Available online xxxx

We investigate optimal mean payoff supervisory control problems on partially observed discrete event
systems modeled as weighted finite-state automata. The event weights capture variations of a given
resource (i.e., energy) expended or replenished during the operation of the system and the mean payoff
is then defined as the average of the accumulative event weights. Two supervisory control problems
are considered in this work. For the first, the system is equipped with a fixed amount of initial energy
to support its operation and the supervised system should always have a nonnegative energy level.
For the second, the limit mean payoff of any event sequence should never drop below zero in the
supervised system. We further optimize the worst case limit mean payoff of infinite event sequences
under both scenarios. The two problems are solved sequentially. In order to capture information on
both the state estimate and the energy level of the system, we define energy information states which
incorporate sufficient information for the decision making of the supervisor. Then we propose the
First Cycle Energy Inclusive Controller (FCEIC) and further transfer the supervisory control problems
into two-player games with properly defined objectives on the FCEIC. Finally, we perform a min-max

Keywords:

Discrete event systems
Supervisory control
Partial observation
Optimal control
Algorithmic game theory

search on the game graphs to synthesize the optimal supervisors for both scenarios.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Supervisory control has been thoroughly studied under the
framework of discrete event systems (DES). The supervisor re-
stricts the behavior of the plant (system) by enabling and dis-
abling events, so that the given specification is achieved.
Supervisory control has been thoroughly discussed under various
DES models from different perspectives (Cassandras & Lafortune,
2008; Wonham & Cai, 2019).

In the context of DES, due to the limited sensing capabilities
and measurement noises, the plant is usually partially observed,
which gives rise to supervisory control under partial observation.
Many works fall into this category, see, e.g., Alves, Carvalho, and
Basilio (2016), Alves, da Cunha, Carvalho, Moreira, and Basilio
(2019), Cai, Zhang, and Wonham (2015), Giua, Seatzu, and Basile

* Research supported in part by the US National Science Foundation, China
under grant CNS-1738103, also by National Natural Science Foundation of China
under grants 61803259, 61833012. The material in this paper was partially
presented at the 57th IEEE Conference on Decision and Control, December 17-19,
2018, Miami Beach, Florida, USA. This paper was recommended for publication
in revised form by Associate Editor Christoforos Hadjicostis under the direction
of Editor Christos G. Cassandras.
* Corresponding author.

E-mail addresses: jiyiding@umich.edu (Y. Ji), yinxiang@sjtu.edu.cn (X. Yin),

stephane@umich.edu (S. Lafortune).

https://doi.org/10.1016/j.automatica.2020.109359
0005-1098/© 2020 Elsevier Ltd. All rights reserved.

(2004), Gu, Wang, Li, and Wu (2018), Komenda and Masopust
(2017), Lin, Masopust, Wonham, and Su (2019), Schmidt and
Breindl (2014), Shu and Lin (2015, 2017), Takai and Ushio (2003)
and Yin and Lafortune (2017). Recently, a novel approach was
developed in Yin and Lafortune (2016a) to synthesize maximally
permissive partial-observation supervisors without assumptions
on the relationship between controllable and observable events.
It was then extended to a uniform approach in Yin and Lafortune
(2016b) for the enforcing a series of qualitative properties in DES.

In addition to logical properties, supervisory control has also
been investigated under some quantitative performance mea-
sures. Optimal supervisory control is one problem of particu-
lar interest, where different frameworks have been developed.
For example, Sengupta and Lafortune (1998) defined both event
enablement and disablement costs, then found the controller
with minimum total costs to reach the designated states. This
framework was extended in Marchand, Boivineau, and Lafortune
(2002) and Pruekprasert and Ushio (2016b) to consider partial
observation of the system. Furthermore, Pruekprasert, Ushio, and
Kanazawa (2016) solved an infinite horizon optimal supervisory
control problem under the framework of mean payoff games
with perfect information. A closely related problem of optimal
stabilization by supervisory control was investigated in Han,
Chen, and Su (2019) and Pruekprasert and Ushio (2016a, 2016b).

https://doi.org/10.1016/j.automatica.2020.109359
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2020.109359&domain=pdf
mailto:jiyiding@umich.edu
mailto:yinxiang@sjtu.edu.cn
mailto:stephane@umich.edu
https://doi.org/10.1016/j.automatica.2020.109359

Y. Ji, X. Yin and S. Lafortune

Along with the deterministic setting, optimal supervisory control
in probabilistic DES was studied in Pantelic and Lawford (2012).

Motivation In many engineering applications, the system may
generate or consume some resources over a relatively long time
horizon and it is often essential to maintain a reasonable rate of
resource generation/consumption. Consider the power manage-
ment system for hybrid electric vehicles (Malikopoulos, 2014).
A positive or negative torque is demanded from the powertrain
depending on the driving mode, e.g., cruising or braking. The
power from the electric machine is regulated by tuning the torque
so that the torque complies with the driving mode. The electric
machine generates power by consuming electrical energy from
the battery in the motor mode, and it absorbs power from the
driveline to charge the battery in the generator mode. When
the vehicle is cruising, the engine should consistently provide
sufficient power so that the vehicle moves smoothly. Here the su-
pervisory control scheme may be applied to determine the power
flow over a long time range when the vehicle is on the road.
Note that the supervisor’s observations may be compromised by
measurement uncertainty or noise.

Contributions The above situation inspires us to investigate
infinite horizon optimal supervisory control under partial obser-
vation, which has never been investigated in DES before to the
best of our knowledge. We term the resource associated with
the system as energy, which is a generic term. The system is
modeled as a weighted automaton and the limit average weight
characterizes the rate of energy generation/consumption, which
is to be optimized. Specifically, we consider two cases where
the supervisor entails an optimal limit mean payoff. The first is
that the system is granted with certain amount of initial energy
to support its operation and the energy level should never drop
below 0. The second is that the limit mean payoff should always
be above a given threshold. Correspondingly, we formulate two
supervisory control problems and solve them in sequence.

In the first phase, energy information states are defined to
incorporate information on state estimates and energy level of the
system. Next we transfer the supervisory control problems into
two-player games between the supervisor and the “environment”
(system) on the First Cycle Energy Inclusive Controller (FCEIC).
By construction, the supervisor’s winning strategies in the FCEIC
achieve a nonnegative energy level or a sufficiently large limit
mean payoff. In the second phase, the optimal control strategies
are synthesized by solving a minimax game on a substructure
of the FCEIC. Those strategies in turn solve our proposed control
problems after minor manipulation.

Related works Our solution methodology is inspired by the
literature on infinite horizon optimal/stochastic control and algo-
rithmic games in computer science. Here we briefly highlight our
novelty compared with existing research from both fields.

Infinite horizon optimal/stochastic control under partial ob-
servation has long been a challenging problem (Bertsekas, 2012;
Krishnamurthy, 2016). Optimal policy existence problem for in-
finite horizon partially observable Markov Decision Processes
(MDPs) is generally undecidable, either with discounted or av-
erage reward objectives (Madani, Hanks, & Condon, 2003). To
solve the infinite horizon optimal supervisory control problems,
we make some necessary assumptions on the system (plant) and
solve the problems under two-player quantitative games. It turns
out that we may solve the game to synthesize supervisors by
only focusing on the “first” simple cycles since the mean payoff
game is a type of first-cycle games (Aminof & Rubin, 2017),
so our game-theoretic technique is significantly different from
the existing methods to solve optimal control and MDPs (Bert-
sekas, 2012; Puterman, 2005), such as value/policy iteration or
simulation/approximation methods. To synthesize the optimal
supervisor on the FCEIC, we perform a min-max search which is

Automatica 123 (2021) 109359

similar to the minimax criterion in optimal control theory (Basar &
Bernhard, 2008). This is consistent with our problem formulation
where we optimize the worst limit mean payoff. However, we
cannot directly apply the minimax criterion as our problem is dis-
cussed under partial observation. Instead, we propose the Energy
Inter Connected System to “retrieve” the unobservable strings in
the FCEIC. So the minimum/maximum payoffs for both players
are correctly evaluated before the optimal control strategy is
determined by a min-max search.

Our supervisory control framework is also in contrast with
algorithmic game theory for reactive synthesis (Apt & Grddel,
2011; Baier & Katoen, 2008). First, there is a plant, i.e., a system to
be controlled, and a separate supervisor (controller) in our work.
Additionally, the supervised system is closed-loop in the sense
that the “input” to the supervisor is the set of strings generated by
the system so far and the “output” of the supervisor is a control
decision to inform the system what events are allowed to occur.
Furthermore, the supervisor may allow multiple events to occur
simultaneously, then the system decides what event to execute
next. This mechanism is similar to the so-called multi-strategy
in algorithmic games (Apt & Grddel, 2011), under which one
player may choose more than one outgoing edges at its position.
In general, the supervisor may only have limited control and
observation capabilities, i.e., some events of the system can never
be disabled and some events are not observed by the supervisor.
Those limitations are usually not characterized in algorithmic
games for reactive synthesis. The above mentioned differences
impose additional difficulties on directly applying existing results
of quantitative algorithmic games to solve the supervisory control
problem in our work, thus special techniques are necessary.

Specifically, this work leverages some results from mean pay-
off games where the first player maximizes the limit average
payoffs (weights) of traversed edges while the second player
minimizes them. Well structured solutions were proposed for the
perfect information mean payoff game (Zwick & Paterson, 1996),
where both players know the complete history of the game up
to their current positions. The more challenging case is mean
payoff games with imperfect information where one player does
not know the exact state or actions of its opponent. Such games
are in general undecidable (Hunter, Pauly, Pérez, & Raskin, 2018).
Briefly speaking, the undecidability is due to the presence of
indefinite cycles with total payoffs of different signs. The game
graph is unfolded to determine the winner of the game. However,
the unfolding is never halted so no player is able to claim winning
the game. Some decidable classes were presented in Hunter et al.
(2018), which put some restrictions to eliminate the indefinite
cycles. These results motivate our problem settings.

Our work is not the first to investigate problems in DES by
leveraging results from algorithmic game theory, see, e.g., Ji, Yin,
and Lafortune (2019a), Pruekprasert and Ushio (2017), Pruekprasert
et al. (2016), Yin and Lafortune (2016a) and Yin and Lafortune
(2016b). However, both Yin and Lafortune (2016a) and Yin and
Lafortune (2016b) focused on supervisory control for qualitative
properties and Pruekprasert et al. (2016) discussed optimal mean
payoff supervisory control under full observation. In contrast
to this work as well, Pruekprasert and Ushio (2017) studied
supervisory control under fixed-initial-credit energy games and a
more recent work (Ji, Yin, & Lafortune, 2019b) studied supervisory
control under local mean payoff constraints, defined over a finite
number of events. Finally, Ji et al. (2019a) discussed a different
problem, namely opacity enforcement under energy constraints.

Organization The following sections are organized as follows.
Section 2 describes the system model. In Section 3, we for-
mulate two optimal mean payoff supervisory control problems
under partial observation. Section 4 introduces energy informa-
tion states and the First Cycle Energy Inclusive Controller (FCEIC)

Y. Ji, X. Yin and S. Lafortune

as the game graph for each problem. In Section 5, we analyze
some relevant properties of the FCEIC and partially solve the two
proposed problems. Then in Section 6, we completely solve the
two problems by finding the optimal solution from the partial
solutions obtained in Section 5. Finally, Section 7 concludes the
paper and raises potential directions for future work.

A preliminary version of this work appears in Ji, Yin, and
Lafortune (2018) with partial results. The major improvements
of this work are two-fold. First, we consider mean payoff super-
visory control under constraints imposed by the system’s energy
capacity, i.e., Problem 1 in Section 3, which is not discussed in Ji
et al. (2018). Second, we further investigate the optimal control of
worst-case limit mean payoffs in Section 6, which is not treated
in Ji et al. (2018) either.

2. System model

The system is modeled as a weighted finite-state automaton:
G=(X,E,f, X, w)

where X is the finite state space, E is the finite set of events,
f : X x E — X is the partial transition function, x, € X
is the initial state, ® : E — Z is the weight function that
assigns an integer to each event. We view the event’s weight as
its energy payoff. A positive number stands for energy gain while a
negative number stands for energy cost. The transition function is
extended to X x E* in the standard manner and we still denote the
extended function by f. The language generated by G is defined as
L(G) = {s € E* : f(xo, s)!} where ! means “is defined”. We denote
by s < u if string s is a prefix of u, and s < u if s < u, s # u. The
function w is additive and its domain can be extended to E* by
letting w(e) = 0, w(se,) = w(s) + w(e,) for all s € E* and e € E.
The (accumulative) payoff of sin£(G) is the sum of each event’s
weight in s, i.e. w(s). G may also have vy € N as its initial energy.

In this work, we assume that safety is satisfied a priori and
we do not include marked states in G. Instead, we consider
the (weak) liveness property: a system G is live if its generated
language £(G) is live, i.e., Vs € £(G), Ju € E, s.t. su € £(G). That
is, there is a transition defined at each state in G so every finite
string may have an infinite suffix. This requirement is without
loss of generality since it can be relaxed by adding observable
self-loops at states where no active events are defined.

Given G, for x;,x, € X and e € E, we write x; 5 Xy if
f(x1,e) = x. Arun in G is a sequence of alternating states and
events: r = x4 A Xo &2 . o X, and it may be infinitely long.
We denote the set of all runs in G by Run(G), and specifically, the
set of infinite runs by Runis(G), so that Run(G) C Runiqs(G). A run
is called initial if its initial state is the initial state of G. Run r forms
a cycle if x; = xp, and r is called simple if Vi,j € {1,2,...,n— 1},
i # j = X # x;. If ris a cycle, the corresponding string
eje; - - - e,_1 forms a loop, which is also called simple if r is simple.

Given r = x4 A Xo 2 .5 Xn+1, its (accumulative) payoff
is Y"1, w(e;) and its mean payoff is 1 Y7 | w(e;). The system'’s
energy level after r is written as EL(r) = vy + ZLl w(e;). The
energy level changes dynamically with event occurrences.

For infinite runs, we also define Vp, : Runjs(G) — R as the

) . . . eq ()
limit mean payoff of an infinite run. Givenr =x; — x, — -,

1 n

Vinp(r) = liminf — w(e;) (1)
n—oo n

i=1
Since G is with finite state space and the weight of each event is
bounded, the limit of the infimum of the sequence {% Z?:l w(e;)}
always exists. Notice that the value of Vy,;(r) does not depend on
any sequence that appears finitely often when r is infinite. Also

Automatica 123 (2021) 109359
. . e i1 ©j .
fori < j,if x; = X1 —> --- = Xj;1 is the only cycle that
appears infinitely often in the run r, then we have:

1 J
Vinp(r) = iZit1 Z w(er) (2)
=i

The event set E is partitioned as E = E.UE,, where E. is the set
of controllable events and E, is the set of uncontrollable events.
G is partially observed and E is also partitioned as E = E, U E,,,
where E, and E,, are the sets of observable and unobservable
events, respectively. The natural projection P : E* — E; is
recursively defined as: Vt' € E*, e € E, P(¢) = ¢, P(t) = P(t'e) =
P(t')P(e) where P(e) = e if e € E, and P(e) = ¢ if e € E,;, U {€}.

The system G is controlled by a supervisor S : P[L(G)] —
2X that dynamically enables/disables events (Cassandras & Lafor-
tune, 2008). Let S be the set of supervisors. We also use S/G to
represent the controlled system under S. Accordingly, we denote
by £(S/G) the language generated in S/G and Run(S/G) the set of
runs in S/G, respectively. A control decision y € 2£ is called ad-
missible if E,. C y, i.e., uncontrollable events are never disabled.
We let I' = {y € 2f : E,c C y} be the set of admissible control
decisions and only consider I" in the remainder of the work.

The supervisor only has partial observation of the system.
Given G and a set of states q C X, the unobservable reach, denoted
by UR(q), is defined as: UR(q) = {¥ € X Ix € q,s €
E: ., st f(x,s) = x'}. Specifically, the unobservable reach under a
set of events y C E, denoted by UR,(q), is defined as: UR,(q) =
X e X:3xeq,s € (EpNy), st f(x,s) = x'}. The observable
reach under event e, € E,, denoted by Next,,(q), is defined as:
Next.,(q) = {x' € X : Ix € g s.t. f(x,) = x'}.

The observer of G is defined as: Obs(G) = (Xops, Eo» 8, Xobs.0)
where X5 C 2% is the state space; Xpps0 = UR({xo}) is the
initial state and § is the transition function where Vxqps € Xops,
Ve, € Eo: 8(Xops, €0) = UR(Next,,(Xops)). The event weight function
is omitted here in the definition. An observer state is also termed
a (current) state estimate of the system.

3. Problem formulations

In this section, we formulate the optimal mean payoff su-
pervisory control problems with and without the constraint of
nonnegative energy level, respectively. Before stating them, we
first assume that there are no unobservable loops in £(G), and
this assumption holds throughout the remainder of this work.

Assumption 1 (No Unobservable Loops). Given an automaton G,
Vx € X, Vs € E*\ {e}, [f(x,5) = x] = [P(s) # €].

Problem 1 (Optimal Mean Payoff Supervisory Control Under Par-
tial Observation-nonnegative Energy Level Case). Given system G
with initial energy vg € N, design a supervisor S* € S such
that: (i) £(S*/G) is live; (ii) Vr € Run(S*/G): EL(r) > 0; (iii)
Infrerunyyp(s*/6) Vimp(1') = SUPses Infrerunyyp(s/6) Vimp(T).

In other words, the supervised system satisfies the follow-
ing conditions: (i) it is live; (ii) its energy level for any run is
nonnegative; (iii) its worst case limit mean payoff is maximized.

As a variant, we require the supervisor to enforce nonnegative
limit mean payoffs. To study the new problem, we make Assump-
tion 2 on the system. Given an observer state X,ps € X,ps, We let
Loop(xops) = {l € E} \ {€} : 6(Xobs, I) = Xops and VI' < I's.t. I' #
€, 8(Xops, I') # Xobs} be the set of non-¢ simple loops starting from
Xobs- Given string [€ Loop(X.ps), we let SimLp(xqps,) = {t €
E*\{€} : 3x € Xops S.t. f(x, t) = x, P(t) = land Vt' < t, f(x, t') # x}
be the set of non-¢ simple loops with the same projection I and
starting from some state in X,p.

Y. Ji, X. Yin and S. Lafortune

0y, 4 03, 1

Fig. 1. An automaton with unambiguous cycle payoffs.

Assumption 2 (Unambiguous Cycle Payoffs). Given G and its ob-
server Obs(G), VXops € Xobs, VI € Loop(Xeps), and Vs, s' € SimLp(Xops, 1),
we have either o(s) < 0 = w(s’) < 0 or w(s) > 0 = w(s’) > 0.

In other words, for two simple loops with the same projection,
their payoffs should have the same sign. This assumption is in-
spired by the decidable classes of mean payoff games with partial
observation in Hunter et al. (2018). Later on in Section 4, we will
see how this assumption guarantees a finite game structure for
solving Problem 2. We say that a system is with unambiguous cycle
payoffs if it satisfies Assumption 2. Checking Assumption 2 may be
reduced to comparing the accumulative weights of every pair of
simple cycles in G. By graph theory, the number of simple cycles
in a graph may be exponential with respect to the number of
states, thus it may take exponential time to verify the assumption.

Example 1. Let the system G in Fig. 1 be with E,, = {uq, u>} and
E, = {01, 02, 03}. The weight of each event is shown in the figure.

There are 4 simple cycles: xo i\ X1 LN X3 2 Xo with payoff 2,

up 01 0y . uq 01 03 .
Xo — X; — X4 — Xo with payoff 1, xg — x; — x3 — Xo with
payoff —1 and xg & X2 N X4 2 Xo with payoff —2. So G is with
unambiguous cycle payoffs.

Problem 2 (Optimal Mean Payoff Supervisory Control Under Partial
Observation-nonnegative Mean Payoff Case). Given system G with
unambiguous cycle payoffs and mean payoff threshold v € N,
design a supervisor S* € S such that: (i) £(S*/G) is live; (ii)
Vr € Runis(S*/G): Vigp(r) = w; (iii) infrsRunmf(S*/G) Vip(r) =
SUPses i0frerunyy (s/6) Vimp(T)-

Compared with Problem 1, we still require that the supervised
system be live and the worst case limit mean payoff be optimized.
The difference is that we omit the requirement of nonnegative
energy level. Instead, the limit mean payoff (rate of energy gain)
of any infinite run is required to be above a given threshold v (not
necessarily 0) in (ii) . However, given v # 0, we may subtract v
from the weight of each event and equivalently evaluate whether
the limit mean payoff is above 0. Hence, we simply let v = 0 in
the following discussion without loss of generality.

Specifically, we call the first two conditions in Problem 1
(respectively Problem 2) as its mean payoff decision problem which
does not consider optimization. In both Problems 1 and 2, the
optimal supervisor should maximize the worst case limit mean
payoff. We may imagine that the supervisor is “playing a game”
against an antagonistic opponent, where the supervisor is to
maximize its mean payoff while its opponent is to prevent the
supervisor. Note that the two sides may have asymmetric in-
formation since the supervisor only has partial observation of
the system. Thus, it is essential to construct proper estimates
for current states and the energy level of the system so that
the supervisor makes correct decisions. In the following dis-
cussion, we solve Problems 1 and 2 sequentially: we first find
solutions to their corresponding mean payoff decision problems,
then completely solve them by resolving the optimization issues.

Automatica 123 (2021) 109359
4. First cycle energy inclusive controller

As a first step of solving Problems 1 and 2, we define energy in-
formation states and First Cycle Energy Inclusive Controller (FCEIC)
to transform both problems to two-player games between the
supervisor and the environment. The FCEIC is the game struc-
ture, which records the update of current state estimates and
the energy level of the system under control. It is inspired by
the Bipartite Transition System and All Enforcement Structure
in Yin and Lafortune (2016a, 2016b), which include supervisors
enforcing several logical properties in DES. We build two FCEICs
(one for each problem): they are similar to each other except that
we impose nonnegative energy level on the FCEIC for Problem 1.

4.1. Energy information states

In order to track state estimates and string payoffs, we de-
fine energy information states which provide a compact way of
encoding information. Here we let |-| be the cardinality of a set.

Before giving the definition, we first present some neces-
sary order relations for vectors in Z". Given two vectors v; =
[v1(1), v1(2), ..., vi()], v2 = [v2(1), v2(2), ..., v2(n)] € Z", we
denote by vy < v, (respectively v; > v7) if V1 < i < n, vq(i) <
vy(i) (respectively vq(i) > wv,(i)). We also denote by v; < v,
if V1 < i < n,v1(i) < v(i)and 31 < j < n, v1() < v2(j)
(respectively V1 < i < n, v1(i) > wvy(i)and 31 < j < n,
v1(j) > wv,(j)), i.e,, at least one element in vy is strictly smaller
(larger) than the element at the same position in v,.

Definition 1 (Energy Information States). Given system G, an en-
ergy information state is a tuple ¢° = (q,v) € 2% x (ULX:']Z").
Let Est(q®) and Lev(q®) denote the state estimate and energy level
components of g¢, respectively. So q° = (Est(q°), Lev(q°®)).

Denote by QF the set of energy information states. There are
two components in an energy information state g.: a current
estimate of the system state and a vector representing the energy
level of the system when reaching the states in the estimate. Each
state in Est(q°®) corresponds to a value in Lev(q®), whose dimen-
sion equals the number of states in the state estimate. Given x €
Est(q®), we also write Lev(q®, x) as the element in Lev(q®) that cor-
responds to x. When Est(q°®) = {x1, X2 - - - x}, Lev(q®) is usually ex-
pressed in a vector form [Lev(q®, x1), Lev(q®, x2), ..., Lev(q®, x¢)].
By convention in this work, elements in Lev(q®)_are placed in an
increasing order w.r.t. state names in Est(q°). Let O be the vector of
all 0s with proper dimensions. We call g desirable if Lev(q®) > 0,
i.e., nonnegative energy level for every state in Est(q°).

We define an order < over QF: for ¢5,q5 € QF, ¢ < ¢ if
Est(q}) = Est(q5) and Lev(q$) < Lev(q5). We also say that g5
subsumes qf if ¢5 < ¢5, i.e., ¢ shares the same state estimate
with g5 and the energy level vector of ¢ is no less than that of
¢¢ in a point-wise sense. We define another order < over QF:
for ¢%, q5 € QF, ¢% < ¢ if Est(q%) = Est(q5), Lev(q%) < Lev(q5).
That is to say, g5 and g5 have the same state estimate and there
exists i > 1 such that Lev(q$)(i) < Lev(q5)(i). By Dickson’s lemma
(see, e.g., Levy, 2002), “<” on nonnegative integer space N¥ is a
well-quasi ordering for any k € N*. We further argue that < on
desirable energy information states is also a well-quasi ordering,
i.e., for any infinite sequence of desirable energy information
states g, g5 - - -, there exist two indexes i < j, such that ¢} < qf.

We call ¢* e QF x I' an augmented energy information
state, which augments an energy information state with a control
decision. Let Iz(q™), I"(q*) denote the energy information state
component and control decision component of g%, respectively,
so g% = (Ig(q™), I'(q*)). With a slight abuse of notation, we also
use Lev(q®, x) to stand for Lev(Ig(q*®), x) where x € Est(Ig(q*)). An

Y. Ji, X. Yin and S. Lafortune

augmented energy information state q* is also called desirable if
Lev(Ig(q“®)) > 0. Then we discuss how (augmented) energy infor-
mation states are updated when the supervisor makes decisions
or enabled observable events occur.

Definition 2 (y—successor). Fory € I',q° € Qf x I''is a
y-successor of ¢° € QE if: (i) Est(Ie(q"®)) = UR,(Est(q®)); (ii)
VX' € Est(Ig(q™)), Lev(q®, x") = ming{Lev(g°, X) + w(&) : Ix e
Est(q), & € (Euwo N y)* S.t (X, &) = X,

If ¢* is a y-successor of ¢°, then the state estimate of Iz(a®) is
the unobservable reach of Est(q°) under y and we append Ig(a%)
with the control decision y. We also track the minimum energy
level under y, which is achieved by some unobservable string &
reaching a possible state in Est(Ig(q“)).

Definition 3 (e,-successor). For e, € E,, q¢¢ € QF is an e,-
successor of ¢* e Qf x I' if: (i) e, € I'(¢®) = y and
Est(q®) = Nexte,(Est(Ig(q“))); (ii) Vx e Est(q®), Lev(q®,x) =
miny {Lev(q®, X') + w(e,) : IX’ € Est(I(q™)) s.t. f(X', e5) = X}.

If ¢° is an e,-successor of g%, then the state estimate com-
ponent of g° is the observable reach of Est(Iz(q“)) under e,.
Meanwhile, we track the minimum energy level when e, occurs
and a certain state in Est(q“) is reached. When there is a sequence
of alternating control decisions and observable events, we intro-
duce control-observation sequence to characterize the update of
(augmented) energy information states.

Definition 4 (Control-observation Sequence). A control-observation
sequence is a sequence of alternating energy/augmented energy
information states, observable events and control decisions:

e N e e)’2 V" ae ©n
P—q1—>q1 qQ — qz o qnl_—_)qnor

e N e e)’2 Vn— én e }’n
p=q¢—=>qf > >d - — q 1—)qn ay

where Vi < n,y; € I',e; € B, ¢ € QF, q®* e QF x I', g® is a
yi-successor of 7 and ¢f, ; is an e;-successor of ¢;*.

. 4 €1 V2
By conventlon we also denote by oy = ¢ — q{°* — ¢ =
Yk— €k—1 " €1 Y2
ae e /o e ae e
a5 == g, = qand g = @ > qf = g5 >
Yk—1 €k—1 Yk .
@ — q2, — qp — qif, for 1 < k < n. Strings are

generated under the control decisions in such sequences.

Definition 5 (Strings Generated By a Control-observation Sequence).
Given a control-observation sequence p or p’, the set of strings
generated by p is defined recursively as: V1 <k <n,

Str(p1) ={e}
Str(p}) ={&1 € E}, : 3x € Est(q}), X' € Est(Ie(q{%)),
&1 € (11 NEw) st f(x, &) =%}
Str(pr1) ={syex : 3x € Est(q3), X' € Est(Ie(q)), X" € Est(qy4),
s, € Str(py), st f(x,s,) =X, f(x, ex) =x"
Str(pp,q) ={Skr18k41 : Ix € Est(q]), X' € Est(qf,), X" €
Est(Ie(qi 1)), Sk+1 € Str(ois1), Ekv1 € (Vw1 N Ewo)”,
st f(X, sk1) =X, f(X, Ep1) = X7}

The following proposition shows that given a control-
observation sequence, the energy level vector of an energy or
augmented energy information state always tracks the minimum
payoff of strings reaching the states in the state estimate.

Proposition 1. Given a control-observation sequence p as in
Definition 4, we have that Vx € Est(q’):

Lev(qi, x) = min {w(s) : 3x € Est(q}), s.t. f(X,s) = x} (3)

seStr(p)

Automatica 123 (2021) 109359

Given a control-observation sequence p’ as in Definition 4, we have
that Vx € Est(Ig(q5)):

Lev(qy, ') = min {
seStr(p’)

w(s) : 3 € Est(q5), s.t. f(X,s) =X} (4)

Proof. See the Appendix. O

The proof of Proposition 1 is in a dynamic programming man-
ner. Since we account for the minimum string payoff when cre-
ating a new e,-successor or y-successor, the minimum payoff
is computed by taking the minimal energy value of all strings
consistent with the observation. Note that those strings only
differ in their unobservable substrings.

4.2. Construction of the FCEIC

Next we transfer Problems 1 and 2 to games between the
supervisor and the environment. In general, the games are infinite
since we require livness and evaluate limit mean payoffs. To
efficiently solve the problems, we define a compact information
structure called the First Cycle Energy Inclusive Controller (FCEIC)
by considering the “first cycles” formed in the games.

The two variants of FCEICs are formally defined by construc-
tion, i.e., by adding feasible e,-successors and y-successors to
the state space recursively in Algorithms 1 and 2, respectively.
The FCEICs with respect to system G for both problems are
constructed in a similar way and of the same generic form
(Qy,QZ,E yz, zy’F Yo Q, vo) where:

e Qf € QF is the set of energy information states;

e Qf € QF x I is the set of augmented energy information
states and for z¢ € Q/, z¢ = (Ig(z°), I'(z%));

. y‘; :Qf x I' — QF is the transition function from Q; states
to Q) states, where for all y* € Qf, y € I' and z° € Q},

F(y" y) = zf]& [z¢ is a y-successor of y°];

° Qz x E, — Qy is the transition function from Qz states
to Qy states, where for all z¢ € Qf, e, € E, and y° € Qf,
[fzi(ze, e,) = y?1<[y° is an e,-successor of z¢];

e [is the set of admissible control decisions;

e)¢ € Qf is the initial energy information state where
Est(yg) = {xo} and Lev(yg) = vo;

e Qf C Qf is the set of leaf states where no transitions are
defined and we partition Q,F Q,g U Q,b,

e vy € N is the initial energy of the system.

For simplicity, Q§ states are also named Y-states and QZF states
are named Z-states in the remainder of the work. A Z-state z° is
deadlock free if Vx € Est(Ig(z®)), de € I'(z°), s.t. f(x,e)!, ie., at
least one event is enabled at every state in the state estimate of
z¢. Otherwise, z° is called a deadlocking state. Since there are no
unobservable loops in G by Assumption 1, a deadlock free Z-state
always has transitions defined out of it.

The FCEIC in general describes a game between the supervisor
and the environment. A Y-state is an energy information state
where the supervisor issues control decisions. If the supervisor
issues an admissible control decision y, fyFZ transition is defined
out of a Y-state, which follows the definition of y-successor.
A Z-state is an augmented energy information state, where the
environment selects observable events to occur from the events
enabled by the supervisor. When a particular observable event e,
is selected to occur by the environment, fzﬁ, transition is defined
out of a Z-state, which follows the definition of e,-successor. Then
it is again the supervisor’s turn to make the next control decision.
This is consistent with the mechanism of supervisory control

Y. Ji, X. Yin and S. Lafortune

Algorithm 1 Construction of the FCEIC for Problem 1

Input: G, vy

Output: FCEIC = (QJ, Q;.E.f}.f5. I".¥5.Qf . vo)
Q) =) QS =00 =0, le =0,

2: FirstCycleq(y§, FCEIC);

3: Return FCEIC;

4: procedure FirstCycle{(y¢, FCEIC)

5 fory € I' do

6 Let z¢ be the y-successor of y°;

7: if z€ is deadlock free and energy safe then

8 Add transition y¢ 2> z¢ to s

9: if z¢ ¢ Qz then

10: Q; =Q; U{zh

11: fore, € y NE, do

12: Let y¢ be an e,- successor ofz

13: Add transition z¢ 2% ¢ to Zy,

14: if ¢ ¢ Q; then

15: Qy =Qy U{Fh

16: if y© is energy safe then

17: if there exists a run: y§ LN z§ “
ACRER y"—>zn . 5 y°and 3j < n,s.t.y; <y° then

18: Stop searching from ¢, define
Sub(7°) = y§, let Qf =Qf U}, Q,g Q,g Uk

19: else FirstCycle(y¢, FCPEC);

20 else Stop searching from y°, let Qf = Qf U

¥} and Qj, = Q;, U

Algorithm 2 Construction of the FCEIC for Problem 2

Input: G, vy
Output: FCEIC = (Qf,Q} . E.f,. zy,F ¥5, QF, vo)

1 Qy ={5h Q=00 =0,Q, =1
2: FirstCycle,(yg, FCEIC);
3: Return FCEIC;
4: procedure FirstCycle,(y¢, FCEIC)
5: fory el do
6: Let z¢ be a y-successor of y¢;
7: if z¢ is deadlock free and energy safe then
8: Add transition y¢ 2> z¢ to yz,
9: ifz° ¢ Qz then
10: Qf =Qf Uy
11: fore, € y NE, do
12: Let y¢ be an e,- successor ofz
13: Add transition z° %% ¢ to i
14: if ¢ ¢ QY then
15: Qf =Qy UL
16: if there exists a run: y§ n, z§ X
SRR RN z;_, 5 y¢and 3j < n, sit. yi < y° then
17: Stop searching from y¢, define
Sub(7) = y¢, let QF = QF U {5}, Qf = Qf U {7}
18: if There exists a run: y§ 2% z¢ =% y¢ 4
z5 - RRLEY zZ;_; 5 y¢and 3Jj < n, s.t. y¢ < yj‘:’ then
19: Stop searching from 3¢, let Qf = Qf U
{7°) and Qj, = Q; U (5);
20: elseFirstCycle,(y¢, FCEIC);

Automatica 123 (2021) 109359

under partial observation where the supervisor’s decisions get
updated after the occurrence of observable events. In this manner,
the two players take turns to play and a game is formed.

The procedure FirstCycle; where i € {1, 2} in either algorithm
builds the state space of the FCEIC by a depth-first search like
process. We first discuss FirstCycle; in Algorithm 1. In this process,
we only add deadlock free Z-states to the structure and ensure
that there are events enabled at every state in the state estimate
of any Z-state. In lines 16, 17 and 18 of Algorithm 1, if the newly
added energy safe state y° subsumes a non-leaf state yl‘:’ on the run
starting from the initial state, then the two energy information
states share the same state estimate but the new state ye has
a higher or equal energy level vector compared with y;. We
also know that some simple cycles with nonnegative payoffs
are formed in the system for the first time. Then we terminate
searching and add the new state as a leaf state of the FCEIC. That
is why we call this structure first cycle energy inclusive controller.
In the following sections, we will explain in more detail why it
is sufficient to consider simple cycles to solve Problem 1. On the
other hand, if a new Z-state or Y-state is not energy safe, we stop
searching since the system’s energy level drops below 0 at some
state, thus the second requirement in Problem 1 is violated.

Similarly for FirstCycle, of Algorithm 2, in lines 16 and 18, if
the newly added state y°¢ subsumes or is subsumed by an existing
state on the run from initial state y§ to y°, we know that the
two energy information states share the same state estimate and
y© has a higher, lower or equal energy level vector compared
with that state. We also know that some simple cycles with
nonnegative or negative payoffs are formed in the system for the
first time. Then we terminate searching and add the new state
¥¢ as a leaf state of the FCEIC. Since Problem 2 does not require
nonnegative energy level of the system, the states created by
FirstCycle, are not necessarily energy safe.

Next, we partition leaf Y-states as: Qf = Qg U Qj where Q
represents good leaf states and Q,i represents bad leaf states. In the
FCEIC for Problem 1, a good leaf state is energy safe and subsumes
a non-leaf state, while a bad leaf state is energy unsafe. If a good
leaf state is reached, there are simple cycles with nonnegative
payoffs in the system whose energy level would be nonnegative
forever if those cycles are traversed indefinitely. However, if a bad
leaf state is reached, there exists some string so that the energy
level of the system drops below 0. Similarly, in the FCEIC for
Problem 2, a good leaf state subsumes a non-leaf state while a
bad leaf state is subsumed by a non-leaf state. If a good leaf state
is reached, we know there exist simple cycles with nonnegative
payoffs in the system; if bad leaf state is reached, there exist
simple cycles with negative payoffs. In both algorithms, we define
Sub(y®) to store the preceding state subsumed by good leaf state
y¢. Actually, the supervisors in both Problems 1 and 2 should
reach good leaf states and avoid bad ones, which is explained in
more detail later on. Finally, if no state subsumes another, we call
FirstCycle recursively in both algorithms until no more new states
are added to the structure. We may also show that Algorithm 1
and Algorithm 2 return a finite and acyclic structure.

Theorem 1. Algorithm 1 returns a finite structure.

Proof. By contradiction. Assume that the FCEIC is infinite. Since
E, I' € 2F and E, are finite, the number of transitions at each
state in the structure is finite. By Kénig’s lemma (Levy, 2002) and
Algorithm 1, there exists an infinite run yg LR Zo - ¥S ZAN z5-

in the FCEIC and it is never the case that 3y;, y{,i < j, s.t. y; < y]
However, this contradicts with < being a well-quasi ordering on
energy safe energy information states. [

Theorem 2. Algorithm 2 returns a finite structure.

Y. Ji, X. Yin and S. Lafortune

Table 1
Energy and augmented energy information states in Fig. 3.

State name State components

Yo {{xo}, 3}

z {{x0., X1, %2}, [3, 1, 0], yo}

¥ {{x3, x4}, [2, 1]}

z{ {{x3, X4, X5, X6, X7, X8, X9, X10}, [2, 1,5, 2,7, 2,6, 5], y1}
Y3 {{x12}, 4}

z {{x12}, 4, vo}

Vaa {{x12}, 6}

zg {{X0, X12, X14}, [0, 4, 3], 5}
Vi3 {{x12}, =2}

Yis {{x12}, 6}

V3 {{x13}, 2}

z {{x13}, 2, o}

Vi, {{x13}, 4}

75 {{x10, 13, X15}, [1, 2, 1], 3}
V33 {{x13}, =2}

Y5 4 {{x13}, 4}

z {{x3, X4, x5, %7}, [2, 1,5, 7], ya}
Yio {{x3, x4}, [3, 2]}

z {{x3, x4, %6, X8}, [2, 1, 2, 2], 5}
Y3 {{x3, x4}, [3, 21}

zg {{x3, x4}, [2, 1], o}

Vioa Vi = {{x3, x4}, 3,21}

Yizs Vis = {{x3, x4}, [3, 2]}

Proof. By contradiction. Assume that the FCEIC is infinite. Since
E, I' € 2f and E, are finite, the number of transitions defined
at each state in the structure is finite. Then by Koénig's lemma

(see, e.g., Levy, 2002), there exists an infinite run yg LR zg BN

¥$ 2> z¢... in the FCEIC such that it is neither the case that
Elyf,yf, i <j, sty < y]‘? nor the case that y¢ < y{. That means
there exist y7, y; (i < j) and integers k # [s.t. Est(y;) = Est(y}),
Lev(y{)(k) < Lev(yj?)(k) and Lev(y{)(1) > Lev(y;)(l) for elements
in Lev(y;) and Lev(yj‘?). Hence there exist two simple cycles in G:

e e
X1 = xgeoo B oxpand Xy = Xp--- > X stoxq, X, € Est(y?),
P(ey---ey) = P(e}---e)), wler---e,) > 0 and wle]---e,) <
0. However, this contradicts with Assumption 2 that G is with

unambiguous cycle payoffs. O

The size of the state space of the FCEIC is bounded by non-
primitive recursive Ackermann functions (see, e.g., Rackoff, 1978)
following a similar argument as Hunter et al. (2018) and Pérez
(2017). Mean payoff games with incomplete information were
also solved by evaluating first simple cycles after the game graphs
are unfolded in Hunter et al. (2018).

Example 2. In this example, we construct a first cycle energy
inclusive controller following Algorithm 1. Let the system G in
Fig. 2 be with E, = {01, 02, 03, 04}, Ey,x = {a1, a3, as, ay, by, b, c1,
C2,C3, C4.G5}, Ec = {c1, 2, €3, €4, G5}, Eye = {a1, 0z, a3, a4, by, by,
01, 02, 03, 04}. The weight of each event is shown in the figure
and the system has initial energy vy = 3. Then all admissible
control decisions are: yy = Ey¢, 1 = {¢1, &2} UEyc, y2 = {3} UE,,
Vz/ = {c3, s} UEyc, y3 = {C4} UEuc, va = {C1} UEyc, ¥5 = {C2} UEy.
For simplicity, we only include feasible controllable events at the
corresponding states in the admissible control decisions.

Then we follow Algorithm 1 to build the FCEIC in Fig. 3. For
simplicity of the graph, we do not put the energy level vectors in
the figure but show them in Table 1. The elements in each energy
level vector are placed in the same order as the order of states in
the corresponding state estimate.

Automatica 123 (2021) 109359

[GP] [Cat] [P | [Ca*]
Yi-3 Vi-a Y53 Y5-a

Fig. 3. The first cycle energy controller in Example 2 (without z5).

In the FCEIC, the game is initiated from y§ where the only
feasible control decision is yp. If the supervisor plays yy, a Z-
state z§ is reached where the environment selects observable
event 0 to occur. Then the supervisor takes the turn to play
at y; and the rest of the structure is interpreted in a similar
way. Notice that at y%, if the supervisor issues control decision
v (enables c3 and disables cs), then a deadlocking Z-state z$ is
reached, where no event can occur at x4 after cs is disabled.
Here z5 is not included in the FCEIC by Algorithm 1 and we
mark it by a blue cross in Fig. 3. Meanwhile, we calculate the
energy level vector of each state. For example, Est(yg) = {Xo},
Lev(y§) = wvo = 3; since z§ is the yp-successor of y§, we have
that Est(Ig(z§)) = UR,,(Est(yg)) = {Xo, X1, %2}, Lev(z§, x1) =
min{w(ai), w(as)} = 1, Lev(z§, x2) = min{w(ay), w(as)} = 0
and z§ = {{xo, x1, X2}, [3, 1, 0], yo}; since y§ is the o;-successor
of z{, we have that Est(y]) = Next, ({Xo,X1,X2}) = {x3,%4},
Lev(y$, x3) = Lev(z§, x1) + w(01) = 2, Lev(y$, xa) = Lev(zg, x2) +
w(01) = 1 and y§ = {{xs, x4}, [2, 1]}.

From the table, we find that y§ < y§_,, ¥§ < V{3 V5 < Vs
Vi S Vis ¥ S Va0 Vs S Vaa Vs < ¥5,andy; < y5 , by
evaluating their energy level vectors. We also find two unsafe
states y5_5 and y5_5 since Lev(y5_;) = —2 and Lev(y§_;) = —2.
After checking all states in Fig. 3, we stop adding new states from
the leaf states of the FCEIC. Then we have good leaf states ng =
D920 Y5 3 ¥5 0 Y5 5. Y5 2 Y5 4 V3 2, V3 4) and bad leaf states
Qf = {¥%_5,¥5 ;). For example, when y%_, is reached, we locate

. . . . b
three simple cycles with nonnegative payoffs in G: x3 A X5 —>

X7 o x3 with payoff 6, x3 2 x3 with payoff 1 and x4 LN X4 with
payoff 1. The bad leaf states actually come from the two simple
cycles with negative payoffs in G: xg 2 X12 s X14 iy X9 With

Y. Ji, X. Yin and S. Lafortune

payoff —6 and xq¢ % X13 “ X15 2) X10 with payoff —4. Those
two cycles should be avoided if we want to solve Problem 1.

Example 3. The system G is the same as the one in Example 2
and we construct the FCEIC following Algorithm 2. It happens that
the FCEIC is the same as the one in Fig. 3. Specifically, y5_; < ¥%
and y§_; < ¥4, s0y5_; and y§_, are also bad leaf states in this
example. They are due to the two simple cycles with negative
payoffs mentioned at the end of Example 2. Again, those two
cycles should be avoided if we want to solve Problem 2.

5. Mean payoff decision problems

In this section, we show that there exist solutions for the mean
payoff decision problems mentioned at the end of Section 3 if and
only if the supervisor has strategies to win the game on the FCEIC.
Therefore the first two requirements of Problems 1 and 2 are
satisfied. The last requirement (optimization) in both problems
will be discussed and addressed in the next section. The following
analyses of this work apply to both FCEICs returned by Algorithm
1 and Algorithm 2, so we will not distinguish them but just use
the term “FCEIC” when there is no confusion.

By the construction process of Algorithms 1 and 2, we stop
expanding the game graph when the first cycles with positive
payoffs are formed or the energy level drops below 0. Therefore,
the runs in the FCEIC (defined by either Algorithm 1 or 2) are
finite control-observation sequences. We denote by Run(F) the
set of runs in the FCEIC. Given r; € Run(F), we write y¢ € rf
(respectively z¢ € 1) if y® (respectively z°) is a Y-state (respec-
tively Z-state) in ry. We also let Lasty(r7) and Lastz(ry) be the last
Y-state and Z-state of ry, respectively. Specifically, we denote by
Runy(F) (respectively Run,(F)) the set of runs whose last states
are Y-states (respectively Z-states).

Then we discuss strategies for both players in the FCEIC, which
indicate the choices for players when it is their turn to play.
Define the supervisor’s strategy (control strategy) as a function
s : Runy(F) — I and the environment’s strategy as m.
Run,(F) — E,. Both players select a transition according to
their strategies when it is their turn to play. Since the supervisor
only has partial observation of the system and makes decisions
from state estimates, we call its strategy observation based. De-
note the set of all supervisor’s strategies by IT; and the set of
all environment'’s strategies by [I1,. If the supervisor plays
and the environment plays =, from the initial state yg, then a
unique initial run, denoted by ry(7s, 7.), is generated. We also let

_ Y1 e €1 e Yn—1 e en—1 v
Run(y®,ms) = (y* — z{ = y5--- — zo_, —> Y5 Vi <
" €1 Yi—1 €i—1
ny = m(* — z; = y5--- — z;; — ¥{)} be the set

of runs starting from y° and consistent with control strategy s,
i.e., the control decisions in the run are specified by ;.

In the FCEIC, we say the supervisor wins the game if only
good leaf states are reached, otherwise, the environment wins the
game if at least one bad leaf state is reached. So the game on the
FCEIC is a safety game under full observation after introducing the
energy information states. Either the supervisor or the environ-
ment has a winning strategy from any state in the FCEIC, since
safety games are determined (Apt & Grddel, 2011).

A strategy m; € II; for player i € {s,e} in the FCEIC is
information state based if the decisions only depend on the current
energy or augmented energy information state. In other words,
m; € [1; is information state based if 7i(ry) = mi(ry) for all ry, 17 €
Run(F) such that Last(ry) = Last(rf’). Therefore, information state
based strategies for the supervisor and the environment can be
represented by 7 : Q‘f — INand 7, : QZF — E,, respectively. Such
a strategy is also called positional in the literature, see, e.g., Apt
and Grddel (2011), as it only depends on the current position of

Automatica 123 (2021) 109359

the player. Since positional strategies are sufficient to win a finite
safety game (Apt & Grddel, 2011), we assume that both players
play positional strategies in the remainder of this section.

Following the transitions in the FCEIC, we can specify control
decisions from Y-states and the control decisions are updated
after observable events occur from Z-states. Thus, the control
strategies in the FCEIC work in the same way as standard super-
visors. In what follows, we will use the words “supervisor” and
“supervisor’s strategy (control strategy)” interchangeably.

We define the supervisor’s winning region Wing as the set of
states from which the supervisor has a strategy to only reach good
leaf states for sure regardless of the environment's strategies. To
solve Problem 1 or Problem 2, the supervisor should only reach
good leaf states. Actually, the procedures to obtain Win; for both
problems are the same after the FCEIC is built. Hence we present
one unified algorithm, i.e., Algorithm 3, to compute Win,.
Algorithm 3 Compute the winning region of the FCEIC
Input: FCEIC returned by Algorithm 1 or Algorithm 2
Output: Win, for Problem 1 or Problem 2

1: while 3y° € Q] \ Q,g, s.t. ¢ has no successor do
2. Remove y° and all z° € Q;, such that f}(z°, e,) = y* for
some e, € E,;
Take the accessible part of the structure;

4: Denote the structure by FCEIC,, and return its states;

w

We briefly discuss the process in Algorithm 3, which calculates
the winning region in a fixed point calculation manner. All bad leaf
states are removed first as well as their preceding Z-states. Then
we further prune away Y-states that have no successor states and
their preceding Z-states in an iterative manner. Notice that when
we remove a Y-state, we also need to remove all its preceding
Z-states, otherwise the already enabled observable events are
blocked from happening. However, when a Z-state is deleted,
we will only remove its preceding Y-state if the Y-state has no
successors. The reason is that the supervisor is still able to avoid
the removed Z-state when it has other successors. The algorithm
stops when no more states can be removed. In this way, we make
sure that only good leaf states are reached under certain control
strategies and we have the winning region. That is, any control
strategy in the FCEIC,, is a winning control strategy in the FCEIC,
and all winning control strategies are in the FCEIC,,. It is possible
that Algorithm 3 returns an empty set thus the environment
always wins the game regardless of the supervisor’s strategies.

Intuitively, Algorithm 3 is similar to calculating the supremal
controllable sublanguage in supervisory control under full obser-
vation (Cassandras & Lafortune, 2008). The bad leaf states are
viewed as undesirable marked states while the good leaf states
are viewed as desirable ones; transitions for fsz are viewed as
controllable while transitions for f}, are viewed as uncontrollable.

Next we discuss how a supervisor solving the mean payoff
decision problem is obtained. In the FCEIC, the supervisor either
aims to achieve a nonnegative energy level (corresponding to
Algorithm 1 and Problem 1) or a nonnegative limit mean payoff
(corresponding to Algorithm 2 and Problem 2). If only good leaf
states are reached under a wining control strategy in the FCEIC,
then only simple cycles with a nonnegative payoff are formed
in the supervised system. Since the energy level vector in an
energy information state returns the minimum string payoff by
Proposition 1, the payoffs of strings with the same observation
and reaching the same state are all nonnegative if the minimum
string payoff is nonnegative.

Therefore, we let the supervisor make the same decision
whenever the state estimate of a good leaf state is reached.
Intuitively speaking, the supervisor “ignores” the actual energy
level of the system and just views the game starting from a good
leaf state y° as the same game that starts from the state subsumed

Y. Ji, X. Yin and S. Lafortune

by y°. In Algorithms 1 and 2, we define Sub(y®) as the state that
subsumes y°. We may imagine that y° is “merged” with Sub(y¢)
by letting all transitions going to y¢ lead to Sub(y®) instead. In this
manner, the game on the FCIEIC is extended to be infinite and we
call the resulting game as an extended game. This is essentially
the process of strategy transfer discussed in Aminof and Rubin
(2017) and Hunter et al. (2018), which transfers the strategies on
the induced finite game to the original infinite game. A similar
procedure is presented in Section 5 of Pruekprasert et al. (2016).
In this way, the supervisor perpetually completes cycles with
nonnegative payoffs since every simple cycle has a nonnegative
payoff. Thus, the limit mean payoff and energy level also become
nonnegative for infinite runs. The goal of the supervisor is either
to achieve a nonnegative energy level (extended game for Prob-
lem 1) or a nonnegative limit mean payoff (extended game for
Problem 2). Both objectives may be evaluated by focusing on the
first cycles formed by the supervisor and we stop expanding the
game graph when the first cycles are formed.

Overall, we claim that any control strategy in the FCEIC,
solves the mean payoff decision problem of Problem 1 or Prob-
lem 2. Conversely, we also claim that if the mean payoff decision
problem has solutions, then there exist winning control strate-
gies in the FCEIC returned by either Algorithm 1 or 2. Formally
speaking, the following two theorems hold.

Theorem 3. There exists a supervisor solving the mean payoff
decision problem of Problem 1 if and only if the supervisor has a
winning strategy in the FCEIC defined by Algorithm 1.

Proof. The “only if” part. Proof by contrapositive, i.e., if there does
not exist a winning control strategy in the FCEIC, then there does
not exist a supervisor solving the mean payoff decision problem.
If no winning control strategy exists, Wins is empty by Algorithm
3. S0 Vng, € I, 3ne € I, st Lasty(ry(ms, 7)) € Qf =
Lasty(r¢(ms, we)) € Qﬁ, i.e, no matter what control decisions are
made, there always exist runs ending in bad leaf states. So for 7,
there always exists a run r consistent with 7 in the supervised
system such that V(r) < O, i.e., the supervised system’s energy
level becomes negative under g for some string. That is to say,
no supervisor solves the mean payoff decision problem.

The “if” part. Suppose that 75 is a winning control strategy in
the FCEIC. We follow Algorithm 3 and obtain Win, and FCEIC,,, so
75 is also in the FCEIC,. In the following discussion, we imagine
that all transitions leading to a leaf state y° in the FCEIC,, lead to
Sub(y*®) so that the game on the FCEIC,, becomes infinite-duration.
That is, Vry = y§ 2% 26 5% ye... 225 ze 2L ve e Run(ye,)
where y{ is the initial state of the FCEIC, if y; € g, then we

extend the domain of n; by letting 75(ry) = m5(y§ n zg 2

Vi fm ys,) for some m < n and y;, < y5. Whenever Est(y;) is
reached again, the control strategy (supervisor) makes the same
decision as if Est(y%) is reached for the first time. By perpetually
making the same decision whenever a state estimate is reached,
the supervisor guarantees that the energy level after any string in
the supervised system never becomes negative. The reasons are
that all states in the FCEIC,, are energy safe and the energy level
does not decrease when we form the extended games.

Finally, since there are no deadlocking Z-states and every Y-
state has successors in the FCEIC,,, 7 is live if we follow a similar
argument as in Section 5 of Yin and Lafortune (2016b). Thus, 7
solves the mean payoff decision problem of Problem 1. O

Theorem 4. There exists a supervisor solving the mean payoff
decision problem of Problem 2 if and only if the supervisor has a
winning strategy in the FCEIC defined by Algorithm 2.

Automatica 123 (2021) 109359

e

Yi-4

Fig. 4. The FCEIC, with dashed green lines connecting good leaf states with
their subsumed states; Wins is the set of all states. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Proof. The proof is similar to that of Theorem 3 and we just
sketch it here. We show the “only if” part by contrapositive as
well. If no winning control strategy exists, then Wing is empty
by Algorithm 3, i.e.,, no matter what decisions made by the su-
pervisor, there always exist runs ending in bad leaf states. The
supervisor only form cycles with negative payoffs so that the limit
mean payoff for any run is negative and no supervisor solves the
mean payoff decision problem of Problem 2.

The “if” part. If there exists a winning strategy for the super-
visor in the FCEIC, then the supervisor achieves nonnegative limit
mean payoff since are cycles in the FCEIC,, are with nonnegative
payoffs. The supervisor is also live, so it solves the mean payoff
decision problem of Problem 2. O

Therefore, we have shown the soundness and completeness
of Algorithms 1 and 2. Overall, we transform the mean payoff
decision problem for Problem 1 (Problem 2) into a safety game
under perfect information and solve it by finding winning control
strategies. We end this section with an example.

Example 4. We revisit Example 2 (Example 3) to find the
winning regions of the FCEIC following Algorithm 3. Since the
good (bad) leaf states in both examples coincide, the winning
regions for both examples remain the same. The FCEIC,, is shown
in Fig. 4, where green dashed lines connect each good leaf state
with the state subsumed by it, indicating that the supervisor
always makes the same decision from the two connected states.
So the game is extended to be infinite-duration. In building the
FCEIC,,, shaded states y§_, and y%_, in Fig. 3 are bad leaf states,
thus are pruned by Algorithm 3. Meanwhile, good leaf states y5_,
and y§_, are also removed as they become no longer accessible
from the initial state yg after their preceding Z-states zg and z{
are removed. That means that the supervisor should not choose
y, at y5 or y3 at ¥4, otherwise, the environment may choose o, at
zg or 03 at z¢§ to reach some bad leaf states and wins the game.

Then we present a winning control strategy indicated by blue
lines in Fig. 4. As is seen, the supervisor S issues yy at yg, y1 at
Y5, vo at ¥5 and yp at y§. If S makes those decisions infinitely
often, then only cycles with nonnegative payoffs are formed in
the supervised system. Finally we show the supervised system
under this strategy in Fig. 5. Compared with the original system in
Fig. 2, the cycles with a negative payoff have been broken. Then it
is easy to verify that the supervised system is live and all infinite
runs have a positive limit mean payoff. Thus, S solves the mean
payoff decision problem of Problem 1 (Problem 2).

Y. Ji, X. Yin and S. Lafortune

Fig. 5. A supervisor solving the mean payoff decision problem.

6. Mean payoff optimization problems

Based on results of the preceding section, we continue to find
the control strategy that optimizes the worst-case limit mean
payoff to completely solve Problem 1 and Problem 2 in this
section. Our method is inspired by the technique of solving min-
max games (Osborne & Rubinstein, 1994), however, additional
analysis is necessary here due to the partial observation. As
there is no difference between the procedures of synthesizing
the optimal control strategies for both problems, we present a
uniform approach in the following discussion.

In the FCEIC,, we denote by Run(F,) the set of runs and
Runyeqr (F,,) the set of runs ending in a good leaf state, respectively.

. e Y0 _o €0 o V-1 _o En-1
Givenarunry =yg — z§ — ¥5 -+ —> zi_; —> Y& € Run(F,)
with y{ <y, for some j < n where y; is a leaf state, we know that
simple loops with nonnegative payoffs are generated from each
state in state estimate Est(yj’f’).

In order to determine the mean payoffs of strings generated by
runs in the FCEIC,,, we need to know exactly what observable and
unobservable events are in the string. However, we only know
the observable events from transitions in the FCEIC,, since the
unobservable transitions are hidden within each state. For the
purpose of explicitly revealing the inner connections between
states by unobservable strings inside each Y-state or Z-state in
the FCEIC,, we introduce a new transition system called the
Energy Inter Connected System (EICS), which is inspired by the
Inter Connected System proposed in Yin and Lafortune (2016a).

Definition 6 (Energy Inter Connected System (EICS)). Given the
FCEIC,, with respect to G, its corresponding Energy Inter Con-
nected System (EICS) is defined as a tuple: EICS = (QF/®S, EFICS | fEICS|
quCS’ QlElCS) where

e QF% C (Qf x X)U(Q} x X) is the state space such that:

- (v°,x) € QFS if y¢ € Qf and x € Est(y®);
- (z¢,x) € QFS if z¢ € Qf and x € Est(Iz((z%)));

e EHS = E U T is the set of events in the EICS;
o fEHC . QIS EFIG 5 QFIS s the partial transition function
defined as: Vy € I', Ve € E:

- FES(°, 1),) = (2°, %) if X1 = X, in G and £ (¥, ¥)
= z° in the FCEIC,;

- fEICS((289 Xl)? e)
e€ I'(z°)NEy;

- fAS((z8 x1).e) = (¥°.%) if f(x1.€) = X, in G, e €
I'(z°)NE, and f}(z°, e) = y* in the FCEIC,;

(z¢,x;) if f(x;,e) = x, in G and

o qglCS = {¥§, Xo} is the initial state;

o QS = {(y°,x) € QFS 1 y¢ ¢ Q,g in the FCEIC,,} is the set of
leaf states where no transitions are defined.

10

Automatica 123 (2021) 109359

Intuitively, the EICS is similar to the structure after parallel
composition between the FCEIC,, and G. It explicitly shows both
observable and unobservable reaches between and within states
of the FCEIC,,. A state in the EICS contains a state from the FCEIC,,
and a state from G. There are three types of fF'© transitions
defined in the EICS. The first type indicates the supervisor’s de-
cisions from certain states of the system, so the first component
of an EICS state changes from a Y-state to its succeeding Z-state
in the FCEIC, and the second component stays the same. The
second type indicates the unobservable reaches within Z-states
in the FCEIC,, so the first state component of (z¢, x;) stays the
same and the second component becomes x, = f(x1, e) under e €
I'(z°) N Ey,. The third type indicates observable reaches between
Y-states and Z-states in the FCEIC,, so the first component gets
updated from a Z-state to its succeeding Y-state in the FCEIC,,
and the second component also gets updated by the enabled
observable event. With the EICS built, we are able to explicitly see
how strings are generated under control decisions in the FCEIC,,.

The leaf states of the EICS contain leaf states of the FCEIC,,
which also indicate simple cycles in the FCEIC,,. For a leaf state
(%, x) € QF“, we are able to track simple loops starting from
X € Est(y®) by following transitions between (y¢, x) and ()¢, x),
where y¢ < y°. We define Lps,(y®, x) = {t € E* : 3r; = y§ o,

Yn— en— .

26 S ye. I e L ye e Run(F,), st 3 < ny <y.te
Y & Yn— en_

Str(y; = 70 = - = 528, =5 ¥, f(x, t) = x} as the set of

simple loops starting from x. For a simple loop t € Lpgn(y©, x), we
define its mean payoff as Vy(t) = %

Furthermore, we define Vi : Runjeqs(F,,) — R to characterize
the (limit) mean payoff of runs ending in a leaf state of the
FCEIC,. If a run 1y ends in a leaf state y°, we have Viegs(17) =

min min Vg(t), i.e,, the minimum possible mean payoff
xeEst(y®) telpgim(v©.X)
of all simple loops formed from states in Est(y¢). We take the
minimum mean payoff among simple loops to characterize the
(limit) mean payoff of the run, since only the cyclic part of
a run contributes to the limit mean payoff and the supervisor
maximizes the worst-case limit mean payoff. With a slight abuse
of notation, we let Vjeqr(Last(ry)) stand for Viegs(r7).

Given a pair of strategies = € I1; and n, € I1, in the FCEIC,,
we let rf(ms, 7¢) be the unique initial run generated under (7,)
and its last state Last(ry(ms, 7¢)) € Qé,. Then we define the optimal
control strategy which maximizes the worst mean payoffs of runs.

Definition 7 (Optimal Control Strategy in the FCEIC,). A winning
control strategy = in the FCEIC,, is optimal if

(5)

min Viegr (17(7], 7)) = max min Viegr (15 (s, 7))
Te€lle nsells meclle

Since the FCEIC,, is acyclic and the number of positional strate-
gies for both players are finite, the optimal control strategy al-
ways exists. Here we are ready to synthesize a (positional) op-
timal control strategy from the FCEIC, and present Algorithm
4, From Definition 7, an optimal control strategy maximizes its
mean payoff against the antagonistic environment’s strategies,
which minimize the supervisor’'s mean payoff. So the super-
visor and the environment play a min-max game (Osborne &
Rubinstein, 1994) on the FCEIC,, where the supervisor is the
maximizer and the environment is the minimizer. In Algorithm
4, we leverage backward induction (Osborne & Rubinstein, 1994)
to determine an optimal control strategy on the FCEIC,,.

First we compute the string mean payoffs from the leaf states
of the EICS. Furthermore, it is possible to calculate Vieqs (17 (s, 7))
from the FCEIC,,, with the EICS defined. Specifically, the EICS is
used to determine the mean payoffs of simple loops from the
leaf states of the FCEIC,, in line 5 of Algorithm 4. For a leaf state
(¥°,x) € QF“, we can always find another state (7¢, x) € QHS

Y. Ji, X. Yin and S. Lafortune

such that ° < y¢ in the FCIEC,,. Then we track f¥© transitions to
find both observable and unobservable events between (j¢, x) and
(v¢, x) € QFSS. Afterwards, we determine Lpg;»(y¢, x) and calculate
Vy(t) for each t € Lpgm(y¢, x). There may be multiple simple
loops formed from x € Est(y¢), with different mean payoffs. Then
we calculate Vieqr(y®), the minimum mean payoff of all possible
simple loops formed from all states in Est(y®). Vieqr(¥°) is also the
minimum possible mean payoff that the supervisor may achieve
when state estimate Est(y°¢) is reached.

Then we run Procedure Optimal to assign a value V(q®) to each
state g° in the FCEIC,. In this procedure, we first determine the
values to leaf states in line 6. Next we propagate backwards to
determine the values of predecessor states until the root state is
assigned a value. Specifically, if the current state is a Z-state, we
assign the minimum value of its successor states to it in line 18,
since the environment always minimizes the mean payoff of the
supervisor. If the current state is a Y-state (not a leaf state), we
assign the maximum value of its successor states to it in line 21,
since the supervisor always maximizes its mean payoff. This min-
max procedure is consistent with Definition 7 where the optimal
supervisor maximizes the worst-case payoff it may achieve. The
procedure goes on until a value is assigned to the initial state yg
of the FCEIC,,. Since the FCEIC,, is finite, Algorithm 4 terminates
after all states are assigned their values.

When Procedure Optimal is implemented, we can assign or-
ders to states in the FCEIC, so that a state is evaluated after
all its successors are evaluated. This is essentially the process
of backward induction in solving min-max games (Osborne &
Rubinstein, 1994). After obtaining Vi values, we specify the op-
timal control decisions at Y-states of the FCEIC,,, which consti-
tute the optimal control strategy. It is possible that there are
multiple optimal control decisions at the current Y-state when
some of the successor states have the same Vy value. Then we
randomly choose a control decision. Similar min-max search
processes were presented in Pruekprasert et al. (2016) and Wu
and Lafortune (2016) to synthesize optimal strategies of mean
payoff games, for the specific problems discussed in those works.

After obtaining an optimal positional control strategy in the
FCEIC,,, we again let the supervisor make the same decision from
the current Y-state as from the state subsumed by it. In this way,
the game is extended to be infinite and we obtain a supervisor
that perpetually issues control decisions to generate a live sys-
tem. Intuitively, the supervisor always traverses the simple cycle
with the highest mean payoff since alternating between cycles
with different mean payoffs does not result in a higher mean
payoff. Hence, a positional strategy is sufficient to solve Problem 1
(Problem 2), summarized in the following theorem.

Theorem 5. If mr;" is returned by Algorithm 4, then we can extend
m to a supervisor S* that solves Problem 1 (Problem 2).

Proof. By Algorithm 4, for every leaf state y° € ng, Viear (%) =
MiNyegse(ye) Mileerpg, ve,x) Vai(t). Let string t*(y®) be such that
Va(t*(y)) = minxel:‘st(ye)minteLps,-m(ye,x) Va(t) = Vleaf(ye)- Suppose
that a Z-state z° can reach k leaf states y§,y5,...,y; € ng,
i.e, Vi <k, Je; € E,, s.t. ffy(ze, e;) = y{. Thus we know:

Ve(z%) = min{Ve(y7). ..., Vr(yi)} = min{Vg(t(y])). - .., Va(t(yi))}

Let string t*(z°) be such that Vg(t*(z®)) min{Vs(t(y9)), ...,
Va(t(y))} so it has the minimum loop mean payoff. The environ-
ment still locates the string whose simple loop has the minimum
mean payoff, by evaluating Vieqs(y¢). From the EICS, we explicitly
know which cyclic string has the minimum loop mean payoff.

11

Automatica 123 (2021) 109359

Algorithm 4 Synthesize an optimal control strategy

Input: the FCEIC,, and the EICS

Output: An optimal strategy s for Problem 1 or 2
1: for leaf state y° in FCEIC,, do

2 for leaf state (y°, x) in EICS do
3 Get Lpsim(y°, x) following transitions in EICS;
4: for t € Lpsim(y©, x) do
5
6

Calculate Vg(t);

Calculate Viegr(y*) = min min = V(t);
xeEst(y®) teLpsim (¥ .X)

7: for ¢° € Qf U QS do

8: Vi(q®) = Optimal(q®);

9: for y* € @} \ Qf do

10: Find one y € I, st 3z° € Qf, y’;(ye, y) = z° and
Vr(y?) = Vr(z°);

11: Return 7 (y®) = y;

12: procedure Optimal(q®)

13: for ¢° € Qf do

14: VE(G®) = Viear (qe);

15: Return VE(q®);

6. forg. € (Qf UQS)\ Qf do

17: if ¢° € Q; then

18: Ve(q®) = minaeng{Optimal(c}e) Jde, €
Eo, st fzI;/(Qm) =G}

19: Return Vi(q°);

20: if ¢° € Q) then

21: Ve(g?) = maxquQg{Optimal(ff) dy €
r,stfi(d.y)=2a%

22: Return Vi(q®);

Suppose that one predecessor state of z° is ¥ and y° has
successor states z5, ..., zy, (z¢ is one of them). Then the super-
visor maximizes its V¢ value among the successor states of y¢,
i.e., we let Vp(¥°) max,e Vi(z{) where i < m. Since Vg(zf)
is the minimum mean payoff of some simple loop, Vp(j¢) still
maximizes the minimum mean payoffs of simple loops obtained
from some leaf states in the FCEIC,. Thus, the supervisor loses
no information when making decisions by evaluating Vg(z¢). By
Algorithm 4, the supervisor chooses the control decision that
maximizes Vr(z{). Then we repeat the same argument backwards
to the root state. In this way, we show that by evaluating the
Vr values for Y-states or Z-states, the supervisor correctly per-
forms maximization among Vy values from its successors and the
environment correctly performs minimization.

Finally Vr(y§) = maXy,em, Ming, e, Viear (T7(7s, 7)) holds. Then
we extend 7y to a supervisor S* by the same argument as in
the proof of Theorem 3, i.e., imagine that each leaf state in the
FCEIC,, is “merged” with the state subsumed by it and let the
supervisor make the same decision whenever the same state
estimate is reached. By checking the transitions in the EICS, we
find a run in $*/G leading to Vr(y§) = inf,eRunmf(g*/G) Vinp(r) =
SUDgcs infreRunmf(s/G) Vinp(1). So S* solves Problem 1 (Problem 2). O

We analyze the complexity for Algorithm 4, which essentially
performs a minimax search. Results in Du and Pardalos (2013)
show that the time complexity of the minimax search is O(b") and
the space complexity is O(bn), where b is the maximum number
of choices at each point in the search tree and n is the depth
of the tree. For Algorithm 4, we have b = max{2'¥! |E,|} and
n = 2-2% 4+ 1 in the worst case. Here 2/¥! is the maximum
number of control decisions at a state and there are at most
2 - 2% 4+ 1 states between any two states in the FCEIC,,. Thus
we obtain the complexity bounds for Algorithm 4.

Y. Ji, X. Yin and S. Lafortune

Fig. 6. The energy inter-connected system w.r.t. the FCEIC,, in Example 4. The
blue and green dashed rectangles correspond to the Y-states and Z-states in
the FCEIC,, respectively. The leaf states are marked in double blue lines. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

We further discuss the structure of the optimal strategy from
Algorithm 4, Given strategies (s, w.) € II; x Il, and an initial
run rf € Run(F,), let rf(rf, 75, 7.) be the run that has “prefix” r

continues under (75, 7.) and ends m a leaf state of the FCEIC
" e

Formally, r¢(r¢; 75,) = 17 — - ¥ = - LY ¥ where

Vi € Qg 1 = s(1f), e = me(r} 2 28 and y; = ms(ry AN N
e; v n vi

Vo S 5y, ,_ne(rf—l>zl—>y2 coo S zf) for

all 2 < i < n. We write rf(rf, Ts, Te) AS rf(Last(rf) TTs, ne) since
both players’ decisions only depend on their current positions.
Now we are ready to show that the optimal control strategy
enjoys a structural property resembling subgame perfect equilib-
rium in game theory (Osborne & Rubinstein, 1994) and Bellman'’s
optimality principle in dynamic programming (Bertsekas, 2012).

Proposition 2. Let 7} be a control strategy returned by Algorithm
4, then for any initial run r} € Run(F,), we have:
(6)

min Vleaf(rf(rf/; 7[5*, 7Te)) = mMax 1‘1‘111‘1 Vleaf(rf(rf,; s, Te))
me€lle 11,

nsells me€

Proof. See the Appendix. O

This proposition illustrates the structure of the optimal control
strategy obtained from Algorithm 4. If the supervisor follows the
strategy indicated by Algorithm 4 from its current position, then
its onward decisions still constitute an optimal strategy in the
remaining game, which can be viewed as a “subgame” (Osborne &
Rubinstein, 1994). In other words, the supervisor has no incentive
to deviate from its optimal strategy given that the environment
does its best to minimize the supervisor's mean payoff. As seen
from the proof, this result is due to the backward induction
process of maximization and minimization in Algorithm 4.

Example 5. We revisit Example 4 and find an optimal con-
trol strategy to solve Problems 1 and 2 completely. First we
obtain the EICS w.r.t. the FCEIC,, in Fig. 6. For simplicity of the
graph, we still preserve the state names from G and use dashed
rectangles to indicate the Y-states or Z-states of the FCEIC,,.

12

Automatica 123 (2021) 109359

e
e Yi-3

Vi
For x3: Vg (0y) = 1
Forxs: Vsu(0r) = 1 Ve ¢ Forxy VSl(clb o)=1
For xy: Vg (o) = 1 % # TslF220) 7 g
A :1 = 2/3

For x3: Vsl(ol) =1
For X4t sl(al) =1
Vp=1

{x3, X4, X5, X6, X7,
Xg, Xo, 10},

FOI‘ X3! sl(ol) - 1 2
For x4: Vg (c;bp01) = 3 V5_y ‘{xu}z 1 Vsl]§04_) E 2
Ve=2/3 F=

s()
| 04 {xlz} u Vi

Fig. 7. Optimal decisions of the supervisor at each Y-state are indicated in red;
the Vr values for each state of the FCEIC, are also shown in the figure. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

For example, the top green dashed rectangle corresponds to
three states in the EICS, i.e. (2§, x0), (2§, X1) and (zg, xo) where
Est(Ig(z5)) = {Xo, X1, Xx2}. Specifically, blue and green dashed
rectangles correspond to the Y-states and Z-states of the FCEIC,,
respectively. As is seen, the EICS is a tree-like structure whose
leaf states (¥5_,.x3). (V. Xa) (V5_5.%3). (V5_3.Xa), (Vs X3),
Vi—a-Xa), (Vi_s.x3), (Vi_s.Xa), (V3_5.%12) and (¥5_,,xi3) are
marked in double dark blue lines.

With the EICS built, we proceed to find the optimal control
strategy by Algorithm 4. We start by calculating the values of Viey
for each leaf state of the FCEIC,,. For example, in the EICS, there

. . 01
are two simple cycles between Y-states y$ and y§_,, i.e., x3 — x3

and x3 a X5 i X7 o x3. Then we obtain Vgy(o1) = 1 (for
x3), Vg(cib01) = 2 and Vg(o1) = 1 (both for x4). Therefore,
Ve(¥$_,) = min{1, 2} = 1. Similarly, we obtain the V; values for
other leaf states in the FCEIC,,, which are shown in Fig. 7. Next,
we apply backward induction from the leaf states until the root
state, then determine an optimal control strategy. In this process,
we always choose to minimize at Z-states and maximize at Y-
states. By Algorithm 4, we know V(z{) = min{2, 3} = % and
Vi(z5) = Vr(z§) = 1. Thus, we have the supervisor’s decisions
at each Y-state, which are indicated by solid red lines in Fig. 7.
An optimal supervisor enables c; upon observing 01, as shown in
Fig. 8. The worst limit mean payoff is 1 in the supervised system.
Actually, it is also optimal for the supervisor to disable both c;
and c; at y§, which yields the same worst case limit mean payoff.

Notice that choosing y, or y; at y§ is optimal in the sense that
the environment also follows its “optimal strategy” to minimize
the supervisor’s limit mean payoff. If the supervisor deviates from
¥4 Or o and chooses y; at y§, then the environment may choose
01 at z;, which leads to leaf state y§_. and a potentially lower limit
mean payoff % Interestingly, if the environment also deviates
from choosing 0, from z$ by choosing o, or 03, then the supervisor
should choose yp at y§ and y%, which yields a better limit mean
payoff for the supervisor compared with the case of choosing y4
at y§. Those two decisions are optimal in the “subgame” given
that y5 or y§ is reached and viewed as starting points of the
subgame. This is consistent with Proposition 2.

7. Conclusion

This work studied infinite horizon optimal supervisory control
under partial observation for the first time in discrete event

Y. Ji, X. Yin and S. Lafortune

a,,as, ['1 :2)¢|\a2,a4, ['1,'3

X0 X2

0111 01,1

ot at ()

Fig. 8. An optimal supervisor solving Problems 1 and 2.

systems. We considered two optimal control scenarios, then for-
mulated two supervisory control problems correspondingly. To
this end, we defined energy information states and the First Cycle
Energy Inclusive Controller (FCEIC) for each problem. Based on
the FCEIC, each problem was transformed into a finite game with
perfect information and proper objectives. As an intermediate
solution step, we solved the mean payoff decision problems via
safety games. Finally we solved a min-max game to find the
optimal control strategy among partial solutions. For future work,
it would be of interest to explore infinite horizon optimal super-
visory control with other quantitative performance objectives and
under partial observation. In addition, it would also be worth-
while to investigate the application of the theoretical framework
developed herein on specific engineering platforms such as the
power management system of electric hybrid vehicles.

Appendix. Proofs of propositions
Proof of Proposition 1:

Proof. Proof by induction. Consider the observable string t =
ey---ep—1 (n = 1). We also use the notations p and p; from
Definition 5 in the following discussion.

Induction Basis: n = 1 and consider q$ or g AN q¢°. The result
obviously holds for single state g§ and also holds for g4 RER q{° by
Definition 5 and the definition of y-successor.

Inductive Hypothesis: we assume the lemma holds when n = k,
i.e,, for control-observation sequences p, and p;.

Induction Step: when n = k + 1, consider p,11 and p;_;.
First, qi,, is an eg-successor or q;°. Let Est(Iz(q;?)) = ¢, and
Est(qi,q1) = qrr1, then Vx € qyy1,

Lev(qy 4, x) = min{Lev(q;’, X')+ w(ey) : I € q, st.f(x, e) = x}
x/
By the inductive hypothesis and Definition 5, we have:

Lev(qf 4, %) = min m/in{a)(s;() + w(ex) : 3% € Est(q5), s, € Str(p;)
X Sk

s.t. f(%, 5,) = X'}

= ISTkli?{w(SkJrl) 13X € Est(y?), Skr1 € Str(prs1) S.t.
"

Sk+1 = S;CEk,f()?, Sk+1) = X}

Then q;f, is a yxy1-successor of gy ;. Let Est(q; ;) = qiy1 and
Est(Ie(qi5.1)) = Qipq0 5O VX' € qpyq,

Lev(qps ., ¥') = Igzin{Lev(qu, X) 4+ 0(&k1) IX € Qg
1

Eir1 € (Euo N yag1)” st f(X, &) = X)

Automatica 123 (2021) 109359

From what we just proved,

Lev(q}, ., %) = rglkli?{Lev(qZH, X) + o(&g1) : IX € G,
+

Ers1 € (Euo N Y1) St f(X,) =X}

= Enm{a)(skﬂ) : 3% € Est(q3), Sg,q € Str(pp) st
k+1

Sk = Sk1Ek1, f(X, Sppq) = X'}
Thus the result holds at k + 1, completing the proof. O
Proof of Proposition 2:

Proof. By definition, the FCEIC, is an acyclic structure and
the depth of its runs is thus bounded. In the FCEIC,, there
exists a positive integer m such that every leaf state can be
reached within m steps from the initial state. Then we prove
this proposition by induction on the number of steps for an
initial run to reach leaf states of the FCPEC,. In other words,
we show that VF(Last(rf’)) = MiNg,em, Vi (17 (15 75, 7)) =
MaXy,e 7, Milg,er, Vleaf(rf(rf/; 75, 7)) for any initial run rf/

Induction Basis: Consider the case when the last state of r
is a leaf states in the FCPEC,. Then this proposition becomes
Theorem 5, thus, it naturally holds.

Inductive Hypothesis: Suppose that the result holds for any r
that reaches leaf states within at most k steps, where k < m — 2
for some integer m > 2. In addition, the function Optlmal in the
algorithm assigns VF(Last(£)) = Ming,em, Viear (17(rf; 7,) =
MaXy ez, MiNg,ep, Vleaf(rf(rf s, 7)) to the last state of rf

Induction Step: Consider r; that reaches leaf states within at
most k+2 steps. Suppose that Last(rf) = Lasty(rf’) = y’®. We know
that there exists z¢ = fyi(y/e y) for some y € I' and specifically,
¢ = yFZ(y/e, y*) for y* = wf(y, y*). Thus, succeeding Z-state
z¢ = yFZ(y’e, y) of y’® reaches a leaf state within at most k + 1
steps. By Algorithm 4, Vp(y®) = Vg(Z®) = max,e Vp(z¢). Also
some ff transitions are defined from z° and lead to succeed-
ing Y-state y¢ which reaches the leaf states within at most k
steps. By the inductive hypothesis, ming, e, V,eaf(rf(y Ty, Te)) =
maxnsgns MiNy, e, Viear (17(Y°; 75, 7)) for any r¢ with Last(rf) =
y¢. Again from Algorithm 4, we know:

V(z°) =min Vp(y*) = min min Vieq (17 (Y% 777, 7))
s y& me€lle

= min Vleaf(rf(ze§ 775*7775)) = max min Vleaf(rf(z s, Te))
me€lle ns€lls me€lle
thus the result holds for runs whose last states reach the leaf
states of the FCEIC,, within k + 1 steps. Furthermore, we have:

Ve(Y®) =max Vp(z°) = max min Viear(ry(2°; 7%, 7re))
z 28 meelle

= min Vleaf(rf(y/e; 7", Te))

=max min Vieqs(17(y"; 705, 7))
ns€lls meelle

Therefore the result holds for k + 2, completing the proof. O
References

Alves, M. V. S, Carvalho, L. K, & Basilio, J. C. (2016). New algorithms for
verification of relative observability and computation of supremal relatively
observable sublanguage. IEEE Transactions on Automatic Control, 62(11),
5902-5908.

Alves, M. V. S, da Cunha, A. E. C, Carvalho, L. K., Moreira, M. V., & Basilio, J.
C. (2019). Robust supervisory control of discrete event systems against
intermittent loss of observations. International Journal of Control, 1-13.

Aminof, B., & Rubin, S. (2017). First-cycle games. Information and Computation,
254, 195-216.

Apt, K. R, & Grddel, E. (2011). Lectures in game theory for computer scientists.
Cambridge University Press.

http://refhub.elsevier.com/S0005-1098(20)30561-6/sb1
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb1
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb1
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb1
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb1
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb1
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb1
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb2
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb2
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb2
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb2
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb2
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb3
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb3
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb3
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb4
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb4
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb4

Y. Ji, X. Yin and S. Lafortune

Baier, C., & Katoen,].-P. (2008). Principles of model checking. MIT press.

Basar, T., & Bernhard, P. (2008). H-infinity optimal control and related minimax
design problems: a dynamic game approach. Springer.

Bertsekas, D. P. (2012). Dynamic programming and optimal control. Athena
Scientific.

Cai, K., Zhang, R., & Wonham, W. M. (2015). Relative observability of discrete-
event systems and its supremal sublanguages. IEEE Transactions on Automatic
Control, 60(3), 659-670.

Cassandras, C. G., & Lafortune, S. (2008). Introduction to discrete event systems
(2nd ed.). Springer.

Du, D., & Pardalos, P. M. (2013). Minimax and applications. Springer.

Giua, A., Seatzu, C., & Basile, F. (2004). Observer-based state-feedback control
of timed Petri nets with deadlock recovery. IEEE Transactions on Automatic
Control, 49(1), 17-29.

Gu, C, Wang, X, Li, Z, & Wu, N. (2018). Supervisory control of state-tree
structures with partial observation. Information Sciences, 465, 523-544.
Han, X, Chen, Z, & Su, R. (2019). Synthesis of minimally restrictive optimal
stability-enforcing supervisors for nondeterministic discrete event systems.

Systems & Control Letters, 123, 33-39.

Hunter, P., Pauly, A., Pérez, G. A., & Raskin,].-F. (2018). Mean-payoff games with
partial observation. Theoretical Computer Science, 735, 82-110.

Ji, Y., Yin, X., & Lafortune, S. (2018). Mean payoff supervisory control under
partial observation. In Proceedings of the 57th IEEE conference on decision and
control (pp. 3981-3987).

Ji, Y., Yin, X, & Lafortune, S. (2019a). Enforcing opacity by insertion functions
under multiple energy constraints. Automatica, 108, Article 108476.

Ji, Y., Yin, X, & Lafortune, S. (2019b). Supervisory control under local mean payoff
constraints. In 58th IEEE conference on decision and control (pp. 1043-1049).

Komenda,]., & Masopust, T. (2017). Computation of controllable and coobserv-
able sublanguages in decentralized supervisory control via communication.
Discrete Event Dynamic Systems: Theory and Applications, 27(4), 585-608.

Krishnamurthy, V. (2016). Partially observed Markov decision processes: From
filtering to controlled sensing. Cambridge University Press.

Levy, A. (2002). Basic set theory, Vol. 13. Courier Corporation.

Lin, L., Masopust, T., Wonham, W. M., & Su, R. (2019). Automatic generation of
optimal reductions of distributions. IEEE Transactions on Automatic Control,
64(3), 896-911.

Madani, O., Hanks, S., & Condon, A. (2003). On the undecidability of probabilistic
planning and related stochastic optimization problems. Artificial Intelligence,
147(1-2), 5-34.

Malikopoulos, A. A. (2014). Supervisory power management control algorithms
for hybrid electric vehicles: A survey. IEEE Transactions on Intelligent
Transportation Systems, 15(5), 1869-1885.

Marchand, H., Boivineau, O., & Lafortune, S. (2002). On optimal control of a class
of partially observed discrete event systems. Automatica, 38(11), 1935-1943.

Osborne, M.]., & Rubinstein, A. (1994). A course in game theory. Massachusetts
Institute of Technology press.

Pantelic, V., & Lawford, M. (2012). Optimal supervisory control of probabilis-
tic discrete event systems. IEEE Transactions on Automatic Control, 57(5),
1110-1124.

Pérez, G. A. (2017). The fixed initial credit problem for partial-observation energy
games is ack-complete. Information Processing Letters, 118, 91-99.

Pruekprasert, S., & Ushio, T. (2016a). Optimal stabilizing controller for the region
of weak attraction under the influence of disturbances. IEICE Transactions on
Information and Systems, 99(6), 1428-1435.

Pruekprasert, S., & Ushio, T. (2016b). Optimal stabilizing supervisor of quanti-
tative discrete event systems under partial observation. IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences, 99(2),
475-482.

Pruekprasert, S., & Ushio, T. (2017). Supervisory control of partially observed
quantitative discrete event systems for fixed-initial-credit energy problem.
IEICE Transactions on Information and Systems, 100(6), 1166-1171.

Pruekprasert, S., Ushio, T., & Kanazawa, T. (2016). Quantitative supervisory
control game for discrete event systems. IEEE Transactions on Automatic
Control, 61(10), 2987-3000.

Puterman, M. L. (2005). Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons.

Rackoff, C. (1978). The covering and boundedness problems for vector addition
systems. Theoretical Computer Science, 6(2), 223-231.

Schmidt, K. W., & Breindl, C. (2014). A framework for state attraction of discrete
event systems under partial observation. Information Sciences, 281, 265-280.

Sengupta, R., & Lafortune, S. (1998). An optimal control theory for discrete event
systems. SIAM Journal on Control and Optimization, 36(2), 488-541.

14

Automatica 123 (2021) 109359

Shu, S., & Lin, F. (2015). Supervisor synthesis for networked discrete event
systems with communication delays. IEEE Transactions on Automatic Control,
60(8), 2183-2188.

Shu, S., & Lin, F. (2017). Predictive networked control of discrete event systems.
IEEE Transactions on Automatic Control, 62(9), 4698-4705.

Takai, S., & Ushio, T. (2003). Effective computation of an L, (g)-closed, control-
lable, and observable sublanguage arising in supervisory control. Systems &
Control Letters, 49(3), 191-200.

Wonham, W. M., & Cai, K. (2019). Supervisory control of discrete-event systems.
Springer.

Wu, Y.-C., & Lafortune, S. (2016). Synthesis of optimal insertion functions for
opacity enforcement. IEEE Transactions on Automatic Control, 61(3), 571-584.

Yin, X., & Lafortune, S. (2016a). Synthesis of maximally permissive supervisors
for partially-observed discrete-event systems. IEEE Transactions on Automatic
Control, 61(5), 1239-1254.

Yin, X., & Lafortune, S. (2016b). A uniform approach for synthesizing property-
enforcing supervisors for partially-observed discrete-event systems. IEEE
Transactions on Automatic Control, 61(8), 2140-2154.

Yin, X, & Lafortune, S. (2017). Synthesis of maximally-permissive supervisors
for the range control problem. IEEE Transactions on Automatic Control, 62(8),
3914-3929.

Zwick, U., & Paterson, M. (1996). The complexity of mean payoff games on
graphs. Theoretical Computer Science, 158(1-2), 343-359.

Yiding Ji received the Bachelor of Engineering degree
of Electrical Engineering and Automation from Tianjin
University, China, in 2014, the Master of Science degree
and the Ph.D degree of Electrical and Computer Engi-
neering from the University of Michigan, United States,
in 2016 and 2019, respectively. From 2019 to 2020, he
worked as a postdoc researcher at Division of Systems
Engineering, Boston University, United States.

His research interests include discrete event sys-
tems, formal methods, control systems, game theory
and cyber security. He is now a member of IEEE and the
IEEE Control Systems Society Technical Committee on Discrete Event Systems.

Xiang Yin was born in Anhui, China, in 1991. He
received the B.Eng degree from Zhejiang University in
2012, the M.S. degree from the University of Michigan,
Ann Arbor, in 2013, and the Ph.D degree from the
University of Michigan, Ann Arbor, in 2017, all in
electrical engineering.

Since 2017, he has been with the Department of
Automation, Shanghai Jiao Tong University, where he
is an Associate Professor. His research interests include
formal methods, control of discrete event systems,
model based fault diagnosis, security and their appli-
cations to cyber and cyber-physical systems. Dr. Yin received the Outstanding
Reviewer Awards from AUTOMATICA, the IEEE TRANSACTIONS ON AUTOMATIC
ConTRrOL and the JOURNAL OF DISCRETE EVENT DyNAMIC SysTEMS. Dr. Yin also
received the IEEE Conference on Decision and Control (CDC) Best Student Paper
Award Finalist in 2016. He is the co-chair of the IEEE Control Systems Society
Technical Committee on Discrete Event Systems.

Stéphane Lafortune received the B.Eng degree from
Ecole Polytechnique de Montréal in 1980, the M.Eng
degree from McGill University in 1982, and the Ph.D
degree from the University of California at Berkeley
in 1986, all in electrical engineering. Since September
1986, he has been with the University of Michigan, Ann
Arbor, where he is a Professor of Electrical Engineering
and Computer Science. Lafortune is a Fellow of the
IEEE (1999) and of IFAC (2017). He received the Pres-
idential Young Investigator Award from the National
Science Foundation in 1990 and the George S. Axelby
Outstanding Paper Award from the Control Systems Society of the IEEE in
1994 (for a paper co-authored with S.-L. Chung and F. Lin) and in 2001 (for a
paper co-authored with G. Barrett). Lafortune’s research interests are in discrete
event systems and include multiple problem domains: modeling, diagnosis,
control, optimization, and applications to computer and software systems. He co-
authored, with C. Cassandras, the textbook Introduction to Discrete Event Systems
- Second Edition (Springer, 2008). Lafortune is Editor-in-Chief of the JOURNAL OF
DISCRETE EVENT DYNAMIC SYSTEMS: THEORY AND APPLICATIONS.

http://refhub.elsevier.com/S0005-1098(20)30561-6/sb5
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb6
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb6
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb6
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb7
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb7
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb7
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb8
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb8
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb8
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb8
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb8
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb9
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb9
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb9
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb10
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb11
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb11
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb11
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb11
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb11
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb12
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb12
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb12
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb13
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb13
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb13
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb13
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb13
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb14
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb14
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb14
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb16
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb16
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb16
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb17
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb17
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb17
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb18
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb18
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb18
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb18
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb18
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb19
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb19
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb19
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb20
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb21
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb21
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb21
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb21
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb21
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb22
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb22
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb22
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb22
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb22
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb23
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb23
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb23
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb23
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb23
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb24
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb24
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb24
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb25
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb25
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb25
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb26
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb26
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb26
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb26
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb26
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb27
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb27
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb27
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb28
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb28
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb28
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb28
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb28
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb29
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb29
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb29
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb29
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb29
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb29
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb29
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb30
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb30
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb30
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb30
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb30
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb31
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb31
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb31
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb31
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb31
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb32
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb32
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb32
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb33
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb33
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb33
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb34
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb34
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb34
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb35
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb35
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb35
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb36
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb36
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb36
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb36
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb36
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb37
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb37
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb37
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb38
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb38
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb38
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb38
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb38
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb39
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb39
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb39
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb40
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb40
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb40
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb41
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb41
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb41
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb41
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb41
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb42
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb42
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb42
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb42
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb42
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb43
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb43
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb43
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb43
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb43
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb44
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb44
http://refhub.elsevier.com/S0005-1098(20)30561-6/sb44

	Optimal supervisory control with mean payoff objectives and under partial observation
	Introduction
	System model
	Problem formulations
	First cycle energy inclusive controller
	Energy information states
	Construction of the FCEIC

	Mean payoff decision problems
	Mean payoff optimization problems
	Conclusion
	Appendix. Proofs of propositions
	References

