
A Game-Theoretical Approach for Optimal Supervisory Control
of Discrete Event Systems for Cyclic Tasks

Peng Lv, Xiang Yin, Yiding Ji and Shaoyuan Li

Abstract— In this paper, we investigate the problem of
optimal supervisory control for cyclic tasks in the context of
discrete-event systems (DES). We consider the completion of
each single task as the visit of a marked state, and overall
control objective is to complete tasks cyclically in the sense
that marked states are visited infinitely often. Following the
standard optimal supervisory control framework, two types of
costs, disable cost and occurrence cost, are considered. However,
instead of considering the standard accumulated total cost or
the average cost per event, we propose a new measure for the
control performance using the average cost per task. We show
that such an optimality measure is more suitable for tasks that
need to be completed cyclically. Our goal is to design a live
and non-blocking supervisor such that the average cost per
task in the worst-case is minimized. To solve the problem, we
propose a game-theoretical approach by converting the optimal
control problem as a two-player graph game. The constructed
game is then solved in two stages: one focuses on the optimal
execution within each single task cycle and the other focuses
on the scheduling strategy among different tasks. Illustrative
examples are provided to demonstrate the proposed algorithm.

I. INTRODUCTION

Discrete event systems (DES) are widely used in the mod-
eling and analysis of man-made engineering cyber-physical
systems such that manufacturing systems, transportation
systems and communication networks [1]. In the context
of DES, the supervisory control theory (SCT) initiated by
Ramadge and Wonham is a powerful formal methodology
that aims to synthesize a feedback supervisor such that
the closed-loop system under control satisfies some desired
specification, such as safety, liveness and non-blockingness,
in the presence of uncontrollable events [2], [3].

One important problem in the SCT is to synthesize su-
pervisors optimally in terms of some performance measures.
This is referred to as the optimal supervisory control problem
and has drawn considerable attentions in the literature; see,
e.g., [4]–[11]. Particularly, an optimal supervisory control
framework was proposed in [5] by considering both the
occurrence cost and the disable cost. The objective is to reach
marked states with the smallest worst-case accumulated
total cost. This framework has been extended subsequently

This work was supported by the National Natural Science Foundation
of China (6217020111, 62061136004, 61803259) and the National Key
Research and Development Program of China (2018AAA0101700).

Peng Lv, Xiang Yin and Shaoyuan Li are with Department of
Automation and Key Laboratory of System Control and Information
Processing, Shanghai Jiao Tong University, Shanghai 200240, China.
{lv-peng,yinxiang,syli}@sjtu.edu.cn. Yiding Ji is with
Systems Hub, Hong Kong University of Science and Technology
(Guangzhou), Guangzhou, China, also with Department of Electronic and
Computer Engineering, Hong Kong University of Science and Technology,
Kowloon, Hong Kong, China. jiyiding@umich.edu.

to several different settings, including, e.g., multiple goals
[12], partial observations [13] and probabilistic systems [14].
However, the framework of [5] essentially considers finite
languages, which is more suitable for a single non-repetitive
task. In terms of optimal control of infinite behaviors, a
common approach is to use the average cost per event as
the optimality measure; see, e.g., [15]–[17]. However, as we
will argue later in the paper, such an optimality measure
is not suitable when cyclic tasks are considered, because
the optimal solution may keep executing useless behaviors
to minimize its cost. Still following the framework of [5],
the authors in [18] consider the optimal supervisory control
of cyclic tasks, where each task cycle is pre-specified as
the reset to its initial state. This setting cannot handle the
scenario where tasks are modeled by multiple marked states
without a pre-specified visiting order.

In this paper, we formulate and solve a new class of
optimal supervisory control problem for cyclic tasks. We also
follow the basic setting in [5], where uncontrollable events
are taken into account, and both the occurrence costs and the
control costs are considered. The tasks are modeled by a set
of marked states and each completion of the task is captured
by the visit of a marked state. The task is cyclic as the system
needs to visit marked states infinitely often. To formulate the
optimal control problem, we introduce a new performance
measure called the average cost per task. We argue that
such a performance measure is more suitable for infinite
cyclic behaviors than the standard accumulated total cost or
the average cost per event. A game-theoretical approach is
developed to solve the proposed optimal control problem.
Specifically, by converting the supervisory control problem
into a two-player graph game, the overall synthesis problem
is decomposed into two parts. The first part focuses on the
optimal micro-strategy for each single task cycle. The second
part focuses on how to design cyclic macro-strategy over
different tasks. By merging the micro and macro-strategies
together, an optimal solution that minimizes the average cost
per tasks in the worst-case is obtained.

Our solution methodology is motivated by the two-player
graph games; see, e.g., [19]. In particular, our algorithm
partially leverages the standard Büchi game and mean-
payoff game algorithms [20]. The formulated optimal control
problem is also related to the problems studied in [21],
[22]. However, [21] studies the mean-payoff parity game,
where the cost is still averaged per event not per task. The
optimality measure in [22] is more similar to our setting.
However, it considers a stochastic game (MDP) for the
expected cost, while our work considers a non-stochastic

2021 60th IEEE Conference on Decision and Control (CDC)
December 13-15, 2021. Austin, Texas

978-1-6654-3658-8/21/$31.00 ©2021 IEEE 324

supervisory control problem for the worst-case cost.

II. PRELIMINARY ON OPTIMAL SUPERVISORY CONTROL

A. Supervisory Control Theory

Let Σ be a finite set of events. A string over Σ is a finite
sequence of events; We denote by Σ∗ the set of all finite
strings over Σ including the empty string ε. The set of all
infinite strings over Σ is denoted by Σω . We denote by |s| the
length of s and by si the ith event in s. Also, s[i,j] = σi . . . σj
denote the sequence from the ith event to the jth event in s.
A language L ⊆ Σ∗ is a set of strings. The prefix-closure of
L is defined by L = {s ∈ Σ∗ : ∃w ∈ Σ∗ s.t. sw ∈ L}.

We consider a DES modeled as a deterministic finite-state
automata (DFA) G = (Q,Σ, δ, q0, Qm), where Q is a finite
set of states, Σ is a finite set of events, δ : Q × Σ → Q is
a partial transition function, q0 ∈ Q is the initial state and
Qm ⊆ Q is a set of marked states. The transition function is
also extended to δ : Q×Σ∗ → Q in the usual manner [1]. The
language generated by G is L(G) = {s ∈ Σ∗ : δ(q0, s)!},
where “!” means “is defined”. We also denote by Lω(G) the
set of infinite strings generated by G. The language marked
by G is Lm(G) = {s ∈ L(G) : δ(q0, s) ∈ Qm}. Marked
states are usually used to model the goal/task of a system. For
any q ∈ Q, we define ∆G(q) = {σ ∈ Σ : δ(q, σ)!} as the set
of active events at q; we also define ∆G(s) = ∆G(δ(q0, s)).
For technical reason, we assume that q0 ∈ Qm.

In the supervisory control theory, the event set is parti-
tioned as Σ = Σc∪̇Σuc, where Σc is the set of controllable
events and Σuc is the set of uncontrollable events. Then
a supervisor S : L(G) → Γ is a mapping that enables
events dynamically based on the string, where Γ = {γ ∈
2Σ : Σuc ⊆ γ} is the set of control patterns. The language
generated by the closed-loop system under control, denoted
by L(S/G), is defined recursively by
• ε ∈ L(S/G);
• For any s ∈ Σ∗ and σ ∈ Σ, we have sσ ∈ L(S/G) iff
s ∈ L(S/G), sσ ∈ L(G) and σ ∈ S(s).

The language marked by S/G is defined by Lm(S/G) =
L(S/G) ∩ Lm(G). The infinite language generated by the
closed-loop is denoted by Lω(S/G), which is defined anal-
ogously. A supervisor S is said to be:
• live: if ∀s ∈ L(S/G),∃σ ∈ Σ : sσ ∈ L(S/G);
• non-blocking: if Lm(S/G) = L(S/G).

Note that liveness and non-blockingness are incomparable,
and in this work, we require the synthesized supervisor
satisfying both properties.

B. Cost Functions

Following the standard framework of optimal supervisory
control, we consider the following two types of costs:
• occurrence cost: ce : Σ→ N+

• disable cost: cd : Σc → N+

That is, for each σ ∈ Σ, ce(σ) denotes the cost incurred
when σ is executed. The occurrence cost can model, for
example, the energy consumption for each event execution.
On the other hand, the disable cost cd(σ) describes the cost

Fig. 1. System G in Example 1.

incurred when the supervisor tries to prevent a feasible and
controllable event σ from happening.

Given a supervisor S and for any string s = σ1 . . . σn ∈
L(S/G), the total cost of s is defined by

CostS(s) =
∑

i=1,...,n

ce(σi)+
∑
s′∈{s}

∑
σ∈(∆G(s′)∩Σc)\S(s′)

cd(σ),

where the first component represents the total occurrence cost
for all events in string s and the second component represents
the total disable cost for all decisions along s. For an infinite
string s ∈ Lω(S/G), it does not make sense to talk about
its total cost as it goes to infinity. Instead, it is of interest to
consider its average cost per event defined by

CostAveSS (s) = lim sup
n→∞

{
1

n
CostS(s[1,n])

}
.

In the DES literature, different types of optimal control
problems have been investigated, including, e.g.,

1) Total Cost Control for Reachability [5]: This problem
requires to reach marked states optimally; hence, the super-
visor needs to be non-blocking. Furthermore, the supervisor
needs to minimize the worst-case total cost CostS(s) for
string s that reaches the marked states Qm for the first-time.
Note that it is meaningful to discuss the total cost here as
once a marked state is reached, the entire task is completed,
i.e., the optimal solution should be in finite horizon.

2) Average Cost Control for Liveness [15], [17]: This
problem requires to find a live supervisor such that the
system can execute indefinitely. Since the horizon is infinite,
it makes sense to consider the average cost and the supervisor
needs to minimize CostAveS (s) for the worst-case.

The first problem is useful to describe the scenario, where
a single task modeled by marked states needs to be achieved
optimally. The second problem is useful to describe the
scenario, where the supervisor needs to ensure the non-
termination of the entire process and to minimize the average
cost during the indefinite process.

III. OPTIMAL CONTROL FOR CYCLIC TASKS

A. Motivating Example

In the optimal control problem for cyclic tasks, the super-
visor wants to make sure that marked states can be visited
infinitely often so that tasks can be completed repeatedly.
Although such a solution involves infinite strings, the follow-
ing simple example shows that the standard average cost per
event is not a suitable performance measure for optimality.

Example 1: Let us consider system G shown in Figure 1,
where all events are controllable and the double circle
denotes the marked state. For each state, we assume that
there is no disable cost and the occurrence cost is given
as the number associated to each transition. If one wants

325

to visit marked state 0 infinitely often, while minimizing
the average cost per event, a possible optimal solution is as
follows: “upon the kth occurrence of event a, the supervisor
repeats control decision {c} for k-times and then changes
to control decision {b}.” Therefore, the cycle of event c at
state 1 will eventually dominate the average cost per event,
i.e., CostAveS (s) goes to 2. Furthermore, marked state 0 is
still visited infinitely often.

However, this optimal solution is not of practical interest,
because the optimal average cost is achieved by increasing
the percentage of event c, which is useless for completing the
task. A simple and practical solution is to alternate between
control decisions {a} and {b} without allowing event c for
even once. This simple example suggests that, when tasks
modeled by marked states are considered, it makes more
sense to average the total cost by the number of completions
of tasks, rather than the number of event occurrences.

B. Problem Formulation

Motivated by the above discussions, for each string s ∈
L(G), we denote by Im(s) the number of visits of marked
states Qm along s, i.e.,

Im(s) = |{s′ ∈ {s} : δ(q0, s
′) ∈ Qm}|

Essentially, Im(s) represents the number of tasks the system
has completed. Recall that we have assumed q0 ∈ Qm, which
means that Im(s) ≥ 1. Let s ∈ Lω(S/G) be an infinite
string. Then the average cost per task of s under S is

CostAveTS (s) = lim sup
n→∞

{
1

Im(s[1,n])
CostS(s[1,n])

}
(1)

This leads to the Optimal Supervisory Control Problem for
Average Cost Per Task (OSCP-AT) that we solve in this work.

Problem 1: (OSCP-AT) Given a system G with Σc, find
an optimal supervisor S∗ such that
(1) S∗ is live and non-blocking; and
(2) for any s ∈ Lω(S∗/G), CostAveTS∗ (s) <∞; and
(3) for any S′ satisfying (1) and (2), we have

sup
s∈Lω(S∗/G)

CostAveTS∗ (s) ≤ sup
s∈Lω(S′/G)

CostAveTS′ (s)

IV. GAME-BASED FORMULATION OF SCT
To solve the optimal supervisory control problem, we

convert it as a two-player game over a weighted graph.

A. Two-Player Graph Games

A game graph (or arena) is a bipartite graph

A = (V =V0∪̇V1, E, v0),

where V is a set of vertices and V0 and V1 form a partition
of V denoting, respectively, the set of vertices of Player 0
and Player 1; E ⊆ (V0 × V1) ∪ (V1 × V0) is a set of edges;
and v0 ∈ V0 is the initial vertex of the game.

A play in A is an infinite sequence ρ ∈ V ω such that
〈ρi, ρi+1〉 ∈ E,∀i ≥ 1 and we say that the play starts in
ρ1 ∈ V . The set of all plays starting in v is denoted by
Plays(A, v). A strategy for Player i ∈ {0, 1} is a function

θi : V ∗Vi → V

such that ∀w ∈ V ∗, v ∈ Vi : θi(wv) = v′ ⇒ 〈v, v′〉 ∈ E. We
denote by Θi the set of all strategies for Player i ∈ {0, 1}.

Given a strategy θi of Player i ∈ {0, 1}, we say a play
ρ ∈ Plays(A, v) from v ∈ V is consistent with strategy θi
if ∀n ≥ 0 : ρn ∈ Vi ⇒ ρn+1 = θi(ρ[1,n]). We denote
by Play(A, v, θi) as the set of all plays consistent with θi
from v ∈ V . If the strategies of both players are given, i.e.,
θ = (θ0, θ1), then the play from v ∈ V can be uniquely
determined, which is ρ(v,θ) = ∩i=0,1Play(A, v, θi).

The goal of each player is to achieve some objective. Most
game objectives investigated in the literature can be catego-
rized as qualitative objectives or quantitative objectives.

1) Qualitative Objective: A qualitative objective can be
expressed as a winning condition Win ⊆ V ω , which is a
set of infinite sequences. Specifically, we say that strategy
θi achieves Win for Player i, if Play(A, v0, θi) ⊆ Win. In
the paper, we focus on finding winning strategy for Player 0;
hence Win is always considered for Player 0. Given a set of
vertices Vm ⊆ V , one can define different types of winning
conditions, e.g.,
• Safety: WinS(Vm)={ρ∈V ω : Occ(ρ) ∩ Vm=∅};
• Reachability: WinR(Vm)={ρ∈V ω : Occ(ρ)∩Vm 6=∅};
• Büchi: WinB(Vm)={ρ∈V ω : Inf(ρ) ∩ Vm 6=∅}.

where Occ(ρ) and Inf(ρ) denote, respectively, the set of
vertices that occur at least once and infinite number of
times in ρ. Game graphs associated with winning conditions
WinS(Vm),WinR(Vm) and WinB(Vm) are referred to as the
safety game, the reachability game and the Büchi game,
respectively, in the literature. Effective algorithm has been
proposed for solving each of the above games; see, e.g., [19].

2) Quantitative Objective: Quantitative objectives are
investigated for a weighted game (A, w), where A is an
arena and w : E → N+ is a weight function assigning
each edge a weight (or payoff). Later in this work, we will
leverage an important type of quantitative game called the
mean payoff game to solve our problem. In the mean payoff
game, Player 0 aims to minimize the mean payoff of a play
ρ ∈ V ω , i.e., MP(ρ) = lim supn→∞

1
n

∑
i<n w(ρi, ρi+1).

The value secured by strategy θ0 of Player 0 at vertex v ∈ V
is valθ0(v) = supθ1∈Θ1

MP(ρ(v, θ0, θ1)), which is the worst-
case payoff. The optimal value for Player 0 at vertex v ∈ V
in the game is val(v) = infθ0∈Θ0

supθ1∈Θ1
MP(ρ(v, θ0, θ1)).

It was shown by [20] that Player 0 has an optimal strategy
θ∗0 to secure this optimal value; furthermore this strategy is
positional, i.e., it only depends on the current vertex.

B. Supervisory Control as a Game

As we mentioned earlier, our approach is to transform the
supervisory control problem as a game. Specifically, given a
DES G = (Q,Σ, δ, q0, Qm), we construct a new game arena

AG = (V G=V G0 ∪ V G1 , EG, vG0)

where
• V G0 ⊆ (Q×Σ)∪{(q0, ε)}∪{vD,0} is the set of Player 0’s

vertices;
• V G1 ⊆ (Q×Γ)∪{vD,1} is the set of Player 1’s vertices;

326

Fig. 2. DES G for Example 2.

• E ⊆ (V G0 × V G1) ∪ (V G1 × V G0) is the set of edges
defined by:

– for any (q, σ) ∈ V G0 and γ ∈ Γ, we have

〈(q, σ), (q, γ)〉 ∈ E

– for any (q, γ) ∈ V G1 , if ∆G(q) ∩ γ 6= ∅, then for
any σ ∈ ∆G(q) ∩ γ, we have

〈(q, γ), (δ(q, σ), σ)〉 ∈ E

otherwise, when ∆G(q) ∩ γ = ∅, we have

〈(q, γ), vD,0〉 ∈ E

– for vD,0 ∈ V G0 and vD,1 ∈ V G1 , we have

〈vD,0, vD,1〉, 〈vD,1, vD,0〉 ∈ E

• vG0 = (q0, ε) is the initial vertex.
Intuitively, game graph AG distinguishes explicitly be-

tween the supervisor’s decision stage V G0 from which a
control pattern is chosen and the environment’s decision
stage V G1 from which an event occurs. Furthermore, each
state in V G0 is of form (q, σ), where q represents its current
state in the plant and σ ∈ Σ represents the latest event
leading to this state. Similarly, each state in V G1 is of form
(q, γ), where q is still the current state, while γ ∈ Γ
represents the current control pattern applied. Note that (q, γ)
can only move to (δ(q, σ), σ) for σ that is enabled and
feasible, i.e., σ ∈ ∆G(q)∩γ. For the case that ∆G(q)∩γ = ∅,
we introduce two new vertices vD,0 ∈ V G0 and vD,1 ∈ V G1 ,
where ”D” represents ”deadlock”. Therefore, the graph has
at least an outgoing edge for each vertex, but may loop in
the deadlock vertices forever. We will refer to AG as the
supervisory control (SC) game graph and for the sake of
simplicity, hereafter we will omit all superscripts G in AG
and just write it as A.

To describe the qualitative winning condition, we define

Vm = {(q, σ) ∈ V0 : q ∈ Qm}

as the set of ”target” vertices that should be visited infinitely
often, i.e., we consider Büchi winning condition w.r.t. Vm.

Furthermore, to introduce the quantitative objective, we
define a weight function w : E → N ∪ {∞} by: for any
(q, σ) ∈ V0 and (q′, γ) ∈ V1,
• w((q′, γ), (q, σ)) = ce(σ); and
• w(((q, σ), (q, γ)) =

∑
σ∈∆G(q)\γ cd(σ)

and w((q, γ), vD,0)=w(vD,0, vD,1)=w(vD,1, vD,0) =∞.
Example 2: Consider system G shown in Figure 2, where

Σc = {a} and Qm = {0, 1, 4}. Suppose the occurrence costs
of events are given by ce(a) = 1 and ce(d) = ce(e) = 2 and

Fig. 3. The SC game graph A, where γ0 = {a, d, e} and γ1 = {d, e}.

the disable cost for a ∈ Σc is given by cd(a) = 1. Then, the
corresponding SC game graph A is shown in Figure 3, where
we use circles and squares to denote Player 0’s vertices and
Player 1’s vertices respectively. For the sake of simplicity,
at each state, we only consider control patterns in which all
disabled events are feasible. For example, in state 3, event a
is not feasible; therefore, it suffices to only consider control
decision γ0 = {a, d, e} and γ1 = {d, e} is redundant.

To capture the average cost per task requirement as formu-
lated in Problem 1, similarly to the mean payoff game, for
any finite sequence ρ, we denote by Nm(ρ) as the number
of occurrences of Vm in ρ. Then the mean payoff per task
of a play ρ ∈ V ω is

MP(ρ) = lim sup
n→∞

Cost(ρ[1,n])

Nm(ρ[1,n])
,

where Cost(ρ[1,n]) =
∑
i<n w(ρi, ρi+1). Then the mean

payoff per task value secured by strategy θ0 of Player 0
at vertex v ∈ V is

valθ0(v) = sup
θ1∈Θ1

MP(ρ(v, θ0, θ1))

We consider a game in which Player 0 not only aims to
minimize the mean payoff per task, but also needs to fulfill
the Büchi winning condition w.r.t. Vm so that target vertices
are visited infinitely often. This leads to the formulation of
the following problem of Mean Payoff Büchi Game Per Task
(MPBG-PT).

Problem 2: (MPBG-PT) Given a game graph A, target
vertices Vm and weight function w : V → N∪{∞}, find an
optimal strategy θ∗0 ∈ Θ0 for Player 0 such that
(1) Play(A, v0, θ

∗
0) ⊆WinB(Vm);

(2) for any strategy θ′0 ∈ Θ0 satisfying (1), we have
valθ∗0 (v0) ≤ valθ′0(v0).

Note that, we do not require valθ0(v0) < ∞ additionally
here, because according to the definition of the weight
function, if Play(A, v0, θ0) ⊆ WinB(Vm), then valθ0(v0) <
∞; otherwise Vm will not be visited infinitely often.

C. Correctness of the Transformation

Note that game graph A is constructed from G. Therefore,
a Player 0’s strategy in A and a supervisor for G can be
mapped from one to the other as follows:
• Given a strategy θ0, it induces a supervisor,

denoted by Sθ0 , inductively by: for any play ρ =

327

(q0, ε)(q0, γ0)(q1, σ1)(q1, γ1) . . . (qn, σn)(qn, γn) ∈
Play(A, (q0, ε), θ0), we have Sθ0(σ1 . . . σn) = γn.

• Given a supervisor S, it also induces a strat-
egy for Player 0, denoted by θS , inductively by:
for any s = σ1 · · ·σn ∈ L(S/G), we have
θ0(ρ) = (qn, S(s)), where ρ is the unique play of
form ρ = (q0, ε)(q0, γ0)(q1, σ1)(q1, γ1) . . . (qn, σn) ∈
Play(A, (q0, ε), θS).

We note that Problem 2 requires the Büchi winning
condition, which seems to be stronger than the liveness
and non-blockingness requirements in the original problem,
because non-blockingness only requires the existence of
path to marked states. However, these two conditions are
essentially equivalent under the assumption that each event
has a non-zero occurrence cost and the requirement that
CostAveTS∗ (s) < ∞. This is because, if the system is non-
blocking but cannot visit marked states infinitely often, then
it must loop somewhere which yields infinite cost per task.
For example, for system G in Figure 1, the system itself is
already live and non-blocking, but its cost per task is infinite
due to the cycle at state 1. Therefore, it does not satisfy the
Büchi winning condition.

The following theorem showsthat, to solve the original
OSCP-AT as formulated in Problem 1, it is equivalent to
solve the game as defined in Problem 2. Therefore, our later
developments can only focus on the game-based formulation.

Theorem 1: Strategy θ∗0 solves Problem 2 if and only if
its induced supervisor Sθ∗0 solves Problem 1.

V. SYNTHESIS PROCEDURE

In the section, we present our main synthesis procedure
for solving Problem 2 (and hence solves Problem 1). Our ap-
proach consists of two parts. Firstly, we consider the decision
process within each task cycle and obtain micro-strategies.
Then we abstract the decision process among different tasks
in order to obtain a macro-strategy that determines which
micro-strategy to play at each stage.

A. Single Task Strategy Graph

Recall that a path in a directed graph G = (V,E) is
a sequence of vertices v1v2 . . . vn such that 〈vi, vi+1〉 ∈
E,∀i ≥ 1. Then a graph is said to be acyclic if does
not exist a path v1v2 · · · vnv1 that starts from and ends up
with the same vertex. For each vertex v ∈ V , we define
SuccG(v) = {v′ ∈ V : 〈v, v′〉 ∈ E} as the set of successor
vertices of v.

Note that due to the presence of uncontrollable events in
G or the presence of adversary player in A, at each marked
state, we cannot determine the next marked state to visit for
sure. Instead, we can only have a micro-strategy rather than
a single path for each task cycle and need to consider all
accessible marked states. Such an issue is captured by the
structure of single task strategy graph defined as follows.

Definition 1: Let A = (V = V0 ∪ V1, E, v0) be the SC
game graph constructed from G and r ∈ Vm be a target
vertex in A. Then a single task strategy graph (STSG) rooted

at vertex r is an acyclic graph

T = (VT , ET , r̂),

where
• the root r̂ /∈ V is a new copy vertex of r ∈ Vm;
• VT ⊆ V ∪ {r̂} is the set of vertices and we define
VT ,0 = (V0 ∩ VT) ∪ {r̂}, VT ,1 = V1 ∩ VT and VT ,m =
Vm ∩ VT ;

• ET ⊆ VT × (VT \ {r̂}) is the set of edges satisfying
the following constraints:

– ∀v ∈ VT ,0 \ Vm : |SuccT (v)| = 1;
– ∀v ∈ VT ,1 : |SuccT (v)| = |SuccA(v)|;
– ∀v ∈ VT ,m : |SuccT (v)| = 0;
– ∀〈v, v′〉 ∈ ET : 〈P (v), v′〉 ∈ E, where P : VT →
V simply removes “hat” for each vertex, i.e., it
maps r̂ to r and does nothing for other vertices.

We note that a STSG starts from r̂ and terminates at
vertices VT ,m. Therefore, VT ,m are also referred to as the
termination vertices of T . We denote by T the set of all
STSGs and denote by T(r, S) ⊆ T as the set of all STSGs
that are rooted at r and terminate at S ⊆ Vm. We also define
T(r) = ∪S⊆Vm

T(r, S) as the set of STSGs rooted at r.
Intuitively, a STSG T ∈ T(r, S) represents a micro-

strategy for the decision process from a target state r until the
next target state is reached. Therefore, each vertex of Player
0 has a unique successor state representing the choice of the
strategy, i.e., |SuccT (v)| = 1. For each vertex of Player 1,
we need to consider all possible choices of Player 1 that
are feasible in the system, i.e., |SuccT (v)| = |SuccA(v)|.
Furthermore, since we are considering the decision process
for a single task cycle, the graph terminates whenever a target
state in S is reached. Note that, although the micro-strategy
is played from r ∈ Vm, the graph is actually rooted at its
copy r̂ because it may go back to r to complete the task
cycle. Therefore, we use a copy r̂ to distinguish the possible
state r ∈ S from which the next task cycle starts.

In words, T ∈ T(r, S) represents a micro-strategy guar-
anteeing that the next accessible target vertices are in S, and
all vertices in S are possibly to be visited under this strategy.
With this understanding, we denote by θT the micro-strategy
of Player 0 that is effective from vertex r until a new target
vertex v ∈ S is reached. However, it cannot determine which
vertex in S will be reached; this depends on the strategy of
Player 1 and we need to handle all possibilities.

Example 3: Again, let us consider the SC game graph A
shown in Figure 3. Then Figure 4 shows three STSGs for A.
For example, we have T1 ∈ T((0, a), {(1, e), (0, a), (1, a)})
as we cannot determine which target vertex to visit but
we can guarantee that by playing micro-strategy θT1 , the
next task cycle must start from either (1, e), (0, a) or (1, a).
Also, we have T3 ∈ T((0, a), {(4, d)}) because the choice
of Player 1 is unique.

Remark 1: In the above definition, we require that a
STSG T is acyclic, which is motivated by the following
observations. Firstly, if T forms a cycle before reaching a
target state, then this means that, by playing this micro-
strategy from the root, Player 1 will have a strategy such

328

(a) T1 ∈ T((0, a)) (b) T2 ∈ T((1, e)) (c) T3 ∈ T((4, d))

Fig. 4. Examples of STSGs.

that to loop forever in the cycle. Therefore, Player 0 cannot
guarantee to reach a target vertex and the micro-strategy is
invalid. Another reason for requiring T to be acyclic is that,
positional strategy is known to be sufficient for optimality for
the purpose of reachability. Therefore, looping within a cycle
without target state for a finite number of times does not gain
anything for completing the task. Therefore, the acyclicity
condition essentially also restricts each micro-strategy to be
a positional strategy, which is without loss of generality.

Since T ∈ T(r, S) is acyclic, there are only a finite
number of paths from the root vertex r̂ to each termination
vertex s ∈ S. We define PathT (r̂, s) as the set of all paths
from r̂ to s ∈ S in T ∈ T(r, S). Note that, although Player 0
cannot determine which termination vertex it will reach at
the end of this task cycle, the costs incurred when reaching
different termination vertices are different, which depends on
the strategies of Player 1. Therefore, for any T ∈ T(r, S),
we define a new partial weight function wT : S → N+ that
assigns each termination vertex s ∈ S the worst weight of
the path from r̂ to s, i.e.,

wT (s) = max
ρ∈PathT (r̂,s)

∑
i<|ρ|

w(P (ρi), ρi+1).

For example, for T1 shown in Figure 4(a), we have
ωT1((1, e)) = 4, ωT2((0, a)) = 3 and ωT3((4, d)) = 2.

B. Macro SC Game Graph
In the previous subsection, we have shown how to rep-

resent a micro-strategy within each task cycle as a STSG.
However, the question is: suppose that we have completed
the previous task cycle and is at a target vertex, what is
the micro-strategy we need to play for the next cycle?
The question is highly non-trivial because: (i) the resulting
target state under a strategy is non-deterministic; and (ii) the
optimality of the target states, from which the next cycle
start, again depends on all possible micro-strategies that can
be played from them. In order to resolve the above issues,
our approach is to abstract all possible connections between
each target vertex under different STSGs as a macro-game.
Based on the macro-game, we synthesize a macro-strategy
that determines which micro-strategy to play from each target
vertex. This idea is formalized as follows.

Definition 2: Let A be the SC game graph and T be the
set of all STSGs. Then the macro SC game graph (MSCGG)
is a game arena

R = (VR = VR,0 ∪ VR,1, ER, vR,0)

Fig. 5. The MSCGG R.

where
• VR,0 = Vm and VR,1 = T are vertices;
• E ⊆ (VR,0× VR,1)∪ (VR,1× VR,0) is the set of edges

defined by:
– ∀r ∈ Vm, T ∈ T(r) : 〈r, T 〉 ∈ ER
– ∀T ∈ VR,1, s ∈ VT ,m : 〈T , s〉 ∈ ER

• vR,0 = v0 ∈ Vm.
Furthermore, we associate R a weight function wR : ER →
N+ by wR(〈r, T 〉) = 0 and wR(〈T , s〉) = wT (r, s).

Essentially, R abstracts the cyclic process between dif-
ferent target vertices; hence, Player 0’s vertices are Vm. At
each r ∈ Vm, Player 0 chooses to play a micro-strategy
represented by a STSG T rooted at r and moves to an
intermediate vertex T . Once Player 0 agrees with the micro-
strategy induced by T , it can only make sure that the next
target state reached will be in VT ,m but cannot choose which
one; this is the role of Player 1. Therefore, each T is a
Player 1’s vertex and it will lead to all possible target states
VT ,m. The cost incurs when a specific target state s ∈ VT ,m
is reached. The definition of wT (r, s) captures the worst-
case cost from r to s under micro-strategy induced by T .
Therefore, we assign edge 〈T , s〉 the same cost as wT (r, s).

Example 4: We still consider our running example whose
SC game graph A is shown in Figure 3. Then its macro
SC game graph is in Figure 5, where double circles and
squares represent Player 0’s vertices and Player 1’s vertices,
respectively. For the sake of simplicity, STSGs are not shown
explicitly and are denoted by numbers. For example, states
5 and 13 in the figure correspond to STSGs T1 and T2

in Figure 4, respectively. Also for the sake of simplicity,
different costs for edges from T to r ∈ VT ,m are depicted
by different colors, whose values are given at the upper left
corner of the graph.

C. Synthesis Algorithm

The above discussion suggests an approach for solving
the mean-payoff Büchi game per task as formulated in
Problem 2. In particular, since the worst-case total cost under
each micro-strategy from a root target vertex to another
specific target vertex has already been abstracted as a single

329

cost on an edge in R, we have actually transferred the per
cycle cost criterion to the per edge criterion in the standard
mean-payoff game. Therefore, it suffices to solve a standard
mean payoff game over the macro-graph R, which gives us
a macro-strategy determining which T ∈ T(r) to play at
each r ∈ Vm. We denote by θ∗MP as the optimal strategy
for Player 0 in mean payoff game on (R, wR), which can
be obtained by using existing algorithms, e.g., [20], [23].
Furthermore due to the structural property of mean payoff
game, such an optimal strategy is positional in the sense it
only depends on the current vertex of Player 0 inR. Then for
each r ∈ Vm, we denote by θ∗MP (r) ∈ T(r) the STSG θ∗MP

chooses to go. As we discussed early, θ∗MP (r) = T again
induces a micro-strategy θT . It suggests a way to induce a
strategy, based on θ∗MP , for the original game A as follows:
• Initially, the system is at state v0 ∈ Vm, and Player 0

plays micro-strategy θ∗MP (v0), until it reaches a new
target vertex r ∈ Vm;

• Then upon reaching target vertex r ∈ VT ,m, Player 0
changes its strategy to micro-strategy θ∗MP (r), until it
reaches a new target vertex;

• Repeat the above process indefinitely.
We denote by θ∗0 the strategy on A which is induced by θ∗MP

based on the above. Essentially, θ∗0 consists of a sequence
of micro-strategies T1, T2, . . . determined by macro-strategy
θ∗MP . According to Section IV-C, strategy θ∗0 can again
induce a supervisor Sθ∗0 that controls the original plant G.

Theorem 2: Let strategy θ∗MP be the solution to the mean
payoff game on R, then its induced strategy θ∗0 solves
Problem 2, which further implies that S∗ solves Problem 1.

We illustrate the entire procedure by the follow example.
Example 5: Let us still consider our running example,

where the macro SC game graph R has been shown in Fig-
ure 5. Then, by solving the standard mean payoff game onR,
we can get the optimal stationary strategy θ∗MP for Player 0
in R, which works as follows: θ∗MP (0, ε) = 1, θ∗MP (0, a) =
5, θ∗MP (0, d) = 9, θ∗MP (1, a)15 and θ∗MP (1, e) = 13. Then,
we can induce θ∗0 for Player 0 in A from θ∗MP , which works
as follows: θ∗0(0, ε) = (0, γ0), θ∗0(0, a) = (0, γ0), θ∗0(0, d) =
(0, γ0), θ∗0(1, a) = (1, γ1), θ∗0(1, e) = (1, γ1) and θ∗0(2, e) =
(2, γ0). Finally, we obtain supervisor S∗ for G based on θ∗0 ,
which works as follows:
• S(s) = γ0 = {a, d, e}, when δ(q0, s) 6= 1;
• S(s) = γ1 = {d, e}, when δ(q0, s) = 1.

VI. CONCLUSION

In this paper, we formulated and solved a new type of op-
timal supervisory control problem for discrete-event systems.
Our setting captures the scenario where tasks, modeled by
marked states, needs to be completely indefinitely in a cyclic
manner. Our main contributions are summarized as follows.
Firstly, we introduced a new optimality measure called the
average cost per task, which is much more suitable when
cyclic tasks are involved in infinite behaviors. Secondly,
we provided a game-theoretical approach for solving the
formulated problem. Specifically, our approach is based on
abstracting the strategy for each task cycle as a micro-game

and the overall strategy consists of both the macro-strategy
and the micro-strategy. Our results further extend the theory
of optimal supervisory control of DES.

REFERENCES

[1] C. G. Cassandras and S. Lafortune, Introduction to discrete event
systems. Springer Science & Business Media, 2009.

[2] X. Yin and S. Lafortune, “Synthesis of maximally permissive su-
pervisors for partially-observed discrete-event systems,” IEEE rans.
Automatic Control, vol. 61, no. 5, pp. 1239–1254, 2016.

[3] X. Yin and S. Lafortune, “A uniform approach for synthesizing
property-enforcing supervisors for partially-observed discrete-event
systems,” IEEE Trans. Automatic Control, vol. 61, no. 8, pp. 2140–
2154, 2016.

[4] R. Kumar and V. K. Garg, “Optimal supervisory control of discrete
event dynamical systems,” SIAM Journal on Control and Optimization,
vol. 33, no. 2, pp. 419–439, 1995.

[5] R. Sengupta and S. Lafortune, “An optimal control theory for discrete
event systems,” SIAM Journal on control and Optimization, vol. 36,
no. 2, pp. 488–541, 1998.

[6] J. Fu, A. Ray, and C. M. Lagoa, “Unconstrained optimal control of
regular languages,” Automatica, vol. 40, no. 4, pp. 639–646, 2004.

[7] R. Su, J. H. Van Schuppen, and J. E. Rooda, “The synthesis of time
optimal supervisors by using heaps-of-pieces,” IEEE Trans. Automatic
Control, vol. 57, no. 1, pp. 105–118, 2011.

[8] R. C. Hill and S. Lafortune, “Planning under abstraction within a
supervisory control context,” in 55th IEEE Conference on Decision
and Control (CDC), pp. 4770–4777, 2016.

[9] S. Ware and R. Su, “Time optimal synthesis based upon sequential ab-
straction and its application to cluster tools,” IEEE Trans. Automation
Science and Engineering, vol. 14, no. 2, pp. 772–784, 2016.

[10] A. Sakakibara and T. Ushio, “On-line permissive supervisory control
of discrete event systems for scltl specifications,” IEEE Control
Systems Letters, vol. 4, no. 3, pp. 530–535, 2020.

[11] Z. Ma and J. Zhang, “Determining optimal control sequences for
reconfiguration in petri nets using cost trees,” in 59th IEEE Conference
on Decision and Control (CDC), pp. 4485–4491, 2020.

[12] H. Marchand, O. Boivineau, and S. Lafortune, “On the synthesis of
optimal schedulers in discrete event control problems with multiple
goals,” SIAM Journal on Control and Optimization, vol. 39, no. 2,
pp. 512–532, 2000.

[13] H. Marchand, O. Boivineau, and S. Lafortune, “On optimal control
of a class of partially observed discrete event systems,” Automatica,
vol. 38, no. 11, pp. 1935–1943, 2002.

[14] V. Pantelic and M. Lawford, “Optimal supervisory control of prob-
abilistic discrete event systems,” IEEE Trans. Automatic Control,
vol. 57, no. 5, pp. 1110–1124, 2011.

[15] S. Pruekprasert and T. Ushio, “Optimal stabilizing controller for the
region of weak attraction under the influence of disturbances,” IEICE
Trans. Information and Systems, vol. 99, no. 6, pp. 1428–1435, 2016.

[16] Y. Ji, X. Yin, and S. Lafortune, “Local mean payoff supervisory control
for discrete event systems,” IEEE Tran. Automatic Control, 2021.

[17] Y. Ji, X. Yin, and S. Lafortune, “Optimal supervisory control with
mean payoff objectives and under partial observation,” Automatica,
vol. 123, p. 109359, 2021.

[18] K. W. Schmidt, “Optimal supervisory control of discrete event sys-
tems: cyclicity and interleaving of tasks,” SIAM Journal on Control
and Optimization, vol. 53, no. 3, pp. 1425–1439, 2015.

[19] E. Gradel and W. Thomas, Automata, Kogics, and Infinite Games:
A Guide to Current Research. Springer Science & Business Media,
2002.

[20] U. Zwick and M. Paterson, “The complexity of mean payoff games
on graphs,” Theoretical Computer Science, vol. 158, no. 1-2, pp. 343–
359, 1996.

[21] K. Chatterjee, T. A. Henzinger, and M. Jurdzinski, “Mean-payoff
parity games,” in 20th Annual IEEE Symposium on Logic in Computer
Science, pp. 178–187, 2005.

[22] X. Ding, S. L. Smith, C. Belta, and D. Rus, “Optimal control of
markov decision processes with linear temporal logic constraints,”
IEEE Trans. Automatic Control, vol. 59, no. 5, pp. 1244–1257, 2014.

[23] L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J.-F. Raskin,
“Faster algorithms for mean-payoff games,” Formal Methods in System
Design, vol. 38, no. 2, pp. 97–118, 2011.

330

