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Abstract— In this paper, we investigate the problem of
distributed sensing and information transmission in partially
observed discrete-event systems, where the sensing and infor-
mation transmission are complicated by a set of edge sensors.
Each edge sensor selectively transmits its observable events,
according to information transmission policies, to a central
site for the purpose of decision making. In this paper, we
consider a general class of decision-making requirement at the
central site called the distinguishability. Then we investigate both
the verification and synthesis problems. For the verification
problem, two different approaches, one based on the observer
and the other based on the verifier, are proposed to check
whether or not a given set of sensor transmission policies
fulfills the distinguishability requirement at the central site. For
the synthesis problem, we also develop an effective algorithm
to design an observer-based optimal information transmission
policy for each edge sensor such that they are verified to be
distinguishable.

I. INTRODUCTION

A. Motivations

Sensing and information transmission (SIT) problems have
found increasing attentions in discrete-event systems where
the systems make decisions under limited sensor capacities.
Based on different SIT policies, several properties have
been well studied in the DES literature to capture different
requirements imposed on the system. Examples include fault
diagnosis [1], [2], [3], [4] and opacity [5], [6], [7], [8], [9],
[10]. There are two problems immediately: how to verify that
a system satisfies (at least) one of those properties under
a given SIT policy and how to synthesize a SIT policy
to enforce the given property provably. In this paper, we
investigate verification and synthesis problems of distributed
SIT in the context of partially-observed DES with edge
sensors.

The SIT problems in DES has been widely studied in the
DES literature. For instance, in [11], [12] approaches are
proposed to find a language-based minimal SIT policy for
each agent such that the agents can always make a correct
global decision as a team. Two algorithms that compute
minimal SIT policies are proposed in [13] to verify several
properties such as observability, diagnosability, detectability,
and feasibility. The authors in [14] study optimal SIT prob-
lem in DES by placing a minimum number of sensors while
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Fig. 1. Architecture of distributed dynamic sensor observations for
centralized decision-making with n sensors and m agents, where Ωi denotes
the event transmission policy of sensor i and PΩi

denotes the information
mapping under policy Ωi (see strict definitions in Section II).

maintaining structural observability. A discrete-event system
approach is given in [15] to investigate the information
release problem, ensuring the opacity of private information
while releasing the maximum information to the public.

B. Our Contribution

In this paper, we consider the distributed SIT problems
in the context of partially-observed DES. As shown in
Fig. 1, a new architecture is proposed to tackle the problem
of distributed sensing and information transmission for the
purpose of centralized decision making. In this architecture,
each edge sensor transmits its observable events to a central
site for decision making based on its SIT policy, called infor-
mation transmission policy, which controls the observability
property of events and decides the current observable event
can be transmitted to the central site or not. The central
site makes control decisions for each agent by collecting the
information transmitted from the edge sensors. Note that, to
reduce the cost of sensor readings (for reasons of bandwidth,
energy, or security), the edge sensors have no communication
with each other and do not receive any information from the
central site.

The contributions of this paper are threefold. Firstly,
we give a novel architecture based on the distributed SIT,
where the edge sensors transmit the observable events to a
central site for decision making based on their information
transmission policies. Secondly, we propose two different
approaches to verify under the given information trans-
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mission policy whether or not the system satisfies a class
of properties, called state disambiguation, that is able to
distinguish between the states of the system under dynamic
observations and can be applied, but not restricted to, safety
and opacity. One approach is based on building an observer
from the central site. Another one is based on a verifier
structure. Finally, we propose an algorithm to synthesize the
optimal information transmission policies for edge sensors
while ensuring the state distinguishability.

C. Related Works

The verification and synthesis problems under static ob-
servations have been widely studied in the DES literature
by fixing observable events, where a given DES-theoretic
property is satisfied [16], [17], [18], [19]. In [16], a method-
ology is proposed to obtain a set of observable events by
exploiting the structure of the diagnoser automaton, which
ensures language diagnosability of discrete-event systems.
Instead of using partial diagnosers, test diagnosers, and other
new constructs to achieve diagnosability as given in [16], in
this paper we directly employ a centralized decision-maker
to solve a kind of decision-making problems which includes
the diagnosability problem. Authors in [18] synthesize an
optimal set of sensors that can provide sufficient yet minimal
events needed to accomplish the task at hand, such as that
of control or estimation. The case of given sensors with
fixed observation capability does not considered in [18]. By
contrast, in this paper we discuss how to verify whether
the given observation information is sufficient when the
observation capability of sensors are given.

Dynamic observations [20], [21], [13], [22] also re-
ceived a lot of attention in the context of centralized [23],
[24], [25], [26], [27], decentralized [11], and distributed
architectures[28], where sensors can be turned ON/OFF
dynamically. For example, in the centralized architecture a
new hierarchical framework is proposed in [27] to tackle
decentralized diagnosis, where different distributed SIT poli-
cies together with appropriate rules are developed. Instead of
constructing a diagnoser composed of a state estimator and
a failure decision-maker as given in [27], in this paper we
directly employ a centralized decision-maker to complete the
state estimation and decision-making. In the decentralized
architecture, many different property verification problems
have already been studied. For instance, in [29] a SIT
policy is defined by the diagnostic information generated
at the distributed sites, the communication rules used by
the distributed sites, and the coordinator’s decision rule to
address the problem of the failure diagnosis. In this paper,
we generalize the coordinated decentralized architecture pro-
posed in [29], so that local sites no longer need to make
local diagnosis, but use a central decision-maker to judge not
only diagnosis problem, but also a kind of decision-making
problems. In the context of distributed architecture, diagnosis
and communication problems are studied in [28], where local
sites are required to communicate to perform some specified
monitoring and control tasks. By construct, in this paper the
local sites have no communication with each other and do

not receive any information from the central site to reduce
the cost of communications.

II. DISTRIBUTED INFORMATION TRANSMISSION
ARCHITECTURE

A. System Model

We consider a DES modeled by a deterministic finite-state
automaton (DFA)

G = (Q,Σ, δ, q0, Qm),

where Q is a finite set of states, Σ is a finite set of events,
δ : Q × Σ → Q is a (partial) transition function, q0 ∈ Q
is the initial state and Qm ⊆ Q is a set of marked states.
In the usual way, δ can be extended to δ : Q × Σ∗ → Q,
where Σ∗ is the set of all finite-length strings, including the
empty string ε. The generated behavior of G is language
L(G) = {s ∈ Σ∗ : δ(q0, s)!}, where δ(q0, s)! means that
δ(q0, s) is defined, and the marked behavior of G is the
language Lm(G) = {s ∈ L(G) : δ(q0, s) ∈ Qm} ⊆ L(G).

A string s1 ∈ Σ∗ is a prefix of s ∈ Σ∗, written as s1 ≤ s,
if there is a string s2 ∈ Σ∗ such that s1s2 = s. The length of
a string s is denoted by |s|. The prefix closure of a language
L is the set L = {s ∈ Σ∗ : ∃t ∈ L s.t. s ≤ t}. For a natural
number n, let [1, n] = {1, . . . , n} denote the set of all natural
numbers from 1 to n.

B. Information Transmission Policy

We consider the scenario where system G is equipped
with a set of edge sensors {S1, S2, . . . , Sn} that monitors the
global system distributively. We denote by I = {1, . . . , n}
the index set. For each edge sensor Si, i ∈ I, we assume
that it can only observe a set of locally observable event
Σo,i ⊆ Σ. For each i ∈ I, we denote by Pi : Σ∗ → Σ∗o,i
the standard natural projection from Σ to Σo,i. However,
upon the occurrence of a locally observable event σ ∈ Σo,i,
an edge sensor does not necessarily need to transmit this
observation to the central decision-maker. Note that here
we consider a generic central decision-maker and it can be,
e.g., a supervisor or a diagnoser, depending on the specific
application.

Due to the local computation capability of each edge
sensor, it will decide, based it own observation history,
whether to transmit this observation to the central site or not.
Such a decision mechanism is formalized as an information
transmission policy

Ωi : Σ∗o,iΣo,i → Σo,i ∪ {ε}

That is, for each local observation sσ ∈ Σ∗o,iΣo,i, Ωi
will decide whether to transmit the observation of σ, i.e.,
Ωi(sσ) = σ, or not, i.e., Ωi(sσ) = ε. The above definition
of information transmission policy is history-dependent. In
practice, such a policy needs to be implemented in finite
memory, which can be represented as a pair (a finite trans-
ducer)

Ωi = (Ai, Li), (1)
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where Ai = (Xi,Σ, fi, x0,i) is a DFA, called the sensor
automaton, such that
• L(Ai) = Σ∗; and
• ∀x ∈ Xi, σ /∈ Σo,i : fi(x, σ) = x.

and Li : Xi × Σi,o → {Y,N} is a labeling function
that determines whether the current observable event is
transmitted or not. Here, we assume the event domain of
Ai is Σ for the sake of simplicity, but it can only update its
sensor state upon the occurrences of its locally observable
events Σo,i. Also, for any σ ∈ Σo,i, Li(x, σ) = Y means
that the occurrence of event σ will be transmitted if the
edge sensor is at state x, while Li(x, σ) = N represents
the opposite. Then for each state x ∈ Xi, we denote by

θi(x) = {σ ∈ Σo,i : Li(x, σ) = Y }

the set of events whose occurrences will be transmitted by
Ωi at sensor state x. Hereafter in the paper, an information
transmission policy will be considered as a pair Ωi =
(Ai, Li) rather than a language-based mapping.

C. Central Observation by Collecting Edge Information

Now, let Ω̄ = [Ω1,Ω2, . . . ,Ωn] be the collection of
information transmission policies for all edge sensors, where
each Ωi = (Ai, Li) sends information to the central site
distributively. Therefore, from the central site’s point of view,
the information that receives from all edge sensors can be
specified by an Ω̄-induced new projection PΩ̄ : Σ∗ → Σ∗o,
which is defined recursively by:
• PΩ̄(ε) = ε; and
• for any s ∈ Σ∗, σ ∈ Σ, we have

PΩ̄(sσ) =

{
PΩ̄(s)σ if σ ∈ ∪i∈Iθi(fi(x0,i, s))
PΩ̄(s) otherwise

Above definition says that an event can be observed by the
central site if there exists (at least) one edge sensor that can
observe this event and its information transmission policy
will transmit this observation.

Therefore, for any string s ∈ L(G) generated by the
system, we define

EGΩ̄ (s) := {δ(q0, t) ∈ Q : ∃t ∈ L(G) s.t. PΩ̄(s) = PΩ̄(t)}
(2)

as the central state estimate of the system. Clearly, for strings
s, t ∈ L(G), if PΩ̄(s) = PΩ̄(t), then EG

Ω̄
(s) = EG

Ω̄
(t).

D. Problem Formulations

In our setting, the computation of each edge sensor only
aims to determine which observable event to transmit in order
to save bandwidth usage. The ultimate objective is still to
make sure that the central site will have sufficient information
for the purpose of decision making. In this work, instead
of considering specific objectives, e.g., safety or opacity,
we consider a general class of decision-making requirement
called the distinguishability.

Definition 1: (Distinguishability) Let T ⊆ Q × Q be the
specification imposed on the system G = (Q,Σ, δ, q0), and
Ω̄ = [Ω1,Ω2, . . . ,Ωn] be a set of information transition

policies. We say that G is distinguishable w.r.t. Ω̄ and T
if for any string s ∈ L(G), we have

(EGΩ̄ (s)× EGΩ̄ (s)) ∩ T = ∅. (3)

In the above definition, specification T is a set of state
pairs for which the central site should always be able to
distinguish, i.e., for any (q, q′) ∈ T , if q is possible in the
state estimate, then q′ should not be included in it, and vice
versa.

In this work, we consider two different problems for the
distinguishability. One is the verification problem, which
assumes that the information transmission policy for each
edge sensor has already been designed, and we want to verify
whether or not such policies fulfill the distinguishability
requirement at the central site. The other one is the synthesis
problem, namely how to design an information transmission
policy for each edge sensor such that they are verified to
be distinguishable. These two problems are formulated as
follows.

Problem 1: (Verification Problem) Let G be a system
equipped with a set of edge sensors associate with infor-
mation transmission policies Ω̄ = [Ω1,Ω2, . . . ,Ωn] and
T ⊆ Q × Q be a specification. Verify whether or not G
is distinguishable w.r.t. Ω̄ and T .

Problem 2: (Synthesis Problem) Let G be a system
equipped with a set of edge sensors with local observations
Σo,i, i ∈ I and T ⊆ Q × Q be a specification. Find
information transmission policies Ω̄ = [Ω1,Ω2, . . . ,Ωn] for
edge sensors such that G is distinguishable w.r.t. Ω̄ and T ,
and Ω̄ = [Ω1,Ω2, . . . ,Ωn] transmit events as less as possible.

III. VERIFICATION OF INFORMATION TRANSMISSION
POLICIES

In this section, we solve the verification problem (Prob-
lem 1) for a given set of information transmission policies
by two different approaches. The first approach is based
on building the observer from the central site’s point of
view. This approach is practical when the central site wants
to compute the state estimate online. However, it is costly
for purpose of offline verification only. Therefore, another
approach based on the verifier automaton is proposed. For
the sake of simplicity, hereafter in this work, we assume
I = {1, 2}; our approach can be easily extended to the case
of the arbitrary number of edge sensors.

A. Observer-Based Approach

Let Ω̄ = [Ω1,Ω2] be a set of local information
transmission polices, where Ωi = (Ai, Li) with Ai =
(Xi,Σ, fi, x0,i). To build the observer of G, we first define
a new automaton

V = G×A1 ×A2 = (QV ,Σ, δV , q0,V ) (4)

where QV ⊆ Q × X1 × X2 is the set of states, Σ is
the set of events, q0,V = (q0, x0,1, x0,2) is the initial
state, and δV : QV × Σ → QV is the transition function
defined by: for any qV = (q, x1, x2) ∈ QV , δV (qV , σ) =

311



(δ(q, σ), f1(x1, σ), f2(x2, σ)). Note that, since we have as-
sumed that L(Ai) = Σ∗ for i ∈ I, δV (qV , σ)! iff δ(q, σ)!,
and therefore, we have L(V) = L(G).

To compute the state estimate EG
Ω̄

(s), we construct the
observer of G under information transmission policy Ω̄,
which is defined as a new DFA

ObsΩ̄(G) = (Z,Σo, ξ, z0), (5)

where Z ⊆ 2QV \ ∅ is the set of states, Σo = Σo,1 ∪ Σo,2
is the set of events, ξ : Z ×Σo → Z is the partial transition
function defined by: for any z ∈ Z, σ ∈ Σ, we have

ξ(z, σ) = UR(NXσ(z)),

where for any z ∈ Z, we have

NXσ(z)=

{
q′V ∈Z :

∃qV = (q, x1, x2)∈z s.t.
σ∈θ1(x1)∪θ2(x2), q′V =δV (qV , σ)

}
(6)

and UR(z) is defined inductively by:
• z ⊆ UR(z); and
• for any qV = (q, x1, x2)∈ z and σ /∈ θ1(x1)∪θ2(x2),

we have δV (qV , σ) ∈ UR(z).
The initial state z0 is defined by UR({q0,V }). Intuitively,
NXσ(z) is the set of states that can be reached from some
state in z immediately by transmitted event σ, and UR(z) is
the set of states that can be reached unobservably from some
state in z. Note that the above construction of the observer
is different from the standard construction of observer under
natural projection; see, e.g., section 4.8 in [30]. The main
difference is that whether or not each event is observable
from the central site’s point of view is changed dynamically
depending on the states of the information transmission
policies. Therefore, we cannot find a closed-form expression
of UR(z), and it has to be defined inductively.

For any z ∈ Z ⊆ 2QV , we denote by Q(z) = {q ∈
Q : (q, z1, z2) ∈ z} ∈ 2Q the set of states in the first
component of z. The following result shows that the above
proposed observer construction indeed computes the desired
state estimate.

Proposition 1: The observer ObsΩ̄(G) has the following
properties:

(i) PΩ̄(L(G)) = L(ObsΩ̄(G)); and
(ii) For any string s ∈ L(G), we have

EGΩ̄ (s) = Q(ξ(z0, PΩ̄(s)))

.
The above result also leads to our first approach for the

verification of distinguishability.
Theorem 1: System G is distinguishable w.r.t. Ω̄ and T ⊆

Q×Q if and only if ∀z ∈ Z : (Q(z)×Q(z)) ∩ T = ∅.
We illustrate the observer-based verification by the follow-

ing example.
Example 1: Let us consider system G and information

transmission policies [Ω1,Ω2] as shown in Figure 2, where
Σo,1 = {o, a} and Σo,2 = {o, b, c}. We first compute V =
G×A1×A2 which is shown in Figure 3. Then the observer
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Fig. 2. System G and information transmission policies A1 and A2

with L1(1, o) = Y , L1(2, a) = Y , L2(1, b) = Y , L2(1, c) = N , and
L2(2, b) = N . The transmitted events are denoted by red line in the figures.
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Fig. 3. Product automaton V and observer ObsΩ̄(G).

ObsΩ̄(G) is shown in Figure 3. Suppose T = Q1 × Q2 =
{1, 2, 6} × {4, 5, 7}. Then G is not distinguishable, since
at state D of ObsΩ̄(G), we have (Q(D) × Q(D)) ∩ T =
{2, 4, 6} × {2, 4, 6} ∩ T = {(2, 4), (6, 4)} 6= ∅. Therefore,
by Theorem 1 the given information transmission policies
[Ω1,Ω2] cannot ensure the distinguishablility of G.

B. Verifier-Based Approach

By Proposition 1, since the observer generates all observ-
able strings from the central site’s point of view and for any
observed string, it leads to a state whose first component is
the state estimate. The observer is not only valid for offline
verification, but also needed for online estimation. However,
the observer is not efficient if one only considers the offline
verification as it is exponential in the size of the system.
Here, we further propose to use the verifier structure to check
distinguishability under edge sensors.

Still, let G = (Q,Σ, δ, q0) be the system, Ω̄ = [Ω1,Ω2]
be a set of local information transmission polices, where
Ωi = (Ai, Li) with Ai = (Xi,Σo,i, fi, x0,i) for i = 1, 2.
Then the verifier is a new DFA

R = (QR,ΣR, δR, q0,R), (7)

where
• QR ⊆ QV ×QV is the set of states;
• ΣR= (Σ×Σ)∪ ({ε}×Σ)∪ (Σ×{ε}) is the set of events;
• δR : QR ×ΣR → QR is the transition function defined

by: for any qR = (qV , q
′
V ) = (q, x1, x2, q

′, x′1, x
′
2) ∈

QR and σ ∈ Σ

– If σ ∈ (θ1(x1) ∪ θ2(x2))∩ (θ1(x′1) ∪ θ2(x′2)), then

δR(qR, (σ, σ)) = (δV (qV , σ), δV (q′V , σ))
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– If σ ∈ (θ1(x1) ∪ θ2(x2)) \ (θ1(x′1) ∪ θ2(x′2)), then

δR(qR, (ε, σ)) = (qV , δV (q′V , σ))

– If σ ∈ (θ1(x′1) ∪ θ2(x′2)) \ (θ1(x1) ∪ θ2(x2)), then

δR(qR, (σ, ε)) = (δV (qV , σ), q′V )

– If σ /∈ (θ1(x1) ∪ θ2(x2))∪ (θ1(x′1) ∪ θ2(x′2)), then

δR(qR, (ε, σ)) = (qV , δV (q′V , σ))

δR(qR, (σ, ε)) = (δV (qV , σ), q′V )

The construction of automaton R is motivated by the
verifier construction in the static or dynamic observation
setting. Here our construction is more involved as we need to
consider local information transmission policies to determine
the observability of each event at the central site. Intuitively,
our construction tracks a pair of strings that are observational
equivalent from the central receiver’s point of view, i.e., for
any string s = (s1, s2) ∈ L(R), we have PΩ̄(s1) = PΩ̄(s2).
Furthermore, all such pairs are included in the structure if R,
i.e., for any strings s1, s2 ∈ L(G), if PΩ̄(s1) = PΩ̄(s2), then
there exists a string s ∈ L(R) such that s = (s1, s2). These
two properties are rather straightforward by the construction
of R and one can show easily by induction. Specifically, by
tracking a pair of strings that are observational equivalent the
two components of each state of R are used to estimate states
in the original system. All possible confusing states are listed
under the given local information transmission polices, and
thus can be used to check whether the given policies ensure
distinguishability. Our main result is given in the following.

Theorem 2: System G is distinguishable w.r.t. Ω̄ and T ⊆
Q×Q if and only if

∀ qR = (q, x1, x2, q
′, x′1, x

′
2) ∈ QR : (q, q′) /∈ T. (8)

We illustrate the verification of distinguishability using the
verifier by the following example.

Example 2: Let us again consider system G and infor-
mation transmission policies A1 and A2 shown in Figure 2
with Σo,1 = {o, a} and Σo,1 = {o, b, c}. We construct
the verifier automaton R as shown in Figure 4. Suppose
again T = Q1 × Q2 = {1, 2, 6} × {4, 5, 7}. Here, we
employ Theorem 2 to verify whether or not the system is
distinguishable w.r.t. Ω̄ and T . As shown in Figure 4, for state
(qv,2, qv,4) = ((2, 2, 1), (4, 2, 3)) ∈ Z, we have (2, 4) ∈ T .
We thus get that R is not distinguishable w.r.t. Ω̄∗ and T .
Therefore, by Theorem 2, G is not distinguishable w.r.t. Ω̄
and T .

IV. SYNTHESIS OF OPTIMAL INFORMATION
TRANSMISSION POLICIES

In the previous section, we have investigated how to verify
whether a given set of information transmission policies
ensures distinguishability or not. In this section, we further
investigate how to synthesize a set of information transmis-
sion policies for edge sensors such that distinguishability is
fulfilled by construction.

As we discussed early, each information transmission
policy is language-based in general; therefore, the solution
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(ε, b) (b, ε)

(ε, f2)

(f2, ε)

Fig. 4. The verifier automaton R.

space for searching optimal policies may be unbounded.
Further, each edge sensor essentially transmits information
collaboratively in the sense that one edge sensor should
take other sensors’ strategies into account to synthesize its
strategy. However, this local strategy will again affect the
optimality of other strategies. This information dependency
may require infinite iterations, which again, results in un-
bounded solution space. In order to resolve the above issues,
here we propose to restricting our attention to observer-based
strategies, i.e., the decision space for each edge sensor is
restricted to its local observer.

Specifically, for each edge sensor with observable events
Σo,i, its local observer is a new DFA

Obsi(G) = (Zi,Σo,i, ξi, z0,i), (9)

where Zi ⊆ 2Q is the set of states, ξi : Zi×Σo,i → Zi is the
transition function defined by: for any z ∈ Zi and σ ∈ Σo,i,
we have

ξi(z, σ)={q′∈Q : ∃q∈z, w∈(Σ \Σo,i)
∗ s.t. q′=δ(q, σw)}

and z0,i = {q′ ∈Q : ∃w ∈ (Σ \ Σo,i)
∗ s.t. q′ = δ(q0, w)} is

the initial state.
Note that Obsi(G) is different from the central observer

Obs(G) used for the purpose of online estimate and ver-
ification. In particular, Obs(G) only can be constructed
when each local transmission policy is specified. However,
here Obsi(G) is built based on its local sensing capability
Σo,i without the need of specifying its transmission policy.
Our purpose is to consider Obsi(G) as the state-space
for specifying the information transmission policy of edge
sensor i ∈ I. We denote by Õbsi(G) the DFA obtained
by adding self-loops for missing events at each state in
Obsi(G) such that L(Õbsi(G)) = Σ∗. Then for each edge
sensor i ∈ I, Ωi = (Õbsi(G), Li) is called an observer-
based information transmission policy. Hereafter, we assume
that G is distinguishable if each Li always chooses to
transmit observed events. Otherwise, the synthesis problem
will trivially have no solution.

Now we are ready to provide the algorithm for synthe-
sizing information transmission policies, which is given in
Algorithm 1. The basic idea is to mark as many of the
observable events of the local sensors not transmissible as
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Algorithm 1: EDGE-SENSOR-TRANS-POLICY

input : G, Σo,1,Σo,2 and T
output: Ω̄ = [Ω1,Ω2] = [(A1, L1), (A2, L2)]

1 for i ∈ {1, 2} do
2 Ai ← Õbsi(G) = (Xi,Σ, f̃i, x0,i)
3 for any x ∈ Xi, σ ∈ Σ, set

Li(x, σ) =

{
Y if σ ∈ Σo,i ∧ fi(x, σ)!
N otherwise

4 for W ⊆ TrY (A1) ∪ TrY (A2) do
5 for any (x, σ) ∈W such that fi(x, σ)!,

set Li(x, σ)← N
6 Verify if G is distinguishable w.r.t.

[((A1, L1), (A2, L2))] and T
7 if G is not distinguishable then
8 for any (x, σ) ∈W such that fi(x, σ)!,

set Li(x, σ)← Y
else

9 break the for-loop and go to line 4

10 return Ω̄← [(A1, L1), (A2, L2)]

possible while ensuring the distinguishability of the system.
For each Ωi = (Ai, Li), we define

TrY (Ai) = {(x, σ) ∈ Xi × Σo,i : Li(x, σ) = Y }

as the set of transitions corresponding to event transmissions
in Ai. Then Algorithm 1 works as follows. Initially, we
construct the sensor automaton Ai for each i ∈ I based
on the local observer of G (line 2) and allow them to
transmit all observable events (lines 3). Then for any subset
of transitions W associated with event transmissions, we
test whether or not by making the corresponding observable
events non-transmitted (line 5), G is still distinguishable w.r.t.
[((A1, L1), (A2, L2))] and T (line 6). If so, we will keep
W non-transmitted, break the current for-loop, and repeat
searching for subsets of transitions. Therefore, the only case
we reach the final solution in line 10 is that, for any subset
W , we cannot make the transitions non-transmitted, which
means the current transmission policies cannot be improved
anymore.

For any two observer-based information transmission poli-
cies Ωi = (Ai, Li) and Ω′i = (A′i, L

′
i) for i ∈ I, we write

Ω′i ⊆ Ωi if for any sσ ∈ Pi(L(G)), we have

L′i(f
′
i(x0,i, s), σ) = Y ⇒ Li(f(x0,i, s), σ) = Y

and write that Ω′i ⊂ Ωi if Ω′i ⊆ Ωi and there exists sσ ∈
Pi(L(G)) such that

L′i(f
′(x0,i, s), σ) = N ∧ Li(f(x0,i, s), σ) = Y

Then, for any Ω̄ = [Ω1,Ω2] and Ω̄′ = [Ω′1,Ω
′
2], we denote

by Ω̄′ ⊆ Ω̄ if ∀i ∈ [1, n] : Ω′i ⊆ Ωi and by Ω̄′ ⊂ Ω̄ if Ω̄′ ⊆ Ω̄
and ∃i ∈ [1, n] : Ω′i ⊂ Ωi]. Then we say an observer-based
information transmission policy Ω̄ is observer-based optimal
if there does not exist another information transmission
policy Ω̄′ s.t. Ω̄′ ⊂ Ω̄.

Theorem 3: The observer-based information transmission
policy Ω̄ = [Ω1,Ω2] obtained by Algorithm 1 is distinguish-
able and observer-based optimal, i.e., it solves Problem 2.

Remark 1: Note that in Algorithm 1, we test for all
possible subsets of transitions W whether or not the system
is distinguishable by setting their communication labels are
set from Y to N . Such an approach requires to enumerate, in
the worst-case, the power-set of all transitions to determine
whether or not the current solution is optimal. One may ask
why we do not take a greedy search by test transitions one-
by-one. This is because it is known that there is no so-called
monotonicity property in communications. It is possible that
the system is not distinguishable by removing each of the
communications individually but becomes distinguishable by
removing their combinations. Therefore, a greedy search may
not yield an optimal solution.

Example 3: Let us again consider system G in Figure 2
with Σo,1 = {o, a} and Σo,1 = {o, b, c}, and specification
T = Q1 × Q2 = {1, 3, 5} × {6, 7}. Here, we employ
Algorithm 1 to synthesize a set of information transmission
polices Ω̄∗ = {Ω1,Ω2} such that the system is distinguish-
able w.r.t. Ω̄∗ and T .
Step 1: Construct observers A1 = Õbs1(G) =
(X1,Σo,1, f1, x0,1) with X1 = {x1

1, x
2
1} and A2 =

Õbs2(G) = (X2,Σo,2, f2, x0,2) with X2 = {x1
2, x

2
2, x

3
2, x

4
2}

by (9). For any x ∈ Xi and σ ∈ Σo,i, let Li(x, σ) =
Y if fi(x, σ)!. Hence TrY (A1) = {(x1

1, o), (x
2
1, a)} and

TrY (A2) = {(x1
2, o), (x

1
2, b), (x

2
2, c), (x

3
2, b)}.

Step 2:
1) Let W = {(x1

2, o)} and L1(x1
2, o) = N , and Ω2 ←

(A2, L2). Construct R w.r.t Ω̄ = [Ω1,Ω2] by (7). R satisfies
(8), so we keep L2(x1

2, o) = N and let Ω2 ← (A2, L2).
2) Let W = {(x1

1, o)} and L1(x1
1, o) = N , and Ω1 ←

(A1, L1). Construct R w.r.t Ω̄ = [Ω1,Ω2] by (7). R dissat-
isfies (8) since ∃qr ∈ QR. s.t. Q(qr) ∩ T = {1} × {6} 6= ∅.
Hence we let L1(x1

1, o) = Y and Ω1 ← (A1, L1).
3) Let W = {(x2

1, a)} and L1(x2
1, a) = N , and Ω1 ←

(A1, L1). Construct R w.r.t Ω̄ = [Ω1,Ω2] by (7). R satisfies
(8), so we keep L1(x2

1, a) = N and let Ω1 ← (A1, L1).
4) Let W = {(x1

2, b)}, L2(x1
2, b) = N and Ω2 ←

(A2, L2). Construct R w.r.t Ω̄ = [Ω1,Ω2] by (7). R satisfies
(8), so we keep L2(x1

2, b) = N and let Ω2 ← (A2, L2).
5) Let W = {(x2

2, c)}, L2(x2
2, c) = N and Ω2 ←

(A2, L2). Construct R w.r.t Ω̄ = [Ω1,Ω2] by (7). R satisfies
(8), so we keep L2(x2

2, c) = N and let Ω2 ← (A2, L2).
6) Let W = {(x3

2, b)}, L2(x3
2, b) = N and Ω2 ←

(A2, L2). Construct R w.r.t Ω̄ = [Ω1,Ω2] by (7). R dissat-
isfies (8) since ∃qr ∈ QR. s.t. Q(qr) ∩ T = {5} × {7} 6= ∅.
Hence we let L2(x3

2, b) = Y and Ω2 ← (A2, L2).
7) Similarly, we will check the cases W =
{(x1

1, o), (x
2
1, a)}, W = {(x1

1, o), (x
1
2, o)},. . . ,

W = TrY (A1) ∪ TrY (A2) =
{(x1

1, o), (x
2
1, a), (x1

2, o), (x
1
2, b), (x

2
2, c)}.

Step 3: Output: Ω̄ ← [Ω1,Ω2]. A1 and A2 are shown
in Fig. 5 with labels L1(x1

1, o) = Y , L1(x2
1, a) = N ,

L2(x1
2, o) = N , L2(x1

2, b) = N , L2(x2
2, c) = N , and

L2(x3
2, b) = Y .
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Fig. 5. Sensor automata A1 and A2 with L1(x1
1, o) = Y , L1(x2

1, a) =
N , L2(x1

2, o) = N , L2(x1
2, b) = N , L2(x2

2, c) = N , and L2(x3
2, b) = Y .

V. CONCLUSION

We proposed a new architecture to tackle the problem
of distributed sensing and information transmission for the
purpose of centralized decision making in partially observed
discrete-event systems with edge sensors. Information trans-
mission policies for the edge sensors are given to decide
which observed event should to be transmitted to the central
site. Then, we also proposed two approaches to verify
whether the system is centralized distinguishable under a
given set of sensor transmission policies. One approach is
based on building an observer from the central site. Another
one is based on a verifier structure. Finally, we provided an
algorithm to synthesize a set of optimal information trans-
mission policies for edge sensors such that distinguishability
is fulfilled by construction.
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