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Abstract—Opacity is an important information-flow se-
curity property in the analysis of cyber-physical systems.
It captures the plausible deniability of the system’s secret
behavior in the presence of an intruder that may access
the information flow. Existing works on opacity only con-
sider nonmetric systems by assuming that the intruder
can always distinguish between two different outputs pre-
cisely. In this article, we extend the concept of opacity
to systems whose output sets are equipped with met-
rics. Such systems are widely used in the modeling of
many real-world systems whose measurements are phys-
ical signals. A new concept called approximate opacity is
proposed in order to quantitatively evaluate the security
guarantee level with respect to the measurement precision
of the intruder. Then, we propose a new simulation-type
relation, called approximate opacity-preserving simulation
relation, which characterizes how close two systems are
in terms of the satisfaction of approximate opacity. This
allows us to verify approximate opacity for large-scale, or
even infinite, systems using their abstractions. We also
discuss how to construct approximate opacity-preserving
symbolic models for a class of discrete-time control sys-
tems. Our results extend the definitions and analysis
techniques for opacity from nonmetric systems to metric
systems.
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I. INTRODUCTION

A. Motivations

CYBER-physical systems (CPSs) are complex systems
resulting from tight interactions of dynamical systems

and computational devices. Such systems are generally very
complex posing both continuous and discrete behaviors, which
makes the verification and design of such systems significantly
challenging. In particular, components in CPSs are usually
connected via communication networks in order to acquire and
exchange information so that some global functionality of the
system can be achieved. However, this also brings new chal-
lenges for the verification and design of CPSs, since the commu-
nication between system components may release information
that might compromise the security of the system. Therefore,
how to analyze and enforce security for CPS is becoming an in-
creasingly important issue and has drawn considerable attention
in the literature in the past few years [1], [2].

In this article, we investigate an important information-flow
security property called opacity. Roughly speaking, opacity is a
confidentiality property that captures whether or not the “secret”
of the system can be revealed to an intruder that can infer the sys-
tem’s actual behavior based on the information flow. A system
is said to be opaque if it always has the plausible deniability for
any of its secret behavior. The concept of opacity was originally
proposed in the computer science literature as a unified notion for
several security properties [3], [4]. Since then, opacity has been
studied more extensively in the context of discrete-event systems
(DESs), an important class of event-driven dynamical systems
with discrete state spaces. For example, in [5]–[7], several
state-based notions of opacity were proposed, which include
current-state opacity, initial-state opacity, K-step opacity, and
infinite-step opacity. In [8], Lin proposed two language-based
opacity notions called strong opacity and weak opacity and in-
vestigated their relationships with some other properties. In [9],
transformation algorithms among different notions of opacity
were proposed. The aforementioned works mainly consider DES
modeled by finite-state automata. More recently, the definitions
and verification algorithms for different notions of opacity have
been extended to other classes of (discrete) systems, including
Petri nets [10]–[13], stochastic systems [14]–[16], recursive tile
systems [17], and pushdown systems [18]. The interested readers
are referred to recent surveys [19], [20] for more references and
recent developments on this active research area.
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Since opacity is an information-flow property, its definition
strictly depends on the information model of the system. Most
of the existing works in the literature formulate opacity by
adopting the event-based observation model, i.e., some events of
the system (either transition labels or state labels) are observable
or distinguishable while some are not. This essentially assumes
that the output of the system is symbolic in the sense that we can
precisely distinguish between two outputs with different labels.
Hereafter, we will also refer to opacity under this setting as exact
opacity. Exact opacity is very meaningful for systems whose
output sets are nonmetric, e.g., discrete systems whose outputs
are logic events. However, for many real-world applications
whose outputs are physical signals, instead of just saying that
two events are distinguishable or indistinguishable, we may
have a measurement to quantitatively evaluate how close two
outputs are. Such systems are referred to as metric systems,
where the output sets are equipped with appropriate metrics.
For metric systems, if two signals are very close to each other,
then it will be very hard to distinguish them unambiguously
because of the measurement precision or potential measurement
noises. A typical example of this scenario is linear or nonlinear
discrete-time control systems with continuous state spaces and
continuous output mappings. Therefore, existing definitions of
opacity are too strong for metric systems, since they implicitly
assume that the intruder can always distinguish between two
output signals even when they are arbitrarily close to each other,
which is not practical.

B. Our Contributions

In this article, we propose a new concept called approximate
opacity that is more applicable to metric systems. In particular,
we treat two outputs as “indistinguishable” outputs if their
distance is smaller than a given threshold parameter δ ≥ 0.
We consider three basic types of opacity: initial-state opacity,
current-state opacity, and infinite-step opacity. For example,
δ-approximate initial-state opacity requires that, for any state
run starting from a secret state, there exists another state run
starting from a nonsecret state, such that their corresponding
output runs are δ-close to each other. Intuitively, δ-approximate
initial-state opacity says that the intruder can never determine
that the system is initiated from a secret state if it does not
have an enough measurement precision, which is captured by
parameter δ. In other words, instead of requiring that the system
is exactly opaque, our new definitions essentially provide relaxed
versions of opacity with a quantitative security guarantee level
with respect to the measurement precision of the intruder.

For systems whose state spaces are very large or even infinite,
it is desirable to construct abstract models that preserve opacity,
to some extent, for the purpose of verification. To this end,
we propose the concept of ε-approximate opacity-preserving
simulation relation. We show that if there is an ε-approximate
opacity-preserving simulation relation from systemSa to system
Sb, then Sb being (δ − 2ε)-approximate opaque implies that
Sa is δ-approximate opaque. In particular, for a class of incre-
mentally input-to-state stable discrete-time control systems with
possibly infinite state spaces, we propose an effective approach

to construct symbolic models (a.k.a. finite abstractions) that
approximately simulate the original systems in the sense of
opacity preserving and vice versa. The resulting symbolic model
is finite if the state space of the original continuous system is
within a bounded region. Therefore, the proposed abstraction
technique together with the verification algorithm for the finite
case provides a sound way for verifying opacity of discrete-time
control systems with continuous state spaces.

The contributions of this article are summarized as follows.
1) New notions of δ-approximate opacity are proposed to

quantitatively characterize the issue regarding the mea-
surement precision of the intruder.

2) Effective algorithms are provided to verify different no-
tions of approximate opacity.

3) New simulation relations termed as ε-approximate
opacity-preserving simulation relations are proposed to
characterize how close two systems are in terms of the
satisfaction of approximate opacity.

4) For a class of discrete-time control systems, we show how
to construct symbolic models that preserve opacity with
given a priori precision.

C. Related Works

Our article is closely related to several works in the literature.
First, several different approaches have been proposed in the
literature to evaluate opacity more quantitatively rather than re-
quiring that the system is opaque exactly [14], [21]–[23]. For ex-
ample, in [22], the authors adopt the Jensen–Shannon divergence
as the measurement to quantify secrecy loss. In [14], [21], and
[23], stochastic DES models are used to study the probabilistic
measurement of opacity. These approaches essentially aim to
analyze how opaque a single system is, e.g., the probability of
being opaque. However, they neither consider how close two
systems are in terms of being opaque nor consider under what
observation precision level, we can guarantee opacity.

There are also attempts in the literature that extend opacity
from discrete systems to continuous systems. For example, in
the recent results in [24]–[26], the authors extended the notion of
opacity to (switched) linear systems. However, their definition of
opacity is more related to an output reachability property rather
than an information-flow property. Moreover, their formulation
is mostly based on the setting of exact opacity, i.e., we can
always distinguish between two different outputs precisely no
matter how close they are, In [24], the authors mentioned the
direction of using output metric to quantify opacity, and a
property called strong ε-K-initial-state opacity was proposed,
which is closely related to our notions. However, no systematic
study, e.g., verification and abstraction as we consider in this
article, was provided for this property.

Regarding the techniques used in this article, first, our al-
gorithms for the verification of approximate notions of opacity
are motivated by the verification algorithms for exact opacity
studied in [5] and [27]. In particular, we use the idea of con-
structing a new system, called the state estimator, that tracks
all possible states consistent with the observation. However, our
construction of state estimator is not exactly the same as the
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existing one, as additional state information is needed in order
to handle the issue of approximation.

Abstraction-based techniques have also been investigated
in the literature for the verification and synthesis of opacity
(see, e.g., [28]–[32]). In particular, in our recent work [28],
we propose several notions of opacity-preserving (bi)simulation
relations. However, these relations only preserve exact opacity
for nonmetric systems. Our new relations extend the relations
in [28] to metric systems by taking into account how close two
systems are. Such an extension is motivated by the definition of
approximate (bi)simulation relation originally proposed in [33].
However, the original definition of approximate (bi)simulation
relation does not necessarily preserve approximate opacity. Con-
structing symbolic models for control systems is also an active
research area (see, e.g., [34]–[37]). However, most of the existing
works on the construction of symbolic models only consider the
dynamics of the systems and are not taking into account the
opacity property. In our approach, we need to consider both
the dynamic and the secret of the system while constructing the
symbolic model and guarantee the preservation of approximate
opacity across related systems.

A related notion called differential privacy was introduced in
[38] for database systems and has attracted significant attention
in the past few years [39]–[41]. In particular, Jones et al. [40]
extend the original notion of differential privacy to symbolic
systems. Differential privacy requires that any two adjacent
data should produce indistinguishable outputs in the probability
sense. However, the essence of opacity is a confidentiality prop-
erty that captures the plausible deniability of the system’s secret
behavior, while differential privacy captures whether or not any
sensitive data can be learned under some side information. These
two properties are incomparable in general. Note that there are
also probabilistic versions of opacity studied in the literature for
systems modeled as Markov chains [14], [21]–[23]. In those
studies, the essence of probabilistic opacity is still plausible
deniability but with a quantitative measure; the output at each
state is still nonprobabilistic.

Finally, approximate notions of two related properties called
diagnosability and predictability have recently been investigated
in [42] and [43]. Their setting is very similar ours as we both
consider a measurement uncertainty threshold. However, diag-
nosability and predictability can be preserved by the standard
approximate simulation relation. We show that the standard ap-
proximate simulation relation does not preserve opacity. There-
fore, the proposed approximate opacity-preserving simulation
relation is different from the standard approximate simulation
relation in the literature.

D. Organization

The rest of this article is organized as follows. In Section II,
we first introduce some necessary preliminaries. Then, we pro-
pose the concept of approximate opacity in Section III. The
verification procedures for approximate opacity are provided
in Section IV. In Section V, approximate opacity-preserving
simulation relations are proposed, and their properties are
also discussed. In Section VI, we describe how to construct

approximate opacity-preserving symbolic models for incremen-
tally stable discrete-time control systems with continuous state
spaces. Finally, we conclude this article by Section VII. Prelimi-
nary and partial version of this article is presented as an extended
abstract in [44].

II. PRELIMINARIES

A. Notation

The symbols N, N0, Z, R, R+, and R+
0 denote the set of nat-

ural, nonnegative integer, integer, real, positive, and nonnegative
real numbers, respectively. Given a vector x ∈ Rn, we denote
by xi the ith element of x, and by ‖x‖ the infinity norm of x.

The closed ball centered atu ∈ Rm with radius λ is defined by
Bλ(u) = {v ∈ Rm | ‖u− v‖ ≤ λ}. We denote the closed ball
centered at the origin in Rn and with radius λ by Bλ. A set
B ⊆ Rm is called a box if B =

∏m
i=1[ci, di], where ci, di ∈ R

with ci < di for each i ∈ {1, . . . ,m}. The span of a box B
is defined as span(B) = min{|di − ci| | i = 1, . . . ,m}. For a
box B ⊆ Rm and μ ≤ span(B), define the μ-approximation
[B]μ = [Rm]μ ∩B, where [Rm]μ = {a ∈ Rm | ai = kiμ, ki ∈
Z, i = 1, . . . ,m}. Remark that [B]μ �= ∅ for any μ ≤ span(B).
Geometrically, for any μ ∈ R+ with μ ≤ span(B) and λ ≥ μ,
the collection of sets {Bλ(p)}p∈[B]μ is a finite covering of
B, i.e., B ⊆ ⋃p∈[B]μ

Bλ(p). We extend the notions of span
and approximation to finite unions of boxes as follows. Let
A =

⋃M
j=1 Aj , where each Aj is a box. Define span(A) =

min{span(Aj) | j = 1, . . . ,M}, and for any μ ≤ span(A), de-
fine [A]μ =

⋃M
j=1[Aj ]μ. The Minkowski sum of two setsP,Q ⊆

Rn is defined by P ⊕Q = {x ∈ Rn|∃p∈P,q∈Q, x = p+ q}.
Given a set S ⊆ Rn and a constant θ ∈ R≥0, we define a new
set Sθ = S ⊕ Bθ as the inflated version of the set S.

Given a function f : N+
0 → Rn, the (essential) supremum of

f is denoted by ‖f‖∞ := (ess)sup{‖f(k)‖, k ≥ 0}. A contin-
uous function γ : R+

0 → R+
0 is said to belong to class K if it

is strictly increasing and γ(0) = 0; γ is said to belong to class
K∞ if γ ∈ K and γ(r) → ∞ as r → ∞. A continuous function
β : R+

0 × R+
0 → R+

0 is said to belong to class KL if, for each
fixed s, the map β(r, s) belongs to class K with respect to r
and, for each fixed nonzero r, the map β(r, s) is decreasing with
respect to s and β(r, s) → 0 as s → ∞. We identify a relation
R ⊆ A×B with the map R : A → 2B defined by b ∈ R(a) iff
(a, b) ∈ R. Given a relation R ⊆ A×B, R−1 denotes the in-
verse relation defined byR−1 = {(b, a) ∈ B ×A : (a, b) ∈ R}.

B. System Model

In this article, we employ a notion of “system” introduced in
[45] as the underlying model of CPS describing both continuous-
space and finite control systems.

Definition II.1: A system S is a tuple

S = (X,X0, U,−→, Y,H) (1)

where we have the following.
1) X is a (possibly infinite) set of states.
2) X0 ⊆ X is a (possibly infinite) set of initial states.
3) U is a (possibly infinite) set of inputs.
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4) −→⊆ X × U ×X is a transition relation.
5) Y is a set of outputs.
6) H : X → Y is an output map.

A transition (x, u, x′) ∈−→ is also denoted by x
u−→x′. For

a transition x
u−→x′, state x′ is called a u-successor, or simply a

successor, of state x; state x is called a u-predecessor, or simply
a predecessor, of state x′. We denote by Postu(x) the set of
all u-successors of state x and by Preu(x) the set of all u-
predecessors of state x. For a set of states q ∈ 2X , we define
Postu(q) = ∪x∈qPostu(x) and Preu(q) = ∪x∈qPreu(x). A
system S is said to be:

1) metric, if the output set Y is equipped with a metric d :
Y × Y → R+

0 ;
2) finite (or symbolic), if X and U are finite sets;
3) deterministic, if for any state x ∈ X and any input u ∈ U ,

|Postu(x)| ≤ 1 and nondeterministic otherwise.
Given a system S = (X,X0, U,−→, Y,H) and any initial

state x0 ∈ X0, a finite state run generated from x0 is a finite
sequence of transitions:

x0
u1−→x1

u2−→· · · un−1−→ xn−1
un−→xn (2)

such that xi
ui+1−→ xi+1 for all 0 ≤ i < n. A finite output run is a

sequence y0y1 . . . yn such that there exists a finite state run of
the form (2) with yi = H(xi), for i = 0, . . . , n.

III. EXACT AND APPROXIMATE OPACITY

In this section, we first review the notion of exact opacity.
Then, we introduce the notion of approximate opacity.

A. Exact Opacity

In many applications, systems may have some “secrets” that
do not want to be revealed to intruders that are potentially
malicious. In this article, we adopt a state-based formulation of
secrets. Specifically, we assume that XS ⊆ X is a set of secret
states. Hereafter, we will always consider systems with secret
states, and we write a system S = (X,X0, U,−→, Y,H) with
secret statesXS by a new tupleS = (X,X0, XS , U,−→, Y,H).

In order to characterize whether or not a system is secure, the
concept of opacity was proposed in the literature. We review
three basic notions of opacity [9] as follows.

Definition III.1: Consider a system S =
(X,X0, XS , U,−→, Y,H). System S is said to be:

1) initial-state opaque if for any x0 ∈ X0 ∩XS and finite
state run x0

u1−→x1
u2−→· · · un−→xn, there exist x′

0 ∈ X0 \
XS and a finite state run x′

0

u′
1−→x′

1

u′
2−→· · · u′

n−→x′
n such

that H(xi) = H(x′
i) for any i = 0, 1, . . . , n;

2) current-state opaque if for any x0 ∈ X0 and
finite state run x0

u1−→x1
u2−→· · · un−→xn such that

xn ∈ XS , there exist x′
0 ∈ X0 and finite state run

x′
0

u′
1−→x′

1

u′
2−→· · · u′

n−→x′
n such that x′

n ∈ X \XS and
H(xi) = H(x′

i) for any i = 0, 1, . . . , n;
3) infinite-step opaque if for anyx0 ∈ X0, any finite state run

x0
u1−→x1

u2−→· · · un−→xn and any k ∈ {0, . . . , n}, xk ∈
XS implies that there exist x′

0 ∈ X0 and a finite state

runx′
0

u′
1−→x′

1

u′
2−→· · · u′

n−→x′
n such thatx′

k ∈ X \XS and
H(xi) = H(x′

i) for any i = 0, 1, . . . , n.
The intuitions of the above definitions are as follows. Suppose

that the output run of the system can be observed by a passive
intruder that may use this information to infer the secret of
the system. Then, initial-state opacity requires that the intruder
should never know for sure that the system is initiated from a
secret state no matter what output run is generated. Similarly,
current-state opacity says that the intruder should never know
for sure that the system is currently at a secret state no matter
what output run is generated. Infinite-step opacity is stronger
than both initial-state opacity and current-state opacity as it
requires that the intruder should never know that the system
is/was at a secret state for any specific instant k. For any sys-
temS = (X,X0, XS , U,−→, Y,H), we assume without loss of
generality that ∀x0 ∈ X0 : {x ∈ X0 : H(x) = H(x0)} �⊆ XS .
This assumption essentially requires that the secret of the system
cannot be revealed initially; otherwise, the system is not opaque
trivially.

Remark III.2: Definition III.1 implicitly considers the fol-
lowing model of the intruder: 1) the intruder knows the model
of the system; and 2) it can only observe the output trajectory
of the system. Therefore, the intruder essentially wants to use
the output trajectory observed online and the knowledge of the
system model to infer the internal behavior/state of the system.
Note that, in our setting, the input information is assumed to be
internal and the intruder does not know which input the system
takes. This setting can be easily relaxed, and all results in this
article can be extended to the case where both input and output
information are available by the intruder. For example, we can
simply refine the model of the system such that the output space
of the refined system is a pair and the input leading to a state is
also encoded in the output of this state.

Remark III.3: Our definition of infinite-step opacity requires
that the intruder should never know for sure that the system
is/was at a secret state for any specific instant. In some cases,
the intruder may know that the system must have visited a
secret state, although it cannot tell the precise instant. Such
a requirement can be captured by the notion of strong (or
trajectory-based) infinite-step opacity (see, e.g., [6, Remark 5]).
This definition is stronger than ours, and which one to use is
dependent on the applications. However, strong infinite-step
opacity can be transformed to current-state opacity by augment-
ing the state space to encode whether a secret state has been
visited or not.

B. Approximate Opacity

Note that Definition III.1 requires that for any secret behavior,
there exists a nonsecret behavior such that they generate exactly
the same output. Therefore, we will also refer to these definitions
as exact opacity. Exact opacity essentially assumes that the
intruder or the observer can always measure each output or
distinguish between two different outputs precisely. This setting
is reasonable for nonmetric systems where outputs are symbols
or events. However, for metric systems, e.g., when the outputs are
physical signals, this setting may be too restrictive. In particular,

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 13,2021 at 08:17:27 UTC from IEEE Xplore.  Restrictions apply. 



1634 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 4, APRIL 2021

owing to the imperfect measurement precision, which is almost
the case for all physical systems, it is very difficult to distin-
guish between two observations if their difference is very small.
Therefore, exact opacity may be too strong for metric systems,
and it will be useful to define a weak and “robust” version of
opacity by characterizing under which measurement precision
the system is opaque. To this end, we define new notions of
opacity called approximate opacity for metric systems.

Definition III.4: Let S = (X,X0, XS , U,−→, Y,H) be a
metric system, with the metric d defined over the output set,
and a constant δ ≥ 0. System S is said to be:

1) δ-approximate initial-state opaque if for any x0 ∈
X0 ∩XS and finite state run x0

u1−→x1
u2−→· · · un−→xn,

there exist x′
0 ∈ X0 \XS and a finite state run

x′
0

u′
1−→x′

1

u′
2−→· · · u′

n−→x′
n such that

max
i∈{0,...,n}

d(H(xi), H(x′
i)) ≤ δ

2) δ-approximate current-state opaque if for any x0 ∈
X0 and finite state run x0

u1−→x1
u2−→· · · un−→xn such

that xn ∈ XS , there exist x′
0 ∈ X0 and finite state run

x′
0

u1−→x′
1

u′
2−→· · · u′

n−→x′
n such that x′

n ∈ X \XS and

max
i∈{0,...,n}

d(H(xi), H(x′
i)) ≤ δ

3) δ-approximate infinite-step opaque if for any x0 ∈ X0,
any finite state run x0

u1−→x1
u2−→· · · un−→xn and any k ∈

{0, . . . , n},xk ∈ XS implies that there existx′
0 ∈ X0 and

a finite state run x′
0

u1−→x′
1

u′
2−→· · · u′

n−→x′
n such that x′

k ∈
X \XS and

max
i∈{0,...,n}

d(H(xi), H(x′
i)) ≤ δ.

The notions of δ-approximate initial-state, current-state opac-
ity, and infinite-step opacity are very similar to their exact
counterparts. The main difference is how we treat two outputs as
indistinguishable outputs. Specifically, same as the exact case,
we still assume that the intruder knows the system model and
the output trajectory generated. However, we further assume that
the intruder may not be able to distinguish an output trajectory
from other δ-closed trajectories confidentially. Intuitively, the
approximate version of opacity can be interpreted as “the secret
of the system cannot be revealed to an intruder that does not have
an enough measurement precision related to parameter δ.” In
other words, instead of providing an exact security guarantee,
approximate opacity provides a relaxed and quantitative security
guarantee with respect to the measurement precision of the
intruder. Therefore, the value δ can be interpreted as either the
measurement imprecision of the intruder or the security level
the system can guarantee, i.e., under how powerful intruder
the system is still secure. Clearly, when δ = 0, each notion of
δ-approximate opacity reduces to its exact version. Similar to the
exact case, hereafter, we assume without loss of generality that

∀x0 ∈ X0 : {x ∈ X0 : d(H(x0), H(x)) ≤ δ} �⊆ XS

for any system S = (X,X0, XS , U,−→, Y,H). This
assumption can be easily checked, and its nonsatisfaction

Fig. 1. Example for approximate opacity, where states marked by red
denote secret states, states marked by input arrows denote initial states,
and the output map is specified by the value associated to each state.

means that δ-approximate initial-state opacity, δ-approximate
current-state opacity, and δ-approximate infinite-step opacity
are all violated trivially.

We illustrate exact opacity and approximate opacity by the
following example.

Example III.5: Consider system S = (X,X0, XS , U,−→
, Y,H) depicted in Fig. 1, where X = {A,B,C,D}, X0 =
{A,B}, XS = {B}, U = {u}, H = {0.1, 0.15, 0.2, 0.35} ⊆
R, and the output map is specified by the value associated with
each state. Clearly, none of exact initial-state opacity, exact
current-state opacity, and exact infinite-step opacity is satisfied,
since we know immediately that the system is at secret state B
when value 0.1 is observed.

Now, let us assume that the output set Y is equipped with
metric d defined by d(y1, y2) = |y1 − y2|. We claim that S
is not 0.05-approximate current-state opaque. For example, let
us consider finite run B

u−→D
u−→B that generates output

run [0.1][0.35][0.1]. However, there does not exist a finite run
leading to a nonsecret state whose output run is 0.05-close to
the above output run. To see this, in order to match the above
output run, we must consider a run starting from state B, since
for the initial state A, we have d(H(A), H(B)) = 0.1 ≥ 0.05,
and the next state reached can only be D. From state D, we
can reach statesA andB, butd(H(A), 0.1) = 0.1 ≥ 0.05 =: δ.
Therefore, the only finite run that approximately matches the
above output will end up with secret state B, i.e., we know
unambiguously that the system is currently at a secret state
even when we cannot measure the output precisely. In contrast,
one can check that the system is 0.1-approximate current-state
opaque.

Similarly, system S is not 0.1-approximate initial-state
opaque, since for output run [0.1][0.35] starting from the secret
state B, there is no run starting from a nonsecret initial state that
can approximately match it. One can also check that the system is
δ-approximate initial-state opaque only when δ ≥ 0.15. We will
provide formal procedures for verifying approximate opacity
later.

Remark III.6: LetS = (X,X0, XS , U,−→, Y,H) be a met-
ric system. If the output map H is identity, i.e. H(x) = x, ∀x ∈
X , then S is trivially not exactly opaque as in Definition III.1
since we know the exact state of the system directly. However,
this is not the case for the approximate notions of opacity as in
Definition III.4, since the distance between a secret state and
a nonsecret state can be very small even if their values are not
exactly the same.
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IV. VERIFICATION OF APPROXIMATE OPACITY FOR

FINITE SYSTEMS

In this section, we show how to verify approximate opacity for
finite systems. This will also provide the basis for the verification
of approximate opacity for infinite systems.

A. Verification of Approximate Initial-State Opacity

In order to verify δ-approximate initial-state opacity, we
construct a new system called the δ-approximate initial-state
estimator defined as follows.

Definition IV.1: Let S = (X,X0, XS , U,−→, Y,H) be a
metric system, with the metric d defined over the output set,
and a constant δ ≥ 0. The δ-approximate initial-state estimator
is a system (without outputs)

SI = (XI , XI0, U,−→
I

)

where we have the following.
1) XI ⊆ X × 2X is the set of states.
2) XI0 = {(x, q)∈X × 2X : x′ ∈q ⇔ d(H(x), H(x′)) ≤

δ} is the set of initial states.
3) U is the set of inputs, which is the same as the one in S.
4) −→

I
⊆ XI × U ×XI is the transition function de-

fined by: for any (x, q), (x′, q′) ∈ X × 2X and u ∈ U ,
(x, q)

u−→
I

(x′, q′) if:

1) (x′, u, x) ∈−→;
2) q′ = ∪û∈UPreû(q) ∩ {x′′ ∈ X : d(H(x′),

H(x′′)) ≤ δ}.
For the sake of simplicity, we only consider the part of SI that

is reachable from initial states.
Intuitively, the δ-approximate initial-state estimator works as

follows. Each initial state of SI is a pair consisting of a system
state and its δ-closed states; we consider all each pairs as the
set of initial states. Then, from each state, we track backwards
states that are consistent with the output information recursively.
Our construction is motivated by the reversed-automaton-based
initial-state estimator proposed in [9] but with the following
differences. First, the way we defined information consistency
is different. Here, we treat states whose outputs are δ-close to
each other as consistent states. Moreover, the structure in [9]
only requires a state space of 2X , while our state space is X ×
2X . The additional first component can be understood as the
“reference trajectory” that is used to determine what is “δ-close”
at each instant. We use the following result to show the main
property of SI .

Proposition IV.2: Let S = (X,X0, XS , U,−→
I

, Y,H) be a

metric system, with the metric d defined over the output set,
and a constant δ ≥ 0. Let SI = (XI , XI0, U,−→

I
) be its δ-

approximate initial-state estimator. Then, for any (x0, q0) ∈
XI0 and any finite run

(x0, q0)
u1−→
I

(x1, q1)
u2−→
I

· · · un−→
I

(xn, qn)

we have
i) xn

un−→xn−1
un−1−→ · · · u1−→x0;

Fig. 2. Examples of δ-approximate initial-state estimators. (a) SI when
δ = 0.1. (b) SI when δ = 0.15.

ii) qn={x′
0∈X : ∃x′

0

u′
n−→x′

1

u′
n−1−→ · · · u′

1−→x′
n s.t.

maxi∈{0,1,...,n} d(H(xi), H(x′
n−i)) ≤ δ

}.

Proof: See the Appendix. �
The next theorem provides one of the main results of this

section on the verification of δ-approximate initial-state opacity
of finite metric systems.

Theorem IV.3: Let S = (X,X0, XS , U,−→
I

, Y,H) be a fi-

nite metric system, with the metric d defined over the output
set, and a constant δ ≥ 0. Let SI = (XI , XI0, U,−→

I
) be its

δ-approximate initial-state estimator. Then, S is δ-approximate
initial-state opaque if and only if

∀(x, q) ∈ XI : x ∈ X0 ∩XS ⇒ q ∩X0 �⊆ XS . (3)

Proof: See the Appendix. �
We illustrate how to verify δ-approximate initial-state opacity

by the following example.
Example IV.4: Let us still consider systemS shown in Fig. 1.

The δ-approximate initial-state estimator SI when δ = 0.1 is
shown in Fig. 2(a). For example, for the initial state (D, {D}),
we have (D, {D}) u−→

I
(B, {B,C}) since B

u−→D and

{B,C} = Preu({D}) ∩ {x ∈ X : d(0.1, H(x)) ≤ 0.1} =
{B,C} ∩ {A,B,C}. However, for state (B, {B,C}) ∈ XI ,
we have B ∈ X0 ∩XS and {B,C} ∩X0 = {B} ⊆ XS .
Therefore, by Theorem IV.3, we know that the system is
not 0.1-approximate initial-state opaque. Similarly, we can
also construct SI for the case of δ = 0.15, which is shown
in Fig. 2(b). For state (B, {A,B,C}) ∈ XI , which is the
only state whose first component is in X0 ∩XS , we have
{A,B,C} ∩X0 = {A,B} �⊆ XS . By Theorem IV.3, we know
that the system is 0.15-approximate initial-state opaque.

B. Verification of Approximate Current-State Opacity

In order to verify δ-approximate current-state opacity, we also
need to construct a new system called the δ-approximate current-
state estimator defined as follows.
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Definition IV.5: Let S = (X,X0, XS , U,−→, Y,H) be a
metric system, with the metric d defined over the output set, and
a constant δ ≥ 0. The δ-approximate current-state estimator is
a system (without outputs)

SC = (XC , XC0, U,−→
C

)

where we have the following.
1) XC ⊆ X × 2X is the set of states.
2) XC0 = {(x, q)∈X0×2X0 : x′ ∈q ⇔

d(H(x), H(x′))≤δ} is the set of initial states.
3) U is the set of inputs, which is the same as the one in S.
4) −→

C
⊆ XC × U ×XC is the transition function de-

fined by: for any (x, q), (x′, q′) ∈ X × 2X and u ∈ U ,
(x, q)

u−→
C

(x′, q′) if:

1) (x, u, x′) ∈−→;
2) q′ = ∪û∈UPostû(x) ∩ {x′′ ∈ X : d(H(x′),

H(x′′))≤δ}.
For the sake of simplicity, we only consider the part of SC

that is reachable from initial states.
The construction of SC is similar to SI . However, we need

to track all forward runs from each pair of initial state and its
information-consistent states. Still, we need the first component
as the “reference state” to determine what are “δ-close” states.
We use the following result to state the main properties of SC .

Proposition IV.6: Let S = (X,X0, XS , U,−→, Y,H) be a
metric system, with the metric d defined over the output set,
and a constant δ ≥ 0. Let SC = (XC , XC0, U,−→

C
) be its δ-

approximate current-state estimator. Then, for any (x0, q0) ∈
XC0 and any finite run

(x0, q0)
u1−→
C

(x1, q1)
u2−→
C

· · · un−→
C

(xn, qn)

we have
i) x0

u1−→x1
u2−→· · · un−→xn;

ii) qn = {x′
n ∈ X : ∃x′

0 ∈ X0, ∃x′
0

u′
1−→x′

1

u′
2−→

· · · u′
n−→x′

n s.t. maxi∈{0,1,...,n} d(H(xi), H(x′
i))

≤ δ}.
Proof: See the Appendix. �
Now, we show the second main result of this section by

providing a verification scheme for δ-approximate current-state
opacity of finite metric systems.

Theorem IV.7: Let S = (X,X0, XS , U,−→, Y,H) be a
metric system, with the metric d defined over the output set,
and a constant δ ≥ 0. Let SC = (XC , XC0, U,−→

C
) be its δ-

approximate current-state estimator. Then, S is δ-approximate
current-state opaque if and only if

∀(x, q) ∈ XC : q �⊆ XS . (4)

Proof: See the Appendix. �

C. Verification of Approximate Infinite-Step Opacity

Finally, we can combine the δ-approximate initial-state es-
timator SI and the δ-approximate current-state estimator SC

to verify δ-approximate infinite-step opacity of finite metric

systems. The verification scheme is provided by the following
theorem.

Theorem IV.8: Let S = (X,X0, XS , U,−→, Y,H) be a fi-
nite metric system, with the metric d defined over the output
set, and a constant δ ≥ 0. Let SI = (XI , XI0, U,−→

I
) and

SC = (XC , XC0, U,−→
C

) be its δ-approximate initial-state es-

timator and δ-approximate current-state estimator, respectively.
Then, S is δ-approximate infinite-step opaque if and only
if

∀(x, q) ∈ XI , (x
′, q′) ∈ XC : x = x′ ∈ XS ⇒ q ∩ q′ �⊆ XS .

(5)
Proof: See the Appendix. �
Remark IV.9: We conclude this section by discussing

the complexity of verifying approximate opacity. Let S =
(X,X0, XS , U,−→, Y,H) be a finite metric system. The com-
plexity of the verification algorithms for both approximate
initial-state and current-state opacity is O(|U | × |X| × 2|X|),
which is the size of SI or SC . For approximate infinite-step
opacity, we need to construct both SI and SC and compare
each pair of states in SI and SC . Therefore, the complexity for
verifying approximate infinite-step opacity using Theorem IV.8
is O(|U | × |X|2 × 4|X|). It is worth noting that the complexity
of verifying exact opacity as in Definition III.1 is already known
to be PSPACE complete [46]. Using a similar reduction, we can
conclude that the complexity of verifying approximate opacity
as in Definition III.4 is also PSPACE complete for δ > 0. Finally,
we note that the exponential complexity essentially comes from
the subset construction to handle information uncertainty. In
practice, the subset construction usually results in a quite small
structure (see, e.g., [47] for detailed empirical studies on this
issue).

V. APPROXIMATE SIMULATION RELATIONS FOR OPACITY

In the previous sections, we have introduced notions of ap-
proximate opacity and their verification procedures. However,
when the system is very large or even infinite, verifying opacity
based on the original system is not efficient or not even possible.
Therefore, it will be beneficial if we can verify opacity based
on an “equivalent” smaller or symbolic system. To this end, in
this section, we study under what conditions two systems are
equivalent and in what sense. Specifically, we introduce new
notions of approximate opacity-preserving simulation relations,
inspired by the one in [33]. The newly proposed simulation
relations will provide the basis for abstraction-based verification
of approximate opacity.

A. Approximate Initial-State Opacity-Preserving
Simulation Relation

First, we introduce a new notion of approximate initial-state
opacity-preserving simulation relation.

Definition V.1 (Approximate initial-state opacity-preserving
simulation relation): Consider two metric systems
Sa = (Xa, Xa0, XaS , Ua,−→

a
, Ya, Ha) and Sb =

(Xb, Xb0, XbS , Ub,−→
b
, Yb, Hb) with the same output sets
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Ya = Yb and metric d. For ε ∈ R+
0 , a relation R ⊆ Xa ×Xb

is called an ε-approximate initial-state opacity-preserving
simulation relation (ε-InitSOP simulation relation) from Sa to
Sb if:

1)
a) ∀xa0∈Xa0 ∩XaS , ∃xb0∈Xb0 ∩XbS :

(xa0, xb0) ∈ R;
b) ∀xb0 ∈ Xb0 \XbS , ∃xa0 ∈ Xa0 \XaS :

(xa0, xb0) ∈ R;
2) ∀(xa, xb) ∈ R : d(Ha(xa), Hb(xb)) ≤ ε;
3) for any (xa, xb) ∈ R, we have

a) ∀xa
ua−→
a

x′
a, ∃xb

ub−→
b

x′
b : (x

′
a, x

′
b) ∈ R;

b) ∀xb
ub−→
b

x′
b, ∃xa

ua−→
a

x′
a : (x′

a, x
′
b) ∈ R.

We say that Sa is ε-InitSOP simulated by Sb, denoted by
Sa �ε

I Sb, if there exists an ε-InitSOP simulation relation R
from Sa to Sb.

Note that although the above relation is similar to the approxi-
mate bisimulation relation proposed in [33], it is still a one sided
relation here because condition 1) is not symmetric. We refer the
interested readers to [28] to see why one needs strong condition
3) in Definition V.1 to show preservation of initial-state opacity
in one direction when ε = 0.

The following main theorem provides a sufficient condition
for δ-approximate initial-state opacity based on related systems
as in Definition V.1.

Theorem V.2: Let Sa = (Xa, Xa0, XaS , Ua,−→
a

, Ya, Ha)

and Sb = (Xb, Xb0, XbS , Ub,−→
b
, Yb, Hb) be two metric

systems with the same output sets Ya = Yb and metric d,
and let ε, δ ∈ R+

0 . If Sa �ε
I Sb and ε ≤ δ

2 , then the following
implication holds:

Sb is (δ − 2ε)-approximate initial-state opaque

⇒ Sa is δ-approximate initial-state opaque.

Proof: Consider an arbitrary secret initial state x0 ∈ Xa0 ∩
XaS and a run x0

u1−→
a

x1
u2−→
a

· · · un−→
a

xn in Sa. Since Sa �ε
I

Sb, by conditions 1)-a), 2), and 3)-a) in Definition V.1,
there exist a secret initial state x′

0 ∈ Xb0 ∩XbS and a run

x′
0

u′
1−→
b

x′
1

u′
2−→
b

· · · u′
n−→
b

x′
n in Sb such that

∀i ∈ {0, 1, . . . , n} : d(Ha(xi), Hb(x
′
i)) ≤ ε. (6)

Since Sb is (δ − 2ε)-approximate initial-state opaque, there
exist a nonsecret initial state x′′

0 ∈ Xb0 \XbS and a run

x′′
0

u′′
1−→
b

x′′
1

u′′
2−→
b

· · · u′′
n−→
b

x′′
n such that

max
i∈{0,1,...,n}

d(Hb(x
′
i), Hb(x

′′
i )) ≤ δ − 2ε. (7)

Again, since Sa �ε
I Sb, by conditions 1)-b), 2), and 3)-b) in

Definition V.1, there exist an initial state x′′′
0 ∈ Xa0 \XaS and

a run x′′′
0

u′′′
1−→
a

x′′′
1

u′′′
2−→
a

· · · u′′′
n−→
a

x′′′
n such that

∀i ∈ {0, 1, . . . , n} : d(Ha(x
′′′
i ), Hb(x

′′
i )) ≤ ε. (8)

Fig. 3. Example of ε-InitSOP simulation relation.

Combining (6)–(8), and using the triangle inequality, we have

max
i∈{0,1,...,n}

: d(Ha(xi), Ha(x
′′′
i )) ≤ δ. (9)

Since x0 ∈ Xa0 ∩XaS and x0
u1−→
a

x1
u2−→
a

· · · un−→
a

xn are arbi-

trary, we conclude that Sa is δ-approximate initial-state opaque.
�

The following corollary is a simple consequence of the result
in Theorem V.2 but for the lack of δ-approximate initial-state
opacity.

Corollary V.3: Let Sa = (Xa, Xa0, XaS , Ua,−→
a

, Ya, Ha)

and Sb = (Xb, Xb0, XbS , Ub,−→
b
, Yb, Hb) be two metric sys-

tems with the same output sets Ya = Yb and metric d and let
ε, δ ∈ R+

0 . If Sb �ε
I Sa, then the following implication holds:

Sb is not (δ + 2ε)-approximate initial-state opaque

⇒ Sa is not δ-approximate initial-state opaque.

Proof: Since Sb �ε
I Sa, by Theorem V.2, we know that Sa

being δ-approximate initial-state opaque implies that Sb is (δ +
2ε)-approximate initial-state opaque. Hence, Sb not being (δ +
2ε)-approximate initial-state opaque implies that Sa is not δ-
approximate initial-state opaque. �

Remark V.4: It is worth remarking that δ and ε are parame-
ters specifying two different types of precision. Parameter δ is
used to specify the measurement precision under which we can
guarantee opacity for a single system, while parameter ε is used
to characterize the “distance” between two systems in terms of
being approximate opaque. The reader should not be confused
by the different roles of these two parameters.

We illustrate ε-InitSOP simulation relation by the following
example.

Example V.5: Let us consider systems Sa and Sb shown in
Fig. 3 (a) and (b), respectively. We mark all secret states by
red, and the output map is specified by the value associated
with each state. Let us consider the following relation: R =
{(A, J), (B,K), (C,K), (D,K), (E,N), (F,M), (G,M),
(I,M)}. We claim that R is an ε-InitSOP simulation
relation from Sa to Sb when ε = 0.1. We check item by
item following Definition V.1. First, for E ∈ Xa0 ∩XaS , we
have N ∈ Xb0 ∩XbS such that (E,N) ∈ R. Similarly, for
J ∈ Xb0 \XbS , we haveA ∈ Xa0 \XaS such that (A, J) ∈ R.
Therefore, condition 1) in Definition V.1 holds. In addition,
for any (xa, xb) ∈ R, we have d(Ha(xa), Ha(xb)) ≤ 0.1,
e.g., d(Ha(A), Hb(J)) = 0.1 and d(Ha(C), Hb(K)) = 0.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 13,2021 at 08:17:27 UTC from IEEE Xplore.  Restrictions apply. 



1638 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 4, APRIL 2021

Therefore, condition 2) in Definition V.1 holds. Finally, we can
also check that condition 3) in Definition V.1 holds. For example,
for (D,K) ∈ R and D

u−→
a

B, we can choose K
u−→
b

K such

that (B,K) ∈ R; for (E,M) ∈ R and N
u−→
b

M , we can

choose E
u−→
b

F such that (F,M) ∈ R. Therefore, we know

that R is an ε-InitSOP simulation relation from Sa to Sb, i.e.,
Sa �ε

I Sb.
Then, by applying the verification algorithm in Section IV,

we can check that Sb is δ-approximate initial-state opaque for
δ = 0.1. Therefore, according to Theorem V.2, we conclude that
Sa is 0.3-approximate initial-state opaque, where 0.3 = δ + 2ε,
without applying the verification algorithm to Sa directly.

B. Approximate Current-State Opacity-Preserving
Simulation Relation

Now, we provide a notion of approximate simulation relation
for preserving current-state opacity.

Definition V.6 (Approximate current-state opacity-
preserving simulation relation): Let Sa = (Xa, Xa0, XaS ,
Ua,−→

a
, Ya, Ha) and Sb = (Xb, Xb0, XbS , Ub,−→

b
, Yb, Hb)

be two metric systems with the same output sets Ya = Yb

and metric d. For ε ∈ R+
0 , a relation R ⊆ Xa ×Xb is called

an ε-approximate current-state opacity-preserving simulation
relation (ε-CurSOP simulation relation) from Sa to Sb if:

1) ∀xa0 ∈ Xa0, ∃xb0 ∈ Xb0 : (xa0, xb0) ∈ R;
2) ∀(xa, xb) ∈ R : d(Ha(xa), Hb(xb)) ≤ ε;
3) for any (xa, xb) ∈ R, we have

a) ∀xa
ua−→
a

x′
a, ∃xb

ub−→
b

x′
b : (x

′
a, x

′
b) ∈ R;

b) ∀xa
ua−→
a

x′
a∈XaS , ∃xb

ub−→
b
x′
b∈XbS : (x′

a, x
′
b)∈

R;
c) ∀xb

ub−→
b

x′
b, ∃xa

ua−→
a

x′
a : (x′

a, x
′
b) ∈ R;

d) ∀xb
ub−→
b

x′
b ∈ Xb \XbS , ∃xa

ua−→
a

x′
a ∈ Xa \

XaS : (x′
a, x

′
b) ∈ R.

We say that Sa is ε-CurSOP simulated by Sb, denoted by
Sa �ε

C Sb, if there exists an ε-CurSOP simulation relation R
from Sa to Sb.

The following theorem provides a sufficient condition for δ-
approximate current-state opacity based on related systems, as
in Definition V.6.

Theorem V.7: Let Sa = (Xa, Xa0, XaS , Ua,−→
a

, Ya, Ha)

and Sb = (Xb, Xb0, XbS , Ub,−→
b
, Yb, Hb) be two metric

systems with the same output sets Ya = Yb and metric d, and
let ε, δ ∈ R+

0 . If Sa �ε
C Sb and ε ≤ δ

2 , then the following
implication holds:

Sb is (δ − 2ε)-approximate current-state opaque

⇒ Sa is δ-approximate current-state opaque.

Proof: Let us consider an arbitrary initial state x0 ∈ Xa0 and
finite run x0

u1−→
a

x1
u2−→
a

· · · un−→
a

xn in Sa such that xn ∈ XaS .

We consider the following two cases: n = 0 and n �= 0. If
n = 0, we know thatx0 ∈ XaS . Since we assume that {x ∈ X0 :

(Ha(x0), Ha(x)) ≤ δ} �⊆ XaS , we observe immediately that
there existsx′

0 ∈ Xa0 \XaS such thatd(Ha(x0), Ha(x
′
0)) ≤ δ.

Then, we consider the case of n ≥ 1. Since Sa �ε
C Sb, by

conditions 1), 2), 3)-a), and 3)-b) in Definition V.6, there exist an

initial state x′
0 ∈ Xb0 and a finite run x′

0

u′
1−→
b

x′
1

u′
2−→
b

· · · u′
n−→
b

x′
n

in Sb such that x′
n ∈ XbS and

∀i ∈ {0, 1, . . . , n} : d(Ha(xi), Hb(x
′
i)) ≤ ε. (10)

Since Sb is (δ − 2ε)-approximate current-state opaque,
there exist an initial state x′′

0 ∈ Xb0 and a finite run

x′′
0

u′′
1−→
b

x′′
1

u′′
2−→
b

· · · u′′
n−→
b

x′′
n such that x′′

n ∈ Xb \XbS and

max
i∈{0,1,...,n}

d(Hb(x
′
i), Hb(x

′′
i )) ≤ δ − 2ε. (11)

Again, since Sa �ε
C Sb, by conditions 1), 2), 3)-c), and 3)-d) in

Definition V.6, there exist an initial state x′′′
0 ∈ Xa0 and a finite

run x′′′
0

u′′′
1−→
a

x′′′
1

u′′′
2−→
a

· · · u′′′
n−→
a

x′′′
n such that x′′′

n ∈ Xa \XaS and

∀i ∈ {0, 1, . . . , n} : d(Ha(x
′′′
i ), Hb(x

′′
i )) ≤ ε. (12)

Combining (10)–(12), and using the triangle inequality, we have

max
i∈{0,1,...,n}

d(Ha(xi), Ha(x
′′′
i )) ≤ δ. (13)

Since x0 ∈ Xa0 and x0
u1−→
a

x1
u2−→
a

· · · un−→
a

xn are arbitrary, we

conclude that Sa is δ-approximate current-state opaque. �

C. Approximate Infinite-Step Opacity-Preserving
Simulation Relation

Finally, by combining the ε-CurSOP simulation relation and
the ε-InitSOP simulation relation, we provide a notion of approx-
imate simulation relation for preserving infinite-step opacity.

Definition V.8 (Approximate infinite-step opacity-preserving
simulation relation): Let Sa = (Xa, Xa0, XaS , Ua,−→

a
,

Ya, Ha) and Sb = (Xb, Xb0, XbS , Ub,−→
b
, Yb, Hb) be two

metric systems with the same output sets Ya = Yb and metric d.
For ε ∈ R+

0 , a relationR ⊆ Xa ×Xb is called an ε-approximate
infinite-step opacity-preserving simulation relation (ε-InfSOP
simulation relation) from Sa to Sb if it is both an ε-CurSOP
simulation relation from Sa to Sb and an ε-InitSOP simulation
relation from Sa to Sb, i.e.,

1)
a) ∀xa0 ∈ Xa0, ∃xb0 ∈ Xb0 : (xa0, xb0) ∈ R;
b) ∀xa0∈Xa0 ∩XaS , ∃xb0∈Xb0 ∩XbS :

(xa0, xb0) ∈ R;
c) ∀xb0 ∈ Xb0 \XbS , ∃xa0 ∈ Xa0 \XaS :

(xa0, xb0) ∈ R;
2) ∀(xa, xb) ∈ R : d(Ha(xa), Hb(xb)) ≤ ε;
3) for any (xa, xb) ∈ R, we have

a) ∀xa
ua−→
a

x′
a, ∃xb

ub−→
b

x′
b : (x

′
a, x

′
b) ∈ R;

b) ∀xa
ua−→
a

x′
a∈XaS , ∃xb

ub−→
b
x′
b∈XbS : (x′

a, x
′
b)∈

R;
c) ∀xb

ub−→
b

x′
b, ∃xa

ua−→
a

x′
a : (x′

a, x
′
b) ∈ R.
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d) ∀xb
ub−→
b

x′
b ∈ Xb \XbS , ∃xa

ua−→
a

x′
a ∈ Xa \

XaS : (x′
a, x

′
b) ∈ R.

We say that Sa is ε-InfSOP simulated by Sb, denoted by
Sa �ε

IF Sb, if there exists an ε-InfSOP simulation relation R
from Sa to Sb.

Similar to the cases of initial-state opacity and current-state
opacity, we have the following theorem as a sufficient condition
for δ-approximate infinite-step opacity based on related systems
as in Definition V.8.

Theorem V.9: Let Sa = (Xa, Xa0, XaS , Ua,−→
a

, Ya, Ha)

and Sb = (Xb, Xb0, XbS , Ub,−→
b
, Yb, Hb) be two metric

systems with the same output sets Ya = Yb and metric d, and
let ε, δ ∈ R+

0 . If Sa �ε
IF Sb and ε ≤ δ

2 , then the following
implication holds:

Sb is (δ − 2ε)-approximate infinite-step opaque

⇒ Sa is δ-approximate infinite-step opaque.

Proof: Let us consider an arbitrary initial state x0 ∈ Xa0 and
finite runx0

u1−→
a

x1
u2−→
a

· · · un−→
a

xn inSa such thatxk ∈ XaS for

some k = 0, . . . , n. We consider the following two cases:
If k = 0, then we have x0 ∈ XaS . Since Sa �ε

IF Sb

implies Sa �ε
I Sb, by the proof of Theorem V.2,

we know that there exist an initial state x′
0 ∈ Xa0 \

XaS and a run x′
0

u′
1−→
a

x′
1

u′
2−→
a

· · · u′
n−→
a

x′
n such that

maxi∈{0,1,...,n} d(Ha(xi), Ha(x
′
i)) ≤ δ.

If k ≥ 1, then similar to the proof of Theorem V.7, by
conditions 1)-a), 2), 3)-a), 3)-b), 3)-c), and 3)-d) in Defi-
nition V.8 and the fact Sb is (δ − 2ε)-approximate infinite-
step opaque, there exist an initial state x′

0 ∈ Xa0 and a finite

run x′
0

u′
1−→
a

x′
1

u′
2−→
a

· · · u′
n−→
a

x′
n such that x′

k ∈ Xa \XaS and

maxi∈{0,1,...,n} d(Ha(xi), Ha(x
′
i)) ≤ δ.

Since x0 ∈ Xa0, x0
u1−→
a

x1
u2−→
a

· · · un−→
a

xn and index k are

arbitrary, we conclude that Sa is δ-approximate infinite-step
opaque. �

VI. OPACITY OF CONTROL SYSTEMS

In the previous section, we have introduced notions of ap-
proximate opacity-preserving simulation relation and discussed
their properties. This allows us to verify approximate opacity
for infinite systems, e.g., continuous dynamic systems, based
on their finite abstractions. Then, the following question arises
naturally: How can we construct such an abstraction for a given
system possibly with infinite number of states? In general, how
to construct finite abstractions is system-dependent and not all
systems admit symbolic models. In this section, we show that a
class of discrete-time control systems do admit symbolic models
for the purpose of verifying approximate opacity under certain
stability assumption.

To be more specific, we consider a class of discrete-time
control systems of the following form.

Definition VI.1: A discrete-time control system Σ is defined
by the tuple Σ = (X,S,U , f,Y , h), where X, U , and Y are
the state, input, and output sets, respectively, and are subsets

of normed vector spaces with appropriate finite dimensions.
Set S ⊆ X is a set of secret states. The map f : X × U → X
is called the transition function, and h : X → Y is the output
map and assumed to satisfy the following Lipschitz condition:
‖h(x)− h(y)‖ ≤ α(‖x− y‖) for some α ∈ K∞ and all x, y ∈
X. The discrete-time control systemΣ is described by difference
equations of the form

Σ :

{
ξ(k + 1) = f(ξ(k), υ(k))
ζ(k) = h(ξ(k))

(14)

where ξ : N0 → X, ζ : N0 → Y , and υ : N0 → U are the state,
output, and input signals, respectively.

We write ξxυ(k) to denote the point reached at time k under
the input signal υ from initial condition x = ξxυ(0). Similarly,
we denote by ζxυ(k) the output corresponding to state ξxυ(k),
i.e., ζxυ(k) = h(ξxυ(k)). In the above definition, we implicitly
assumed that set X is positively invariant.1

Now, we introduce the notion of incremental input-to-state
stability (δ-ISS) leveraged later to show some of the main results
of the article.

Definition VI.2 (see [48]): System Σ = (X,S,U , f,Y , h)
is called incrementally input-to-state stable (δ-ISS) if there exist
a KL function β and K∞ function γ such that ∀x, x′ ∈ X and
∀υ, υ′ : N0 → U , the following inequality holds for any k ∈ N:

‖ξxυ(k)−ξx′υ′(k)‖≤β(‖x− x′‖, k)+γ(‖υ − υ′‖∞). (15)

Example VI.3: As an example, for a linear control system

ξ(k + 1) = Aξ(k) +Bυ(k), ζ(k) = Cξ(k) (16)

where all eigenvalues ofA are inside the unit circle, the functions
β and γ can be chosen as

β(r, k) = ‖Ak‖r; γ(r) = ‖B‖
( ∞∑

m=0

‖Am‖
)
r. (17)

In general, it is difficult to check inequality (15) directly for
nonlinear systems. Fortunately, δ-ISS can be characterized using
Lyapunov functions.

Definition VI.4 (see [48]): Consider a control system Σ and
a continuous function V : X × X → R+

0 . Function V is called
a δ-ISS Lyapunov function for Σ if there exist K∞ functions
α1, α2, ρ and K function σ such that:

1) for any x, x′ ∈ X,
α1(‖x− x′‖) ≤ V (x, x′) ≤ α2(‖x− x′‖);

2) for any x, x′ ∈ X and u, u′ ∈ U ,
V(f(x, u),f(x′, u′))−V (x, x′)≤−ρ(V (x, x′))+σ(‖u−
u′‖).

The following result characterizes δ-ISS in terms of existence
of δ-ISS Lyapunov functions.

Theorem VI.5 (see [48]): Consider a control system Σ.
1) Σ is δ-ISS if it admits a δ-ISS Lyapunov function.
2) If U is compact and convex and X is compact, then the

existence of a δ-ISS Lyapunov function is equivalent to
δ-ISS.

The following technical lemma will be used later to show
some of the main results of this section.

1Set X is called positively invariant under (14) if ξxυ(k) ∈ X for any k ∈ N,
any x ∈ X, and any υ : N0 → U .
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Lemma VI.6: Consider a control system Σ. Suppose V is a
δ-ISS Lyapunov function for Σ. Then, there exist κ, λ ∈ K∞,
where κ(s) < s for any s ∈ R+, such that

V (f(x, u), f(x′, u′))≤max{κ(V (x, x′)), λ(‖u− u′‖)} (18)

for any x, x′ ∈ X and any u, u′ ∈ U .
The proof is similar to that of [49, Th. 1] and is omitted here

due to lack of space.
In order to provide the main results of this section, we first

describe control systems in Definition VI.1 as metric systems
as in Definition II.1. More precisely, given a control system
Σ = (X,S,U , f,Y , h), we define an associated metric system

S(Σ) = (X,X0, XS , U,−→, Y,H) (19)

where X = X, X0 = X, XS = S, U = U , Y = Y , H = h, and
x

u−→x′ if and only if x′ = f(x, u). We assume that the output
setY is equipped with the infinity norm:d(y1, y2) = ‖y1 − y2‖,
∀y1, y2 ∈ Y . We have a similar assumption for the state set X .

Now, we introduce a symbolic system for the control system
Σ = (X,S,U , f,Y , h). To do so, from now on, we assume
that sets X,S and U are of the form of finite union of boxes.
Consider a concrete control system Σ and a tuple q = (η, μ, θ)
of parameters, where 0 < η ≤ min{span(S), span(X \ S)} is
the state set quantization, 0 < μ ≤ span(U) is the input set
quantization, and θ is a design parameter. Now, let us introduce
the symbolic system

Sq(Σ) = (Xq, Xq0, XqS , Uq,−→
q
, Yq, Hq) (20)

where Xq = Xq0 = [X]η , XqS = [Sθ]η , Uq = [U ]μ,
Yq = {h(xq) | xq ∈ Xq}, Hq(xq) = h(xq), ∀xq ∈ Xq, and

xq
uq−→
q

x′
q if and only if ‖x′

q − f(xq, uq)‖ ≤ η.

We can now state the first main result of this section showing
that, under some condition over the quantization parameters η
and μ, Sq(Σ) and S(Σ) are related under an approximate initial-
state opacity-preserving simulation relation.

Theorem VI.7: Let Σ = (X,S,U , f,Y , h) be a δ-ISS con-
trol system. For any desired precision ε > 0, and any tuple
q = (η, μ, 0) of parameters satisfying

β
(
α−1(ε), 1

)
+ γ(μ) + η ≤ α−1(ε) (21)

we have S(Σ) �ε
I Sq(Σ) �ε

I S(Σ).
Proof: We start by proving S(Σ) �ε

I Sq(Σ). Consider the
relationR ⊆ X ×Xq defined by (x, xq) ∈ R if and only if ‖x−
xq‖ ≤ α−1(ε). Since η ≤ span(S), XS ⊆ ⋃p∈[S]η

Bη(p), and
by (21), ∀x ∈ XS , ∃xq ∈ XqS such that

‖x− xq‖ ≤ η ≤ α−1(ε). (22)

Hence, (x, xq) ∈ R and condition 1)-a) in Definition V.1 is
satisfied. For every xq ∈ Xq \XqS , by choosing x = xq, which
is also inside set X \XS , one gets (x, xq) ∈ R, and hence,
condition 1)-b) in Definition V.1 holds as well. Now, consider
any (x, xq) ∈ R. Condition 2) in Definition V.1 is satisfied by
the definition of R and the Lipschitz assumption:

‖H(x)−Hq(xq)‖ = ‖h(x)− h(xq)‖ ≤ α(‖x− xq‖) ≤ ε.

Let us now show that condition 3) in Definition V.1 holds.

Consider any u ∈ U . Choose an input uq ∈ Uq satisfying

‖u− uq‖ ≤ μ. (23)

Note that the existence of such uq is guaranteed by the inequality
μ ≤ span(U) which guarantees that U ⊆ ⋃p∈[U ]μ

Bμ(p). Con-

sider the unique transitionx
u−→x′ = f(x, u) inS(Σ). It follows

from the δ-ISS assumption on Σ and (23) that the distance
between x′ and f(xq, uq) is bounded as

‖x′ − f(xq, uq)‖ ≤ β (‖x− xq‖, 1) + γ (‖u− uq‖)
≤ β

(
α−1(ε), 1

)
+ γ (μ) . (24)

Since X ⊆ ⋃p∈[X]η
Bη(p), there exists x′

q ∈ Xq such that

‖f(xq, uq)− x′
q‖ ≤ η (25)

which, by the definition of Sq(Σ), implies the existence of

xq
uq−→
q

x′
q in Sq(Σ). Using the inequalities (21), (24), (25), and

triangle inequality, we obtain

‖x′ − x′
q‖ ≤ ‖x′ − f(xq, uq) + f(xq, uq)− x′

q‖
≤ ‖x′ − f(xq, uq)‖+ ‖f(xq, uq)− x′

q‖
≤ β

(
α−1(ε), 1

)
+ γ (μ) + η ≤ α−1(ε).

Therefore, we conclude that (x′, x′
q) ∈ R, and condition 3)-a)

in Definition V.1 holds. Let us now show that condition 3)-b) in
Definition V.1 also holds.

Now, consider any (x, xq) ∈ R and any uq ∈ Uq. Choose the
input u = uq and consider the unique x′ = f(x, u) in S(Σ).
Using δ-ISS assumption for Σ, we bound the distance between
x′ and f(xq, uq) as

‖x′ − f(xq, uq)‖ ≤ β (‖x− xq‖, 1) ≤ β
(
α−1(ε), 1

)
. (26)

Using the definition of Sq(Σ), inequalities (21) and (26), and
the triangle inequality, we obtain

‖x′ − x′
q‖ ≤ ‖x′ − f(xq, uq) + f(xq, uq)− x′

q‖
≤ ‖x′ − f(xq, uq)‖+ ‖f(xq, uq)− x′

q‖
≤ β

(
α−1(ε), 1

)
+ η ≤ α−1(ε).

Therefore, we conclude that (x′, x′
q) ∈ R, and condition 3)-b)

in Definition V.1 holds.
In a similar way, one can prove that Sq(Σ) �ε

I S(Σ). �
Remark VI.8: Note that there always exist quantization

parameters q such that inequality (21) holds as long as
β(α−1(ε), 1) < α−1(ε). By assuming that the discrete-time
control system Σ is a sampled-data version of an original
continuous-time one with the sampling time τ , one can ensure
the latter inequality by choosing the sampling time large enough
given that β(r, 1) = β̂(r, τ) < r for some KL function β̂ es-
tablishing the incremental stability of the original continuous-
time system. For example, for the function in (17), one has
β(r, 1) = ‖A‖r = ‖eÂτ‖r, where Â is the state matrix of the
original continuous-time linear control system.

The following example illustrates how to use Theorem VI.7
to verify approximate opacity for an infinite system based on its
finite abstraction.
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Fig. 4. Symbolic model Sq(Σ) associated with control systems Σ of
(27) with η = 0.1, μ = 0.001, and ε = 0.9.

Example VI.9: Let us consider the following simple system:

Σ :

{
ξ(k + 1) = 0.1ξ(k) + υ(k)

ζ(k) = sin(2.5πξ(k)) + 1
(27)

where X = [0, 1.6[,S = [0, 0.1[ and U = {0.001}. This system
is clearly δ-ISS, and according to (17), we have β(r, k) = 0.1kr
and γ(r) =

∑∞
m=0 0.1

mr. In addition, function h satisfies the
Lipschitz condition with α(r) = 2.5πr. By (21), the param-
eters q = (η, μ, 0) and the abstract precision ε should sat-
isfy 0.04

π ε+ 10
9 μ+ η ≤ 0.4

π ε. Let us consider desired abstract
precision ε = 0.9 and quantization parameters q = (η, μ, 0) =
(0.1, 0.001, 0) satisfying the inequality. Then, we obtain sym-
bolic system Sq(Σ) shown in Fig. 4 , and by Theorem VI.7, we
have S(Σ) �0.9

I Sq(Σ) �0.9
I S(Σ). Essentially, we discretize

the state space of [0,1.6[ into 16 discrete states based on pa-
rameter η. One can easily check that Sq(Σ) is 0-approximate
initial-state opaque since for any run from secret initial state 0,
there exists a run from nonsecret state 8 such that their outputs are
exactly the same. Therefore, by Theorem V.2, we can conclude
that Σ is 1.8-approximate initial-state opaque.

The next theorem provides similar results as in Theorem VI.7
but by leveraging δ-ISS Lyapunov functions. To show the next
result, we will make the following supplementary assumption on
the δ-ISS Lyapunov functions: there exists a function γ̂ ∈ K∞
such that

∀x, x′, x′′ ∈ X, V (x, x′)− V (x′, x′′) ≤ γ̂(‖x− x′′‖). (28)

Inequality (28) is not restrictive at all, provided that we are
interested in the dynamics of the control system on a compact
subset of the state set X (see the discussion in [34]).

Theorem VI.10: Let Σ = (X,S,U , f,Y , h) admit a δ-ISS
Lyapunov function V satisfying (28). For any desired precision
ε > 0, and any tuple q = (η, μ, 0) satisfying

α2(η) ≤ α1(α
−1(ε)) (29)

max{κ(α1(α
−1(ε))), λ(μ)}+ γ̂(η) ≤ α1(α

−1(ε)) (30)

we have S(Σ) �ε
I Sq(Σ) �ε

I S(Σ).
Proof: We start by proving S(Σ) �ε

I Sq(Σ). Consider the
relation R ⊆ X ×Xq defined by (x, xq) ∈ R if and only
if V (x, xq) ≤ α1(α

−1(ε)). Since η ≤ span(S) and XS ⊆⋃
p∈[S]η

Bη(p), for every x ∈ XS , there always exists xq ∈ XqS

such that ‖x− xq‖ ≤ η. Then, we have

V (x, xq) ≤ α2(‖x− xq‖) ≤ α2(η) ≤ α1(α
−1(ε))

because of (29) and α2 being a K∞ function. Hence, (x, xq) ∈
R, and condition 1)-a) in Definition V.1 is satisfied. For every
xq ∈ Xq \XqS , by choosing x = xq, which is also inside set
X \XS , one gets trivially (x, xq) ∈ R, and hence, condition 1)-
b) in Definition V.1 holds as well. Now, consider any (x, xq) ∈
R. Condition 2) in Definition V.1 is satisfied by the definition of
R and the Lipschitz assumption on map h as in Definition VI.1

‖H(x)−Hq(xq)‖ = ‖h(x)− h(xq)‖ ≤ α(‖x− xq‖)
≤ α(α−1

1 (V (x, xq)) ≤ ε.

Let us now show that condition 3) in Definition V.1 holds.
Consider any u ∈ U . Choose an input uq ∈ Uq satisfying

‖u− uq‖ ≤ μ. (31)

Note that the existence of such uq is guaranteed by the inequality
μ ≤ span(U) which guarantees that U ⊆ ⋃p∈[U ]μ

Bμ(p). Con-

sider the unique transition x
u−→x′ = f(x, u) in S(Σ). Given

δ-ISS Lyapunov function V for Σ, inequality (18), and (31), one
obtains

V (x′, f(xq, uq)) ≤ max{κ (V (x, xq)) , λ (‖u− uq‖)}
≤ max{κ (α1(α

−1(ε))
)
, λ (μ)}. (32)

Since X ⊆ ⋃p∈[X]η
Bη(p), there exists x′

q ∈ Xq such that

‖f(xq, uq)− x′
q‖ ≤ η (33)

which, by the definition of Sq(Σ), implies the existence of

xq
uq−→
q

x′
q in Sq(Σ). Using the inequalities (28), (30), (32), and

(33), we obtain

V (x′, x′
q) ≤ V (x′, f(xq, uq)) + γ̂(‖f(xq, uq)− x′

q‖)
≤ max{κ (α1(α

−1(ε))
)
, λ (μ)}+ γ̂ (η)

≤ α1(α
−1(ε)).

Therefore, we conclude that (x′, x′
q) ∈ R, and condition 3)-a)

in Definition V.1 holds. Let us now show that condition 3)-b) in
Definition V.1 also holds.

Now, consider any (x, xq) ∈ R. Consider any uq ∈ Uq.
Choose the input u = uq and consider the unique x′ = f(x, u)
in S(Σ). Given δ-ISS Lyapunov function V for Σ and inequality
(18), one gets

V (x′, f(xq, uq)) ≤ κ (V (x, xq)) ≤ κ
(
α1(α

−1(ε))
)
. (34)

Using the definition of Sq(Σ), and inequalities (28), (30), and
(34), we obtain

V (x′, x′
q) ≤ V (x′, f(xq, uq)) + γ̂(‖f(xq, uq)− x′

q‖)
≤ κ

(
α1(α

−1(ε))
)
+ γ̂(η) ≤ α1(α

−1(ε)).

Therefore, we conclude that (x′, x′
q) ∈ R, and condition 3)-b)

in Definition V.1 holds.
In a similar way, one can prove that Sq(Σ) �ε

I S(Σ). �
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Remark VI.11: One can readily verify that there always ex-
ists a choice of quantization parameter q = (η, μ) such that
inequalities (29) and (30) hold simultaneously. Although the
result in Theorem VI.10 seems more general than that of
Theorem VI.7 in terms of the existence of quantization pa-
rameter q, the symbolic model Sq(Σ), computed by using the
quantization parameters q provided in Theorem VI.7 whenever
existing, is likely to have fewer states than those of the model
computed by using the quantization parameters provided in The-
orem VI.10 owing to the conservative nature of δ-ISS Lyapunov
functions.

The following theorems illustrate the other main results of
this section showing that, under similar conditions over the
quantization parameters η andμ,Sq(Σ) andS(Σ) are related un-
der an approximate current-state opacity-preserving simulation
relation.

Theorem VI.12: Let Σ = (X,S,U , f,Y , h) be a δ-ISS con-
trol system. For any desired precision ε > 0, and any tuple
q = (η, μ, θ) of parameters satisfying

β
(
α−1(ε), 1

)
+ γ(μ) + η ≤ α−1(ε)

α−1(ε) ≤ θ

we have S(Σ) �ε
C Sq(Σ).

Proof: Consider the relation R ⊆ X ×Xq defined by
(x, xq) ∈ R if and only if ‖x− xq‖ ≤ α−1(ε). Note that con-
ditions 1), 2), 3)-a), and 3)-c) of ε-CurSOP simulation rela-
tion in Definition V.6 are similar to that of ε-InitSOP sim-
ulation relation; therefore, their proofs are similar to that in
Theorem VI.7 and are omitted here. Here, we show that con-
ditions 3)-b) and 3)-d) in Definition V.6 hold.

Let us consider an arbitrary transition x
u−→x′ = f(x, u)

with x′ ∈ XS in S(Σ). Similar to the proof of condition 3)-a),

we can show the existence of a transition xq
uq−→
q

x′
q in Sq(Σ)

where (x′, x′
q) ∈ R holds, where the input uq ∈ Uq satisfies

‖u− uq‖ ≤ μ. By the construction of the secret set in the sym-
bolic system, one has XqS = [Sθ]η with θ ≥ α−1(ε) and 0 <
η ≤ min{span(S), span(X \ S)}. Therefore, since (x′, x′

q) ∈
R, which implies that ‖x′ − x′

q‖ ≤ α−1(ε), we obtain that
x′

q ∈ XqS . Thus, we conclude that condition 3)-b) in Definition
V.6 holds. In a similar way, we can show that condition 3)-d) in
Definition V.6 holds as well, which completes the proof. �

Theorem VI.13: Let Σ = (X,S,U , f,Y , h) admits a δ-ISS
Lyapunov function V satisfying (28). For any desired precision
ε > 0, and any tuple q = (η, μ, θ) satisfying

α2(η) ≤ α1(α
−1(ε))

max{κ(α1(α
−1(ε))), λ(μ)}+ γ̂(η) ≤ α1(α

−1(ε))

α−1(ε) ≤ θ

we have S(Σ) �ε
C Sq(Σ).

Proof: The proof is similar to that of Theorems VI.10 and
VI.12 and is omitted here due to lack of space. �

Since we show S(Σ) �ε
I Sq(Σ) and S(Σ) �ε

C Sq(Σ) under
the same relation in Theorems VI.7 and VI.12 (respectively,
Theorems VI.10 and VI.13), by the definition of approximate

infinite-state opacity-preserving simulation relation, we conse-
quently get the following results.

Theorem VI.14: Let Σ = (X,S,U , f,Y , h) be a δ-ISS con-
trol system. For any desired precision ε > 0, and any tuple
q = (η, μ, θ) of parameters satisfying

β
(
α−1(ε), 1

)
+ γ(μ) + η ≤ α−1(ε)

α−1(ε) ≤ θ

we have S(Σ) �ε
IF Sq(Σ).

Theorem VI.15: Let Σ = (X,S,U , f,Y , h) admit a δ-ISS
Lyapunov function V satisfying (28). For any desired precision
ε > 0, and any tuple q = (η, μ, θ) satisfying

α2(η) ≤ α1(α
−1(ε))

max{κ(α1(α
−1(ε))), λ(μ)}+ γ̂(η) ≤ α1(α

−1(ε))

α−1(ε) ≤ θ

we have S(Σ) �ε
IF Sq(Σ).

VII. CONCLUSION

In this article, we extended the concept of opacity to met-
ric systems by proposing the notion of approximate opacity.
Verification algorithms and approximate relations that preserve
approximate opacity were also provided. We also discussed how
to construct finite abstractions that approximately simulate a
class of control systems in terms of opacity preservation. Our
result bridges the gap between the opacity analysis of finite
discrete systems and continuous control systems.

Among the many possible directions for future work that will
be built based on the proposed framework, we mention several
directions of immediate interest. One direction is to extend our
framework to the stochastic setting for almost opacity [14], [21]–
[23]. In addition, we are interested in constructing approximate
opacity-preserving symbolic models for more classes of sys-
tems. Finally, we plan to extend approximate opacity-preserving
simulation relation to approximate opacity-preserving alternat-
ing simulation relation [45] and solve the problem of controller
synthesis enforcing approximate opacity [46], [50]–[54].

APPENDIX

A. Proofs not Contained in the Main Body

Proof of Proposition IV.2
Proof: It is straightforward to show (i). Hereafter, we prove

(ii) by induction on the length of input sequence.
When n = 0, i.e., there is no input sequence, we have that

(x0, q0) ∈ XI0. By the definition of XI0, we know that

q0 = {x′
0 ∈ X : d(H(x0), H(x′

0)) ≤ δ}
which implies (ii) immediately.

To proceed the induction, we assume that (ii) holds when n =
k. Now, we need to show that (ii) also holds when n = k + 1.
Consider arbitrary pair (x0, q0) ∈ XI0 and finite run

(x0, q0)
u1−→
I

(x1, q1)
u2−→
I

· · · un−→
I

(xn, qn)
un+1−→

I
(xn+1, qn+1).
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Then, we have

qn+1= ∪û∈U Preû(qn) ∩ {x ∈ X : d(H(xn+1), H(x))≤δ}
= {x ∈ X : ∃x′ ∈ qn, u

′
n+1 ∈ U s.t. (x, u′

n+1, x
′) ∈−→}

∩ {x ∈ X : d(H(xn+1), H(x)) ≤ δ}

=

{
x∈X :

[∃x′ ∈qn, u
′
n+1∈U s.t. (x, u′

n+1, x
′) ∈−→]

∧[d(H(xn+1), H(x)) ≤ δ]

}
.

By the induction hypothesis, we know that

qn =

{
x′
0 ∈ X : ∃x′

0

u′
n−→x′

1

u′
n−1−→ · · · u′

1−→x′
n s.t.

maxi∈{0,1,...,n} d(H(xi), H(x′
n−i)) ≤ δ

}
.

Therefore, by combining the above two equations, one gets

qn+1=

⎧⎪⎨
⎪⎩x∈X :

∃x u′
n+1−→ x′

0

u′
n−→x′

1
un−1−→ · · · u′

1−→x′
n

s.t. maxi∈{0,1,...,n} d(H(xi), H(x′
n−i)) ≤ δ

∧d(H(xn+1), H(x)) ≤ δ

⎫⎪⎬
⎪⎭

=

{
x∈X : ∃x′′

0

u′
n+1−→ x′′

1

u′
n−→· · · u′

1−→x′′
n+1 s.t.

maxi∈{0,1,...,n+1} d(H(xi), H(x′′
n+1−i)) ≤ δ

}
.

Therefore, one obtains that the induction step holds. �
Proof of Theorem IV.3
Proof: (⇒) By contraposition: suppose that there exists a

state (x, q) ∈ XI such that x ∈ X0 ∩XS and q ∩X0 ⊆ XS .
Let

(x0, q0)
u1−→
I

(x1, q1)
u1−→
I

· · · un−→
I

(xn, qn)

be a run reaching (x, q) =: (xn, qn). By Proposition IV.2, we
have xn

un−→xn−1
un−1−→ · · · u1−→x1, which is well-defined in S as

xn ∈ X0. Moreover, by Proposition IV.2, we have

qn =

{
x′
0 ∈ X : ∃x′

0

u′
n−→x′

1

u′
n−1−→ · · · u′

1−→x′
n s.t.

maxi∈{0,1,...,n} d(H(xi), H(x′
n−i)) ≤ δ

}
.

However, since qn ∩X0 ⊆ XS , we know that there does not

exist x′
0 ∈ X0 \XS and x′

0

u′
n−→x′

1

u′
n−1−→ · · · u′

1−→x′
n such that

maxi∈{0,1,...,n} d(H(xi), H(x′
n−i)) ≤ δ. Therefore, by con-

sidering xn ∈ X0 ∩XS and xn
un−→xn−1

un−1−→ · · · u1−→x1, we
know the system is not δ-approximate initial-state opaque.

(⇐) By contradiction: suppose that (3) holds and as-
sume that S is not δ-approximate initial-state opaque. Then,
there exists a secret initial state x0 ∈ X0 ∩XS and a se-
quence of transitions x0

u1−→x1
u2−→· · · un−→xn such that there

does not exist a nonsecret initial state x′
0 ∈ X0 \XS and

a sequence of transitions x′
0

u′
1−→x′

1

u′
2−→· · · u′

n−→x′
n such that

maxi∈{0,1,...,n} d(H(xi), H(x′
i)) ≤ δ. Let us consider the fol-

lowing sequence of transitions in SI

(xn, q0)
un−→
I

(xn−1, q1)
un−1−→
I

· · · u1−→
I

(x0, qn).

By Proposition IV.2, we know that

qn =

{
x′
0 ∈ X : ∃x′

0

u′
n−→x′

1

u′
n−1−→ · · · u′

1−→x′
n s.t.

maxi∈{0,1,...,n} d(H(xi), H(x′
i)) ≤ δ

}
.

By (3), we have qn ∩X0 �⊆ XS . Therefore, there
exist a nonsecret initial state x′

0 ∈ X0 \XS and

a sequence x′
0

u′
1−→x′

1

u′
2−→· · · u′

n−→x′
n such that

maxi∈{0,1,...,n} d(H(xi), H(x′
i))≤δ. This is a contradiction,

i.e., S has to be δ-approximate initial-state opaque. �
Proof of Proposition IV.6
Proof: The proof is similar to that of Proposition IV.2, which

can be done by induction on the length of the sequence. �
Proof of Theorem IV.7
Proof: By Proposition IV.6, for each state (x, q) encountered,

the second component is exactly the set of all possible current
states consistent with the observation. Then, the proof is similar
to that of Theorem IV.3. �

Proof of Theorem IV.8
Proof: By contraposition: suppose that there exist two states

(xn, q
′
n) ∈ XI , (xn, qn) ∈ XC such that xn ∈ XS and qn ∩

q′n ⊆ XS . Let

(x0, q0)
u1−→
C

(x1, q1)
u2−→
C

· · · un−→
C

(xn, qn)

(xn+m, qn+m)
un+m−→

I
(xn+m−1, qn+m−1)

· · ·un+1−→
I
(xn, q

′
n)

be two runs reaching (x, q) and (x, q′), respectively. By Propo-
sitions IV.2 and IV.6, we have x0 ∈ X0 and

x0
u1−→· · ·un−1−→ xn−1

un−→xn
un+1−→ xn+1

un+2−→
· · · un+m−→ xn+m.

Moreover, one has

qn ∩ q′n ={
x′
n∈X : ∃x′

0 ∈ X0, ∃x′
0

u′
1−→· · · u

′
n+m−→ x′

n+m

s.t. maxi∈{0,1,...,n+m} d(H(xi), H(x′
i)) ≤ δ

}
.

Since qn ∩ q′n ⊆ XS , we know that there does not exist x′
0 ∈

X0 and x′
0

u′
1−→· · · u

′
n+m−→ x′

n+m such that x′
n ∈ X \XS and

maxi∈{0,1,...,n+m} d(H(xi), H(x′
i)) ≤ δ. Therefore, the sys-

tem is not δ-approximate infinite-step opaque.
(⇐) By contradiction: suppose that (5) holds and assume, for

the sake of contradiction, that S is not δ-approximate infinite-
step opaque. Then, we know that there exists an initial state
x0 ∈ X0, a sequence of transitions x0

u1−→x1
u2−→· · · un−→xn

and an index k ∈ {0, . . . , n} such that xk ∈ XS and there
does not exist an initial state x′

0 ∈ X0 and a sequence of tran-

sitions x′
0

u′
1−→x′

1

u′
2−→· · · u′

n−→x′
n such that x′

k ∈ X \XS and
maxi∈{0,1,...,n} d(H(xi), H(x′

i)) ≤ δ. Let us consider the fol-
lowing sequence of transitions in SC :

(x0, q0)
u1−→
C

(x1, q1)
u2−→
C

· · · uk−→
C

(xk, qk)

and the following sequence of transitions in SI :

(xn, q
′
n)

un−→
I

(xn−1, q
′
n−1)

un−1−→
I

· · · uk+1−→
I

(xk, q
′
k).
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By Propositions IV.2 and IV.6, we know that

qn ∩ q′n=

{
x′
k ∈ X : ∃x′

0∈X0, ∃x′
0

u′
1−→· · · u′

n−→x′
n s.t.

maxi∈{0,1,...,n} d(H(xi), H(x′
i)) ≤ δ

}
.

Since (5) holds, we know that qn ∩ q′n �⊆ XS . There-
fore, there exists x′

0∈X0 and a sequence of transi-

tions x′
0

u′
1−→· · · u′

n−→x′
n such that xk ∈ X \XS and

maxi∈{0,1,...,n} d(H(xi), H(x′
i)) ≤ δ , which is a contradiction,

i.e., S has to be δ-approximate infinite-step opaque. �
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