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Abstract— In this paper, we investigate the verification of
detectability, a fundamental state estimation property, for
partially-observed discrete event systems (DES). Existing works
on this topic mainly focus on untimed DES. In many applica-
tions, however, real-time information is critical for the purpose
of system analysis. To this end, in this paper, we investigate the
verification of detectability for timed DES modeled by timed
automata. Two notions of detectability, strong detectability and
weak detectability, are studied in the dense-time setting, which
characterize detectability by time elapsing rather than events
steps. We show that verifying strong detectability for timed
system is decidable by providing a verifiable necessary and suf-
ficient condition. Furthermore, we show that weak detectability
is undecidable in the timed setting by reducing the language
universality problem for timed automata to this verification
problem. Our results extend the detectability analysis of DES
from the untimed setting to a timed setting.

I. INTRODUCTION

State estimation is one of the most fundamental problems
in complex engineering systems. In practice, the user cannot
directly obtain the full state information of the system due
to observation uncertainties or nondeterminism of the sys-
tem dynamic. Therefore, one needs to take state estimation
process to obtain precise state information so that some
subsequent tasks, which rely on state information, can be
performed. To this end, it is of our interest to know whether
or not the system has some desired properties, which is re-
ferred to as detectability, so that it has sufficient information
to distinguish state under imperfect information.

In the context of discrete events systems (DES), Shu and
Lin [20] first systematically investigated the four different
types of detectability as well as their verification algorithms.
To further characterize different state estimation require-
ments, several variations of detectability have also been pro-
posed in the literature, including, e.g., delayed detectability
[15], [17], K-detectability [7], I-detectability [19], [23], D-
detectability [4], [17] and trajectory detectability in [26].
The enforcement of detectability has been investigated in
[18], [24], [25]. Recently, detectability verification has been
extended to more complex DES models, including, e.g.,
labeled Petri nets [14], [16], [29], probabilistic automata [11]
and unambiguous weighted automata [13].
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However, the above mentioned works only consider DES
without real time manners. In practice, many real-world
engineering systems may have time constraints when they
generate events. Thus, it is necessary to model and analyze
executions of the system with time constraints. Such a real-
time issue can be modeled by timed automata proposed
in the seminal work of Alur and Dill [1]. In the context
of detectability analysis, if one can “measure” the time
execution, e.g., by having a global clock [21], then additional
information can be obtained to improve the capability of
estimating the system. However, this critical time information
is ignored in the purely untimed setting.

In this paper, we study the detectability verification prob-
lems for timed DES modeled by timed automata. The main
contributions of this work are as follows. First, we introduce
the notions of strong detectability and weak detectability for
timed systems. Different from existing notions in the untimed
setting [20], where the number of observable events is used to
count the observation delay, here we directly utilize the real
time information to describe the conditions of detectability
which is a more natural and realistic measure for delays.
Second, we present an effective algorithm for checking
strong detectability for timed systems. Our approach is to
first construct a verification structure based on the original
system and then to reduce the strong detectability verification
problem to a reachability problem in the region graph of the
verification structure. Finally, we show that the verification
of weak detectability, which is decidable in exponential time
in untimed setting [20], is undecidable in the timed setting.

We note that state estimation for timed systems has been
investigated recently in the literature [6], [10], [12]. For
example, Gao et al. [6] discussed how to perform state
estimation for timed automata using λ-observers. In [12],
Lai et al. investigated the state estimation problem of timed
systems by interpreting time into weights and using max-
plus automata to model timed systems. However, both of
the aforementioned works focus on the online state estima-
tion problem and do not consider the inherent property of
detectability. Furthermore, they consider restricted classes
of timed systems, such as timed automata with one clock
with reset at each event occurrence [6], [10] and timed
systems whose time elapsing can be modeled as weights
[12]. In the context of property verification of timed au-
tomata, effective algorithms have been proposed for checking
(co)diagnosability [5], [21]. More recently, verification for
opacity has also been investigated for timed systems [2],
[22], [28]. However, these notions are incomparable to
detectability, which has been argued in the untimed setting
[20].
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II. PRELIMINARIES

A. Timed Systems

Let R≥0 be the set of non-negative real numbers and N be
the set of natural numbers. A clock is a variable taking values
in R≥0 and we denote by X a finite set of clocks. A valuation
on X is a function v : X → R≥0 that assigns to each clock
x ∈ X a real value v(x) ∈ R≥0. We denote by VX the
set of all clock valuations on X . Given a valuation v ∈ VX
and a subset set Y ⊆ X of clocks, we denote by v[Y←0] the
valuation that sets all clocks in Y to zero, i.e., v[Y←0](x) = 0
if x ∈ Y and v[Y←0] = v(x) otherwise. We denote by 0X
the valuation in which all clocks are zero. For ∆ ∈ R≥0,
v+ ∆ is the valuation such that (v+ ∆)(x)=v(x) + ∆, for
every x∈X .

An atomic constraint is of form x ∼ c, where x ∈ X
is a clock, c ∈ N is a constant and ∼∈ {≤, <,≥, >,=}.
Given a valuation v, we say v satisfies the atomic constraint
x ∼ c if v(x) ∼ c. Then a clock constraint or a guard is
a conjunction of a finite number of atomic constraints and
we denote by C(X ) the set of all clock constraints (guards)
over X . For any clock constraint g ∈ C(X ) and valuation
v ∈ VX , we denote that v satisfies g by v |= g. For any clock
x ∈ X , we use cx to denote the maximum integer c such
that x ∼ c ∈ C(X ), where ∼∈ {≤, <,≥, >,=}.

In this paper, we consider timed discrete-event systems
modeled by timed automata [1], [8]. Formally, a timed
automaton (TA) is a sixtuple

A = (Q, q0,Σ,X , inv, E),

where Q is a finite set of discrete states; q0 ∈ Q is the initial
discrete state; Σ is a finite set of events; X is a finite set
of clocks; inv : Q → C(X ) is an invariant function that
assigns to each state q a clock constraint inv(q) specifying
the length of time the system is allowed to stay in q; E ⊆ Q×
C(X )×Σ×2X×Q is the set of transitions. Specifically, each
transition is of form e = (q, g, σ,Y, q′), where q ∈ Q and
q′ ∈ Q are, respectively, the initial and final discrete states of
the transition, σ ∈ Σ is the event of the transition, g ∈ C(X )
is the guard specifying the time when the transition can be
enabled and Y ⊆ X is the set of clocks that should be reset
to zero after this transition.

Given a timed automaton A, a timed state (or simply a
state) is a pair s = (q, v), where q ∈ Q is a discrete state and
v ∈ VX is a clock valuation such that v |= inv(q). We denote
by S(A) = Q× VX the set of all states in A. In particular,
the initial state of A is defined by s0 = (q0, v0), where q0 is
the initial discrete state and v0 is the initial valuation such
that v0(x) = 0 for all x ∈ X .

A finite (infinite) word over Σ is a finite (infinite) sequence
σ1 . . . σn(. . . ); we denote by Σ∗ and Σω , respectively, the
set of finite words and the set of infinite words over Σ. A
timed word over Σ is a word over R≥0 × Σ. We denote
by TW∗(Σ) and TWω(Σ), respectively, the set of all finite
timed words and the set of all infinite timed words over
Σ; we use TW(Σ) = TW∗(Σ) ∪ TWω(Σ) to denote all
timed words. Given a timed word ρ ∈ TW(Σ), we define

Pre(ρ) = {ρ′ ∈ TW∗(Σ) : ∃ρ′′ ∈ TW(Σ) s.t. ρ′ρ′′ = ρ}
as the set of all finite prefixes of ρ. For any timed word
ρ = (∆1, σ1)(∆2, σ2) . . . , we define time(ρ) =

∑|ρ|
i=1 ∆i as

the total time elapsing in ρ and define utw(ρ) = σ1σ2 . . . as
its untimed word.

In timed automata, there are two types of transitions: delay
transitions and discrete transitions. Formally, for any states
s = (q, v), s′ = (q′, v′) ∈ S(A), time delay ∆ ∈ R≥0 and
event σ ∈ Σ,
• a delay transition (q, v)

∆−→ (q, v + ∆) is defined if
v + ∆′ |= inv(q) holds for any 0 ≤ ∆′ ≤ ∆;

• a discrete transition (q, v)
σ−→ (q′, v′) is defined if there

is a transition (q, g, σ,Y, q′) ∈ E such that v |= g,
v′ = v[Y←0] and v′ |= inv(q′).

Intuitively, a delay transition represents the elapse of time
duration ∆ and a discrete transition corresponds to a dis-
crete state transition with event σ. For simplicity, we write
s

(∆,σ)−−−→ s′ if there exists a state s′′ such that s ∆−→ s′′

and s′′
σ−→ s′. Given a state s = (q, v), its discrete state

component is denoted by dis(s) = q.
An infinite run of time automaton A starting at state s is

an infinite sequence

π = s0(∆0, σ0)s1(∆1, σ1)s2(∆2, σ2)s3 · · ·

where s0 = s and si
(∆i,σi)−−−−−→ si+1 holds for any i ≥ 0.

A finite run of A is defined analogously. We denote by
Runω(A) and Run∗(A), respectively, the set of infinite
runs and finite runs in A staring at s0 with Run(A) =
Runω(A) ∪Run∗(A). For any run π ∈ Run(A), we denote
by ρπ = (∆0, σ0)(∆1, σ1)(∆2, σ2) · · · its corresponding
timed word and by sπ = s0s1s2 · · · its corresponding state
sequence, which is also referred to as a path. For any
finite path sπ = s0s1 · · · sn, we denote by last(sπ) the
last state in the path. The set of timed words generated
by A is TW(A) = {ρπ : π ∈ Run(A)}; TWω(A) and
TW∗(A) denote, respectively, the sets of infinite and finite
timed words generated by A. The untimed language of A
is utw(TW(A)) = {utw(ρ) : ρ ∈ TW(A)}. The set of runs
induced by a timed word ρ ∈ TW(A) is Run(ρ) = {π ∈
Run(A) : ρπ = ρ} and the set of last states induced by ρ
is last(ρ) = {(q, v) ∈ S(A) : ∃π ∈ Run(ρ) s.t. (q, v) =
last(sπ)}. For sake of simplicity, we denote by lastd(·) =
dis(last(·)) the discrete states of the last part.

Given a TA A, an infinite run π ∈ Runω(A) is said to be
non-zeno if time(ρπ) =∞; otherwise, it is zeno. A zeno run
describes the phenomenon that infinite events are enabled in
a finite time. A state s = (q, v) ∈ S(A) is said to be a
timelock if all infinite runs starting from s are zeno. In this
paper, we assume that the TA is timelock-free (called well-
timed in [21]) in the sense that there is no timelock state
reachable. This assumption holds for plenty of engineering
systems as a timelock state will prevent time progressing,
which is not realistic in real-world systems.

B. Region Automata
For later technical developments, here we briefly review

the region automata [1], which are widely used as finite
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abstractions of timed automata for the purpose of verification.
The reader can refer to [1], [3] for more details.

Given a timed automaton A = (Q, q0,Σ,X , inv, E), each
region of A is an equivalence class of time valuations;
we denote the set of regions of A by R. The region
automaton of A is RG(A) = (QR, qR0 ,Σ

R, ER), where
QR = Q × R is the set of states, qR0 = (q0, 0X ) is the
initial state, ΣR = Σ ∪ {τ} is set of events and ER :

QR×ΣR → 2Q
R

is the non-deterministic transition function
defined by: for any (q, r), (q′, r′) ∈ QR, σ ∈ ΣR, we have
(q′, r′) ∈ ER((q, r), σ) if (i) σ ∈ Σ and there is a transition
(q, g, σ,Y, q′) ∈ E such that v |= g and v[Y←0] ∈ r′ for any
v ∈ r; or (ii) σ = τ , q = q′ and r′ is the time successor
region of r, which is obtained by time elapsing. Details about
region abstraction and how the above transition function ER

is defined can be found in [1], [3]. Function ER is extended
to QR× (ΣR)∗ in the usual way. The language generated by
RG(A) is L(RG(A)) = {ρ ∈ (ΣR)∗∪(ΣR)ω : ER(qR0 , ρ)!},
where ! means “is defined”. A run in RG(A) is a finite or
infinite sequence π = qR1

σ1−→ qR2
σ2−→ · · · qRn · · · , where

qRi ∈ QR, σi ∈ ΣR and qRi+1 ∈ ER(qRi , σi), i = 1, 2, . . . .
Intuitively, event τ represents the time elapsing by ab-

stracting the precise time. Although the region automaton
abstracts the time information away from the original timed
automaton, their untimed languages are equivalent. Formally,
let utwR(RG(A)) be the untimed language of RG(A) by
erasing all events τ of each string in L(RG(A)). Then we
have the following relation between A and RG(A) [1]:

utw(TW(A)) = utwR(RG(A)). (1)

Based on the relation in Equation (1), the region automata
preserves reachability of discrete state in the original system
A, that is, there exists a timed word ρ reaching discrete state
q ∈ Q, i.e., q ∈ lastd(ρ), if and only if there is a word ρR in
RG(A) such that (q, r) ∈ ER(qR0 , ρ

R) where (q, r) ∈ QR.

III. DETECTABILITY FOR TIMED SYSTEMS

Given a finite timed word ρ = (∆0, σ0) . . . (∆n, σn) ∈
TW∗(Σ), in the state estimation problem, we assume that
not all events in Σ can be observed. To this end, we assume
the event set is partitioned into two disjoint sets

Σ = Σo ∪ Σuo,

where Σo is the set of observable events and Σuo is the set
of unobservable events. Furthermore, in the timed setting,
we assume that time information can also be measured by,
e.g., having a global timer. Therefore, we define the natural
projection for timed word

P : TW∗(Σ)→ TW∗(Σo)

such that, for any timed word ρ = (∆0, σ0) . . . (∆n, σn) ∈
TW∗(Σ), the projection removes events in Σuo and keeps
the time elapsing until the next observable event. Formally,
P is defined recursively by:

• for (∆, σ)∈R≥0×Σ, P ((∆, σ))=

{
(∆, σ) if σ∈Σo
(∆, ε) otherwise

• for any (∆, σ0)(∆1, σ1)ρ ∈ TW∗(Σ), we have

P ((∆0, σ0)(∆1, σ1)ρ)=

{
(∆0, σ0)P ((∆1, σ1)ρ) if σ0∈Σo
P ((∆0 + ∆1, σ1)ρ) otherwise

For example, if Σo = {a, b} and Σuo = {u}, then for timed
word ρ = (1, a)(2, u)(3, b), its natural projection is P (ρ) =
(1, a)(5, b). Note that, for any timed word ρ ∈ TW∗(Σ), we
have time(ρ) = time(P (ρ)). For simplicity, we also extend
natural projection to P : 2TW∗(Σ) → 2TW∗(Σ) in the usual
manner.

Given a timed automaton A and suppose that a projected
timed word t ∈ P (TW∗(A)) is observed. Then the current-
state estimate is defined as the set of discrete states the
system can possibly reach after observing t, i.e.,

Reach(t) =

{
q ∈ Q :

∃π ∈ Run∗(A) s.t.
P (ρπ) = t ∧ (q, v) = last(sπ)

}
In the seminal work of Shu and Lin [20], strong de-

tectability and weak detectability have been proposed to
capture different state estimation requirements. In particular,
strong detectability is the strongest one requiring that the
precise state of the system can always be determined after
a finite number of observations, while weak detectability
requires that the precise state can be determined for some
observations. However, the original definitions by Shu and
Lin are proposed for untimed finite-state automata without
utilizing time information. Here, we extend these notions to
a timed setting as follows.

Definition 1: Let A = (Q, q0,Σ,X , inv, E) be a timed
DES with observable events Σo ⊆ Σ. We say system A is
• strongly detectable if we can always determine the cur-

rent and subsequent states of the system unambiguously
after some finite time delay, i.e.,

(∃∆ ∈ R≥0)(∀π ∈ Run∗(A))

time(ρπ) ≥ ∆⇒ |Reach(P (ρπ))| = 1.

• weakly detectable if we can determine the current and
subsequent states of the system unambiguously for some
runs in A, i.e.,

(∃∆ ∈ R≥0)(∃π ∈ Runω(A))(∀ρ ∈ Pre(ρπ))

time(ρ) ≥ ∆⇒ |Reach(P (ρ))| = 1.
We illustrate the definitions of detectability by the follow-

ing examples.
Example 1: Let us consider timed system A1 shown in

Figure 1(a) with Σo = {a, d, e}. Note that in the un-
timed setting, this system is not (either strongly or weakly)
detectable without utilizing the time information. This is
because along the only possible observation adeee · · · , we
can never distinguish between states D and F . However, in
the timed setting, this system is strongly detectable (hence,
also weakly detectable). Specifically, we argue that we can
always determine the current state after three time units. To
see this, first we note that the invariant of discrete A is x ≤ 1,
which means that the system should depart from state A to
B within one time unit and we know for sure that the system
is at state B immediately after observing the first event a.
Since the transitions along B → C → D require more than
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(a) System A1 with Σo = {a, d, e} is strongly detectable.
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(b) System A2 with Σo = {a, d, e, f} is weakly detectable.

Fig. 1: Two timed DESs A1 and A2 in (a) and (b) respec-
tively. For each guard, T is the abbreviation of true. The
invariant of a discrete state is conjunction of all elements in
the set next to the discrete state and we omit the invariant if
it is true.

one but no more than two time units, while transitions along
B → E → F is feasible only within one time unit, there are
three possibilities:

• If we observe event d within one time unit after observ-
ing a, then we know for sure that the system is at state
F ;

• If we observe event d between one to two time units
after observing a, then we know for sure that the system
is at state D;

• If we observe nothing within two time units after
observing a, then we know for sure that the system
will stay at B forever because the invariant of state C
is x ≤ 2.

For each of the above three cases, after observing event a,
it takes at most two time unit to determine system state
uniquely. Consider the largest time delay to reach state B,
i.e., one time unit, we can accurately detect system state after
three time units in total. Thus, A1 is strongly detectable.

Example 2: Let us consider timed system A2 shown in
Figure 1(b) with Σo = {a, d, e, f}. In this case, there exists
a run such that we can not distinguish state B and E
after a finite time of observations even by utilizing the time
information. For example, if we choose arbitrary ∆ ∈ N,
there is a run

π = A(1, a)[B(0.5, c)E(0.5, f)]∆ ∈ Run(A)

such that time(ρπ) ≥ ∆ and Reach(P (ρπ)) = {B,E}.
Thus, the system A2 is not strongly detectable. However, we
can find another run

π′ = A(1, a)B(1.5, b)C(0.2, d)[D(1, e)]ω

such that for any ρ ∈ Pre(ρπ′) satisfying time(ρ) ≥
(∆0 + 1.7), we can uniquely determine the state, i.e.,
Reach(P (ρπ′)) = {D}. Thus, system A2 is weakly de-
tectable.

IV. VERIFICATION OF STRONG DETECTABILITY

In this section, we investigate the verification of strong
detectability. First, we construct a verification system that
captures all pairs of runs with the same observation (both
projected events and time elapsing). Then a necessary and
sufficient condition for strong detectability is derived based
on the region graph of the verification system, which yields
the decidability of strong detectability.

A. Construction of the Verification System

According to Definition 1, a system is not strongly de-
tectable if for any arbitrarily long time elapsing, there exists
a pair of two runs such that they have the same observation
but result in different discrete states. Motivated by this
observation, we construct a verification system that captures
all pairs of runs with the same (timed) observation and
can distinguish if a timed words has finite or infinite time
elapsing. Given timed DES A = (Q, q0,Σ,X , inv, E), the
verification system of A is a new timed automaton

V (A) = (QV , qV 0,ΣV ,XV , invV , EV ),

where
• QV = Q×Q is the set of discrete states;
• qV 0 = (q0, q0) is the initial discrete state;
• ΣV = Σ∪ {λ} is a finite set of events, where λ /∈ Σ is

a new event;
• XV = X ∪ X̂ ∪ {xv} is a finite set of clocks, where
X̂ = {x̂ : x ∈ X} is a copy of the original clock set X
and xv is a new clock;

• invV : QV → C(XV ) is the invariant function defined
by: for any (q1, q2) ∈ QV , invV (q1, q2) = inv(q1) ∧
înv(q2) ∧ xv ≤ 1, where înv(q) simply replaces each
x ∈ X in inv(q) by x̂ ∈ X̂ ;

• EV ⊆ QV ×ΣV ×C(XV )×2XV ×QV is the transition
relation defined by: for any (q1, q2) ∈ QV ,

- if σ ∈ Σo, then

(q1, σ, g1,Y1, q
′
1), (q2, σ, g2,Y2, q

′
2) ∈ E

⇒((q1, q2), σ, g1 ∧ ĝ2,Y1 ∪ Ŷ2, (q
′
1, q
′
2)) ∈ EV (2)

- if σ ∈ Σuo, then

(q1, σ, g1,Y1, q
′
1)∈E ⇒((q1, q2), σ, g1,Y1, (q

′
1, q2))∈EV

(q2, σ, g2,Y2, q
′
2)∈E ⇒((q1, q2), σ, ĝ2, Ŷ2, (q1, q

′
2))∈EV

(3)

- if σ = λ, then
((q1, q2), σ, xv = 1, {xv}, (q1, q2)) ∈ EV , (4)

where ĝ2 and Ŷ2 are the copies of g2 and Y2, respective,
to new clock set X̂ .

Intuitively, in the verification system V (A), each discrete
state is a pair of discrete states of original system A. Since
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each discrete state in V (A) corresponds to two discrete
states in A, the clock set is the union of the original two
clock sets, where we use a copy X̂ to distinguish from X .
The invariant for each state is the conjunction of invariants
of its two components in the state. In addition, we add
xv ≤ 1 for new clock xv; this together with the transition
in Equation (4) guarantee that event λ can occur every time
unit. Also, for any state (q1, q2) ∈ QV , if σ ∈ Σo, then σ
must be enabled simultaneously at q1 and q2 to ensure the
observational equivalence. On the other hand, if σ ∈ Σuo,
then event σ can be enabled either at q1 or q2 while the other
component remains unchanged.

Therefore, the construction of V (A) guarantees that it
(only) tracks all pairs of runs in V having the same ob-
servation. Formally, we have following properties [21]:
• For any finite run π in V (A),

π =[(q0, q
′
0), v0](∆0, σ0)[(q1, q

′
1), v1](∆1, σ1)

· · ·[(qn, q′n), vn]

there exist two runs π1, π2 ∈ Run(A) such that
lastd(sπ1

) = qn, lastd(sπ2
) = q′n and P (ρπ) =

P (ρπ1
) = P (ρπ2

);
• For any pair of finite runs π1, π2 in A with the same

observation, there exists a finite run π in V (A) having
the same observation and the discrete part of the last
state of π is (dis(last(sπ1)),dis(last(sπ2))), i.e.,

(∀π1, π2 ∈ Run(A))(P (ρπ1
) = P (ρπ2

)) :

[(∃π ∈ Run(V (A))) : P (ρπ) = P (ρπ1
) = P (ρπ2

),

lastd(sπ) = (lastd(sπ1
), lastd(sπ2

))].

B. Verifying Strong Detectability

Recall that strong detectability requires that we can deter-
mine the current and subsequent state uniquely after finite
time for all runs. To this end, we call a discrete state
(q1, q2) ∈ QV an ambiguous state if q1 6= q2 and we
denote by AM = {(q1, q2) ∈ QV : q1 6= q2} the set
of all ambiguous states. By the properties of the verifica-
tion systems, an ambiguous state is reached if there are
two observationally equivalent runs in V reaching different
discrete states and, if an ambiguous state is reached, then
we cannot distinguish which state the system A is actually
in by its observation. Therefore, to test strong detectability,
it suffices to test whether or not an ambiguous state in
V (A) can be reached by runs with arbitrarily large time
elapsing. However, this cannot be tested directly based on
V (A) because it has infinite reachable states in general.
Our approach is to consider the region automaton of V (A)
denoted by V R(A) = (QR, qR0 ,Σ

R, ER). Similarly, we
define the set of ambiguous states in V R(A) as AMR =
{(q, r) ∈ QR : q ∈ AM}.

The following theorem shows that the region automaton
V R(A) abstracts sufficient information of V (A) for verifying
strong detectability.

Theorem 1: System A is not strongly detectable with
respect to Σo, if an only if, in the region automaton V R(A)

of V (A), there exists a run

π = qR0
σ1−→ qR1

σ2−→ · · · σi−→ qRi · · ·
σj−→ qRj · · ·

σn−−→ qRn

where i < j such that
(i) qRn ∈ AMR; and

(ii) qRi = qRj ; and
(iii) ∃i < k ≤ j : σk = λ.

Intuitively, run π = qR0
σ1−→ qR1

σ2−→ · · · σi−→ qRi · · ·
σj−→

qRj · · ·
σn−−→ qRn in Theorem 1 is equivalent to the existence of

a reachable cycle π′ from the initial state, i.e., the part π′ =

qRi · · ·
σj−→ qRj , in which there exists at least one event λ and

we can reach an ambiguous state from state qRj . The cycle
π′ and event λ in it supply capacity of any time elapsing.
And the reachability from qRj to an ambiguous state prevent
us determining states unambiguously.

Remark 1: Let us discuss the complexity of checking
strong detectability for a timed system A. The verification
system V (A) has at most |Q|2 states and |Q|2(|Q|2 − 1)
transitions, where |Q| is the number of states in A. Because
the clocks consist of two copies of the original and a new
clock, the number of clocks in V (A) is |XV | = 2|X | + 1,
where |X | is the clock number of A. By [1], the number of
regions is bounded by |XV |! ·2|XV | ·

∏
x∈XV

(2cx+ 2). Thus,
we can construct V R(A) within time O(|Q|4 · |XV |! · 2|XV | ·∏
x∈XV

(2cx+2)). According to Theorem 1, verifying strong
detectability requires to find all cycles that contain event λ in
V R(A) and then, to check reachability from these cycles to
ambiguous states. Both of above steps can be solved in time
polynomial in the number of states in V R(A). Therefore,
the whole complexity mainly relies on the size of region
automaton V R(A).

Example 3: Let us consider timed DES A1 shown in
Figure 1(a) with observable event set Σo = {a, d, e, f}.
We obtain the verification system V (A1) by aforementioned
steps, which is depicted in Figure 2(a) and for simplicity, we
omit the transition (xv = 1, λ, {xv}) at each discrete state.
One can compute the region automaton V R(A1) for V (A1),
in which there does not exist any run satisfying conditions
in Theorem 1. Thus, A1 is strongly detectable.

Example 4: However, system A2 shown in Figure 1(b),
where Σo = {a, d, e, f}, is not strongly detectable. To see
this, first, we obtain the verification system V (A2) shown
in Figure 2(b), and based on which we construct the region
automaton V R(A2) of V (A2). Part of the region automaton
V R(A2) is shown in Figure 3. Here, we can find a a run,

π =((A,A), x1 = x2 = xv = 0)
a−→

((B,B), x1 = x2 = xv = 0)
τ−→

((B,B), 0 ≤ x1 = x2 = xv ≤ 1)
τ−→

((B,B), x1 = x2 = xv = 1)
λ−→

((B,B), x1 = x2 = 1 ∧ xv = 1)
c−→

((E,B), x1 = x2 = 1 ∧ xv = 0)
f−→

((B,B), x1 = x2 = xv = 0)
c−→

((E,B), x1 = x2 = xv = 0),
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such that qR7 = ((E,B), x1 = x2 = xv = 0) ∈ AMR.
Furthermore, run π contains a cycle part as highlighted in
Figure 3, where qR1 = qR6 = ((B,B), x1 = x2 = xv = 0)
and σ4 = λ. Thus, run π satisfies all conditions in Theorem
1, which means that A2 is not strongly detectable In fact,
the cycle found in the above run π corresponds to a cycle in
the verification structure V (A2) as highlighted by red color
in Figure 2(b). Based on the cycle, we can actually extract a
timed word ρ = (0, a)[(1, c)(0, f)]ω such that time(ρ) =∞.
Because event c is unobservable, we can never distinguish
between system states B and E.
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(a) Verification system V (A1) of timed system A1
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(b) Verification system V (A2) of timed system A2

Fig. 2: In the above figures, double circles denote ambiguous
states. We omit transition (xv = 1, λ, {xv}) at each discrete
state. The invariant of a discrete state is conjunction of all
elements in the set next to the discrete state, e.g., {x1 ≤
2, x2 ≤ 1, xv ≤ 1} represents x1 ≤ 2 ∧ x2 ≤ 1 ∧ xv ≤ 1,
and we omit the invariant if it is true. For every guard, the
abbreviation of true is denoted by T.

Remark 2: The basic idea of the verification system V (A)
is motivated by the construction for the verification of
diagnosability in untimed DES [9], [27] and timed DES
[21], where it is termed as the twin-plant or the verifier.
Our construction of the verification system itself is quite
similar to that of [21]. However, the necessary and suffi-
cient condition derived is quite different. In particular, in
diagnosaibility analysis, one needs to test whether or not the
time is divergent after some faulty events. This condition
can be formulated as the Büchi emptiness condition based

Fig. 3: Part of the region automaton V R(A2). The cycle
highlighted in red contains event λ and an ambiguous state
((E,B), x1 = x2 = xv = 0).

on the verification system directly. However, in the context of
strong detectability, there is no faulty indicator from which
one needs to count the time. Instead, here we need to test
if an ambiguous state can be reached following an arbitrary
long prefix. This condition cannot be captured directly by
standard model checking conditions, which motivates the use
of region graph to test the condition.

V. UNDECIDABILITY OF WEAK DETECTABILITY

In this section, we investigate the verification of weak
detectability for timed systems. Unfortunately, we prove that
weak detectability is undecidable by reducing the universal-
ity problem, which is known to be undecidable for timed
automata, to the verification of weak detectability.

Given a timed DES A, the universality problem asks
whether or not all strings in TW(Σ) can be generated by
A, i.e., decide whether or not we have

TW(A) = TW(Σ).

In [1], Alur and Dill showed that the universality problem is
undecidable for timed automata. We will use this result to
show the undecidability of weak detectability for TA.

Given a TA A = (Q, q0,Σ,X , inv, E), we construct a new
TA

G = (QG, qini,ΣG,X , invG, EG)

where
• QG = Q ∪ {qini, qB}, where qint and qB are two new

discrete states;
• qini ∈ QG is the initial discrete state;
• ΣG = Σ ∪ {σo}, where σo is a new event;
• X is the clock set the same as A;
• invG is the same as inv for states in Q and for states qini

and qB , invariants are defined by: invG(qini) is x ≤ 1
and invG(qB) is true;

• EG is the set of transitions defined by

EG =E ∪ {(qB , σ, true,X , qB) : σ ∈ Σ}
∪ {(qini, σo, x = 1,X , q0), (qini, σo, x = 1,X , qB)}

The construction of G is depicted in Figure 4. Intu-
itively, G starts from a new initial state qini and non-
deterministically goes to either the initial state of the original
system A, i.e. q0 or a new state qB , via the same event σo.
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Fig. 4: Illustration of the construction of G. The edge
(T,Σ, ∅) attached to qB represents the set of edges
{(T, σ, ∅) : σ ∈ Σ}.

From state q0, G will follow exactly the same dynamic of
A. On the other hand, from state qB , all events in Σ can
occur freely, which actually corresponds to a TA satisfying
universality requirement.

Now, we make the following observations from the con-
struction of new system G. First, we note that, starting from
state qB , all timed words ρ ∈ TW(Σ) can be generated.
Therefore, for any timed word (1, σo)ρ, it may end up with
state discrete qB . Similarly, if A is universal, then timed word
(1, σo)ρ may also end up with a state in Q. By assuming that
all events in G is observable, then upon the occurrence of
(1, σo)ρ, we cannot distinguish between state qB from some
state in Q. On the other hand, if A is not universal, then
there exists a timed word (1, σo)ρ such that ρ is not feasible
from q0 but is feasible from qB . Since we assume all events
are observable, we can determine for sure that the system
is at qB upon the occurrence of (1, σo)ρ. Furthermore, we
know the state forever since qB only has self-loops, which
means that G is weakly detectble. The above observations
lead to the following main theorem.

Theorem 2: Weak detectability is undecidable for timed
automata.

VI. CONCLUSION

In this paper, we investigated the verification of de-
tectability for timed discrete-event systems in the dense-
time framework. We extended both strong detectability and
weak detectability to a timed setting. Specifically, to verify
strong detectability, we constructed the verification system
based on the original system, and then provided a necessary
and sufficient condition for strong detectability based on
region automaton of the verification system. Furthermore, we
showed that weak detectability is undecidable in the timed
setting by reducing the universality problem for TA to the
weak detectability verification problem. In the future, we
would like to further investigate more types of detectability
in the time setting, including, e.g., periodic detectability and
delayed detectability.
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