
To Transmit or Not to Transmit: Optimal Sensor Scheduling for
Remote State Estimation of Discrete-Event Systems

Yingying Liu, Xiang Yin and Shaoyuan Li

Abstract— This paper considers the problem of optimal
sensor scheduling for remote state estimation of discrete-event
systems. In this setting, the sensors observe events from the
plant and transmit them to the receiver or estimator selectively.
The transmission mechanism decides to transmit the observed
information or not according to an information transmission
policy. The receiver needs to have sufficient information for
the purpose of decision-making. To solve this problem, we first
construct a non-deterministic dynamic observer that contains
all feasible information transmission policies. Then we show
that the information updating rule of the dynamic observer
indeed yields the state estimate from the receiver’s point of
view. Finally, we propose an approach to extract a specific
information transmission policy, realized by a finite-state au-
tomaton, from the dynamic observer while satisfying some
desired observation properties. A running example is provided
to illustrate the proposed procedures.

I. INTRODUCTION

Discrete-event systems (DES) is an importance class of
engineering systems such as manufacturing systems and
autonomous robots [1], [2], [3]. In real world systems, events
are sometimes unobservable due to the limited observation
capacity. Therefore, the estimation of states for the system is
an important problem. Most works in partially-observed DES
considers static observations, where all sensor readings are
assumed to be sent to the user/receiver. However, in many
modern applications such as remote control [4], or remote
estimation [5], the sensors and the user of the information
are physically different and located remotely. Therefore,
the sensors can choose to transmit or not transmit their
observations [6], [7].

In this paper, we consider a remote state estimation
problem of discrete-event systems. As shown in Fig. 1,
we consider the scenario where the system makes observa-
tions online through its sensors. The sensors can be turned
ON/OFF dynamically by a transmission switch, where the
switch decides whether to transmit its observation to a
receiver or not, according to an information transmission
policy. It is precisely because of such property that we do
not need to transmit one observable event all the time and
only need to transmit it when necessary (to satisfy some
observational property).

Then the receiver makes control decisions for the system
based on the transmitted information. Our objective is to
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Fig. 1. Architecture of transmission mechanism, where Ω denotes the
transmission transmission policy and PΩ denotes the information mapping
under policy Ω (see precise definitions in Section II).

synthesize an information transmission policy such that some
given property holds. Instead of investigating the enforce-
ment of specific objectives, e.g., control [8] or diagnosis [9],
in this paper, we consider a particular class of properties
called Information-State-based (IS-based) properties [10].
Roughly speaking, an IS-based property is a property that
only depends on the current local information of the system.

To construct such a transmission mechanism, we syn-
thesize a non-deterministic dynamic observer that enforces
state disambiguation and contains all feasible information
transmission policies. It is ensured that the synthesis prob-
lem of a feasible information transmission policy is always
solvable. We prove that the information updating rule of
the dynamic observer indeed yields the state estimate of
the receiver. We also propose a method to extract a specific
information transmission policy from the dynamic observer
while ensuring the given IS-based properties. Moreover, to
reduce sensor-related costs caused by energy, bandwidth, or
security constraints, we require that the sensors transmit as
few events as possible.

Our work is closely related to the so-called dynamic sensor
activation proposed in [11], [12], [13], [14], [15], [16]. In
this context, the sensors and the information user can the
same. By contrast, this paper considers the remote estimation
problem where the sensor and the receiver are located at a
remote distance and thus be more complex and challenging.
Also, authors in [17], [18] investigate how to release the
maximum information to the public by a controller while
ensuring opacity. This setting is similar to us. However, here
we consider the IS-based property, which is not restricted
to opacity and can formulate utilities such as diagnosability,
detectability, and distinguishability.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. System Model

We consider a DES modeled by a deterministic finite-state
automaton (DFA) G = (Q,Σ, δ, q0), where Q is a finite set
of states, Σ is a finite set of events, δ : Q × Σ → Q is
a (partial) transition function, q0 ∈ Q is the initial state.
In the usual way, δ can be extended to δ : Q × Σ∗ → Q,
where Σ∗ is the set of all finite-length strings, including the
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empty string ε. The generated behavior of G is language
L(G) = {s ∈ Σ∗ : δ(q0, s)!}, where δ(q0, s)! means that
δ(q0, s) is defined. We denote Σq = {σ ∈ Σ : δ(q, σ)!} the
set of events that are defined at state q.

A string s1 ∈ Σ∗ is a prefix of s ∈ Σ∗, written as s1 ≤ s,
if there is a string s2 ∈ Σ∗ such that s1s2 = s. The length of
a string s is denoted by |s|. The prefix closure of a language
L is the set L = {s ∈ Σ∗ : ∃t ∈ L s.t. s ≤ t}. For a
natural number n, let [1, n] = {1, . . . , n} denote the set of
all natural numbers from 1 to n. Let Σo ⊆ Σ, we denote by
P : Σ∗o → Σ∗ the standard natural projection from Σo to Σ.

B. Problem Formulation
We consider the scenario where the system G is equipped

with sensors that monitor the global system. As shown in
Fig. 1, the sensors observe global events. They can be
turned ON/OFF dynamically by a transmission switch, where
the transmission switch decides, based on the observation
history, whether to transmit this observation to a receiver
or not. Here we consider a generic receiver, and it can be,
e.g., a supervisor or a diagnoser, depending on the specific
application. The receiver makes control decisions for the
system based on the obtained information. Such a decision
mechanism is formalized as an information transmission
policy. Let Σo ⊆ Σ be the set of events observed by
sensors. In this paper, we suppose all events are observable
by sensors (full observation), i.e., Σo = Σ. The information
transmission policy is defined by

Ω : Σ∗Σ→ {Y,N},
where Y and N are information transmission labels. Specifi-
cally, for each observation sσ ∈ Σ∗Σ, Ω will decide whether
to transmit the observation of σ, i.e., Ω(sσ) = Y , or
not Ω(sσ) = N . The above definition of the information
transmission policy is history-dependent. Note that the ob-
servability of an event with different history may be different.
In practice, the information transmission policy needs to be
implemented in finite memory, which can be represented as
a pair (a finite transducer)

Ω = (A,L), (1)

where A = (X,ΣA, η, x0) is a DFA, called a sensor
automaton, such that (i) L(A) = Σ∗A; and (ii) ∀x ∈ X,σ /∈
Σo : η(x, σ) = x, and L : X × ΣA → {Y,N} is a labelling
function that determines whether the current observable event
is transmitted or not. Here, we assume the event domain of
A is Σ for the sake of simplicity, but it can only update its
sensor state upon the occurrences of its observable events in
ΣA. Also, for any σ ∈ ΣA, L(x, σ) = Y means that the
occurrence of event σ will be transmitted at state x, while
L(x, σ) = N represents the opposite. Hereafter in the paper,
an information transmission policy will be considered as a
pair Ω = (A,L) rather than a language-based mapping.

The projection based on a given information transmission
policy Ω is recursively defined by PΩ : L(G)→ Σ∗

PΩ(ε) = ε;PΩ(sσ) =

{
PΩ(s)σ, if Ω(sσ) = Y ;

PΩ(s), if Ω(sσ) = N.

For any string s ∈ L(G) generated by the system, we
define EGΩ (s) := {δ(q0, t) ∈ Q : ∃t ∈ L(G) s.t. PΩ(s) =
PΩ(t)} as the state estimate of the receiver. Clearly, for
strings s, t ∈ L(G), if PΩ(s) = PΩ(t), then EGΩ (s) = EGΩ (t).
We define P−1

Ω (s) = {s′ ∈ Σ∗ : PΩ(s) = PΩ(s′)}.
In this work, instead of considering specific objectives,

e.g., control or diagnosis, we consider a particular class of
properties called Information-State-based (IS-based) proper-
ties [10]. The notion of an information state is defined as a
subset IS ⊆ Q of states of G and the set of all information
states is denoted by I = 2Q.

Definition 1: Given an automaton G, an IS-based prop-
erty ϕ w.r.t. G is a function ϕ : 2Q → {0, 1}, where
∀i ∈ 2Q, ϕ(i) = 1 means that i satisfies this property. We
say that sublanguage L ⊆ L(G) satisfies ϕ w.r.t. G, which
is denoted by L |=G ϕ, if ∀s ∈ L : ϕ(RG(s, L)) = 1, where
RG(s, L) = {δ(q0, t) ∈ Q : ∃t ∈ L(G) s.t. P (s) = P (t)}.

For more details about IS-based property, the reader is re-
ferred to [10]. We will employ the distinguishability property
as a running example to illustrate the results.

Our objective is to synthesize an information transmission
policy such that some given property holds. We define the
Information Transmission Problem (IT Problem) as follows.

Porblem 1: Given a plant G = (Q,Σ, δ, q0) and a IS-
based property ϕ : 2Q → {0, 1}. Find an information
transmission policy Ω = (A,L) s.t.

(i) L(A) satisfies ϕ w.r.t. G, i.e., L(A) |=G ϕ;
(ii) the sensors transmit as few events as possible.

III. A GENERAL MOST COMPREHENSIVE DYNAMIC
OBSERVER

For implementation purposes, we firstly attach the infor-
mation transmission labels {Y,N} to the system G. Then
we construct a dynamic observer that contains all possible
information transmission policies. Finally, we formally show
that the information updating rule of the dynamic observer
indeed yields the state estimate of the receiver.

A. Attach information transmission labels to the system

We attach the information transmission labels to the sys-
tem G, called labelled system, which can be represented as
a nondeterministic finite-state automaton (NFA)

Gag = (Q̃,Σ, f, Q̃0), (2)

where
• Q̃ = Q× {Y,N}|Σ| is the set of states;
• Σ is the set of events;
• f : Q̃×Σ→ 2Q̃ is the partial transition function defined

by: for any q̃, q̃′ ∈ Q̃ and σ ∈ Σ, q̃′ ∈ f(q̃, σ) if q′ =
δ(q, σ), i.e., the labels of q̃ is free to change.

• Q̃0 = {q0} × {Y,N}|Σ|.
As shown above, the state space of Gag is defined by
Q̃ = Q × {Y,N}|Σ|. For each state q̃ ∈ Q̃, we list all
possible transmission decisions/labels of all events in Σ for
q̃. Specifically, for each event σ, we have two transmission
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Fig. 2. System G and labelled system Gag . For simplification, instead of
listing the labels of all events to each state, we list the labels of events that
are defined at each state; namely, only 2|Σq| labels are listed at state q.

decisions: transmit Y and not transmit N . These two deci-
sions are attached at q̃. Similarly, We list the transmission
decisions of each event at each state in Gag .

Example 1: Given plant G in Fig. 2, we attach the
information transmission labels {Y,N} to G to con-
struct Gag as defined by (2). The initial states of Gag

are q̃0 = {q0} × {Y,N}|Σq0 | = {q0} × {Y,N}3 =
{q0Y Y Y, q0Y Y N, q0Y NY, q0NY Y, q0Y NN, q0NNY,
q0NNY, q0NNN} since there have three events (σ1, σ2, and
σ3) to be defined at q0. Similarly, we get the state space Q̃ =
{q0Y Y Y, q0Y Y N, q0Y NY, q0NY Y, q0Y NN, q0NNY,
q0NNY, q0NNN, q1Y, q1N, q2Y, q2N, q3Y, q3N, q4Y, q4N,
q5}. The constructed Gag is shown in Fig. 2.

B. Construction of the dynamic observer

To give all possible information policies, we construct
a dynamic observer for Gag , which needs the following
definitions. In order to clearly give the transmission policy
of each defined event, we employ L to denote the set of all
functions l : Σ→ {Y,N}. The function l maps events in Σ
to the labels {Y,N}. Specifically, l(σ) = Y means the event
σ is transmitted by the sensor, and l(σ) = N represents the
opposite. For any two states q̃ = (q, l), q̃′ = (q′, l′) ∈ Gag

with l, l′ ∈ L, an unobservable path from q̃ to q̃′ is a
sequence in Gag

p = (q1, l1)
σ1−→ (q2, l2)

σ2−→ · · · σn−−→ (qn+1, ln+1), (3)

where q̃ = (q1, l1) and q̃′ = (qn+1, ln+1) such that, for all
i = 1, . . . , n : li = l(σi) = N . We denote u-path(q̃, q̃′) the
set of unobservable paths (u-path) from q̃ to q̃′ and say q̃′ is
reached unobservably from q̃ by u-path(q̃, q̃′). Thus the set
of unobservable paths from q̃ is defined by

Up(q̃) =
⋃
q̃′∈Q̃

u-path(q̃, q̃′).

For any q̃′ ∈ Q̃ reached unobservably from q̃ by p, we denote

Q̂(p) = {(q1, l1), (q2, l2), · · · , (qn+1, ln+1)}

the set of states reached unobservably from q̃ to q̃′ by p. The
set of states that are unobservable reached from q̃ thus can
be obtained by

S(q̃) =
⋃

p∈Up(q̃)

Q̂(p) (4)

A set ı is said to be unobservable reach-closed if for any
states (qi, li) ∈ ı, we have

l(qi, σi) = N : ∃(qj , lj) ∈ ı s.t., f(q̃i, σi) = q̃j .

That is to say, for any state (qi, li) in ı, if the event σi defined
at (qi, li) will not be transmitted, i.e., l(qi, σi) = N , then
there must exists a state (qj , lj) in ı such that (qj , lj) is
reachable by σi from (qi, li).

Consider the collection of all subsets of S(q̃) that are
unobservable reach-closed:

UC(q̃) = {ı ⊆ S(q̃) : ı is unobservable reach-closed}. (5)

It is straightforward to verify that UC(q̃) is nonempty (q̃
belongs) and is closed under arbitrary unions.

Let ı = {q̃1, . . . , q̃n}. The subsets that are unobservable
reach-closed are defined by

UC(ı) =
⋃
q̃∈ı
UC(q̃).

Moreover, there may be a decision conflict because for
each σ ∈ Σ we can only choose either Y or N for each
σ ∈ Σ. Therefore, some states cannot occur simultaneously
in S(q̃). We say two sequences

p =(q1, l1)
σ1−→ (q2, l2)

σ2−→ · · · σn−−→ (qn+1, ln+1)

p′ =(q′1, l
′
1)

σ′
1−→ (q′2, l

′
2)

σ′
2−→ · · · σ

′
m−−→ (q′m+1, l

′
m+1)

are non-conflicting if

∀i ≤ min{n,m} : (qi, li) 6= (q′i, l
′
i)⇒ σ1 . . . σi 6= σ′1 . . . σ

′
i

We say ı ⊆ S(q̃) is non-conflicting if there exists a
collection of u-paths P ⊆ Up(q̃) such that each pair of upaths
in it are non-conflicting and ı =

⋃
p∈P Q̂(p).

Again consider the collection of all subsets of S(q̃) that
are non-conflicting:

NC(q̃) = {ı ⊆ S(q̃) : ı is non-conflicting}.

It can be verified that NC is nonempty and is closed under
arbitrary intersections. Similarly, let ı = {q̃1, . . . , q̃n}. The
subsets of ı that are non-conflicting are defined by

NC(ı) =
⋃
q̃∈ı
NC(q̃).

Let

maxS(ı) = UC(ı) ∩NC(ı) (6)

be the maximal subset of S(ı) that is unobservable reach-
closed and non-conflicting. Note that maxS(ı) is not a
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singleton because we may have different maximal choices
that are conflicting.

Let q̃ = (q, l) be an augmented state and σ ∈ Σ be
an observable event. NXσ(q̃) is defined if l(σ) = Y and
f(q, σ)!. Furthermore, we have

NXσ(q̃) = {q̃′ ∈ Q̃ : q̃′ ∈ f(q̃, σ)} (7)

For ı = {q̃1, . . . , q̃n}, we define

NXσ(ı) = {{q̃′1, . . . , q̃′n} ∈ 2Q̃ : ∀i ∈ [1, n], q̃′i ∈ f(q̃i, σ)}.
(8)

We define the set of states that can be reached unobserv-
ably from some state in ı by UR(ı) = maxS(ı).

Now we are ready to construct the dynamic observer of
Gag , which is defined as a new NFA

Obs(Gag) = (Z,Σ, ξ, Z0), (9)

where
• Z ⊆ 2Q̃ is the set of states;
• Σ is the set of events;
• ξ : Z×Σ→ 2Z is the partial transition function defined

by: for any z ∈ Z, σ ∈ Σ, we have

ξ(z, σ) = UR(NXσ(z)) =
⋃

z′∈NXσ(z)

maxS(z′); (10)

• Z0 = UR(Q̃0) is the set of initial states.
The initial states Z0 is defined by UR(Q̃0) =⋃
q̃0∈Q̃0

maxS(q̃0). UR(z) is the set of states that can be
reached unobservably from some state in z and is unob-
servable reach-closed and non-conflicting. Since UR(z) =
maxS(z) and maxS(z) may not a singleton, UR(z) may
not singleton as well. NXσ(z) is the set of states that can
be reached from some state q̃ in z immediately by event σ,
i.e., f(q̃, σ). Similarly, f(q̃, σ) may not singleton because the
future states of q̃ reached by σ are attached with different
labels.

As defined above, we employ NXσ(z) to update the
states when the event σ is transmitted at state z. After
obtaining the updated state, we use UR to compute the
states that are reached unobservably from states in NXσ(z).
Since UR(z) = maxS(z) = UC(z) ∩ NC(z), we need to
find all the unobservable paths p as given in (3) firstly.
Then by deleting the paths whose generated states are not
unobservable reach-closed and conflicting, we get the paths
that satisfy (6). It is ensured that all states in Obs(Gag) are
unobservable reach-closed and non-conflicting. In addition,
Obs(Gag) contains all possible information transmission
policies. An illustrative example is given in the following.

Example 2: Let us consider the system G and the labelled
system Gag in Fig. 2. We employ this example to illustrate
the procedure of synthesizing the state set of Obs(Gag). In
this example, we only show partial paths started from the
initial state q0NNY . The cases started from other initial
states are similar.

Initially, we need to compute the initial states
started from q0NNY . We have UR(q0NNY ) =

maxS(q0NNY ) = UC(q0NNY ) ∩ NC(q0NNY ). By (4)
we have S(q0NNY ) = {Q̂(p1), Q̂(p2), . . . , Q̂(p5)}, where
p1 = (q0NNY )

σ1,σ2−−−→ (q5, q1Y ), p2 = (q0NNY )
σ1,σ2−−−→

(q5, q1N), p3 = (q0NNY )
σ1,σ2−−−→ (q5, q1N)

σ2−→
(q2Y ), p4 = (q0NNY )

σ1,σ2−−−→ (q5, q1N)
σ2−→ (q2N)

σ1



σ2

(q1N), p5 = (q0NNY )
σ1,σ2−−−→ (q5, q1N)

σ2−→ (q2N)
σ1



σ2

(q1N)
σ2−→ (q2Y ), and p6 = (q0NNY )

σ1,σ2−−−→
(q5, q1N)

σ2−→ (q2N)
σ1−→ (q1N)

σ2



σ1

(q2N)
σ2−→ (q1Y ).

Q̂(p2) is not unobservable reach-closed since for state
q1N ∈ Q̂(p2), there does not exist a state in Q̂(p2)
s.t. q1N can reach it. We thus get that UC(q0NNY ) =
{Q̂(p1), Q̂(p3), Q̂(p4), Q̂(p5), Q̂(p6)}. It can be verified
that all the paths in UC(q0NNY ) are non-conflicting,
we thus get that UR(q0NNY ) = maxS(q0NNY ) =
{Q̂(p1), Q̂(p3), Q̂(p4), Q̂(p5), Q̂(p6)} =
{{q0NNY, q5, q1Y }, {q0NNY, q5, q1N, q2Y }, {q0NNY, q5,
q1N, q2N}, {q0NNY, q5, q1N, q2N, q1Y }, {q0NNY, q5, q1N,
q2N, q2Y }}.

Then we employ the initial state z0 = {q0NNY, q5, q1Y }
in maxS(q0NNY ) to illustrate how to update the states
in Obs(Gag). Since there have two events σ2, σ3 that are
defined at {q0NNY, q5, q1Y }, by (10) we have transitions:

(i) ξ(z0, σ2) = UR(NXσ2
(z0)) =⋃

z′∈NXσ2 (z0)maxS(z′). By (8) we have NXσ2(z0) =

{{q̃′2} : q̃′2 ∈ f(q0NNY, σ2)} = {{q2Y }, {q2N}}.
Then ξ(z0, σ2) = maxS({q2Y }) ∪ maxS({q2N}).
Since {q2Y } is labeled with Y , it is directly obtained
that maxS({q2Y }) = {q2Y }. For {q2N} we have
maxS({q2N}) = {Q̂(p′1), Q̂(p′2), Q̂(p′3), Q̂(p′4)},
where p′1 = (q2N)

σ1−→ (q1Y ), p′2 = (q2N)
σ1



σ2

(q1N), p′3 = (q2N)
σ1



σ2

(q1N)
σ2−→ (q2Y ), and p′4 =

(q2N)
σ1−→ (q1N)

σ1



σ2

(q2N)
σ2−→ (q1Y ), We thus

obtain ξ(z0, σ2) = maxS({q2Y }) ∪ maxS({q2N}) =
{{q2Y }, {q2N, q1Y }, {q1N, q2N}, {q1N, q2N, q1Y },
{q1N, q2N, q2Y }}. (ii) ξ(z0, σ3) = UR(NXσ3

(z0)) =⋃
z′∈NXσ3 (z0)maxS(z′). By (8) we have

NXσ3
(z0) = {{q̃′3} : q̃′4 ∈ f(q0NNY, σ3)} =

{{q3Y }, {q3N}}. Similarly, we have maxS({q3N}) =
{Q̂(p′′1), Q̂(p′′2), Q̂(p′′3)}, where p′′1 = (q3N)

σ3−→ (q4Y ),
p′′2 = (q3N)

σ2−→ (q4N)
σ3



σ3

(q4N), and p′′3 =

(q3N)
σ2−→ (q4N)

σ3



σ3

(q4N)
σ3−→ (q4Y ). We thus get

that ξ(z0, σ3) = maxS({q3Y }) ∪ maxS({q3N}) =
{{q3Y }, {q3N, q4Y }, {q3N, q4N}, {q3N, q4N, q4Y }}.

The other states can be computed in the similar way. The
obtained dynamic observer Obs(Gag) is shown in Fig. 3.

C. State Estimate

As mentioned in Section III-A, all possible information
transmission policies are listed in Gag . These information
transmission policies can be restricted to a specific policy
Ω = (A,L) by producting them. The product of A =
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Fig. 3. The dynamic observer Obs(Gag)

(X,Σ, η, x0) and Gag = (Q̃,Σ, f, Q̃0) is defined by A ×
Gag = (Y,Σ, θ, y0), where
• Y ⊆ X × Q̃ is the set of states,
• Σ is the set of events,
• θ : Y ×Σ→ Y is the partial transition function defined

by: for any y = (x, q̃), y′ = (x′, q̃′) ∈ Y, σ ∈ Σ, ∀σ′ ∈
Σq̃′ , we have y′ = θ(y, σ) iff

x′ = η(x, σ) ∧ q̃′ ∈ f(q̃, σ) ∧ l(σ′) = L(x′, σ′) (11)

• y0 = (x0, q̃0) with l(σ) = L(x0, σ), for all σ ∈ Σq̃0 , is
the initial states.

To estimate the states of the system under the given
information transmission policy Ω, we construct the observer
of A × Gag , which is defined by Obs(A × Gag) =
(Y ′,Σ, θ′, y′0), where
• Y ′ ⊆ 2Y = 2X×Q̃ is the set of states,
• Σ is the set of events,
• θ′ : Y ′ × Σ → Y ′ is the partial transition function

defined by: for any ı, ı′ ∈ Y ′, σ ∈ Σ, we have ı′ =
θ′(ı, σ) iff

ı′ = UR′(NX ′σ(ı)) (12)

where for any ı ∈ 2Y we have

NX ′σ(ı) = {y′ ∈ Y : ∃ y ∈ ı s.t. θ(y, σ) = y′}
UR′(ı) = {y′ ∈ Y : ∃ y ∈ ı, ∃ s ∈ Σ∗ s.t. PΩ(s) = ε

∧ y′ = θ(y, s)},

• y′0 = (UR′(x0), UR′(q̃0)) is the initial states with y0 =
(x0, q̃0).

By the definition of the transition function we have y′ =
θ′(y, σ) = UR′(NX ′σ(y)) = UR′(θ(y, σ)) = {y′ ∈ Y :
∃ s ∈ Σ∗ s.t. PΩ(s) = PΩ(σ) ∧ y′ = θ(y, s)}. By extending
the transition function to a string s in a usual way we get that
θ′(y, s) = {y′ ∈ Y : ∃ t ∈ Σ∗ s.t. PΩ(s) = PΩ(t) ∧ y′ =

θ(y, t)} = EA×Gag

Ω (s).
Next, we show that the state components of the observer’s

state reached upon Obs(A×Gag) always belongs to the state

x0 x1 x2 x3x4
σ2 σ2 σ1

σ1, σ2σ1

σ3

σ3, σ2

A

x0, q0NNYx4, q3N

x4, q4N
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x3, q1N
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σ1 σ1

A×Gag

x1, q1Y
σ2σ3
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σ2σ1
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σ3
x2, q2Y

x3, (q1N, q2N)

σ2

σ1

x4, (q3N, q4N)

Y N Y Y

N,NNN,N

Fig. 4. Sensor automata A, the product automata A × Gag and the
observer Obs(A×Gag).

estimator value of the dynamic observer Obs(Gag) after an
observable string which is available to the observer. For any
ı ∈ Y ′, let

I2(ı) = {{q̃1, . . . , q̃m} ∈ 2Q̃ : ı = (x1, . . . , xk, q̃1, . . . , q̃m)}.

Proposition 1: Let Obs(Gag) = (Z,Σ, ξ, Z0) be the dy-
namic observer induced by (9), and s be an observable string
available to the observer Obs(A ×Gag) = (Y ′,Σ, θ′, y′0).
Then we have I2(θ′(y′0, s)) ∈

⋃
z0∈Z0

ξ(z0, s).
Finally, we formally show that the state space of the

dynamic observer Obs(A × Gag) indeed yields the state
estimate of the receiver. For ı ∈ 2Q̃, let

I1(ı) = {q ∈ Q : q̃ ∈ ı}.

Theorem 1: Let Ω = (A,L) be an information trans-
mission policy imposed on G and s = σ1σ2 . . . σm be an
observable string available to the dynamic observer Obs(A×
Gag) = (Y ′,Σ, θ′, y′0). Then we have

I1(I2(θ′(y′0, s))) = EGΩ (s).
Example 3: Let us consider system Gag in Fig. 2. Given

an information transmission policy Ω = (A,L), where A is
shown in Fig. 4 and L is given by: l(x0, σ1) = l(x0, σ2) =
l(x3, σ1) = l(x3, σ2) = l(x4, σ3) = l(x4, σ4) = N and
l(x0, σ3) = l(x1, σ2) = l(x2, σ1) = Y . The correspond-
ing product automata A × Gag and the dynamic observer
Obs(A × Gag) defined above are given in Fig. 4. Let
string s be an arbitrary observable string available to the
the dynamic observer Obs(A × Gag). It can be verified
that I2(θ′(y′0, s)) ∈

⋃
z0∈Z0

ξ(z0, s) (Proposition 1) and
I1(I2(θ′(y′0, s))) = EGΩ (s) (Theorem 1) always hold.

IV. SYNTHESIS OF FEASIBLE TRANSMISSION
INFORMATION POLICIES

In this section, we discuss how to synthesize a determin-
istic information policy that ensures the IS-based property is
satisfied. Given an observer Obs(Gag) = (Z,Σ, ξ, Z0), we
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say that a state z is consistent if ∀σ ∈ Σz 6= ∅, NXσ(z) 6= ∅.
We denote by Zconst the set of consistent states in Z and
we say Z is consistent if all reachable states are consistent.

Our approach for synthesizing a deterministic information
policy consists of the following two steps: (i) first construct
the largest sub-automata G∗ of Obs(Gag) such that L(G∗)
satisfies the IS-based property and the states of G∗ are
consistent; and (ii) then extract one deterministic information
transmission policy Ω based on G∗.

A. Synthesis of the transmission information policy

To satisfy the IS-based property ϕ, it should be guaranteed
that, for any ı ∈ 2Q̃, ϕ(ı) = 1.

To this end, we define

Zdis = {ı ∈ Z : ϕ(ı) = 0}

as the set of states that dissatisfies the IS-based property ϕ.
In order to synthesize a desired transmission informa-

tion policy, we firstly construct the largest sub-automata of
Obs(Gag)(= (Z,Σ, ξ, Z0)) that enumerates all the feasible
transitions satisfying the constraints of ξ. Such an all-feasible
automaton is denoted by Gtotal. Then, we need to delete
some states that dissatisfy the IS-based property and obtain
a new automaton G0 = Gtotal �Z\Zdis , where G �Z denotes
the automata obtained by restricting the state-space of G to
Z.

However, by deleting partial states, the resulting automata
may become inconsistent. Hence, we also need to delete
inconsistent states recursively. To this end, we give an
operator R that maps an automaton to a new one by:
R : G 7→ G �Zconst and define G∗ = limk→∞Rk(G0)
as the largest consistent automaton which satisfies the IS-
based property. An algorithm (Algorithm 1) is proposed to
synthesize G∗ via a depth-first search. By Algorithm 1, we
will delete a state if there exists an event that are defined
in Obs(Gag) and not defined at Rk(G0) for some k → ∞
(lines 3-5), namely, the deleted states are inconsistent. We
obtain an automaton that satisfies the IS-based property by
deleting all inconsistent states recursively.

Algorithm 1:
input : Obs(Gag) = (Z,Σ, ξ, Z0)

output: G∗ = (Z̃, Σ̃, ξ̃, Z̃0)

1 G∗ = Gtotal �Z\Zdis= (Z̃,Σ, ξ̃, Z̃0);
2 Z̃ = Z;
3 for each z ∈ Z do
4 if ∃σ ∈ Σ s.t. ξ(z, σ)! and qξ̃(z, σ)! then
5 Z̃ = Z̃ \ {z};

G∗ = G∗ �Z̃ .

So far, the first step has been finished. Now we exe-
cute the second step by synthesizing an automata A =
(X,ΣA, η,x0) from the largest feasible automaton G∗ to
present the corresponding information transmission policy,
while ensures that the obtained automata A transmits as
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σ4 σ4 σ4
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Fig. 5. G0 and G∗

fewer events as possible. Specifically, we start from the
initial state q0 ∈ Q, check and choose the states labeled
by N for each defined event as far as possible. We denote
the set of states that contains q̃ in Obs(Gag) by Q(q̃) =
{z ∈ Z|q̃ ∈ z}. Then for each event σ defined at Q(q̃)
in Obs(Gag), Q(q̃) can be divided into three sets QYσ (q̃),
QNσ (q̃), and Quσ(q̃), where QYσ (q̃) = {z ∈ Q(q̃)|l(q̃, σ) =
Y } denotes the set of states that σ will be transmitted at
state q̃, QNσ (q̃) = {z ∈ Q(q̃)|l(q̃, σ) = N} denotes the set of
states that σ will not be transmitted at state q̃, and Quσ(q̃) =
Q(q̃)\ (QYσ (q̃)∪QNσ (q̃)) denotes the set of states that σ will
be transmitted at some loops and not be transmitted at other
loops. Then by choosing different transmission decision from
QYσ (q̃), QNσ (q̃), and Quσ(q̃), for each state q̃ and σ we obtain
a unique deterministic transmission decision. That is why we
will obtain a deterministic transmission information policy.

Example 4: Let us consider Obs(Gag) in Fig. 2. We
firstly delete states that make the system G undistinguishable
and obtain a distinguishable automata G0 as shown in Fig. 5.
We note that there exist some states that are inconsistent in
G0, e.g., (q0NYN, q3Y, q5) and (q0Y Y N, q3Y ). Event σ2

is defined at states (q0NYN, q3Y, q5) and (q0Y Y N, q3Y ) in
Obs(Gag) and not defined in G0. We thus need to delete
inconsistent states recursively by Algorithm 1 and obtain the
largest consistent and distinguishable automata G∗ which
is shown in Fig. 5. Next, we synthesize an automata A
from the largest feasible automata G∗, where the obtained
automata A transmits events as few as possible by choosing
the states labeled by N for each defined event. For instance,
G∗ contains q4Y , (q4Y, q4N), and q4N for the state q̃4, to
transmit fewer events here we keep q4N and delete q4Y and
(q4Y, q4N). The resulting automata A is shown in Fig. 6.

B. Realization of the information transmission policy

In the last subsection, we synthesize an automata A
from the largest feasible automata G∗ to present a specific
information transmission policy, where the labels of each
event are given as the effect of A. However, we can’t
accurately know how the information is transmitted at each
step. There may exist some state-transition loops in G
such that the label of the event in this loop with different
history may be different. In order to accurately know how
the information are transmitted at each step under a given
policy A = (X,Σ, η,X0), namely, obtain the labeling
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Fig. 6. Synthesized information transmission policy A
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Fig. 7. The product automata S = Gag ×A

function L, we construct a new non-deterministic automata
S = Gag ×A = (H,Σ, ζ,h0), where
• H ⊆ Q̃×X is the set of states,
• Σ is the set of events,
• ζ : H×Σ→ H is the partial transition function defined

by: for any h = (q̃, x), h′ = (q̃′, x′) ∈ H,σ ∈ Σ, we
have h′ ∈ ζ(h, σ) iff

x′ =

{
x, if l(σ) = N

η(x, σ), if l(σ) = Y ;

q′ = δ(q, σ) ∧ q̃′ ∈ {q′ × {Y,N}|Σq′ |} ∩ x′,

• h0 = (q̃0, x0) with q̃0 ∈ {q0 ×{Y,N}|Σq0 |} ∩ x0 is the
initial state.

After attaching the policy A to the system, the transmission
label of each event at each step can be obtained by the first
component of the states in S and is deterministic (even if S
may be nondeterministic). For any state h = (q̃, x) ∈ H and
σ ∈ Σh, we have L(q̃, σ) = l(σ).

Example 5: Let us again consider Gag in Fig. 2 and the
information transmission policy A in Fig. 6. We attach the
policy A to the system by the above definition and the
obtained S = Gag ×A is shown in Fig. 7.

Remark 1: We note that S may be non-deterministic,
which is caused by transitions leading to the exact state es-
timate of the receiver while with different labels. To convert
S to a deterministic automaton, we introduce a relabeling
map R : (H × Σ → H) → (H × (Σ × {Y,N}|Σ|) → H)
such that for any h, h′ ∈ H,σ ∈ Σ,

R : (h
σ−→ h′) −→ (h

(σ,lh′ )−−−−→ h′),

where lh′ = l(I1(h′)). We add a label to each transition,
where the label is consistent with the label of the reachable
state of this transition. By the relabeling map R, we obtain
a new deterministic automaton S′ = (H,Σ, ζ ′, h0), where
ζ ′ : (H × Σ → H) → (H × (Σ × {Y,N}|Σ|) → H) is
defined by ζ ′(h, (σ, lh′)) = h′ iff ζ(h, σ) = h′.
Gag × A belongs to that of Obs(Gag) and thus gives the

By the above steps, we know that the information policy
A is obtained by choosing a unique transmission decision
for each event in G∗ and G∗ is obtained by deleting the
bad states of Obs(Gag). Hence, the state space of S =

state estimation of the receiver under A. Therefore, the state
space of S is consist with the state estimation of the receiver
(EGΩ (s)).

V. CONCLUSION

In this paper, we studied the problem of optimal sensor
scheduling for remote state estimation of discrete-event sys-
tems. We investigated a mechanism that selectively transmits
the observable events according to an information trans-
mission policy. We proposed algorithms for synthesizing
deterministic information policies that ensure the IS-based
property. In the future, we aim to consider the distributed
and decentralized sensing and information transmission ar-
chitecture based on the results proposed in this paper.
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