
Failure-Robust Multi-Robot Tasks Planning under
Linear Temporal Logic Specifications

Feifei Huang, Xiang Yin and Shaoyuan Li

Abstract—In this work, we investigate the problem of multi-
robot planning for tasks specified by linear temporal logic (LTL)
formulas. The objective is to synthesize a reactive plan for the
team of robots such that a global LTL task is fulfilled while
minimizing the satisfaction time. We consider the scenario where
some robots may fail during the execution so that they cannot
contribute to the satisfaction of the task. Specifically, we assume
that there are at most k robot that may fail. An effective
task planning algorithm is presented that guarantees the robust
satisfaction of the task under the upper-bounded number of
failure robots. Our approach is based on constructing a team
transition system that can capture both asynchronous motion
of robots and possible robot failures. Then by utilizing value-
iteration algorithm over the product of the task automata and
the team transition system, a reactive and optimal strategy is
computed. We illustrate the proposed algorithm by multi-robot
coordination in grid-world.

Index Terms—Multi-Robot Systems, Task Planning, Linear
Temporal Logic, Failure Robustness

I. INTRODUCTION

Task planning is one of the central problems in multi-
robot systems, which have been widely used in nowadays
cyber-physical engineering systems [2], [5], [27]. Traditional
works on multi-robot planning mainly focus on low-level
tasks such that collision avoidance and target point navigation
[7], [14]. However, such low-level task specifications are not
rich enough to support the increasing demand for complexity
behaviors of the multi-robot system. Therefore, in the past
years, task planning for high-level specifications has been
becoming increasingly more important research topic in the
multi-robot literature [13].

Formal methods is one of the most promising approaches
for synthesizing high-level plans for multi-robot system to
accomplish complex task. In particular, Linear Temporal Logic
(LTL) [1] provides a well-structured, user-friendly and enough
expressive way for specifying the complex task of the system.
For example, it allows us to describe tasks such as “surveil a
critical region infinitely often” or “keep searching for a target
until it is found”. In this work, we will focus on a specific
fragment of LTL called co-safe LTL (scLTL), which is widely
used to described tasks that should be satisfied within a finite
horizon such as “eventually deliver the goods while avoiding
obstacles”.

This work was supported by the National Natural Science Foundation of
China (62061136004, 62173226, 61833012) and the National Key Research
and Development Program of China (2018AAA0101700).

F. Huang, X. Yin and S. Li are with Department of Automa-
tion and Key Laboratory of System Control and Information Process-
ing, Shanghai Jiao Tong University, Shanghai 200240, China. E-mail:
{huangfeifei,yinxiang,syli}@sjtu.edu.cn.

Due to its importance, multi-robot task planning for LTL
specifications has drawn considerable attention in the litera-
ture; see, e.g., [6], [9], [10], [16], [17], [20], [22]–[24], [26].
Roughly speaking, depending on whether or not the multi-
robot system is working in an uncertain environment, the
coordination problem can be categorized as the planning prob-
lem and the reactive synthesis problem. In the task planning
problem, it is assumed that there is no uncertainty in both the
movements of the robots as well as the structure of the working
space. Therefore, one needs to synthesize a plan, which is
essentially an open-loop (possibly infinite) trajectory, for each
robot to execute. Works along this direction can be found
in, e.g., [8], [16]. In practice, due to external disturbances or
adversarial attacks, the movements of robots may be uncertain.
In this case, one needs to synthesize a reactive strategy that
determines the action of each robot on-the-fly based on the
executed trajectories [6], [12]. More recently, some works
further consider the scenario where the workspace is partially-
known [21] or completely unknown a priori [4], [10].

In this work, we consider the task planning problem where
the workspace as well as the mobility of each robots are
completely known and deterministic. Standard approach for
solving the planning problem involves three steps [8], [16].
First, one needs to construct a deterministic team transition
system by synchronizing the mobility model of each individual
robot. Second, one needs to transform the LTL formula into a
Büchi automaton and then product it with the team transition
system. Finally, one needs to solve a graph search problem
over the product system to order to generate an infinite
trajectory satisfying the Büchi acceptance condition.

However, existing approaches for multi-robot task planning
do not consider the issue of robot failures. In practice, when
robots working in a severe environment, e.g., for rugged
terrain search and rescue tasks, some robots in the team may
either break physically or lose connections with the central
station. Once a robot fails, it can no longer contribute to the
satisfaction of the global task. Therefore, to guarantee the
robust satisfaction of the overall task, one needs to plan ahead,
at the offline synthesis stage, to make the generated plan have
certain level of robust degree so that the satisfaction of the
overall task cannot be affected when a small number of robots
fail.

In this work, we propose a framework for synthesizing
robust plans for multi-robot systems under possible robot
failures. Specifically, we assume that there are at most k
robots that could fail among the all N robots. Whenever
the decision-maker detects the failure of some robot, it will
update the global plan to incorporate with the failure. The

2022 The 13th Asian Control Conference (ASCC 2022)
 

Jeju Island, Korea, May 4-7, 2022

978-89-93215-23-6/22/$31.00 ⓒACA 1052

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 22,2022 at 00:47:10 UTC from IEEE Xplore.  Restrictions apply. 



generated reactive plans ensure the satisfaction of the scLTL
task even under the worst scenario where arbitrary, but at
most k, robots fail. Our approach is based on building a non-
deterministic transition system model that captures all possible
failures of each robot. Then by taking value iterations over
the product of the proposed non-deterministic system with the
finite-state automaton capturing the scLTL specification, an
effective reactive planning strategy is obtained that solves the
problem.

We note that, the robustness issue has already been dis-
cussed in the literature in the context of formal methods
in robotics. For example, [18] discussed how to synthesize
plans that are robust to timing errors during the online
deployment. In [21], the authors considered the robustness
issue against both environmental disturbances and modeling
errors. The work of [15] considered the un-modeled but
bounded disturbance and ensured that the behaviours of the
system remain close to the expectation. Also, [25] proposed
how to synthesize feedback control strategies robust to small
perturbations. However, none of the above works considers the
robustness issue against individual robot failures.

The rest of this paper is organized as follows. In Section
II, a brief introduction to the basic knowledge and concepts
appeared in this paper is given. In Section III, we describe
the details of system setup and provide a formal problem
statement. In Section IV, we propose the synthesis method
for this problem. In Section V, an example to illustrate the
resulting strategy generated by our method is given. We
conclude our contribution and discuss some future work in
Section VI.

II. PRELIMINARY

Some basic concepts and definitions are reviewed in this
section, including transition systems, linear temporal logic and
finite state automata. They will be used in the system modeling
and the problem’s solution.

A. Transition systems

Transition systems are general enough to capture the behav-
ior of systems. It is used as a modeling formalism in generating
the control strategy from a specification. We model each single
robot as a weighted transition system in this work.

Definition 1 (Weighted Transition System). A weighted
Transition System, denoted by wTS, is a 6-tuple(
Q, q0,→, w,AP,L

)
, where:

• Q is the set of states;
• q0 ∈ Q is the initial state;
• → ⊆ Q × Q is the transition relation. If there is a

transition relation from state q to q′, then (q, q′) ∈→,
or denoted as q → q′;

• w : Q×Q → R+ is cost function;
• AP is the set of atomic propositions;
• L : Q → 2AP is a labelling function giving the set of

atomic propositions that can be satisfied in a state.

An infinite trajectory of wTS is an infinite sequence τ =
q0q1 · · · such that qt → qt+1,∀t ≥ 0. Besides, a trajectory
can generate a trace as a sequence of atomic propositions,
i.e., trace (τ) = L

(
q0
)
L
(
q1
)
L
(
q2
)
· · · , which is an infinite

word over 2AP . We denote trace (wTS) as the set of all traces
that can be generated from the initial state of the weighted
transition system wTS.

B. Linear temporal logic

Linear temporal logic (LTL) formula can express temporal
properties in a structured, user-friendly and rigorous manner.
In this paper, we use co-safe LTL formula (scLTL) to describe
the global task for the multi-robot system, which is fragments
of LTL.

Definition 2 (co-safe LTL Syntax). A co-safe linear temporal
logic (scLTL) formula φ over a given set of atomic propositions
AP is defined recursively as following step:
• > is scLTL formula;
• atomic proposition α ∈ AP is scLTL formula;
• if φ is scLTL formula, ¬φ,Xφ,Fφ are scLTL formulas;
• if φ1 and φ2 are scLTL formulas, then φ1 ∧ φ2, φ1 ∨ φ2

and φ1Uφ2 are all scLTL formulas.

Specifically, > is predicate true, and ¬ (negation), ∧
(conjunction), ∨ (disjunction) are standard Boolean operators.
Temporal operator Xφ holds true at the current moment, if φ
holds in the next moment. Formula φ1Uφ2 holds true at the
current moment, if there is some future moment for which φ2

holds and φ1 holds at all moments until that future moment.
Formula Fφ = >Uφ holds true at the current moment if φ
eventually holds true sometime in the future.

Different from full LTL formula, temporal operator Gφ =
¬F¬φ can not be expressed in scLTL, because it requires φ
always to be true, which can only be satisfied in infinite time.

Though scLTL formulas are interpreted over infinite words,
it should be guaranteed in finite time [3]. An infinite word
satisfies a scLTL formula if it contains a finite “good” prefix,
which satisfies the finite horizon specification. We define
Words (φ) as the set of words that satisfy the scLTL formula
φ. Recall that the trace generated by trajectory of a transition
system is an infinite word. If all traces generated from the
initial state of weighted transition system wTS satisfy scLTL
formula φ, i.e., trace(wTS) ⊆ Words(φ), we say wTS
satisfies φ, denoted as wTS � φ.

C. Finite state automata

A scLTL formula φ can be translated into a deterministic
finite state automata (FSA), which can accept all and only
words with “good” prefixes of φ. Model checking technique
for FSA is one type of standard approaches evaluating the
reachability property of the system [11].

Definition 3 (Finite State Automata). A (deterministic) finite
state automata (FSA) is a tuple A =

(
QA, q0

A,ΣA, δA,FA
)
,

where:
• QA is a finite set of states;

1053

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 22,2022 at 00:47:10 UTC from IEEE Xplore.  Restrictions apply. 



• q0
A ∈ QA is the initial state;

• ΣA is an input alphabet;
• δA : QA × ΣA → QA is a deterministic transition

function;
• FA ⊆ QA is a set of accepting states.

A run of A over an input word π = π0π1 · · ·πl, where
πi ∈ ΣA( ∀i = 0, 1 · · · l ), is a sequence q0

Aq
1
A · · · qlAq

l+1
A

such that δA
(
qiA, π

i
)

= qi+1
A ( ∀i = 0, 1 · · · l ). We say FSA

A accepts a word over ΣA if and only if the corresponding
run sequence ends in a state qA ∈ FA.

III. PROBLEM STATEMENT

In this section, we will provide the details of how the multi-
robot system operates and the scenario where some robots may
fail. Some necessary assumptions are presented. Also, we will
give a formal statement of the control synthesis problem that
need to be solved.

A. Multi-robot system

Consider N mobile robots as a multi-robot system evolved
in a common workspace. There are several regions of interest
in the workspace. When one of the robots arrives at a region
of interest, it can choose to perform specific action, thus
satisfying some atomic proposition(s).

The workspace is denoted as directed paragraph G =
(V, E ,AP,LG), which includes the set of regions V , the set
of paths linking the regions E ⊆ V ×V , a finite set of atomic
propositions AP , and a map function LG : V → 2AP giving
the set of atomic propositions that can be satisfied at a region.

The robots’ motion and execution ability are abstracted into
weighted transition system as defined in Definition 1. The ith
robot is represented as wTSi =

(
Qi, q0

i ,→i, wi,APi,Li
)
,

where Qi ⊆ V , →i⊆ E , APi ⊆ AP and Li(q) ⊆
LG(q) (∀q ∈ Qi) . Define the cost function wi, which depends
on the time cost traveling from one region in the workspace
to another region.

The N -robot system needs to accomplish a high-level
propositional task, specified by co-safe LTL formula, which
means that the word generated by the system should satisfy the
scLTL formula in finite horizon. As mentioned in Definition 2,
scLTL formulas are composed of several atomic propositions,
Boolean and temporal operators. In this problem, each atomic
proposition is related to region(s) in the workspace and specific
action. The satisfaction of atomic proposition requires robot to
visit one of the corresponding regions and perform the specific
action, e.g., upload data, collect data, etc.

The task is global and robots in the system collaborate for
this common task. A centralized controller for this multi-robot
system is needed, which apply control inputs to all the robots.
Besides, in order to save time, energy or other resources, we
hope that the robots’ team can complete the task as soon as
possible, which requires an optimal controller to be designed.

Note that we omit the low-level, dynamic motion planner
in this study, and focus on designing a centralized high-level
controller that drives the multi-robot system to satisfy a given
task under LTL specification.

Based on the assumption that robots can always work
normally according to the control input given to them, the
solution would be straightforward. We can construct a product
transition system that captures the joint behavior of all the
robots and compute a run corresponding to the optimal path
by utilizing graph-searching technique.

However, if some robot does not follow the control input,
or even worse, lose the ability to move or perform any action,
the joint behavior of the robots can not be captured by simply
taking the parallel composition of the individual transition
system. Thus we introduce the failure robustness property of
the control strategy.

B. Failure robustness

We consider the scenario where some robots may fail
to work during the execution, which are called “broken”.
Broken robots can not contribute to the satisfaction of the LTL
specification task any more. The designed controller should
be robust to the robot failure, i.e., drive the robots’ team
to accomplish the mission even when some robots lose their
motion or execution ability.

To avoid the situation where all the robots are broken and
lead to the inevitable failure of the high-level mission, we
limit an upper bound on the number of failure robots, called
robust coefficient. When a robot breaks down or the probability
of robot failure is not restricted. For N -robot system, robust
coefficient is equal to k means that there are at most k robots
broken in the total N robots during the whole execution. This
restriction is realistic, since the robots’ failure does not happen
very often. On the other hand, higher robust coefficient means
more robot failures are allowed, indicating that the control
policy holds stronger failure robustness.

Considering robot’s failure, the transition relation of the
multi-robot system will become nondeterministic. Different
from the settings in [19] [9] that the uncertainty of the
system is embodied in the workspace properties, direction
or speed of robots’ movement, here we treat the system as
nondeterministic due to the scenario of robots’ failure. When
the centralized controller puts control input to the system, each
single robot either follows the input signal and reaches the
target location, or it stays where it is (which means the robot
is broken).

The following assumptions are introduced:
• A robot can be accurately controlled when it is under

normal working condition, but when it meets failure, it
permanently loses the ability to move or perform any
action.

• The controller has a complete knowledge of the robots’
working conditions, i.e., whether the robots are under
normal working condition or broken are monitored by
the controller. This ensures that once a robot is broken,
the controller will catch this message and update the plan.

• The broken robot will not affect other robots, e.g., the
situation of blocked path is not discussed here.

• Whether a robot can work normally or not has no relation
with other robots, unless the number of the broken robots

1054

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 22,2022 at 00:47:10 UTC from IEEE Xplore.  Restrictions apply. 



has reached the upper bound (i.e. robust coefficient k).
After the number reaches robust coefficient, there will be
no more broken robots, and the rest of robots can always
follow the control input to visit regions in the workspace.

From the prospect of a single robot, since the relation
between the control input and the transition of states is deter-
ministic, the set of control input signal can be omitted in the
robot’s transition system. We emphasize that the determinism
mentioned here is not contradict to the uncertainty of the
system as we mentioned above. The latter must be taken into
account when multiple robots perform a global task as a team.

C. Synthesis objective

To accomplish the complex logical task and the failure-
robust property, our aim is to design a centralized controller
that can send control input signal to each robot.

Based on the multi-robot system and the robot-failure setup,
we propose three requirements for the centralized controller:
• Control the multi-robot system to satisfy the given global

LTL task;
• Ensure that the system can complete the task when at

most k (robust coefficient) robots are broken;
• Spend minimum time to complete the task in the worst

case, which means that the number of failure robots
reaches the upper bound k.

Here, the first requirement claims basic feasibility, the
second requirement claims failure-robustness of the controller,
and the third requirement further asks for optimality.

In brief, the controller need to plan trajectories for all the
robots and react to the robot failure event, therefore, it follows
a reactive strategy. We define the reactive strategy as a time-
invariant map from the robots’ states (including their position
and working condition information) to the next states to be
visited. The detailed form of the strategy will be given in
Section IV.

We then address the following problem statement:

Problem 1. In the workspace modeled as G =
(V, E ,AP,LG), given a team of N robots represented
as weighted transition systems {wTS1 · · ·wTSN}, a global
scLTL formula task φ over AP and robust coefficient k
(0 ≤ k < N ), generate a control reactive strategy for the
multi-robot system that can fulfill the task φ while in the
worst case there are at most k robots broken, and minimize
the total time cost in that case.

IV. SOLUTION

We can conclude from Section III that the system is
nondeterministic, as whether the robots perform the planned
trajectory or which robot(s) fail to work after the controller
sends the input signal is not deterministic. To solve the
problem, we first modify the weighted transition system to
capture both the asynchronous motion of robots and possible
failures of the multi-robot system, which is called Nondeter-
ministic Transition System. Then construct a product automata
based on the Nondeterministic Transition System and the finite

state automata translated from the scLTL formula. Therefore,
we can solve the control synthesis problem by using value-
iteration algorithm on the product automata. We design a
centralized controller that have a complete knowledge of the
workspace and the working condition of robots.

A. Nondeterministic characteristic of system

To characterize the setup that robot can not move any more
after robot failure happened, we modify the weighted transition
system of each robot into a Nondeterministic transition system.
The augmented transition system can capture robot failure.
Inspired by [?], we construct team transition system and plan
the team of robots in an asynchronization way.

Definition 4 (Nondeterministic Transition System). A
Nondeterministic transition system (NTS) for robot
ri, based on weighted transition system wTSi =(
Qi, q0

i ,→i, wi,APi,Li
)
, is denoted by the tuple NTSi =(

Q′i, q0
i ,→′i, w′i,APi,L′i

)
, where:

• Q′i = Qi ∪ {b} is the new set of states, here state b
represents the broken state of robot ri;

• q0
i is the initial state. Suppose that robot is not broken at

first, so the definition of q0
i is the same as in wTS;

• →′i⊆ Q′i ×Q′i is the transition relation.
(qi, q̂i) ∈→′i if and only if one of the following conditions
is true: 1) (qi, q̂i) ∈→i; 2) (qi, q̂i) = (b, b); 3) qi ∈ Qi
and q̂i = b. Specially, (b, qi) /∈→′i for any qi ∈ Qi;

• w′i : Q′i ×Q′i → R is the cost function, and

w′i(qi, q̂i) =


wi(qi, q̂i) if (qi, q̂i) ∈→i

∞ if (qi, q̂i) = (b, b)

0 if qi ∈ Qi and q̂i = b

(1)

• APi are basically similar to the definition of APi in
wTS;

• L′i : Q′i → 2APi is the labeling function,

L′i (qi) =

{
Li (qi) if qi ∈ Qi
∅ if qi = b

(2)

A vital difference between wTS and NTS is that, in wTS
the controller can explicitly drive the robot system to a desired
state (which should satisfy the transition relation). However,
each control input in NTS may have nondeterministic out-
come, i.e., the desired state or the broken state b.

For simplicity of expression, we use elements with no
prime to represent Nondeterministic transition system instead
of weighted Transition System in the following contents when
there is no ambiguity.

B. Asynchronous motion of robots

To synthesize the multi-robot system, a common way is to
make a team transition system that captures states of each
robot. Basically, the synthesizing approach can be classified
as synchronous way and asynchronous way. The synchronous
motion of the robots’ team means that all of the robots start a
step simultaneously. Because some robots have to travel longer

1055

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 22,2022 at 00:47:10 UTC from IEEE Xplore.  Restrictions apply. 



distance, the others must wait. This synthesizing approach will
cause the waste of robot resource.

Inspired by [19], we introduced traveling state into the team
transition system states, to capture the system states at the
instant that some robots are at regions of interest while others
are traveling between the regions. Adding traveling state into
the team transition system will benefit to synthesize the multi-
robot system in an asynchronous way and save the time that
robots wait for synchronization, thus proving the efficiency of
robots’ motion.

Definition 5 (Traveling State). Given Nondeterministic transi-
tion system NTSi =

(
Qi, q0

i ,→i, wi,APi,Li
)
, which models

the motion and execution ability of robot ri. (qi, si, q̂i) ∈
Qi × N × Qi is called a traveling state if (qi, q̂i) ∈→i,
0 < si < wi(qi, q̂i).

Intuitively, (qi, si, q̂i) represents the state of robot ri at
instant when ri is traveling from qi to q̂i and remains si
time to reach q̂i. As mentioned in Section III-A, the cost
function in this paper represents the total time it takes from
one state to another, so the remained time si is constrained by
0 < si < wi(qi, q̂i).

Compared with traveling state, regular state denotes the
instant that robot has reached the region and is ready to
perform specific atomic proposition. Unlike [19], here we
consider a unified form for these two kind of states. Regular
state is denoted as (qi, si, q̂i),where si = 0, indicating robot
ri is at state q̂i.

Define #b as a function mapping the amount
of broken robots in the system. Let q =
((q1, s1, q̂1), (q2, s2, q̂2) · · · (qN , sN , q̂N )), where (qi, si, q̂i) is
the state of robot ri (traveling or regular states), #b(q) is
equal to the number of qi = b(i = 1, 2 · · ·N) in q.

Now we can construct the team transition system, which
captures the asynchronous motion of robots and possible robot
failures.

Definition 6 (Team Transition System). Based on Nonde-
terministic transition system NTS1,NTS2 · · ·NTSN , team
transition system (TTS) is a tuple (Q̃, q0,→, w,AP,L, k),
where:

• k denotes robust coefficient;
• Q̃ ⊆ (Q1 × N × Q1) × (Q2 × N × Q2) × (Q3 × N ×
Q3) · · · (QN ×N×QN ) is the set of states, where (Qi×
N × Qi) is the state of robot ri, either traveling state
(defined in Definition 5) or regular state. #b(q) ≤ k, ∀q ∈
Q̃;

• q0 =
(
(q0

1 , 0, q
0
1), (q0

2 , 0, q
0
2) · · · (q0

N , 0, q
0
N )
)
∈ Q̃ is the

initial state;
• →⊆ Q̃ × Q̃ is the transition relation. We show which

relation belongs to the set below:

Let q = ((q1, s1, q̂1), (q2, s2, q̂2) · · · (qN , sN , q̂N )), q′ =
((q′1, s

′
1, q̂1

′), (q′2, s
′
2, ŝ2

′) · · · (q′N , s′N , q̂N
′)).

(q, q′) ∈→ if and only if for any i = 1, 2 · · ·N ,

(qi, q̂i) ∈→i and

{
q̂i = q′i if si = 0

qi = q′i, q̂i = q̂i
′ if si 6= 0

(3)

Let ti =

{
si if si 6= 0

w(q′i, q̂
′
i) if si = 0

, T = min
i=1,2···N,ti 6=0

ti,

(4)
then s′i = max{ti − T, 0}.

It is easy to see that there exists at least one robot ri that
is in a regular state in q′ , i.e., s′i = 0.

• w : Q̃× Q̃ → R+ is the cost function. Let w(q, q′) equal
to T in (4);

• AP = ∪ni=1APi is the set of atomic propositions;
• L is the labeling function. Let L(q) = ∪si=0Li(q̂i),

where q = ((q1, s1, q̂1), (q2, s2, q̂2) · · · (qN , sN , q̂N )).

Let the centralized controller check each robot’s working
status before the state of team transition system is going to
be changed, i.e., some robots are about to reach regular state.
The reasons why this scheme does not affect system operation
are as follows:

The traveling process of a robot from one region to the
next can be considered open-loop. As stated in Section III-B,
robots under normal operating condition can precisely move
as given speed and direction. Therefore, the controller only
need to check whether robot meets failure when the system
state is going to change, i.e. some robots are going to reach
their regular states and perform atomic propositions. Though
this scheme may cut down system efficiency (because the
controller does not re-plan the trajectory at first time when
the robot breaks), it will signally reduce model complexity,
as robots are not allowed to back out on the way. Also, the
controller does not need to monitor the working status of the
robots all the time. We make this scheme as a trade off between
complexity and efficiency.

We now verify that the transition relation of the broken
states is satisfied in the constructed team transition system.

Suppose q, q′ ∈ Q̃ and (q, q′) ∈ →, where
q = ((q1, s1, q̂1), (q2, s2, q̂2) · · · (qN , sN , q̂N )) and q′ =
((q′1, s

′
1, q̂1

′), (q′2, s
′
2, q̂2

′) · · · (q′N , s′N , q̂N
′)). Consider two sit-

uations that robot ri is broken:
1)si = 0. This happens when robot ri is broken during

the traveling to state q̂i. According to the control scheme, the
controller does not identify the robot failure until some robot
reach regular state. Here, it is the broken robot that reached
regular state first . It doesn’t matter what the origin q̂i was
since it will change to b when si = 0. According to (3),
q̂i = q′i = b; and Definition 4, q̂′i = b . Thus, ti = w(q′i, q̂

′
i) =

w(b, b) =∞, it won’t influence T and r′i =∞. The robot ri
will never leave state b, which conforms to the fact that it’s
permanently broken.

2)si 6= 0. This means that robot ri is broken when other
robots reach regular state. The controller will update the state
of team transition system before the atomic proposition is
performed (now ri is in state b), and the change of state q̂i

1056

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 22,2022 at 00:47:10 UTC from IEEE Xplore.  Restrictions apply. 



won’t affect the labeling atomic propositions. At next step,
qi = q′i, q̂i = q̂′i = b, w(qi, q

′
i) = 0, si = 0, then it is the

situation 1).

C. Construction of product automata

It is a common way to construct a product automata that
can both be generated by the robots’ team and satisfy the
temporal logic task to solve the task planning problem. Before
we give the definition of product automata, we introduce
the uncontrollable state set to define states that the system
may reach under the same control input due to the system
uncertainty.

Definition 7 (Uncontrollable State Set). Given q, q′ ∈ Q̃, q′ =
((q′1, s

′
1, q̂1

′), (q′2, s
′
2, q̂2

′) · · · (q′N , s′N , q̂N
′)), (q, q′) ∈ →, the

uncontrollable state set for transition (q, q′) is denoted by
U(q, q′) = {q̄ | (q, q̄) ∈ →,
q̄ = ((q̄1, s̄1, ˆ̄q1), (q̄2, s̄2, ˆ̄q2) · · · (q̄N , s̄N , ˆ̄qN )), ∀i =

1, 2 · · ·N, q̄i = b or q̄i = q′i}.

Note that #b(q
′) ≤ #b(q̄) ≤ k, ∀q̄ ∈ U(q, q′).

Intuitively speaking, when the system is trying to move
from q to q′, it may nondeterministically fall into the state
in U(q, q′) as some robots may fail to move.

Definition 8 (Product Automata). The product automata
P between the team transition system TTS = (Q̃, q0,→
, w,AP,L, k) and the finite state automata Aφ =(
QA, q0

A,ΣA, δA,FA
)
, is defined as the tuple P =

(SP , SP,0, δP ,FP , wP ,AP), consisting of

• a finite set of states SP = Q̃ × QA;
• a set of initial states S0

P = q0 × q0
A;

• a transition relation δP ⊆ SP × SP , where
((q, qA), (q̂, q̂A)) ∈ δP if and only if (q, q̂) ∈→,
(qA,L(q), q̂A) ∈ δA;

• a set of accepting states FP = Q̃ × FA;
• cost function wP : SP×SP → R+, wP((q, qA), (q′, q′A))

= w(q, q′);
• a set of atomic proposition AP , the same as in TTS.

Similarly, we define the uncontrollable set U of the state
of product automata as U((q, qA), (q̂, q̂A)) = {(q̄, q̄A) | q̄ ∈
U(q, q′), ((q, qA), (q̄, q̄A)) ∈ δP}.

In order to maintain the unity of symbol, those unreachable
states need to be removed from the automata when construct-
ing the product automata. This prune process can be realized
by a simple graph search program. Note that the product
automata mentioned in the following paragraph is assumed
to have already completed this pruning process.

The product of the finite state automata and the team
transition system accepts all the words that can both satisfy
the scLTL formula task and be generated by the multi-robot
system. Therefore, Problem 1 can be transformed to the
problem of computing an optimal control strategy for P which
minimizes the time cost of reaching a state in FP from S0

P in
the worst case that there are k broken robots.

D. Task planning algorithm

Because scLTL formula can be verified in finite horizon, at
least one of accepting states of the product automata should
be visited in finite horizon. Thus, the optimal strategy for the
product automata can be solved by value-iteration method.
The main idea of this method is to iteratively compute the
cost of each available successor state at each state. By always
choosing the optimal successor, it will finally converge to the
optimal strategy.

Let J i(sP , ŝP) denote the cost of controlling the system
to state ŝP ∈ SP from state sP ∈ SP , (sP , ŝP) ∈ δP , and
µiP denote the respective strategy at the ith iteration. We also
define an arbitrarily small threshold θ ≥ 0.

The value-iteration process starts from the accepting states.
First, set J0(sP , ŝP) = 0 for all sP ∈ FP and J0(sP , ŝP) =
∞ for all sP ∈ SP\FP . The initial strategy is achieved by
arbitrarily selecting available successor states for each state in
SP . At the ith iteration, the cost of controlling the system to
state ŝP at each state sP ∈ SP is updated, where J i(sP , ŝP) =

0

for sP ∈ FP
max

s̄P∈U(sp,ŝp)
{wP(sP , s̄P) + J i−1(s̄P , µP

i−1(s̄P))}

for sP /∈ FP
(5)

Then, we update the policy for each state such that

µiP(sP) = arg min
ŝP

J i(sP , ŝP) (6)

This value iteration process can be terminated when the
following inequality is satisfied

max
sP∈SP

∣∣J i (sP , µiP(sP)
)
− J i−1

(
sP , µ

i−1
P (sP)

)∣∣ ≤ θ (7)

which means that J (sP , µP(sP)) has converged to the fixed
point, denoted as J∗(sP , ŝP). The strategy for this product au-
tomata can be computed as µ∗P(sP) = arg minŝP J

∗(sP , ŝP),
which maps the current state to the next state to be visited.
By projecting the optimal reactive strategy to the weighted
transition system of robot r1, r2 · · · rN , a solution to Problem
1 can be obtained.

V. CASE STUDY

In this section, we provide some cases of multi-robot
coordination in grid-world to illustrate the optimal strategy
produced by the task planning algorithm proposed in Section
IV.

Suppose there is a factory at a risk of water leakage that
needs to be repaired by robots. The factory environment
can be abstracted into a 10 × 10 grid-style workspace as
Fig. 1 shows. The gray grids represent the region of fixed
equipment that cannot be accessed by robots. Some regions of
interest are colored, e.g., water valves (blue grids), detection
stations (yellow grids) and upload station (pink grid). Robots
can perform special action when on the colored grid as

1057

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 22,2022 at 00:47:10 UTC from IEEE Xplore.  Restrictions apply. 



marked in Fig. 1. The set of atomic proposition is denoted
as AP = {v1, v2, d1, d2, d3, d4, u}.

There are four robots {r1, r2, r3, r4} with the same ability
to move and perform action, represented by a circle in the
figure. When it is green, it means that the robot is in normal
working condition, while when it is red, it is broken and can
no longer move or perform any action. The green circles in
Fig. 1 represent the initial positions of the 4 robots, and they
are all in normal working conditions initially.

The global cooperative task that the robots’ team needs to
accomplish is as follows: They should first go to the two water
valves and close them, then collect data at any one of the
detection stations, and finally go to the upload station to upload
the collected data. It can be expressed by scLTL as

φ = (¬(d1 ∨ d2 ∨ d3 ∨ d4) U v1)

∧ (¬(d1 ∨ d2 ∨ d3 ∨ d4) U v2)

∧ (¬ u U (d1 ∨ d2 ∨ d3 ∨ d4))

∧ F u

v1

v2

d1

d2

d3

d4 u

r1

r3r2

r4

Fig. 1. A 10 × 10 grid-style
workspace of a factory

Fig. 2. The initial planned trajectory
for the multi-robot system

Resulted from the water leakage risk, robots in the
workspace may face the problem of short-circuit fault and fail
to work properly. We assume that there are at most 2 robots
broken during the whole execution, i.e., robust coefficient
k = 2. We need to generate the optimal reactive strategy for
robots to complete the global scLTL task φ even in worst case
there are 2 robots broken.

The initial planned trajectory is shown in Fig. 2. Each robot
needs to complete only one atomic proposition. Notice that
the speeds of all robots are supposed to be the same, so the
traveling time is proportional to the length of the green track
in the figure. The trace generated by the trajectory in Fig. 2 is
v1, v2, d4, u. It can be verified that it satisfies scLTL formula
φ. The total time cost is 8 time units.

We then show the re-planned paths after some robots are
broken in the process of execution. The solid lines in green
represent the trajectory that the robots have already passed.
The dotted lines in green represent the trajectory planned for
these robots, based on the assumption that there are no more
broken robots. The red lines represent the trajectory which can
not be completed any longer by broken robots.

Case 1 : Robot r3 and r4 are broken meanwhile after 2
time units.

Fig. 3(a) shows the instant that two robots are broken. The
re-planned trajectory is shown in Fig. 3(b). Because there
are only two working robots now, they need to change the
trajectory and perform more atomic propositions, i.e., robot
r1 needs to visit v1, d2, and robot r2 needs to visit v2, r. The
trace generated by the trajectory in Fig. 3(b) is v1, v2, d2, u.
The total time cost is 18 time units.

(a) (b)

Fig. 3. The instant that robot r3 and r4 are broken and the re-planned
trajectory

Case 2 : Robot r1 and r2 are broken meanwhile after 2
time units.

Fig. 4 shows this case, where r3, r4 can not stop after they
perform v2 and v1. The trace generated by trajectory in Fig.
4(b) is v1, v2, d1, u. The total time cost is 13 time units.

(a) (b)

Fig. 4. The instant that robot r1 and r2 are broken and the re-planned
trajectory

Case 3 : Robot r3 is broken after 2 time units and r2 is
broken after 5 time units.

Fig. 5 shows the instant that robot r3 is broken and the re-
planned trajectory after one robot failure. Robot r2 is supposed
to perform v2 (to make up for r3’s work). The trace generated
by trajectory in Fig. 5(b) is v2, v1, d1, u. The total time cost
is 9 time units.
r2 is also broken after 5 time units as Fig. 6(a). Fig.

6(b) shows the trajectory after second update. Robot r1 and
r4 change their next sub-task again. The trace generated by
trajectory in Fig. 6(b) is v2, v1, d4, u. The total time cost is 20
time units.

1058

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 22,2022 at 00:47:10 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b)

Fig. 5. The instant that robot r3 is broken and the re-planned trajectory

(a) (b)

Fig. 6. The instant that robot r4 is broken and the re-planned trajectory

VI. CONCLUSION

In this work, we investigated the problem of robust LTL
task planning for multi-robot system under possible individ-
ual robot failures. We provided an effective approach for
synthesizing reactive planning strategies that guarantees the
satisfaction of the desired scLTL task even k out of N robots
fail such that better system reliability. Illustrative examples
were provided to demonstrate the effectiveness of the proposed
algorithm. In the future, we plan to extend the proposed
algorithm to handle tasks described by general LTL formulae.
Furthermore, we would like to improve the proposed algorithm
to mitigate the computational complexity of the proposed
algorithm.

REFERENCES

[1] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT press,
2008.

[2] H. Bank, S. D’souza, and A. Rasam. Temporal logic (tl)-based autonomy
for smart manufacturing systems. Procedia Manufacturing, 26:1221–
1229, 2018.

[3] C. Belta, B. Yordanov, and E.A. Gol. Formal methods for discrete-time
dynamical systems, volume 15. Springer, 2017.

[4] A. Bozkurt, Y. Wang, M. Zavlanos, and M. Pajic. Control synthesis
from linear temporal logic specifications using model-free reinforcement
learning. In 2020 IEEE International Conference on Robotics and
Automation, pages 10349–10355. IEEE, 2020.

[6] X. Ding, S. Smith, C. Belta, and D. Rus. Optimal control of markov
decision processes with linear temporal logic constraints. IEEE Trans-
actions on Automatic Control, 59(5):1244–1257, 2014.

[5] S. Coogan, M. Arcak, and C. Belta. Formal methods for control of traffic
flow: Automated control synthesis from finite-state transition models.
IEEE Control Systems Magazine, 37(2):109–128, 2017.

[7] M.P. Fanti, A. Mangini, G. Pedroncelli, and W. Ukovich. A decen-
tralized control strategy for the coordination of agv systems. Control
Engineering Practice, 70:86–97, 2018.

[8] M. Guo and D. Dimarogonas. Multi-agent plan reconfiguration under
local ltl specifications. The International Journal of Robotics Research,
34(2):218–235, 2015.

[9] M. Guo and M. Zavlanos. Probabilistic motion planning under temporal
tasks and soft constraints. IEEE Transactions on Automatic Control,
63(12):4051–4066, 2018.

[10] Y. Kantaros and G. Pappas. Optimal temporal logic planning for
multi-robot systems in uncertain semantic maps. In 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
4127–4132. IEEE, 2019.

[11] D. Kasenberg and M. Scheutz. Interpretable apprenticeship learning with
temporal logic specifications. In 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), pages 4914–4921. IEEE, 2017.

[12] H. Kress-Gazit, G. Fainekos, and G. Pappas. Temporal-logic-based
reactive mission and motion planning. IEEE Transactions on Robotics,
25(6):1370–1381, 2009.

[13] H. Kress-Gazit, M. Lahijanian, and V. Raman. Synthesis for robots:
Guarantees and feedback for robot behavior. Annual Review of Control,
Robotics, and Autonomous Systems, 1:211–236, 2018.

[14] S. LaValle. Planning Algorithms. Cambridge university press, 2006.
[15] R. Majumdar, E. Render, and P. Tabuada. Robust discrete synthesis

against unspecified disturbances. In Proceedings of the 14th interna-
tional conference on Hybrid systems: computation and control, pages
211–220, 2011.

[16] S. Smith, J. Tůmová, C. Belta, and D. Rus. Optimal path planning for
surveillance with temporal-logic constraints. The International Journal
of Robotics Research, 30(14):1695–1708, 2011.

[17] A. Ulusoy and C. Belta. Receding horizon temporal logic control in
dynamic environments. The International Journal of Robotics Research,
33(12):1593–1607, 2014.

[18] A. Ulusoy, S Smith, X Ding, and C Belta. Robust multi-robot optimal
path planning with temporal logic constraints. In 2012 IEEE Interna-
tional Conference on Robotics and Automation, pages 4693–4698. IEEE,
2012.

[19] A. Ulusoy, S. Smith, X. Ding, C. Belta, and D. Rus. Optimality and
robustness in multi-robot path planning with temporal logic constraints.
The International Journal of Robotics Research, 32(8):889–911, 2013.

[20] A. Ulusoy, T. Wongpiromsarn, and C. Belta. Incremental controller
synthesis in probabilistic environments with temporal logic constraints.
The International Journal of Robotics Research, 33(8):1130–1144, 2014.

[21] E. Wolff, U. Topcu, and R. Murray. Robust control of uncertain markov
decision processes with temporal logic specifications. In 2012 IEEE 51st
IEEE Conference on Decision and Control, pages 3372–3379. IEEE,
2012.

[22] Y. Xie, X. Yin, S. Li, and M. Zamani. Secure-by-construction controller
synthesis for stochastic systems under linear temporal logic specifica-
tions. In 2021 60th IEEE Conference on Decision and Control (CDC),
pages 7015–7021. IEEE, 2021.

[23] S. Yang, X. Yin, S. Li, and M. Zamani. Secure-by-construction optimal
path planning for linear temporal logic tasks. In 2020 59th IEEE
Conference on Decision and Control (CDC), pages 4460–4466. IEEE,
2020.

[24] Y. Yang, X. Yin, and S. Li. A distributed framework for multi-robot
task planning with temporal logic specifications. In 2020 IEEE 16th
International Conference on Control & Automation (ICCA), pages 570–
575. IEEE, 2020.

[25] B. Yordanov, J. Tumova, I. Cerna, J. Barnat, and C. Belta. Temporal
logic control of discrete-time piecewise affine systems. IEEE Transac-
tions on Automatic Control, 57(6):1491–1504, 2011.

[26] X. Yu, X. Yin, S. Li, and Z. Li. Security-preserving multi-agent
coordination for complex temporal logic tasks. Control Engineering
Practice, 123:105130, 2022.

[27] J. Zhao, X. Yu, X. Li, and H. Wang. Bearing-only formation tracking
control of multi-agent systems with local reference frames and constant-
velocity leaders. IEEE Control Systems Letters, 5(1):1–6, 2020.

1059

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 22,2022 at 00:47:10 UTC from IEEE Xplore.  Restrictions apply. 


