
Online Monitoring of Dynamic Systems for Signal Temporal Logic
Specifications with Model Information

Xinyi Yu, Weijie Dong, Xiang Yin and Shaoyuan Li

Abstract— Online monitoring aims to evaluate or to predict,
at runtime, whether or not the behaviors of a system satisfy
some desired specification. It plays a key role in safety-
critical cyber-physical systems. In this work, we propose a
new model-based approach for online monitoring for specifi-
cations described by Signal Temporal Logic (STL) formulae.
Specifically, we assume that the observed state traces are
generated by an underlying dynamic system whose model is
known. The main idea is to consider the dynamic of the system
when evaluating the satisfaction of the STL formulae. To this
end, effective approaches for the computation of feasible sets
for STL formulae are provided. We show that, by explicitly
utilizing the model information of the dynamic system, the
proposed online monitoring algorithm can falsify or certify of
the specification in advance compared with existing algorithms,
where no model information is used. We also demonstrate the
proposed monitoring algorithm by case studies.

I. INTRODUCTION

Cyber-Physical Systems (CPS) are man-made modern en-
gineering systems involving both computational devices and
physical dynamics. Safety is one of the major considerations
in the designs of many CPS such as intelligent transportation
systems, smart manufacturing systems and medical devices.
For those safety-critical systems, it is crucial to determine
whether or not the behaviors of the system satisfy some
desired high-level specifications. For example, once we de-
tect that the system has violated or will inevitablely violate
the desired specification, additional corrective actions can be
taken to ensure safety.

Specification-based monitoring is one of the major tech-
niques in evaluating behavior correctness of CPS [2]. In this
context, it is usually assumed that the desired behavior of the
system is described by a specification formula and the state
traces (a.k.a. signals) generated by the system is observed
by a monitor that can issue alarms when the specification
is violated. In the past years, numerous algorithms have
been developed for monitoring specifications described by,
e.g., Linear Temporal Logic (LTL) [9], Metric Temporal
Logic (MTL) [7], [23] and Signal Temporal Logic (STL) [6],
[8]. Recent applications of specification-based monitoring
techniques include, e.g., autonomous vehicles [21] and smart
cities [16].

This work was supported by the National Natural Science Foundation of
China (62061136004, 62173226, 61833012) and the National Key Research
and Development Program of China (2018AAA0101700).

Xinyi Yu, Weijie Dong, Xiang Yin and Shaoyuan Li are with
Department of Automation and Key Laboratory of System Control
and Information Processing, Shanghai Jiao Tong University, Shang-
hai 200240, China. {yuxinyi-12, wjd dollar, yinxiang,
syli}@sjtu.edu.cn.

Depending on what information can be utilized by the
monitor, the monitoring problem can be categorized as offline
and online. In offline monitoring, it is assumed that the com-
plete signal to evaluate has already been generated and the
monitor needs to determine either the Boolean satisfaction
or the quantitative satisfaction degree of the complete signal.
Such offline technique is usually used in the design phase to
evaluate the simulated traces of the system prototype. On the
other hand, when the CPS is operating online, the monitor
only observes partial state trace that has been generated
so far. Therefore, online monitoring focuses on evaluating
signals in real time during the operation of the system in
order to, e.g., issue alarms or to trigger corrective actions.

In the context of online monitoring, the monitor may make
the following evaluations on the observed partial signals:
(i) the specification cannot be satisfied, i.e., there no future
possibility to correct the signal; (ii) the specification has
already been satisfied, i.e., the future signal does not matter;
or (iii) inconclusive, i.e., the signal can be either satisfied
or not depending on what will happen in the future. In the
past years, numerous algorithms have been developed for
online monitoring for specifications described by temporal
logic formulae. For example, the basic setting is to consider
monitoring the Boolean satisfaction of LTL formulae [1],
[3], [18] or MTL formulae [12]. In [6], [7], algorithms have
been developed for quantitatively monitoring the satisfaction
of specifications by using robust semantics of STL formulae.

Most of the aforementioned online monitoring techniques
are model-free in the sense that the satisfaction of the
specification is only evaluated based on the observed signal
without considering the dynamic of the system. In some
cases, however, the model of the underlying system, when
it is known, can provide additional information to accelerate
monitoring process. For example, let us consider a scenario,
where for an observed signal, a model-free monitor may
provide inconclusive evaluation since the partial signal can
be extended to either satisfiable or unsatisfiable signals.
However, those satisfiable continuations may not be feasi-
ble physically in the dynamic system. In this scenario, by
leveraging the model information of the dynamic system,
the monitor can better assert that the specification cannot be
satisfied before it is actually violated.

Motivated by the above observations, in this paper, we
propose a new model-based approach for online monitoring
of dynamic systems. Specifically, we consider specifications
described by a fragment of STL formulae, where the hori-
zons of different temporal operators have no overlap. STL
formulae are interpreted over continuous time signals and

2021 61st IEEE Conference on Decision and Control (CDC)
December 6-9, 2022. Cancún, Mexico

978-1-6654-6761-2/22/$31.00 ©2022 IEEE 1553

have the advantage of quantitatively evaluating the degree of
the satisfaction or violation using robust semantics [10], [11],
[14], [15], [17], [22]. The monitor aims to issue alarms when
the specification has already or will inevitably be violated.
However, different from existing approaches, here we explic-
itly consider the model information of underlying dynamic
system. Specifically, we consider a discrete-time nonlinear
system. In order to incorporate the model information into
the evaluation of STL formulae, we propose the notion of
feasible sets, which are the regions of states from which
STL formulae can potential be satisfied considering the sys-
tem dynamic. Effective algorithms have been developed for
computing feasible sets offline. To monitor the specification
in real-time, we propose online monitoring algorithms that
correctly combine both the online observed partial signals
and the offline computed feasible sets. We show that the
proposed model-based monitoring algorithm may predict
the violation of the specification in advance compared with
existing model-free approaches. Hence, it may leave more
time for the system to take corrective actions to ensure safety.

The rest of the paper is organized as follows. We present
some basic preliminaries in Section II and formulate the
problem in Section III. Section IV present the main body of
the online monitoring algorithm, which uses feasible sets that
are computed offline in Section V. The overall framework is
demonstrated by case studies in Section VI and finally, we
conclude this work in Section VII.

II. PRELIMINARY

A. System Model

We consider a discrete-time control system of form

xk+1 = f(xk, uk), (1)

where xk ∈ X ⊆ Rn is the state at time k, uk ∈ U ⊆ Rm
is the control input at time k and f : X × U → X is a
dynamic function of the system. Suppose that the system is
in state xk ∈ X at time instant k ∈ Z≥0. Then given a
sequence of control inputs uk:N−1 = ukuk+1 . . . uN−1 ∈
UN−k, the solution of the system is a sequence of states
ξf (xk,uk:N−1) = xk+1:N =xk+1 . . . xN ∈ XN−k such that
xi+1 = f(xi, ui), i = k, . . . , N − 1.

B. Signal Temporal Logic

We use Signal Temporal Logic (STL) formulae with
bounded-time temporal operators [17] to describe whether
or not the trajectory of the system satisfies some desired
high-level properties. Formally, the syntax of STL formulae
is as follows Φ ::= > | πµ | ¬Φ | Φ1 ∧ Φ2 | Φ1U[a,b]Φ2,
where > is the true predicate, πµ is an atomic predicate
whose truth value is determined by the sign of its underlying
predicate function µ : Rn → R and it is true at state xk when
µ(xk) ≥ 0; otherwise it is false. [a, b] ⊆ N denotes the set
of all integers between a and b in this paper.

STL formulae are evaluated on state sequence x =
x0x1 · · · . We use notation (x, k) |= Φ to denote that
sequence x satisfies STL formula Φ at time instant k. The
reader is referred to [17] for more details on the semantics

of STL formulae. Particularly, we have (x, k) |= πµ iff
µ(xk) ≥ 0, i.e., µ(xk) is non-negative for the current state
xk, and (x, k) |= Φ1U[a,b]Φ2 iff ∃k′ ∈ [k + a, k + b] such
that (x, k′) |= Φ2 and ∀k′′ ∈ [k, k′], we have (x, k′′) |= Φ1,
i.e., Φ2 will hold at some instant between [k + a, k + b] in
the future and before that Φ1 always holds. Furthermore, we
can also induce temporal operators
• “eventually” F[a,b]Φ := >U[a,b]Φ such that it holds

when (x, k) |= Φ for some k′ ∈ [k + a, k + b]; and
• “always” G[a,b]Φ := ¬F[a,b]¬Φ such that it holds when

(x, k) |= Φ for any k′ ∈ [k + a, k + b].
We write x |= Φ whenever (x, 0) |= Φ.

Given an STL formula Φ, in fact, it is well-known that the
satisfaction of Φ can be completely determined only by those
states within its horizon. Specifically, we will use notation
Φ[SΦ,TΦ] to emphasize that the satisfaction of formula Φ only
depends on time horizon [SΦ, TΦ], where SΦ is the starting
instant of Φ which is the minimum time instant that appears
in the formula and TΦ is the terminal instant of Φ which is
the maximum sum of all nested upper bounds.

III. PROBLEM FORMULATION

A. Fragment of STL Formulae

In this paper, we consider the following restricted but still
expressive enough fragments of STL formulae:

ϕ ::= > | πµ | ¬ϕ | ϕ1 ∧ ϕ2, (2a)
Φ ::= F[a,b]ϕ | G[a,b]ϕ | ϕ1U[a,b]ϕ2 | Φ1 ∧ Φ2, (2b)

where ϕ1, ϕ2 are formulae of class ϕ, and Φ1,Φ2 are
formulae of class Φ. Specifically, we only allow the temporal
operators be applied once for Boolean formulae.

Note that, for the standard “until” operator, ϕ1U[a,b]ϕ2

requires that ϕ1 holds from the initial instant before ϕ2 holds.
In order to facilitate subsequent expression, we introduce a
new temporal operator U′ defined by (x, k) |= Φ1U

′
[a,b]Φ2

iff ∃k′ ∈ [k + a, k + b] such that (x, k′) |= Φ2 and ∀k′′ ∈
[k + a, k′], we have (x, k′′) |= Φ1. Compared with U, the
new operator U′ only required that ϕ1 holds from instant a
before ϕ2 holds. Throughout this paper, we will refer “U′”
to as the “until” operator. Note that our setting is without
loss of generality since we can express the standard U using
U′ by: (x, k) |= Φ1U[a,b]Φ2 iff (x, k) |= (Φ1U

′
[a,b]Φ2) ∧

(G[0,a]Φ1).
Furthermore, we can always rewrite Boolean formula ϕ in

(2a) in terms of the region of states satisfying the formula.
Specifically, for predicate πµ, its satisfaction region is the
solution of inequality µ(x)≥0; we denote it by set Hµ, i.e.,
Hµ

= {x ∈ X | µ(x) ≥ 0}. Similarly, we have H¬ϕ =
X \ Hϕ and Hϕ1∧ϕ2 = Hϕ1 ∩ Hϕ2 . Hereafter, instead of
using ϕ, we will only write it as x ∈ Hϕ or simply x ∈ H
using its satisfaction region.

Based on the above discussion, STL formulae Φ in (2) can
be expressed equivalently by: Φ ::= F[a,b]x∈H | G[a,b]x∈
H | x ∈ H1U′[a,b]x ∈ H

2 | Φ1 ∧ Φ2, where H ⊆ Rn
is a set of states representing the satisfaction region of a
Boolean formula. Finally, we assume that for each temporal

1554

operator that appears in Φ, their time intervals have no
overlap. In other words, for each time instant k, there is at
most only one temporal operator applies and we denote by
Ok ∈ {none,G,F,U′} the unique temporal operator that
is effective at instant k.

Remark 1: The above assumption is without loss of gener-
ality when two “always” operators have interval overlap. For
example, for formula Φ = G[0,2]x∈H1 ∧G[1,3]x∈H2, we
can express it equivalently as Φ = G[0,1]x∈H1 ∧G[1,2]x∈
H1 ∩ H2 ∧ G[2,3]x ∈ H2. However, this assumption is
restrictive when there are overlaps of other operators.

In summary, we can write the STL formula under consid-
eration as

Φ =

N∧
i=1

Φ
[ai,bi]
i , (3)

where N denotes the number of sub-formulae and each
Φ

[ai,bi]
i is a sub-formula that applies within time interval

[ai, bi] in the form of G[ai,bi]x ∈ Hi, F[ai,bi]x ∈ Hi or
x∈H1

iU
′
[ai,bi]

x∈H2
i . Without loss of generality, we assume

that the horizon of each sub-formulae yields a partition of
[0, TΦ], i.e., [a1, b1]∪̇ · · · ∪̇[aN , bN] = [0, TΦ] with a1 = 0
and bN = TΦ. This is because if we have Ok = none for
k ∈ [a, b], then we can always add a new formula G[a,b]> or
G[a,b]x ∈ X for this interval. As a result, hereafter, at instant
k, the effective temporal operator is Ok ∈ {G,F,U′}.

Example 1: Let us consider the following STL formula
of form (2) with horizon TΦ = 15, Φ = (x ∈H1U[1,3]x ∈
H2) ∧ (F[6,9]x ∈H3) ∧ (G[12,15]x ∈H4). Equivalently, we
can also write it as Φ = (G[0,0]x∈H1) ∧ (x∈H1U

′
[1,3]x∈

H2) ∧ (G[4,5]x ∈ X) ∧ (F[6,9]x ∈H3) ∧ (G[10,11]x ∈ X) ∧
(G[12,15]x∈H4).

B. Online Monitoring of STL

Given a state sequence x, whose length is equal to or
longer than the horizon of Φ, we can always completely
determine whether or not x |= Φ. However, during the
operation of the system, at each time k, we can observe
the current state xk, and therefore, only the partial signal
x0:k = x0x1 · · ·xk (called prefix) is available at time instant
k, and the remaining signals xk+1:TΦ

(called suffix) will only
be available in the future. We say a prefix signal x0:k is
• violated if for any control input uk:TΦ−1, we have

x0:kξf (xk,uk:TΦ−1) 6|= Φ;
• feasible if for some control input uk:TΦ−1, we have

x0:kξf (xk,uk:TΦ−1) |= Φ.
Intuitively, a prefix signal is violated if we know for sure

in advance that the formula will be violated inevitably. For
example, for safety specification G[0,T]x ∈ H, once the
system reaches a state xk /∈ H for k < TΦ, we know
immediately that the formula is violated. Also, if the system
is in state xk from which no solution ξf (xk,uk:TΦ−1) can
be found such that each state is in region H, then we can
also claim the formula cannot be satisfied anymore.

Therefore, an online monitor is a function M : X ∗ →
{0, 1} that determines the satisfaction of formula based on
the partial signal, where X ∗ denotes the set of all finite

sequences over X , “0” denotes “feasible” and “1” denotes
“violated”. Then the online monitoring problem is formu-
lated as follows.

Problem 1: Given a dynamic system of form (1) and an
STL formula Φ as in (3), design an online monitor M :
X ∗ → {0, 1} such that for any prefix signal x0:k where
k ≤ TΦ, we have M(x0:k) = 1 iff x0:k is a violated prefix.

Remark 2: We note that, for any prefix signal x0:k, it is
a violated prefix iff we cannot find a sequence of control
inputs uk:TΦ−1 such that x0:kξf (xk,uk:TΦ−1) |= Φ. The
existence of such a control sequence can be determined by
the binary encoding technique proposed in [20]. Therefore,
a naive approach for designing an online monitor is to solve
the above constrained satisfaction problem based on x0:k.
However, such a direct approach has the following issues
• First, the computations are performed purely online by

solving a satisfaction problem, which is computationally
very challenging especially for nonlinear systems with
long horizon STL formulae. Consequently, the monitor
may not be able to provide an evaluation in time.

• Second, it requires to store the entire state sequence up
to now. It is more desirable if the monitor can just store
the satisfaction status of the formula by “forgetting”
those irrelevant information.

Compared with the direct approach discussed in Remark 2,
in this paper, we will present an alternative approach by pre-
computing the set of feasible regions in an offline fashion.
Then the pre-computed information will be used online,
which ensures timely online evaluations.

IV. FEASIBLE-SET-BASED ONLINE MONITORING

A. Subsequent Formulae and Feasible Set

As we mentioned above, we aim to evaluate the satisfac-
tion of STL formulae of the following form

Φ = Φ
[a1,b1]
1 ∧ · · · ∧ Φ

[aN ,bN]
N . (4)

Note that in the online monitoring problem, once we detect a
violated prefix, then the monitoring process is stopped. Then
for each sub-formula Φ

[ai,bi]
i , essentially, the monitor needs

to determine the following two things within the current
monitoring interval [ai, bi]:
• whether or not the current sub-formula has already been

satisfied;
• whether or not the system is still able to fulfill the

remaining sub-formulae in the future.
To capture the above issues, we introduce the notion of

subsequent formulae which is the conjunction of all sub-
formulae starting from the current instant.

Definition 1 (Subsequent Formulae): Given an STL for-
mula Φ of form (4), the subsequent formula after instant k is
defined by Φ

[k,TΦ]
sub = Φ

[k,bik]

ik
∧Φ

[aik+1,bik+1]

ik+1 · · · ∧Φ
[aN ,bN]
N ,

where ik = min{i | k ≤ bi} means that instant k belongs to
the monitoring horizon of the ikth sub-formula and Φ

[k,bik]

ik

is obtained from Φ
[aik ,bik]

ik
by replacing the starting instant

of the temporal operator from aik to k.

1555

Subsequent formulae will be used when the current sub-
formula Φ

[aik ,bik]

ik
has not yet been accomplished. For tem-

poral operators F and U′, once the system reaches the target
region at instant k, the current sub-formula has already been
satisfied no matter what happens between [k, bik]. Then for
this case, we just need to monitor the feasibility of the
remaining sub-formulae from Φ

[aik+1,bik+1]

ik+1 to Φ
[aN ,bN]
N . This

is captured by the notion of exclusive subsequent formulae.
Definition 2 (Exclusive Subsequent Formulae): Given an

STL formula Φ of form (3), the exclusive subsequent formula
after instant k is defined by Φ̂

[k,TΦ]
sub = Φ

[aik+1,bik+1]

ik+1 ∧ · · · ∧
Φ

[aN ,bN]
N .
Compared with the subsequent formula, the exclusive

subsequent formula only excludes the part of interval [k, bik],
i.e., Φ

[k,TΦ]
sub = Φ

[k,bik]

ik
∧ Φ̂

[k,TΦ]
sub .

In order to capture whether or not the (exclusive) subse-
quent formulae can possibly be fulfilled in the future under
the constraint of the system dynamic, we introduce the notion
of (exclusive) feasible set.

Definition 3 (Feasible Set): Given an STL formula Φ of
form (4), the feasible set at instant k, denoted by Xk ⊆ X ,
is the set of states from which there exists a solution that
satisfies the subsequent formula Φ

[k,TΦ]
sub , i.e.,

Xk=

{
xk ∈ X

∣∣∣∣ ∃ uk:TΦ−1 ∈ UTΦ−k

s.t. xkξf (xk,uk:TΦ−1) |= Φ
[k,TΦ]
sub

}
.

Similarly, the exclusive feasible set at instant k, denoted by
X̂k ⊆ X is the set of states from which there exists a solution
that satisfies the exclusive subsequent formula Φ̂

[k,TΦ]
sub .

Example 2 (Cont.): Let us consider the STL formula Φ in
Example 1. For time instant k = 7, we have O7 = F. The
subsequent formula is Φ

[7,15]
sub = (F[7,9]x∈H3)∧(G[10,11]x∈

X) ∧ (G[12,15]x∈H4) and exclusive subsequent formula is
Φ̂

[7,15]
sub = (G[10,11]x∈X) ∧ (G[12,15]x∈H4).
In what follows, we will present the main online moni-

toring algorithm by using feasible sets. The computation of
feasible sets Xk will be detailed in Section V. Our approach
is to first discuss the case of Ok = G and the case of U′

separately, since the former is a safety property while the
latters are reachability properties. Then we will combine
two cases together to present the main algorithm. Note
that, although we consider temporal operator “Eventually”
in the semantics, it is subsumed by operator “Until” since
F[ai,bi]x ∈ Hi can be expressed as x ∈ XU′[ai,bi]x ∈ Hi.
Therefore, technically, we only need to handle temporal
operators G and U′.

B. Case I: Ok = G

Suppose that at time instant k, we have Ok = G, i.e.,
the current monitoring sub-formula is of form Φ

[aik ,bik]

ik
=

G[aik ,bik]x∈Hik . For this case, the online monitor just needs
to determine (i) whether or not the system is currently in
Hik ; and (ii) whether or not the subsequent formula can
be satisfied. This information is completely characterized
by the notion of feasible set Xk, which includes both the
requirement for instant k and the future. Hence, the monitor

just needs to determine whether or not the observed state xk
is in set Xk. Such a process is summarized by Procedure 1,
where Mk is the abbreviation of M(x0:k).

Procedure 1: Case of Ok = G

Input: current state xk
1 if xk ∈ Xk then
2 Mk = 0;

3 else
4 Mk = 1;
5 return “prefix is violated”

C. Case II: Ok = U′

The case of Ok = U′ is different from the case of Ok =
G. For example, at instant 7 in Example 2, the sub-formula
under monitoring is Φ

[a4,b4]
4 = x ∈ XU′[6,9]x ∈ H3. If we

already have that x6 ∈ H3, then this sub-formula is already
satisfied. Therefore, there is no need to require that states
within interval [7, 9] are still in H3 anymore. Instead, we just
need to focus on whether or not the exclusive sub-formulae
Φ̂

[k,TΦ]
sub can be satisfied.
Based on the above discussion, we propose monitoring

process in Procedure 2 for the case of Φ
[ai,bi]
i = x ∈

H1
iU
′
[ai,bi]

x∈H2
i . Here, for the ith formula, we introduce a

global Boolean variable di to remember whether or not the
ith sub-formula has already been satisfied. This is determined
in line 1, where the variable is set to be true if the target
region is visited. Depending on the truth value of variable
di, the monitor will take different actions. In line 3, when
di = false, which means that Φ

[ai,bi]
i has not been satisfied,

the monitor still needs to monitor the subsequent formula
including the remaining part of the current sub-formula,
which is captured by Xk. In line 9, when di = true, which
means that Φ

[ai,bi]
i has already been satisfied, the monitor

does not need to monitor the current sub-formula anymore.
Instead, it will just focus on the feasibility of the exclusive
subsequent formula, which is captured by X̂k.

D. Online Monitoring Algorithm

Based on the above two procedures, we present the
complete online monitoring algorithm in Algorithm 1. We
start from the initial instant k = 0 and the first sub-formula
i = 1. The satisfaction variables di are initialized as false
for all sub-formulae i = 1, . . . , N . For for each instant, the
monitor will obtain new state xk (Line 4) and use different
procedures according to different cases (Lines 5-8). This
process is repeated until the last time instant or a violated
prefix is detected.

Remark 3: Compared with the direct approach discussed
in Remark 2, the major advantage of the proposed online
monitoring algorithm is that the online computation burden
is very low. At each time instant, instead of solving a com-
plicated satisfaction problem on-the-fly, our approach just
needs to check a set membership. The (exclusive) feasible
sets can be computed in an offline fashion and stored in

1556

Procedure 2: Case II: Ok = U′

Input: current state xk
1 if [Ok=U′ ∧ xk ∈ H1

i ∩H2
i] then

2 set di ← true

3 if di = false then
4 if xk ∈ Xk then
5 Mk = 0

6 else
7 Mk = 1
8 return “prefix is violated”

9 if di = true then
10 if xk ∈ X̂k then
11 Mk = 0

12 else
13 Mk = 1
14 return “prefix is violated”

Algorithm 1: Online Monitoring Algorithm

Input: feasible set Xk, X̂k
Output: monitoring decision Mk

1 k ← 0, i← 1
2 di ← false, i ∈ {1, . . . , N}
3 while k ≤ TΦ do
4 obtain new state xk
5 if Ok = G then
6 Procedure 1
7 else if Ok = U′ then
8 Procedure 2
9 k ← k + 1

10 i← min{i | k ≤ bi}

the monitor. Additionally, our algorithm is only based on
the current state xk and do not need to remember the entire
trajectory generated by the system.

V. OFFLINE COMPUTATION OF FEASIBLE SETS

In this section, we present methods for the computation
of (exclusive) feasible sets for each time instant k. The basis
idea is to compute feasible sets recursively in a backwards
manner. Specifically, suppose that we already know the
feasible set Xk+1, and then we can use Xk+1 to compute Xk.
The specific computation depends on the current temporal
operator that applies, i.e., Ok is G or U′. In the followings,
we will first discuss each case separately and then present
the complete algorithm.

A. Computation of Feasible Sets for G

Suppose that, at time instant k, the current monitoring sub-
formula is Φ

[aik ,bik]

ik
= G[aik ,bik]x ∈Hik . If we know that

the feasible set for the next instant Xk+1 is given, then we
can compute the feasible set Xk for the current instant k as
the set of states such that

(i) they are in Hik ; and
(ii) they can reach Xk+1 in one step under some inputs.
This observation is formalized by the H-one-step set defined
as follows.

Definition 4 (H-One-Step Set): Let S ⊆ X be a set of
states representing the “target region” and H ⊆ X be a set
of states representing the “safe region”. Then the H-one-
step set of S is defined by ΥH(S) = {x ∈ H | ∃u ∈
U s.t. f(x, u) ∈ S}. When H = X , ΥH(S) is simplified as
Υ(S), which is referred to as the one-step set directly.

Using the above notation, if Ok = G, then we know that

Xk = ΥHik (Xk+1), (5)

where Hik is the region in which the system should stay
during the ikth sub-formula.

For the sake of convenience, we define operator Υ
(j)
H (S)

inductively by:
• Υ1

H(S) = ΥH(S); and
• Υ

(j)
H (S) = ΥH(Υ

(j−1)
H (S)).

Intuitively, Υ
(j)
H (S) is the set of states which can reach region

S in exactly j steps only via states in region H.
Now, suppose that at instant k ∈ [aik , bik], we have

already computed the feasible set for the starting instant
of next sub-formula, i.e., Xbik+1. Then we have Xk =

Υ
(bik+1−k)

Hik
(Xbik+1). Therefore, starting from Xbik+1, all

feasible sets within horizon [aik , bik] can be computed in
backwards by applying the H-one-step set operator ΥHik (·)
for bik − aik + 1 times.

The exclusive feasible set for each instant k ∈ [aik , bik]
can be computed analogously. Specifically, we just need to
replace restricted operator ΥHik (·) by unrestricted operator
Υ(·) and we have

X̂k = Υ(bik+1−k)(Xbik+1). (6)

B. Computation of Feasible Sets for U′

Now, suppose that, at time instant k, the current moni-
toring sub-formula is Φ

[aik ,bik]

ik
= (x∈H1

ik
) U′[aik ,bik](x∈

H2
ik

), and the feasible set for the next instant Xk+1 is known.
Then, when k 6= bik , a state belongs to feasible set Xk if one
of the following two cases holds:
(i) it is currently in the both regions H1

ik
and H2

ik
meaning

that the current monitoring sub-formula has already
been satisfied, and it still can continue to accomplish
the exclusive sub-formulae; or

(ii) it can reach Xk+1 in one step but only through states in
region H1

ik
, which means that H2

ik
needs to be visited

in the future and therefore, the system still needs to stay
in H1

ik
.

Also, when k = bik , a state belongs to feasible set Xk only
when the first case holds since it is already the last time
instant for the current sub-formula.

Then we can also write the feasible set within the horizon
of operator U′ as

Xk=

{
(H1

ik
∩H2

ik
∩ X̂k) ∪ΥH1

ik
(Xk+1), if k 6=bik

H1
ik
∩H2

ik
∩ X̂k. if k=bik

(7)

1557

The following result establishes the correctness of the above
computation of feasible sets for the case of U′.

Proposition 1: Suppose that the current monitoring sub-
formula is Φ

[aik ,bik]

ik
= (x ∈ H1

ik
)U′[aik ,bik](x ∈ H

2
ik

) and
Xk+1 is the feasible set at next time instant. Then Xk
computed by Eq. (7) is indeed the feasible set for the time
instant k.

C. Offline Computation Algorithm
Finally, we summarize the complete procedure for com-

puting all (exclusive) feasible sets within the entire horizon
of the formula by combining different cases presented in
the previous subsections. The complete process is given by
Algorithm 2. The iteration starts from the last instant k = TΦ

for the last sub-formula ik = N with a pseudo feasible set
XTΦ+1 = Rn. For each time instant k, we compute the
exclusive feasible set X̂k using the same approach (line 4).
The feasible set Xk is computed according to the different
cases of Ok (lines 5-10). This process is repeated until
iterating to the first time instant k = 0.

Algorithm 2: Computations of All Feasible Sets

Input: STL formula Φ =
∧N
i=1 Φ[ai,bi]

Output: all (exclusive) feasible sets {Xk} and {X̂k}
1 XTΦ+1 ← Rn
2 k ← TΦ, ik ← N
3 while k ≥ 0 do
4 Compute X̂k by Equation (6)
5 if Ok = G then
6 Compute Xk by Equation (5)

7 else if Ok = U′ then
8 Compute Xk by Equation (7)

9 k ← k − 1
10 ik ← min{ik | k ≤ bik}

D. Numerical Computation Considerations
Finally, we conclude this section by discussing some

considerations in the numerical computation of feasible sets.
In order to realize Algorithm 2, the key is to compute
the (H-)one-step set Υ(H)(·). In general, there is no close-
form expression for such sets and the computation highly
depends on the dynamic of the system. Particularly, (inner or
outer) approximation methodologies have been widely used
in practice to achieve the trade off between the computational
accuracy and complexity. For example, for linear systems,
computation methods for one-step set have been presented
subject to polytopic constraints described by linear differ-
ential inclusions or for piece-wise affine systems; see, e.g.,
[4], [13], [19]. For general nonlinear systems, however, com-
puting the one-step set precisely is much more challenging.
For example, [5] proposed a branch and bound algorithm
with interval arithmetic approach which provides an inner
approximation with a given bound of the error.

In terms of our monitoring algorithm, it is worth remarking
that, if we compute feasible set Xk by outer-approximations,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 k

x

1

2

3

4

5
Xk

X̂k

Fig. 1: A possible signal for Case Study I.

then miss-alarms may be possible since we allows some
states that are not actually feasible. On the other hand, if
we compute feasible set Xk by inner-approximations, then
false-alarms may be possible since the computed feasible
sets are conservative. For safety-critical systems, it is more
meaningful to use inner-approximation of feasible sets to
violate miss-alarms.

Regarding the computation complexity, the overall com-
plexity for computing all feasible sets grows linearly when
the horizon of the entire formulae increases. However, for
each step in the iteration, the complexity for computing
the one-step sets for constrained systems largely depends
on the system model and increases exponentially with the
order of the system. Nevertheless, it is worth mentioning
that computations of feasible sets are purely offline, which
does not affect the complexity of the online execution of the
monitoring algorithm.

VI. CASE STUDIES FOR ONLINE MONITORING

In this section, we illustrate our online monitoring al-
gorithm with two examples. We show that, by leveraging
the model information of the dynamic system, our model-
based approach may provide better monitoring evaluations
compared with purely model-free approaches.

A. Case Study I

As an academic example, let us consider the follow-
ing one-dimensional discrete-time nonlinear control system
xk+1 = 0.2x2

k + 0.16xk + uk, where state constraint is
xk ∈ [0, 5] and control input constraint is uk ∈ [−1, 1]. The
STL formula to monitor is given by Φ = (x∈ [0, 4]U[1,3]x∈
[3, 5])∧(F[6,9]x∈ [1, 3])∧(G[12,15]x∈ [0, 1]). Before starting
online monitoring, for each time instant, we first compute the
(exclusive) feasible set of STL formula Φ by Algorithm 2
and the results are shown in Fig. 1. Areas filled with blue and
dots are the feasible sets Xk and the exclusive feasible sets
X̂k, respectively. For simplicity, we only draw the exclusive
feasible sets X̂k for the horizon of U′ and F.

During the online monitoring process, the monitor ob-
serves the current state at each time and make an evaluation.
For example, let us consider a possible state trace generated
by the system shown as the black line in Fig. 1. At instant
k = 11, using the model-free approach, one can only make
an inconclusive evaluation since the remaining signal can
either satisfy G[12,15]x ∈ [0, 1] or not without any constraint.
However, using our model-based approach, since x11 /∈
X11, we can conclude immediately that the formula will

1558

0 2 4 6 8 10
0

2

4

6

X7A1

A2

A3

x7

Fig. 2: Workspace of the robot in Case Study II.

be violated inevitably since there exists no controller under
which the STL formula is satisfied. Therefore, compared
with existing model-free algorithms [6], [12], our method
can claim the violation of specification in advance at instant
11, while existing algorithms cannot provide a clear violation
conclusion.

B. Case Study II
As a practical example, let us consider an autonomous

robot whose dynamic model is given as follows[
xk+1

yk+1

]
=

[
1 0
0 1

] [
xk
yk

]
+

[
0.9 0
0 0.8

] [
uxk
uyk

]
,

where xk, yk, uxk, uyk are the positions and control inputs
in X and Y directions at instant k respectively, and physical
constraints are xk∈ [0, 10], yk∈ [0, 6] and uxk, uyk∈ [−1, 1].

The objective of the robot is to send some raw materials
from regions A1 and A2 to region A3 and then stay in region
A3 to assemble the machine. By considering the opening
time of each region, the robot needs to reach each region
within a specified time interval. Then the task of the robot
is described by STL formula Φ = F[0,3]A1 ∧ F[4,6]A2 ∧
G[8,10]A3, where A1 = (x∈ [1, 3]) ∧ (y∈ [2, 4]), A2 = (x∈
[4, 6]) ∧ (y∈ [4, 6]) and A3 = (x∈ [7, 9]) ∧ (y∈ [1, 3]).

Consider a trajectory of the robot up to instant k = 7
shown in Figure 2, where the feasible set X7 computed
offline is also depicted; (exclusive) feasible sets for other
instants are omitted in the figure for the sake of clarity. Then
at instant 7, since the observed state x7 is not in X7, the
monitor can alarm immediately that the robot has violated
the STL task no matter what will happen in the future.

VII. CONCLUSION

In this paper, we proposed a new model-based approach
for online monitoring of tasks described by signal temporal
logic formulae. Our algorithm consists of both offline pre-
computation and online monitoring. Most of the computation
efforts are made for the offline computation characterized by
the notion of feasible sets. The offline computed information
is used during the online monitoring to provide evaluations in
real-time. We showed that the proposed method can evaluate
the violation earlier than existing model-free approaches.
Simulation results were provided to illustrate our results.
Note that, in this work, we assume that there is no overlap
between the horizon of each temporal operator. In the future,
we would like to relax this assumption to further generalize
our result.

REFERENCES

[1] M. Abate, E. Feron, and S. Coogan. Monitor-based runtime assurance
for temporal logic specifications. In 58th IEEE Conference on
Decision and Control, pages 1997–2002, 2019.

[2] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler,
D. Ničković, and S. Sankaranarayanan. Specification-based monitoring
of cyber-physical systems: a survey on theory, tools and applications.
In Lectures on Runtime Verification, pages 135–175. 2018.

[3] A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for
LTL and TLTL. ACM Transactions on Software Engineering and
Methodology, 20(4):1–64, 2011.

[4] F. Blanchini. Ultimate boundedness control for uncertain discrete-time
systems via set-induced Lyapunov functions. IEEE Transactions on
Automatic Control, 39(2):428–433, 1994.

[5] J. Bravo, D. Limón, T. Alamo, and E. Camacho. On the computation of
invariant sets for constrained nonlinear systems: An interval arithmetic
approach. Automatica, 41(9):1583–1589, 2005.

[6] J. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and S. Seshia.
Robust online monitoring of signal temporal logic. Formal Methods
in System Design, 51(1):5–30, 2017.

[7] A. Dokhanchi, B. Hoxha, and G. Fainekos. On-line monitoring for
temporal logic robustness. In International Conference on Runtime
Verification, pages 231–246, 2014.

[8] A. Donzé, T. Ferrere, and O. Maler. Efficient robust monitoring for
STL. In International Conference on Computer Aided Verification,
pages 264–279, 2013.

[9] C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and
D. Campenhout. Reasoning with temporal logic on truncated paths.
In International Conference on Computer Aided Verification, pages
27–39, 2003.

[10] Y. Gilpin, V. Kurtz, and H. Lin. A smooth robustness measure of
signal temporal logic for symbolic control. IEEE Control Systems
Letters, 5(1):241–246, 2020.

[11] W. Hashimoto, K. Hashimoto, and S. Takai. Stl2vec: Signal temporal
logic embeddings for control synthesis with recurrent neural networks.
IEEE Robotics and Automation Letters, 2022.

[12] H. Ho, J. Ouaknine, and J. Worrell. Online monitoring of metric
temporal logic. In International Conference on Runtime Verification,
pages 178–192, 2014.

[13] E. Kerrigan. Robust constraint satisfaction: Invariant sets and predic-
tive control. PhD thesis, University of Cambridge, 2001.

[14] L. Lindemann and D. Dimarogonas. Control barrier functions for
signal temporal logic tasks. IEEE Control Systems Letters, 3(1):96–
101, 2018.

[15] L. Lindemann and D. Dimarogonas. Robust control for signal
temporal logic specifications using discrete average space robustness.
Automatica, 101:377–387, 2019.

[16] M. Ma, E. Bartocci, E. Lifland, J.A Stankovic, and L. Feng. A novel
spatial–temporal specification-based monitoring system for smart
cities. IEEE Internet of Things Journal, 8(15):11793–11806, 2021.

[17] O. Maler and D. Nickovic. Monitoring temporal properties of
continuous signals. In Formal Techniques, Modelling and Analysis
of Timed and Fault-Tolerant Systems, pages 152–166. 2004.

[18] C. Mascle, D. Neider, M. Schwenger, P. Tabuada, A. Weinert, and
M. Zimmermann. From LTL to rLTL monitoring: Improved moni-
torability through robust semantics. In Proceedings of the 23rd In-
ternational Conference on Hybrid Systems: Computation and Control,
pages 1–12, 2020.

[19] D. Mayne. Control of constrained dynamic systems. European Journal
of Control, 7(2-3):87–99, 2001.

[20] V. Raman, A. Donzé, M. Maasoumy, R. Murray, A. Sangiovanni-
Vincentelli, and S. Seshia. Model predictive control with signal
temporal logic specifications. In 53rd IEEE Conference on Decision
and Control, pages 81–87, 2014.

[21] Y.E. Sahin, R. Quirynen, and S. Di Cairano. Autonomous vehicle
decision-making and monitoring based on signal temporal logic and
mixed-integer programming. In American Control Conference, pages
454–459, 2020.

[22] A. Salamati, S. Soudjani, and M. Zamani. Data-driven verification
of stochastic linear systems with signal temporal logic constraints.
Automatica, 131:109781, 2021.

[23] P. Thati and G. Roşu. Monitoring algorithms for metric temporal
logic specifications. Electronic Notes in Theoretical Computer Science,
113:145–162, 2005.

1559

