
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 12, DECEMBER 2022 6567

Opacity Enforcing Supervisory Control Using
Nondeterministic Supervisors
Yifan Xie , Student Member, IEEE, Xiang Yin , Member, IEEE,

and Shaoyuan Li , Senior Member, IEEE

Abstract—In this article, we investigate the enforcement
of opacity via supervisory control in the context of discrete-
event systems. A system is said to be opaque if the intruder,
which is modeled as a passive observer, can never infer
confidently that the system is at a secret state. The design
objective is to synthesize a supervisor such that the closed-
loop system is opaque even when the control policy is
publicly known. In this article, we propose a new approach
for enforcing opacity using nondeterministic supervisors.
A nondeterministic supervisor is a decision mechanism
that provides a set of control decisions at each instant,
and randomly picks a specific control decision from the
decision set to actually control the plant. Compared with
the standard deterministic control mechanism, such a non-
deterministic control mechanism can enhance the plausible
deniability of the controlled system as the online control
decision is a random realization and cannot be implic-
itly inferred from the control policy. We provide a sound
and complete algorithm for synthesizing a nondeterministic
opacity-enforcing supervisor. Furthermore, we show that
nondeterministic supervisors are strictly more powerful
than deterministic supervisors in the sense that there may
exist a nondeterministic opacity-enforcing supervisor even
when deterministic supervisors cannot enforce opacity.

Index Terms—Discrete-event systems (DES), opacity, su-
pervisory control.

I. INTRODUCTION

INFORMATION security and privacy have become increas-
ingly important issues in the analysis and design of modern

engineering systems due to potential malicious attacks and in-
formation leakages in networks. In this article, we investigate an
important information-flow security property called opacity in
the context of discrete-event systems (DES). In this framework,
a dynamic system is modeled as a DES and an intruder is
modeled as a passive observer that monitors the behavior of the

Manuscript received 19 October 2020; revised 18 May 2021 and
6 November 2021; accepted 19 November 2021. Date of publication
26 November 2021; date of current version 5 December 2022. This
work was supported in part by the National Natural Science Founda-
tion of China under Grant 62061136004, Grant 62173226, and Grant
61803259, and in part by the Shanghai Jiao Tong University Scientific
and Technological Innovation Funds. Recommended by Associate Edi-
tor Jan Komenda. (Corresponding author: Xiang Yin.)

The authors are with the Department of Automation and Key Labora-
tory of System Control and Information Processing, Shanghai Jiao Tong
University, Shanghai 200240, China (e-mail: xyfan1234@sjtu.edu.cn;
yinxiang@sjtu.edu.cn; syli@sjtu.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAC.2021.3131125.

Digital Object Identifier 10.1109/TAC.2021.3131125

dynamic system via observable events. Essentially, opacity is a
confidential property capturing whether or not the system can
always deny of the possibility of executing of a secret behavior
even when it may be true, i.e., it holds the plausible deniability
for secret behaviors. Therefore, a system is said to be opaque
with respect to a set of secret states if the intruder can never
know for sure that the system is visiting a secret state.

Due to the increasing demands for security certification in
safety-critical systems, the notion of opacity has drawn consid-
erable attention in the past years in the literature, see, e.g., [2],
[5], [31]. In particular, in the context of DES, different no-
tions of opacity have been studied, including, e.g., current-state
opacity [26], initial-state opacity [39], K-step and infinite-step
opacity [51]. The verification of opacity has also been studied
for different DES models including Petri nets [25], [37], [43],
stochastic DES [8], [21], [47], [52], real-time systems [45],
and networked DES [27], [49]. More recently, the notion of
opacity has been extended to linear/nonlinear systems with
infinite-states and continuous dynamics [1], [36], [53]. The
reader is referred to the comprehensive surveys [19], [24] and the
textbook [15] for recent advances on this active research area.

Given an open-loop system that is verified to be nonopaque,
one important problem is to enforce opacity via some enforce-
ment mechanisms. This is also referred to as the synthesis
problem, which is a very active research topic in the literature
and many different enforcement mechanisms have been pro-
posed. For example, the authors in [4], [7], and [54] consider
the enforcement of opacity via dynamic masks that change
the output information dynamically. The idea of changing the
output information has also been leveraged by using insertion
functions [20], [22], [28], [46] and event shuffles [3]. In addition,
event delays is also used to enforce opacity in [12].

One of the most widely investigated opacity enforcement
mechanisms is the supervisory control theory [16], [38], [50].
In this framework, a supervisor is used to restrict the behavior
of the system such that the closed-loop system is opaque [9],
[38], [57]. For example, in [42], a formula for controllable and
opaque sublanguage is provided. In [10], the authors solve the
opacity control problem by assuming that all controllable events
are observable and the observation of the intruder is included in
the observation of the supervisor. In [50], a uniform approach is
provided to solve the opacity-enforcing control problem without
the assumption that controllable events are observable; however,
it assumes that the observations of the supervisor and the intruder
are equivalent. Recently in [44], the authors provide an algorithm

0018-9286 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 19,2022 at 15:02:47 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7158-1514
https://orcid.org/0000-0003-1944-1570
https://orcid.org/0000-0003-3427-2912
mailto:xyfan1234@sjtu.edu.cn
mailto:yinxiang@sjtu.edu.cn
mailto:syli@sjtu.edu.cn
https://doi.org/10.1109/TAC.2021.3131125

6568 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 12, DECEMBER 2022

for synthesizing an opacity enforcing supervisor without any
assumption on events set. However, it needs to assume that the
control policy is not publicly known, which reduces the problem
to the computation for a maximal controllable and observable
sublanguage of the supremal opaque sublanguage.

Note that all existing works on opacity-enforcing super-
visory control consider deterministic supervisors, which is-
sue a specific control decision at each instant. However,
such a deterministic decision mechanism may decrease the
plausible deniability of the system. This is because, by knowing
the control policy and by observing the occurrences of observ-
able events, the intruder can recover the control decision made
by the supervisor and, therefore, obtain a better state-estimate
of the system.

In this article, we propose to use nondeterministic supervisors,
for the first time, to enforce opacity. Unlike a deterministic
supervisor that issues a specific control decision at each instant,
a nondeterministic supervisor provides a set of control decisions
at each instant and the specific control decision applied is chosen
randomly via a “coin toss” manner. In other words, even if
the intruder knows the control policy, it still does not know
the specific control decision applied as it is decided randomly
on-the-fly. Compared with the deterministic control mechanism,
the nondeterministic control mechanism can significantly en-
hance the plausible deniability of the system, and, therefore, is
more likely to enforce opacity.

The main contribution of this article is that we provide an
algorithmic correct-by-construction procedure for synthesizing
a nondeterministic supervisor that enforces opacity. This prob-
lem is fundamentally more challenging than the deterministic
case as the observations of the supervisor and the intruder
are incomparable. Specifically, although the specific control
decision applied is unknown a priori, the supervisor will know
this online choice after it is chosen. This information, how-
ever, is not available to the intruder. Hence, the supervisor’s
knowledge is strictly more than that of the intruder. In the
standard opacity-enforcing control problem, it is sufficient to
know the state-estimate of the system, which is not sufficient
in our setting due to the issue of incomparable information.
To address this issue, we propose a new information state (IS)
that not only contains the state-estimate from the supervisor’s
point of view, but also contains the estimate of the supervisor’s
estimate from the intruder’s point of view. In other words,
the control decision should be made not only based on what
the supervisor thinks about the plant, but also based on what the
intruder thinks about the supervisor. Based on the proposed new
IS, we provide a sound and complete approach that synthesizes
a nondeterministic opacity-enforcing supervisor. In particular,
we show that using nondeterministic supervisors is strictly more
powerful than using deterministic supervisors, in the sense that,
there may exist a nondeterministic opacity-enforcing supervisor
even when deterministic supervisors cannot enforce opacity.

We note that the notion of nondeterministic supervisors was
originally proposed in [18] to solve the standard supervisory
control problem for safety and nonblockingness under partial
observation. This approach was extended by [23]. Nondeter-
ministic control mechanism has also been used for (bi)similarity

enforcing supervisory control problems with nondeterministic
models and specifications [11], [13], [40], [41], [56]. However,
to the best of authors’ knowledge, nondeterministic supervisors
have never been applied to the opacity-enforcement problem.
More importantly, the essence of why we use nondeterministic
supervisors here is to enhance the plausible deniability of the
system, which is fundamentally different from the essence of
the existing works.

The rest of this article is organized as follows. In Section II,
we introduce some necessary preliminaries. In Section III, we
first provide a motivating example to illustrate the advantage
of nondeterministic supervisors. Then, we formally present the
nondeterministic control mechanism and formulate the corre-
sponding opacity enforcement control problem. In Section IV,
we propose a new type of IS that captures both the knowledge
of the supervisor and the knowledge of the intruder and analyze
the underlying information-flow. Then, we restrict our attention
to the class of IS-based supervisors and discuss how an IS-based
supervisor can be encoded as or be decoded from an IS-mapping.
In Section V, we propose an algorithm to synthesize an IS-
based nondeterministic opacity-enforcing supervisor based on
the structure of the generalized bipartite transition system (G-
BTS). In Section VI, we prove the correctness of the synthesis
procedure proposed in Section V by showing that restricting our
attention to IS-based supervisors is without loss of generality.
Finally, we conclude this article in Section VII. Preliminary
and partial versions of some of the results in this article are
presented in [48]. First, all definitions, notations, and theorems
in [48] have been reformulated in a more uniform manner. More
importantly, the result in [48] is only sound as it restricts the
solution space to a finite space a priori. In this work, we show that
restricting to IS-based supervisor is without loss of generality
using new techniques developed based on IS-mappings. This
new result establishes both the soundness and the completeness
of the synthesis algorithm, i.e., the nondeterministic synthesis
problem is completely solved.

II. PRELIMINARIES

A. System Model

Let Σ be a finite set of events. A string over Σ is a finite
sequence s = σ1 · · ·σn, σi ∈ Σ. We denote by Σ∗ the set of
all strings over Σ including the empty string ε. A language
L ⊆ Σ∗ is a set of strings. For two languages L1 and L2, their
concatenation is L1L2 = {s1s2 ∈ Σ∗ : s1 ∈ L1, s2 ∈ L2}. The
prefix-closure of language L is defined by L = {v ∈ Σ∗ : ∃u ∈
Σ∗ s.t. vu ∈ L}.

We assume basic knowledge of DES and use common no-
tations; see, e.g., [6]. A DES is modeled as a deterministic
finite-state automaton

G = (X,Σ, δ, x0)

where X is the finite set of states, Σ is the finite set of events,
δ : X × Σ → X is the partial transition function, where δ(x, σ)
= y means that there is a transition labeled by event σ from state
x to y, and x0 ∈ X is the initial state. The transition function

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 19,2022 at 15:02:47 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: OPACITY ENFORCING SUPERVISORY CONTROL USING NONDETERMINISTIC SUPERVISORS 6569

can also be extended to δ : X × Σ∗ → X in the usual man-
ner [6]. For simplicity, we write δ(x, s) as δ(s) when x = x0.
The language generated by G is defined by L(G) := {s ∈ Σ∗ :
δ(x0, s)!}, where ! means “is defined”.

When the system is partially observed, Σ is partitioned into
two disjoint setsΣ = Σo∪̇Σuo, whereΣo is the set of observable
events and Σuo is the set of unobservable events. The natural
projection P : Σ∗ → Σ∗

o is defined by

P (ε) = ε and P (sσ) =

{
P (s)σ if σ ∈ Σo

P (s) if σ ∈ Σuo
.

The natural projection is also extended to P : 2Σ
∗ → 2Σ

∗
o by

P (L) = {P (s) : s ∈ L}.

B. Deterministic Supervisory Control

In the framework of supervisory control, a supervisor dy-
namically enables/disables controllable events based on its ob-
servation. Formally, we assume that the events set is further
partitioned as Σ = Σc∪̇Σuc, where Σc is the set of controllable
events and Σuc is the set of uncontrollable events. A control
decision γ ∈ 2Σ is a set of events such that Σuc ⊆ γ, i.e., un-
controllable events can never be disabled. We define Γ = {γ ∈
2Σ : Σuc ⊆ γ} as the set of control decisions or control patterns.
A deterministic supervisor is a function S : P (L(G)) → Γ.
The language generated by the controlled system, denoted by
L(S/G), is defined recursively by

1) ε ∈ L(S/G);
2) For any s ∈ Σ∗, σ ∈ Σ, we have sσ ∈ L(S/G) iff sσ ∈

L(G), s ∈ L(S/G) and σ ∈ S(P (s)).

C. Opacity

We assume that system G has a “secret”, which is modeled
as a set of secret states XS ⊆ X . Furthermore, we consider a
passive intruder having the following capabilities.

A1 The intruder knows the system model;
A2 The intruder can observe the occurrences of observable

events.
Such an intruder is essentially an outside observer or an

“eavesdropper.” We say that system G is opaque w.r.t. XS and
Σo if

(∀s∈L(G) : δ(s)∈XS)(∃t∈L(G) : δ(t) /∈XS)[P (s)=P (t)].

That is, the intruder cannot infer for sure that the system is in a
secret state based on the information flow.

When the original system is not opaque, one approach is to
design a supervisor S such that the closed-loop system S/G
is opaque; this is referred to as the opacity-enforcing control
problem. In this setting, however, the implementation of such
a supervisor may become a public information. To capture this
severe scenario, we make the following assumption.

A3 The intruder knows the functionality of the supervisor,
i.e., the control policy.

Note that, under the setting of deterministic supervisors, this
knowledge together with the assumption that the intruder and the
observer both observeΣo imply that the intruder knows precisely
the control decision applied at each instant. Therefore, to define

Fig. 1. System G with Σc = {c1, c2}, Σo = {o1, o2, o3}, and XS =
{0, 4, 10}.

opacity of the controlled system, we should only consider strings
inL(S/G) rather than all strings inL(G). Formally, we say that a
deterministic supervisor S : P (L(G)) → Γ enforces opacity on
G, or the closed-loop systemS/G is opaque, if for any string s ∈
L(S/G) such that δ(s) ∈ XS , there exists a string t ∈ L(S/G)
such that δ(t) /∈ XS and P (s) = P (t).

Finally, we introduce some operators that will be used in this
article. Given a set of states m ∈ 2X , we denote by URγ(m),
the unobservable reach of m under control decision γ ∈ Γ, i.e.,

URγ(m) = {δ(x,w) ∈ X : x ∈ m,w ∈ (Σuo ∩ γ)∗}. (1)

We also denote by NXσ(m) the observable reach of m upon
the occurrence of an observable event σ ∈ Σo, i.e.,

NXσ(m) = {δ(x, σ) ∈ X : x ∈ m}. (2)

III. ENFORCING OPACITY USING NONDETERMINISTIC

SUPERVISORS

In this section, we propose to use nondeterministic supervi-
sors to enforce opacity. First, we illustrate the advantage of using
nondeterministic supervisors by a motivating example. Then,
we formally define the functionality of the nondeterministic
supervisor and opacity of nondeterministic control systems.
We formulate the corresponding opacity-enforcing supervisory
control problem that we want to solve in this article.

A. Motivating Example

Example 1: Let us consider system G shown in Fig. 1 with
Σo = Σuc = {o1, o2, o3} andXS = {0, 4, 10}. String c2o1c2o1
leads to secret state 10 and its observation is P (c2o1c2o1)
= o1o1. By observing o1o1, the intruder cannot infer for sure
that the system is at state 10 since P (c2o1c1o1) = o1o1 and
δ(c2o1c1o1) = 9
∈ XS . However, by observing o3, the intruder
knows for sure that the system is at secret state 4 since for
any string s such that P (s) = o3, we have δ(s) = 4 ∈ XS .
Therefore, the system is not opaque and we need to synthesize
a supervisor to protect the system from revealing secret 4.

For this system, however, we cannot even synthesize a de-
terministic supervisor to enforce opacity. To see this clearly,
let us evaluate what the supervisor can do initially. We have
Γ = {∅, {c1}, {c2}, {c1, c2}}.1 Clearly, the supervisor cannot

1For the sake of simplicity, uncontrollable events are omitted in each control
decision, i.e., ∅ standards for {o1, o2, o3} in this example.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 19,2022 at 15:02:47 UTC from IEEE Xplore. Restrictions apply.

6570 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 12, DECEMBER 2022

choose ∅ as the initial control decision; otherwise secret state
0 will be the only reachable state. Also, the supervisor cannot
make {c1} initially. This is because, under this control decision
and by observing event o1, the intruder knows for sure that the
system is at state 4, which is reached via 0

c1−→ 1
o1−→ 4. Note that

transitions 0
c2−→ 3

o1−→ 5 cannot provide the plausible deniability
since c2 is disabled initially. For the same reason, making {c2}
initially will also reveal the secret. Finally, decision {c1, c2}
is also problematic initially as it makes state 2 reachable from
which transition 2

o3−→ 4 will also reveal the secret. Therefore,
we cannot enforce opacity for this system using a deterministic
supervisor.

However, one can enforce opacity using the following control
mechanism. Initially, the supervisor randomly chooses to either
enable c1 or enable c2, but not enable both simultaneously. In
other words, the control policy initially is a set {{c1}, {c2}} and
the specific choice is made randomly on-the-fly. Therefore, upon
the occurrence of o1 or o2, the intruder does not know whether
this event is from state 1 or from state 3 since it does not know
whether or not the initial online control decision is {c1} or {c2}
by just knowing the control policy {{c1}, {c2}}. On the other
hand, since c1 and c2 will not be enabled simultaneously, state 2
is not reachable; hence, event o3, which reveals the secret, will
also not occur. Then, after observing o1 or o2, the supervisor
can make decision {c1, c2} deterministically, which prevents
the system from revealing secret state 10.

The abovementioned example shows that using a nondeter-
ministic control mechanism is more powerful than the deter-
ministic one for the purpose of enforcing opacity. This result is
intuitive as opacity is essentially a confidential property. Using
a nondeterministic decision framework will, on the one hand,
enhance the plausible deniability of the secret behavior of the
system, and, on the other hand, decrease the confidentiality of
the intruder’s knowledge about the system. Hence, the system is
more likely to be opaque under the nondeterministic mechanism.

B. Nondeterministic Supervisor

Now, we formally define the nondeterministic supervisor and
the corresponding opacity enforcement problem.

Compared with a deterministic supervisor that issues a spe-
cific control decision at each instant, a nondeterministic super-
visor works as follows. At each instant, the nondeterministic
supervisor provides a set of possible control decisions. Then,
it nondeterministically picks a specific control decision from
this set in a “coin-toss” manner and keeps this specific control
decision until a new observable event occurs. In other words, the
control policy only determines a set of allowed decisions, but
the specific control decision chosen is unknown a priori, which
is a random realization under the control policy. Therefore, the
supervisor makes decision not only based on observable events,
but also depends on the specific control decisions chosen along
the trajectory.

To define the “history” of the supervisor, we introduce the
notion of the extended string, which is an alternating sequence
of control decisions and events either ending up with a control

decision in the form of

ρ = γ0σ1γ1 · · ·σnγn ∈ Γ(ΣΓ)∗ (3)

or ending up with an event in the form of

ρ = γ0σ1γ1 · · ·σn ∈ (ΓΣ)∗. (4)

Then, the set of all extended strings is Γ(ΣΓ)∗ ∪ (ΓΣ)∗

= (ΓΣ)∗(Γ ∪ {ε}). For any extended string ρ ∈ (ΓΣ)∗(Γ ∪
{ε}), we denote by ρ|Σ the projection to Σ∗, i.e., ρ|Σ =
σ1 . . . σn.

Since some events are unobservable for the supervisor and the
supervisor cannot update its decision upon the occurrence of an
unobservable event, similar to the natural projection, we define
a new projection mapping

O : (ΓΣ)∗(Γ ∪ {ε}) → (ΓΣo)
∗(Γ ∪ {ε}) (5)

such that, for any extended string, projection O erases each
unobservable event together with its successor control decision
(if there exists one). Formally, for extended string ρ in the form
of (3), let 1 ≤ i1 < i2 < · · · < ik ≤ n be all indices such that
σij ∈ Σo. Then, we have

O(ρ) = γ0(σi1γi1)(σi2γi2) · · · (σikγik) (6)

and for extended string ρ in the form of (4), we have

O(ρ) = γ0(σi1γi1)(σi2γi2) · · · (σik−1
γik−1

)σik . (7)

From the supervisor’s point of view, each decision is made
immediately (by first providing a set of decisions and then
picking one from the set) after observing an observable event.
Therefore, the supervisor should make decision based on alter-
nating sequences that end up with observable events. Hence, the
nondeterministic supervisor is defined as a function

SN : (ΓΣo)
∗ → 2Γ (8)

that maps an observable extended string O(ρ) = γ0σ1γ1
· · ·σn ∈ (ΓΣo)

∗, which is referred to a decision history, to
a set of possible control decisions. This definition essentially
says that, although the control policy is nondeterministic, the
supervisor knows the realization, i.e., which specific decision
was picked at each previous instant. This is a reasonable setting
as the supervisor always knows what it actually picks. Now, we
define the language generated by a nondeterministic supervisor.

Definition 1: Let SN be a nondeterministic supervisor. The
set of extended strings generated by the closed-loop system,
denoted by Le(SN/G), is defined recursively by

1) ε ∈ Le(SN/G);
2) γ0 ∈ Le(SN/G) if γ0 ∈ SN (ε);
3) for any ρ = γ0σ1γ1 · · ·σnγnσn+1 ∈ (ΓΣ)∗, we have ρ ∈

Le(SN/G), if and only if
a) γ0σ1γ1 . . . σnγn ∈ Le(SN/G);
b) σ1 · · ·σnσn+1 ∈ L(G);
c) σn+1 ∈ γn.

4) For any ρ = γ0σ1γ1 · · ·σnγnσn+1γn+1 ∈ Γ(ΣΓ)∗, we
have ρ ∈ Le(SN/G), if and only if

a) γ0σ1γ1 · · ·σnγnσn+1 ∈ Le(SN/G);

b) γn+1∈
{{γn} if σn+1 ∈ Σuo

SN (O(γ0σ1γ1 . . . σnγnσn+1)) ifσn+1∈Σo

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 19,2022 at 15:02:47 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: OPACITY ENFORCING SUPERVISORY CONTROL USING NONDETERMINISTIC SUPERVISORS 6571

Then, a string s ∈ Σ∗ is said to be generated by SN/G if
there exists an extended string ρ ∈ Le(SN/G) such that ρ|Σ =
s. We define L(SN/G) = {ρ|Σ ∈ Σ∗ : ρ ∈ Le(SN/G)} as the
language generated by the closed-loop system.

The intuition of the abovementioned definition is as follows.
Initially, the first control decision should be included in the
initial set of control decisions provided by SN . When extended
string γ0σ1γ1 . . . σnγn is executed, the next event σn+1 should
be both feasible in the plant and enabled by the control decision
applied currently, i.e., γn. Furthermore, if σn+1 is unobservable,
then the supervisor should not change the control decision,
i.e., γn+1 = γn. On the other hand, if σn+1 is observable,
then the supervisor may choose a specific control decision
from the new set of all possible control decisions provided
by SN , i.e., γn+1 ∈ SN (O(γ0σ1γ1 . . . σnγnσn+1)). We denote
by Lo

e(SN/G) the set of extended strings that end up with
observable events including the empty string, i.e.,

Lo
e(SN/G) = Le(SN/G) ∩ ({ε} ∪ (ΓΣ)∗(ΓΣo)).

We also denote by Ld
e(SN/G), the set of extended strings that

end up with control decisions, i.e.,

Ld
e(SN/G) = Le(SN/G) ∩ Γ(ΣΓ)∗.

The supervisor always issues a decision (first generates a set
of control decisions and then randomly picks one) when an
extended string ρ in Lo

e(SN/G) is generated. Then, for any
observable extended string ρ ∈ O(Lo

e(SN/G)), we define

ÊS(ρ)={δ(ρ′|Σ)∈X : ∃ρ′ ∈ Lo
e(SN/G) s.t. O(ρ′) = ρ} (9)

as the set of all possible states that can be reached immediately
after observing the last event from the supervisor’s point of view,
i.e., the state estimate of the supervisor without the unobservable
tail.

Once the supervisor issues the last control decision, the set
of states that can be reached unobservably can be determined.
Formally, for any extended string ρ ∈ O(Ld

e(SN/G)), we define

ES(ρ) = {δ(ρ′|Σ)∈X : ∃ρ′ ∈ Le(SN/G) s.t. O(ρ′) = ρ}
(10)

as the state-estimate of the supervisor with the unobservable tail
included. These two state estimates can be computed recursively
as follows [50]:

1) ÊS(ε) = {x0};
2) ES(ρ′) = URγ(ÊS(ρ)) for ρ′ = ργ ∈ O(Ld

e(SN/G));
3) ÊS(ρ′′) = NXσ(ES(ρ′)) for ρ′′ = ρ′σ ∈ O(Lo

e(SN/G)).
Here, we use subscript “S” to emphasize that these state-

estimates are from the supervisor’s point of view.
Example 2: Still consider system G in Fig. 1 with Σc =

{c1, c2} and Σo = {o1, o2, o3}. Suppose that the initial non-
deterministic decision set is SN (ε) = {γ1, γ2, γ3, γ4}, where
γ1 = ∅, γ2 = {c1}, γ3 = {c2} and γ4 = {c1, c2}. Then, we
have γ1, γ2, γ3, γ4 ∈ Le(SN/G). Suppose that the supervisor
chooses γ2 initially. Then, we have γ2c1 ∈ Le(SN/G) and since
c1 is unobservable, we have γ2c1γ2 ∈ Le(SN/G). When o2
occurs, ρ = γ2c1γ2o2 ∈ Lo

e(SN/G) becomes the first extended
string that ends up with an observable event. Then, the infor-
mation available to the supervisor is O(ρ) = γ2o2. The state

estimate of the supervisor is ÊS(γ2o2) = NXo2(URγ2
(Ê(ε))) =

NXo2({0, 1}) = {5}, i.e., the supervisor knows for sure that
system is at state 5 by first choosing γ2 and then observing o2.

Suppose that the supervisor then issues γ4 deterministically,
i.e., SN (γ2o2) = {γ4} and the supervisor can only choose γ4;
this yields extended string ρ′ = γ2c1γ2o2γ4 ∈ Ld

e(SN/G) with
the last control decision information attached, the information
available to the supervisor is O(ρ′) = γ2o2γ4. Then, the state
estimate of the supervisor is ES(γ2o2γ4) = URγ4

(ÊS(γ2o2)) =
{5, 6, 7, 8}.

Again, extended string ρ′′ = γ2c1γ2o2γ4c1γ4o1 ∈
Lo
e(SN/G) can be generated with O(ρ′′) = γ2o2γ4o1.

Then, the state estimate of the supervisor becomes
ÊS(γ2o2γ4o1) = NXo1(ES(γ2o2γ4)) = {9, 10}.

Remark 1: Finally, we note that some nondeterminis-
tic control decision sets may contain redundancy, i.e., for
{γ1, . . . , γn} ∈ 2Γ, γi ⊂ γj for some i, j = 1, . . . , n. In this
case, removing γi from the nondeterministic control decision
set does not change the behavior of the closed-loop system.
Formally, we say that a nondeterministic control decision set
{γ1, . . . , γn} ∈ 2Γ is irredundant if its elements are incompa-
rable, i.e., ∀i, j = 1, . . . , n : γi
⊂ γj . For the sake of simplicity
and without loss of generality, hereafter, we only consider irre-
dundant nondeterministic control decision sets.

Remark 2: Note that our definition of nondeterministic su-
pervisor in (8) is language-based, which may require infinite
memory to realize. However, we will show later in this article that
finite-memory supervisors are always sufficient for our purpose.
For this case, one may also realize a nondeterministic supervisor
by a nondeterministic finite-state automaton and the closed-loop
behavior can be then computed by taking the synchronous
composition between the plant and the supervisor automaton.

C. Opacity of Nondeterministic Control Systems

In the definition of opacity for the standard deterministic
setting, the intruder model has been specified by A1–A3. Here,
we still consider the same intruder model, but we explain A3
more clearly in the nondeterministic setting:

A3′ The intruder knows the functionality of the supervisor.
That is, the intruder knows the set of all possible control
decisions the supervisor may pick according to the control
policy. However, it does not know which specific control
decision the supervisor picks online.

This assumption is reasonable in many applications as long as
the communication channel between supervisor and the actuator
is reliable. Then, under this setting, when the supervisor ob-
serves ρ ∈ O(Le(SN/G)), the intruder can only observes ρ|Σ ∈
P (L(SN/G)). Therefore, the state estimate of the intruder es-
sentially is more uncertain, which needs to estimate all possible
realizations consistent with the control policy and the observa-
tion. Formally, for any observable string s ∈ P (L(SN/G)), we
define XI(s) as the state estimate of the intruder, i.e.,

XI(s) = {δ(s′)∈X : ∃s′ ∈ L(SN/G) s.t. P (s′) = s}. (11)

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 19,2022 at 15:02:47 UTC from IEEE Xplore. Restrictions apply.

6572 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 12, DECEMBER 2022

Then, opacity of control systems under nondeterministic super-
visors is defined as follows.

Definition 2: Let SN : (ΓΣo)
∗ → 2Γ be a nondeterministic

supervisor. We say the closed-loop system SN/G is opaque
(w.r.t. Σo and XS) if ∀s ∈ P (L(SN/G)):XI(s)
⊆ XS .

The state estimate of the supervisor and the state estimate of
the intruder can be related as follows. Since the intruder observes
strictly less than the supervisor, its estimate of the system is
essentially the union of its estimate of all possible supervisor’s
knowledge about the system. To see this more clearly, for any
observable string s ∈ P (L(SN/G)), we also define

ÊI(s)={ÊS(ρ) ∈ 2X :ρ ∈ O(Lo
e(SN/G))s.t.ρ|Σ = s} (12)

EI(s)={ES(ρ) ∈ 2X :ρ ∈ O(Ld
e(SN/G))s.t.ρ|Σ = s} (13)

as the intruder’s estimates of the state-estimations of the su-
pervisor. Note that ÊI(s) and EI(s) are, respectively, the state
estimate immediately after observing an observable event and
the state-estimate with the unobservable tail included. Note that
we use subscript “I” to emphasize that these estimates are from
the intruder’s point of view. Then, we have the following result
that connects EI and XI .

Proposition 1: For any s ∈ P (L(SN/G)), we have

XI(s) =
⋃

EI(s).

Proof: By the definitions of EI(s), ES(ρ), L(SN/G) and
mapping O, we have⋃

EI(s)

=
⋃

{ES(ρ) ∈ 2X : ρ ∈ O(Ld
e(SN/G)) s.t. ρ|Σ = s}

= {x ∈ ES(ρ) : ρ ∈ O(Ld
e(SN/G)) s.t. ρ|Σ = s}

= {δ(ρ′|Σ) : ρ′ ∈ Le(SN/G) s.t. O(ρ′)|Σ = s}
= {δ(s′) : s′ ∈ L(SN/G) s.t. P (s′) = s}
= XI(s).

�
Given a nonopaque system, our goal is to synthesize a non-

deterministic supervisor that restricts the system behavior such
that opacity is satisfied for the closed-loop system. The opacity
enforcement synthesis problem is formulated as follows.

Problem 1 (Opacity Enforcement Problem): Given systemG
and secret states XS ⊆ X , synthesize a partial observation non-
deterministic supervisor SN : (ΓΣo)

∗ → 2Γ, such that SN/G is
opaque w.r.t. XS and Σo.

Remark 3: Compared with deterministic supervisors, the
additional power of nondeterministic supervisor, in terms of
opacity enforcement, relies on assumption A3′. That is, the
intruder is aware of the functionality of the nondeterministic
supervisor but cannot eavesdrop the specific control decisions
issued by the supervisor. Note that, if the intruder is completely
not aware of the functionality of the supervisor (no matter
deterministic or nondeterministic), then it has to make state
estimation based on the open-loop system G. For this case,

using nondeterministic supervisors does not provide any addi-
tional power compared with deterministic supervisors, and it
suffices to solve the supervisor-unaware deterministic opacity-
enforcement problem; see, e.g., [42], [44]. If the intruder is aware
of the functionality of the nondeterministic supervisor, but at the
same time, is also capable of eavesdropping the control decisions
issued by the nondeterministic supervisor, then this essentially
means that the nondeterministic control information can be
resolved by the intruder. For this case, using nondeterministic
supervisors is still the same as using deterministic supervisors
in terms of the capability of enforcing opacity. Then, it suffices
to solve a supervisor-aware deterministic opacity-enforcement
problem; see, e.g., [10], [38], [50].

IV. IS AND ITS FLOW

In the formulation of the opacity enforcement problem, the
domain of the supervisor is defined over languages. Therefore,
the solution space is infinite in general and there is no prior
knowledge to bound the memory of the supervisor. To effectively
solve the synthesis problem, in this section, we restrict our
attention to a class of IS-based supervisors, where the space of
ISs is finite. We first define the IS in the nondeterministic control
problem and then discuss how the selected IS evolves. Also, we
define an IS-mapping that can encode an IS-based supervisor.
Our method for synthesizing a nondeterministic supervisor is
to first synthesize an IS-mapping and then encode a supervisor
from it. To this end, we finally put forward an algorithm that
decodes a nondeterministic supervisor from IS-mapping. We
will show later in Section VI that restricting our attention to IS-
based supervisors is without loss of generality for the solvability
of the general nondeterministic supervisor opacity enforcement
problem.

A. Proposed Information Structure

In the deterministic control problem, it is known that 2X is
sufficient to realize an opacity-enforcing supervisor [50]. That
is, a deterministic supervisor can be encoded as a state-based
mapping S : 2X → Γ, which can be decoded by recursively
estimating the state of the system and making decision based
on the state-estimate (IS).

In the nondeterministic control problem, the supervisor and
the intruder observe different information. Hence, the supervisor
needs to make decision based on both the state estimates of
itself and that of the intruder. To separate the observations of the
supervisor and the intruder, we propose the following IS space

I := 2X × 22
X

.

Each IS ı ∈ I is in the form of ı = (m,m). Intuitively, the first
component aims to represent the state estimate of supervisor,
while the second component aims to represent intruder’s knowl-
edge of the supervisor.

Formally, given a nondeterministic supervisor SN and let ρ ∈
O(Lo

e(SN/G)) be a decision history observed by the supervisor.
We define

ISN
(ρ) = (ÊS(ρ), ÊI(ρ|Σ)) ∈ 2X × 22

X

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 19,2022 at 15:02:47 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: OPACITY ENFORCING SUPERVISORY CONTROL USING NONDETERMINISTIC SUPERVISORS 6573

as the IS reached by ρ under SN . Clearly, we have ÊS(ρ) ∈
ÊI(ρ|Σ) for any ρ by definition. We also define

ISN
:= {ISN

(ρ) : ρ ∈ O(Lo
e(SN/G))}

the set of all ISs reached by SN .
Definition 3: A nondeterministic supervisor SN : (ΓΣo)

∗ →
2Γ is said to be information-state-based (IS-based) if

∀ρ, ρ′ ∈O(Lo
e(SN/G)) :

ISN
(ρ)=ISN

(ρ′)⇒SN (ρ)=SN (ρ′). (14)

An IS-based supervisor only makes decisions based on its
current IS rather than the entire history. Therefore, we can
encode an IS-based supervisor as a partial IS-mapping.

Definition 4: We say a partial IS-mapping Θ : I → 2Γ en-
codes supervisor SN : (ΓΣo)

∗ → 2Γ if

∀ρ ∈ O(Lo
e(SN/G)) : Θ(ISN

(ρ)) = SN (ρ).

Our general approach for synthesizing a nondeterministic
supervisor is to synthesize its IS-mapping encoding. Clearly,
given an IS-based supervisor SN , we can easily encode it as
an IS-mapping Θ : I → 2Γ, which is defined at each state in
ISN

. On the other hand, however, given a partial IS-mapping
Θ : I → 2Γ, it is not straightforward how to decode an IS-based
supervisor from it. In fact, not every partial IS-mapping Θ :
I → 2Γ actually encodes an IS-based supervisor. As a necessary
requirement, the partial IS-mapping should be defined at state
ı0 = ({x0}, {{x0}}), which is the initial IS of any IS-based
supervisor. Then, one can argue inductively that, for any reach-
able IS, the partial IS-mapping should be defined, which sug-
gests that the domain of the partial IS-mapping should contain
the “reachability closure” from the initial-state ı0; otherwise,
the decoded supervisor will “get stuck” at those states where the
IS-mapping is undefined.

To compute such an “reachability closure,” we need to in-
vestigate how the IS evolves. As we discussed earlier, the first
component of the IS can be computed recursively based on ρ.
However, the question is how to compute the second component.
To this end, we should not only know the control decision for
history ρ, but should also know the control decisions for those
ρ′ such that ρ|Σ = ρ′|Σ. In the remaining part of this section, we
will elaborate on how ÊI(ρ|Σ) can be computed recursively and
by what information.

B. Micro/Macro States and Decisions

Before we proceed further, we define some necessary con-
cepts. First, we introduce the notion of microstate, which is used
to represent the knowledge of supervisor.

Definition 5 (Microstate): A microstate m ∈ 2X is a set of
states and we define M = 2X as the set of microstates. An
augmented microstate m+ = (m, γ) ∈ 2X × Γ is a microstate
augmented with a control decision and we defineM+ = 2X × Γ
as the set of augmented microstates.

Then, we define the notion of macrostate, which is used to
represent the knowledge of intruder about the supervisor.

Definition 6 (Macrostate): A macrostate m = {m1,m2,
. . . ,mn} ⊆ 2X is a set of microstates and we define M =

22
X

as the set of macrostates. An augmented macrostate m+

= {(m1, γ1), (m2, γ2), . . . , (mn, γn)} ⊆ 2X × Γ is a set of
augmented microstates and we define M+ = 22

X×Γ as the set
of augmented macrostates.

In order to estimate the knowledge of the intruder, we should
not only know the decision of the supervisor at a specific mi-
crostate, but also should know the decisions at other microstates
in the same macrostate, which means that these microstates are
indistinguishable from the intruder’s point of view. This leads
to the notion of macrocontrol-decision.

Definition 7 (Macrocontrol-Decision): A macrocontrol-
decision is a set in the form of

d = {(m1,Γ1), (m2,Γ2), . . . , (mn,Γn)} ⊆ 2X × 2Γ

where each (mi,Γi) is a pair of microstate and a nondetermin-
istic control decision (a set of control decisions). We denote by
D=22

X×2Γthe set of macrocontrol-decisions.
Let m = {m1,m2, . . . ,mn} ∈ M be a macrostate and d ∈

D be a macrocontrol-decision. We say that d is compatible with
m if it is in the form of

d = {(m1,Γ1), (m2,Γ2), . . . , (mn,Γn)} ⊆ 2X × 2Γ

i.e., d essentially assigns each microstate mi ∈ m a nondeter-
ministic control decision Γi ∈ 2Γ.

The unobservable reach of a macrocontrol-decision d ∈ D is
defined by

�(d) = {(m,′ γ) : ∃(m,Γ) ∈ d, γ ∈ Γ s.t. m′ = URγ(m)}.
Let m+ be an augmented macrostate and σ ∈ Σo be an

observable event. Then, the observable reach of m+ upon the
occurrence of σ is defined as

N̂Xσ(m
+)

= {m′ : ∃(m, γ)∈m+ s.t. m′=NXσ(m) ∧ σ∈γ}.

C. Information-Flow Analysis

Now, suppose that an IS-mapping Θ : I → 2Γ that encodes
an IS-based supervisor SN is given. Let m = {m1, . . . ,mk} be
a macrostate representing the intruder’s estimate of the supervi-
sor’s knowledge. We define

dΘ(m) = {(m1,Θ(m1,m)), . . . , (mk,Θ(mk,m))}
as the macrocontrol-decision made by IS-based supervisor at
macrostate m.

Initially, the state-estimate of the supervisor is m0 = {x0}
and the intruder believes that this is the unique estimate of the
system with estimate m0 = {m0}, which forms the initial IS
ı0 = (m0,m0).

Then, the supervisor issues a nondeterministic decision set
Γ0 = SN (ε) = Θ(m0,m0). Note that, we have prespecified that
the supervisor is IS-based. Therefore, we denote the control
decision information at this instant by a macrocontrol-decision
dΘ(m0) = {(m0,Θ(m0,m0))}, which means that “the super-
visor will make control decision if its state-estimate ism0”. Note
that, at this instant, dΘ(m0) is a singleton as the intruder does
not yet have ambiguity about the supervisor, i.e., m0 = {m0}.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 19,2022 at 15:02:47 UTC from IEEE Xplore. Restrictions apply.

6574 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 12, DECEMBER 2022

Once the allowed decision set Γ0 is specified, the supervisor
will pick a concrete control decision in it. The intruder does
not know which decision is chosen while the supervisor knows.
Suppose that Γ0 = {γ1

0 , . . . , γ
k
0 } contains k control decisions.

Then, the intruder’s knowledge about the supervisor becomes

m+
0 = � (dΘ(m0))

= {(URγ1
0
(m0), γ

1
0), . . . , (URγk

0
(m0), γ

k
0)}

= {(m1
0, γ

1
0), . . . , (m

k
0 , γ

k
0)} (15)

which means that the supervisor’s estimate (with the unob-
servable tail) is possibly URγi

0
(m0) and the control decision

applied is γi
0. Note that, the supervisor knows precisely which

augmented microstate (mi
0, γ

i
0) it is at.

Then, when a new observable event σ ∈ Σo occurs, and the
intruder updates its knowledge to

m1 = N̂Xσ(m
+
0) = {m1

1, . . . ,m
p
1}. (16)

which is a macrostate containing at most k microstates, i.e.,
p � k.

Now, let us assume that, after some steps, the intruder’s knowl-
edge about the supervisor (immediately after the occurrence of
an observable event) is

mn = {m1
n, . . . ,m

k
n}.

Note that the supervisor knows the exact state estimate, i.e.,
mi

n ∈ mn, and for each mi
n, it allows nondeterministic de-

cision set Γi = Θ(mi
n,mn) as we assume the supervisor is

IS-based and is encoded by Θ. Therefore, the corresponding
macrocontrol-decision is

dΘ(mn)={(m1
n,Θ(m1

n,mn)), . . . , (m
k
n,Θ(mk

n,mn))}. (17)

Then, the intruder’s knowledge about the supervisor is updated
by adding this control information

m+
n = �(dΘ(mn)),

which is an augmented marcostate containing at most∑k
i=1 |Θ(mi

n,mn)| augmented microstates.
Based on the abovementioned discussion, suppose that the

intruder observes σ1 · · ·σn ∈ P (L(SN/G)) and by assuming
the fact that SN is an IS-based supervisor encoded by Θ, it
induces the following sequence:

m0
d0−→ m+

0
σ1−→ m1

d1−→ . . .
σn−→ mn

dn−→ m+
n (18)

where m0 = {{x0}}, di = dΘ(mi), m+
i = �(di), and

mi+1 = N̂Xσi+1
(m+

i). We note that σi+1 is defined at m+
i iff

there exist (m, γ)∈m+
i and x ∈ m such that δ(x, σi+1)! and

σi+1∈γ. Therefore, the sequence in (18) is uniquely defined
when σ1 · · ·σn and Θ are fixed; it is independent from the
actual online choice of the supervisor at each instant.

Now we are ready to specify the reachability closure of an
IS-mapping. Formally, let Θ : I → 2Γ be a partial IS-mapping
and ı = (m,m) ∈ I be an IS. Then, the reachability closure of
ı under Θ, denoted by REACHΘ(ı) ⊆ I , is defined recursively as
follows:

1) ı ∈ REACHΘ(ı);

2) ı′ = (m,′ m′) ∈ REACHΘ(ı) if
a) m′ ∈ m′;
b) there exists ı′′ = (m,′′ m′′) ∈ REACHΘ(ı) such

that m′′ dΘ(m′′)−−−−−→ m′′+ σ−→ m′ for some σ ∈ Σo.

D. Property of the IS

The abovementioned analysis of information-flow is heuristic.
In this section, we formally show that the proposed information
updating rule indeed yields the state estimate of the intruder in
the controlled system.

Theorem 1: LetΘ be an IS-mapping that encodes an IS-based
supervisorSN and s = σ1 . . . σk ∈ P (L(SN/G)) be an observ-
able string available to the intruder. Let mk and m+

k be states
induced by s and Θ according to (18). Then, we have

i) mk = ÊI(s);
ii)

m+
k =

{
(ES(ργ), γ) : ρ ∈ O(Lo

e(SN/G)) s.t.
ρ|Σ = s and γ ∈ SN (ρ)

}
.

Proof: We prove by induction on the length of s.
Induction Basis: For |s| = 0, i.e., s = ε, from the definition

of ÊI(s), we know that

ÊI(ε) = {ÊS(ρ) ∈ 2X : ρ ∈ O(Lo
e(SN/G)) s.t. ρ|Σ = ε}

= {ÊS(ε)}
= {{δ(ε)}}
= {{x0}}
= m0.

Since m+
0 = �(dΘ(m0)) and dΘ(m0) = {(m0, SN (ε))}, we

have

m+
0 = � (dΘ(m0))

= {(URγ(m0), γ) : γ ∈ SN (ε)}

=
{
(URγ(ÊS(ε)), γ) : γ ∈ SN (ε)

}
= {(ES(γ), γ) : γ ∈ SN (ε)} .

Note that ρ = ε is the only extended string in O(Lo
e(SN/G))

such that ρ|Σ = s. This completes the induction basis.
Induction Step: Let us assume that Theorem 1 holds for |s| =

k. Then, we want to prove the case of sσk+1 ∈ P (L(SN/G)).
By the induction hypothesis, we know that

m+
k =

{
(ES(ργ), γ) : ρ ∈ O(Lo

e(SN/G)) s.t.
ρ|Σ = s and γ ∈ SN (ρ)

}
.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 19,2022 at 15:02:47 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: OPACITY ENFORCING SUPERVISORY CONTROL USING NONDETERMINISTIC SUPERVISORS 6575

Then, we have

mk+1

= N̂Xσk+1
(m+

k)

= {NXσk+1
(m) : (m, γ) ∈ m+

k , σk+1 ∈ γ}

=

{
NXσk+1

(ES(ργ)) : ρ ∈ O(Lo
e(SN/G)) s.t.

ρ|Σ = s, γ ∈ SN (ρ) and σk+1 ∈ γ

}

= {ÊS(ργσk+1) : ρ ∈ O(Lo
e(SN/G)) s.t. ρ|Σ = s}

= {ÊS(ρ′) : ρ′ ∈ O(Lo
e(SN/G)) s.t. ρ′|Σ = sσk+1}

= ÊI(sσk+1).

For m+
k+1 = �(dΘ(mk+1)). Suppose that dΘ(mk+1) =

{(m1
k+1,Θ(m1

k+1,mk+1)), . . . , (m
n
k+1,Θ(mn

k+1,mk+1))}.
Note that we have

mk+1 = {ÊS(ρ) : ρ ∈ O(Lo
e(SN/G)) s.t. ρ|Σ = sσk+1}

= {m1
k+1, . . . ,m

n
k+1}.

For each ρ ∈ O(Lo
e(SN/G)) such that ρ|Σ = sσk+1, since SN

is IS-based, we have SN (ρ) = Θ(ÊS(ρ),mk+1). Then, we have
the following:

m+
k+1

= � (dΘ(mk+1))

= {(URγ(m), γ) : ∃(m,Γ) ∈ dΘ(mk+1) s.t. γ ∈ Γ}

=

{
(URγ(ÊS(ρ)), γ) : ρ ∈ O(Lo

e(SN/G)) s.t.
γ ∈ SN (ρ) and ρ|Σ = sσk+1

}

=

{
(ES(ργ), γ) : ρ ∈ O(Lo

e(SN/G)), s.t.
γ ∈ SN (ρ) and ρ|Σ = sσk+1

}
.

This completes the induction step, i.e., (ii) holds. �
For any augmented macrostate m+, we define

M(m+) = {m ∈ M : (m, γ) ∈ m+}

as the macrostate obtained by removing the control decision
components from m+. Then, the following result reveals that
the abovementioned defined states set M(m+

k) is indeed the
state estimate of the intruder EI(s).

Corollary 1: Let Θ be an IS-mapping that encodes an IS-
based supervisor SN and s = σ1 . . . σk ∈ P (L(SN/G)) be an
observable string available to the intruder. Let m+

k be the state
reached according to the information-flow. Then, we have

M(m+
k) = EI(s).

Proof: By Theorem 1, we have

m+
k =

{
(ES(ργ), γ) : ρ ∈ O(Lo

e(SN/G)) s.t.
ρ|Σ = s and γ ∈ SN (ρ)

}
.

Therefore

M(m+
k) =

{
ES(ργ) : ρ ∈ O(Lo

e(SN/G)) s.t.
ρ|Σ = s and γ ∈ SN (ρ)

}

= {ES(ρ′) : ρ′ ∈ O(Ld
e(SN/G)) s.t. ρ′|Σ = s}

= EI(s).
�

We explain the abovementioned concepts by the following
example.

Example 3: Let us still consider system G in Fig. 1. We
consider a nondeterministic supervisor SN defined by

∀ρ ∈ (ΓΣo)
∗ : SN (ρ) = {{c1}, {c2}}.

Clearly, this supervisor is IS-based and it can be encoded by
IS-mapping Θ : I → 2Γ such that ∀ı∈I : Θ(ı)={{c1}, {c2}}.

Initially, the supervisor’s estimate is m0 = {0} and the in-
truder’s estimate of supervisor’s estimation is m0 = {{0}},
where the macrocontrol-decision induced by Θ is

dΘ(m0) = {({0},Θ({0}, {{0}}))} = {({0}, {{c1}, {c2}})}.
Then, the intruder’s knowledge is updated to

m+
0 = �(dΘ(m0))

= {(UR{c1}({0}), {c1}), (UR{c2}({0}), {c2})}
= {({0, 1}, {c1}), ({0, 3}, {c2})}.

When event o1 is observed, the intruder updates its knowledge
to

m1 = N̂Xo1(m
+
0) = {NXo1({0, 1}), NXo1({0, 3})}

= {{4}, {5}},
which means that the intruder guesses that the supervisor’s state-
estimate is either {4} or {5} based on the information available.
Again, the macrocontrol-decision at m1 is

dΘ(m1) = {({4},Θ({4},m1)), ({5},Θ({4},m1))}
= {({4}, {{c1}, {c2}}), ({5}, {{c1}, {c2}})},

which leads to

m+
1 = �(dΘ(m1))

=

{
(UR{c1}({4}), {c1}), (UR{c2}({4}), {c2}),
(UR{c1}({5}), {c1}), (UR{c2}({5}), {c2})

}

= {({4},{c1}), ({4},{c2}), ({5, 6},{c1}), ({5, 7},{c2})}.
Similarly, from m+

1 , observations can be observed and so forth.

E. Decode Supervisor From IS-Mapping

Finally, we are ready to discuss how to decode an IS-based
nondeterministic supervisor from an IS-mapping Θ : I → 2Γ.
The decoded nondeterministic supervisor is denoted by SΘ. Let
DOM(Θ) = {ı ∈ I : Θ(ı)!} be the domain of Θ. We say that
IS-mapping Θ is reachability-closed if

REACHΘ(ı0) ⊆ DOM(Θ)

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 19,2022 at 15:02:47 UTC from IEEE Xplore. Restrictions apply.

6576 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 12, DECEMBER 2022

where ı0 = ({x0}, {{x0}}) is the initial IS. Clearly, Θ is neces-
sary to be reachability-closed; otherwise, the supervisor cannot
make decision after some executions. Without loss of general-
ity, we can further assume that REACHΘ(ı0) = DOM(Θ) as the
mapping information of those unreachable states are not used.

When IS-mapping Θ is reachability-closed, we can decode a
supervisor SΘ as follows. For any decision history ρ = γ0σ1γ1
. . . γn−1σn, we have

SΘ(ρ) = Θ(ÊS(ρ), ÊI(ρ|Σ)). (19)

Note that, based on the previous discussion, both ÊS(ρ) and
ÊI(ρ|Σ) can be computed recursively based on Θ. Therefore,
in practice, SΘ(ρ) can be executed online according to Algo-
rithm 1. Specifically, we use parameters m,m+,m and m+

to represent ÊS(ρ), ES(ρ), ÊI(ρ|Σ), and EI(ρ|Σ), respectively.
Note that the updates of m and m+ use the online observation
σ and the IS-mapping Θ to generate a nondeterministic control
decision setΓ, in which an actual control decision applied γ ∈ Γ
is chosen randomly. However, the updates of m and m+ only
use the online observation σ and the actual decision γ applied.

By understanding how an IS-mapping Θ can be decoded
as an IS-based supervisor, hereafter, we will also refer to a
reachability-closed IS-mapping Θ as an IS-based supervisor
directly. In order to solve the general opacity enforcement prob-
lem as formulated in Problem 1, our approach is to restrict our
solution space to IS-based supervisors and solve the following
IS-mapping synthesis problem.

Problem 2 (IS-Based Opacity Enforcement Problem): Given
system G and secret states XS ⊆ X , synthesize an IS-based
supervisor SΘ : (ΓΣo)

∗ → 2Γ decoded from IS-mapping Θ :
I → 2Γ, such that SΘ/G is opaque w.r.t. XS and Σo.

Remark 4: Problem 2 essentially restricts the solution space
of Problem 1 to a finite domain. Clearly, if there exists an IS-
based supervisor that enforces opacity, then there exists a nonde-
terministic opacity-enforcing supervisor. However, the follow-
ing question arises immediately: whether or not the nonexistence
of an IS-based supervisor also implies the nonexistence of a
general supervisor? We will show later in Section VI that there
exists a nondeterministic opacity enforcing supervisor if and
only if there exists an IS-based one. In other words, restricting

our attention to Problem 2 is without loss of generality for the
solvability of Problem 1.

V. SYNTHESIS OF IS-BASED SUPERVISORS

In this section, we discuss how to synthesize an IS-based
supervisor that enforces opacity. We first introduce the structure
of the G-BTS. Then, we present a synthesis algorithm that
returns a solution to Problem 2.

A. Bipartite Transition System (BTS)

By the analysis in the previous section, we see that the update
of the intruder’s knowledge consists of the following two steps:
one is when the supervisor picks a macrocontrol-decision and
the other is when a new observable event occurs. To separate
these two steps, we adopt the idea of the BTS proposed in [50].
Here, we call the proposed structure G-BTS as it captures, in
a more general manner, both the supervisor’s estimate and the
intruder’s knowledge about the supervisor, while the original
BTS in [50] only captures the supervisor’s estimate.

Definition 8: A G-BTS T w.r.t. G is a 7-tuple

T = (QY , QZ , hYZ , hZY ,Σo, D, y0)

where
1) QY ⊆ M is a set of macrostates;
2) QZ ⊆ M+ is the set of augmented macrostates;
3) hYZ : QY ×D → QZ is the transition function from Y -

states to Z-states satisfying: for any hYZ(m, d) = m+,
we have

i) d is compatible with m;
ii) m+ = �(d).

4) hZY : QZ × Σo → QY is the transition function fromZ-
states to Y -states satisfying: for any hZY (m

+, σ) = m,
σ ∈ Σo, we have

i) m = N̂Xσ(m
+).

5) D is the set of macrocontrol-decisions;
6) Σo is the set of observable events of system G;
7) y0 = {{x0}} ∈ QY is the initial Y -state.

The G-BTS essentially captures the information-flow ana-
lyzed in Section IV. Specifically, at each Y -state, the IS-based
supervisor makes a macrocontrol-decision d and then moves to
aZ-state by updating the intruder’s knowledge via unobservable
reaches under the issued macrocontrol-decision d. When a new
observable event σ ∈ Σo occurs at a Z-state, we move to a
Y -state by computing the observable reach, and so forth.

Example 4: Again, we consider system G in Fig. 1. An
example of the G-BTS is shown in Fig. 2(a), in which rectangular
states represent Y -states and oval states represent Z-states.
Some states are omitted in Fig. 2(a) for simplicity. States are
named by s1, . . . , s32. The initial Y -state is s1 = {{0}}, from
which macrocontrol-decisions d1, . . . , d5 that are compatible
with s1 can be made. For example, if the macrocontrol-decision
made is d5 = {({0}, {{c1}, {c2}})}, then we move to Z-state
s10 = �(d5). From this state, observable events o1 and o2 can
occur, and both lead to the same Y -state s18. From Y -state s18,
macrocontrol-decisions d9, . . . , d13 that are compatible with s18

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 19,2022 at 15:02:47 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: OPACITY ENFORCING SUPERVISORY CONTROL USING NONDETERMINISTIC SUPERVISORS 6577

Fig. 2. (a) Example of the G-BTS, where rectangular states represent Y -states and oval states represent Z-states. (b) Decision diagram of the
synthesized nondeterministic supervisor.

can be made. If the macrocontrol-decision made is d11, then we
move to s23 = �(d11) and so forth.

B. Synthesis of IS-Based Supervisors

Now, we present how to synthesize IS-based nondeterminis-
tic opacity-enforcing supervisors represented by IS-mappings.
Given a G-BTS T , for any Y -state y ∈ QY , we define

CT (y) := {d ∈ D : hYZ(y, d)!}

as the set of macrocontrol-decisions defined at y in T . Also, we
say that a Y -state y is consistent if CT (y)
= ∅; and a Z-state z
is consistent if, for any σ ∈ Σo, we have

hZY (z, σ)! ⇔ (∃(m, γ)∈z)[NXσ(m)
= ∅ ∧ σ∈γ].

Intuitively, a Y -state is consistent if at least one macrocontrol-
decision is defined and aZ-state is consistent if all feasible events
are defined. Consistency is required for the purpose of control
as the supervisor should be able to provide a control decision
for any observation. We denote by QT

const the set of consistent
states in T and we say that T is consistent if all reachable states
are consistent.

As discussed earlier, we restrict our attention to IS-based
supervisors. Our approach for synthesizing nondeterministic
opacity-enforcing supervisors consists of the following two
steps:

1) construct the largest consistent G-BTS in which all states
are not secret-revealing;

2) extract one IS-based supervisor in the form of an IS-
mapping from this largest G-BTS.

Since such an IS-based supervisor is extracted from T , by
Theorem 1 and Corollary 1, we know that, upon the occurrence
of any decision history, the Z-state z ∈ M+ reached is essen-
tially the set of all possible state-estimates of the supervisor.
Moreover, by Proposition 1, we know that

⋃
M(z) = XI(s),

where s is the observation leading to the Z-state. Therefore,
to make sure that the closed-loop system SΘ/G is opaque, it
suffices to guarantee that, for any Z-state z ∈ M+ reached, we
have ⋃

M(z) � XS .

To this end, we define

Qreveal = {z ∈ M+ :
⋃

M(z) ⊆ XS}
as the set of secret-revealing Z-states.

In order to synthesize an IS-based supervisor, first, we con-
struct the largest G-BTS w.r.t. G that enumerates all the feasible
transitions satisfying the constraints ofhYZ andhZY . We denote
such an all-feasible G-BTS by Ttotal. Then, we need to delete all
secret-revealing Z-states in Ttotal and obtain a new G-BTS

T0 = Ttotal� (QY ∪QZ)\Qreveal

where T�Q denotes the G-BTS obtained by restricting the state-
space of T to Q ⊆ QY ∪QZ .

However, by deleting secret-revealing states, the resulting
G-BTS may become inconsistent. Hence, we also need to delete
inconsistent states recursively. Specifically, we define an opera-
tor F that maps a G-BTS to a new G-BTS by

F : T �→ T�QT
const

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 19,2022 at 15:02:47 UTC from IEEE Xplore. Restrictions apply.

6578 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 12, DECEMBER 2022

and we define

T ∗ = lim
k→∞

F k(T0)

as the largest consistent G-BTS in which there is no secret-
revealing state. The existence of the supremal fixed-point as
well as the finite-convergence of iteration follow directly from
the computation of winning region in two-player games [14] or
the well-known supremal controllable sublanguage [6].

The construction ofT ∗ follows directly from its definition and
one can proceed in two steps. First, we construct T0 by a depth-
first search or a breadth-first search from the initial Y -state y0.
Specifically, at each state encountered, one needs to consider all
possible successor states, until reaching a secret-revealing state
or a state that has been visited. Second, we prune inconsistent
states from T0 by iterations. Specifically, we need to remove Y -
states having no successor and Z-states at which some feasible
transitions are undefined, until the structure converges. Similar
searching and pruning procedure can be found in the literature;
see, e.g., [50, Algorithm 1]. We illustrate this procedure by the
following example.

Example 5: Consider again system G in Fig. 1. First, we
construct the largest G-BTS Ttotal by enumerating all possible
transitions, which is in fact the structure shown in Fig. 2(a).
For the sake of simplicity, as we discussed earlier, redun-
dant macrocontrol-decisions are omitted in Ttotal. For example,
d = {({0}, {γ1, γ2})} is not listed at state s1, since γ1 ⊂ γ2
and macrocontrol-decision d2 is sufficient enough to carry this
information.

Note that Z-states s2, s8 and s20 are secret-revealing
states since

⋃
M(s2) = {0} ⊆ XS ,

⋃
M(s8) = {4} ⊆ XS

and
⋃
M(s20) = {10} ⊆ XS . Therefore, we need to delete

states s2, s8 and s20 to obtain T0. However, this creates incon-
sistent states s7 and s19 as no macrocontrol-decision is defined.
Therefore, these two states are removed when applying operator
F for the first time. Again, this further creates inconsistent states
s3, s6, s11, s14 and s24 since some feasible observations are not
defined. Therefore, these states and the associated transitions
are again deleted when applying operator F for the second time.
This yields the final structureT ∗ including states s1, s9, s10, s17,
s18, s21, s22, s23, s27, . . . , s32, which is the largest consistent
G-BTS having no secret-revealing state.

Based on T ∗, Algorithm 2 is provided to synthesize an IS-
based nondeterministic supervisor in the form of an IS-mapping
via a depth-first search. Specifically, we start from the initial
Y -state and pick a macrocontrol-decision d from the set of all
macrocontrol-decisions defined at y. Then, for each pair (m, y),
wherem ∈ y, we used to define the mapping value for IS (m, y),
which is the unique nondeterministic decision set associated
with m in d. Then, we move to the unique Z-state reached under
macrocontrol-decision d and consider all successor Y -states by
considering all possible observable events. If the new Y -state
has not yet been visited, then we repeat the selection procedure
by making a recursive call of procedure do deep-first search
(DoDFS) until all reachable ISs are traversed. The computed
IS-mapping Θ∗ is reachability-closed by construction; hence

can be used to decode a corresponding IS-based supervisor SΘ∗

according to Algorithm 1.
We show the computation procedure in Algorithm 2 by the

following example.
Example 6: We still consider our running example with T ∗

shown in Fig. 2 and we use Algorithm 2 to synthesize an IS-
mapping from T ∗. The algorithm starts from the initial Y -state
s1 = {{0}}, at which the macrocontrol-decision inT ∗ is unique.
Therefore, the supervisor will pick d5 which induces partial
mapping value Θ∗({0}, {{0}}) = {γ2, γ3}. By choosing d5,
we move to Z-state s10 and we need to consider all possible
successor Y -states of s10. Here, both o1 and o2 from s10
lead to Y -state s18 = {{4}, {5}}, where three macrocontrol-
decisions d9, d10, d11 are defined. Suppose that the supervi-
sor chooses d11 = {({4}, {γ1}), ({5}, {γ4})}. This again in-
duces partial mapping values Θ∗({4}, {{4}, {5}}) = {γ1} and
Θ∗({5}, {{4}, {5}}) = {γ4}. If observable event o2 occurs,
Y -state s29 is reachable and the macrocontrol-decision defined is
unique. Therefore, by choosing d19 at s29 = {{10, 11}}, partial
mapping value Θ∗({10, 11}, {{10, 11}}) = {γ1} is induced. If
observable event o1 occurs, Y -state s31 is reachable and the
macrocontrol-decision defined is d20. Partial mapping value
Θ∗({9, 10}, {{9, 10}}) = {γ1} is induced. This completes the
construction of reachability-closed IS-mapping Θ∗, which can
also be represented as the decision diagram shown in Fig. 2(b).

Remark 5: The main purpose of this article is to synthesize a
nondeterministic supervisor that guarantees opacity. Our focus is
the solvability of this problem and whether or not the synthesized
solution is maximally permissive is out of the main scope of this
work. Here, we provide a heuristic approach to improve the per-
missiveness of this solution. In line 6 of Algorithm 2, we do not
put specific criterion for which macrocontrol-decision to choose
from CT ∗(y). To enhance the permissiveness of the supervisor,
we can pick a locally maximal macrocontrol-decision at each

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 19,2022 at 15:02:47 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: OPACITY ENFORCING SUPERVISORY CONTROL USING NONDETERMINISTIC SUPERVISORS 6579

Y -state. Formally, given two nondeterministic decision sets Γ1

and Γ2, we denote
1) by Γ1 ≤ Γ2 if ∀γ ∈ Γ1, ∃γ′ ∈ Γ2 : γ ⊆ γ′;
2) by Γ1 < Γ2 if Γ1 ≤ Γ2 and ∃γ ∈ Γ1, ∃γ′ ∈ Γ2 : γ ⊂ γ′.

Then, for each Y -state y = {m1, . . . ,mk} in T ∗ and two
macrocontrol-decisions d1 and d2 defined at y, where d1
= {(m1,Γ1), . . . , (mk,Γk)}, d2 = {(m1,Γ

′
1), . . . , (mk,Γ

′
k)},

we say d2 is more permissive than d1, denoted by d1 < d2 if
1) ∀i ∈ {1, . . . , k},Γi ≤ Γ′

i; and
2) ∃i ∈ {1, . . . , k},Γi < Γ′

i.
Therefore, in line 6 of Algorithm 2, one can choose a locally

maximal macrocontrol-decision d ∈ CT ∗(y) in the sense of

∀d′ ∈ CT ∗(y) : d
< d′.

For example, for T ∗ in Fig. 2(a), there are three macrocontrol-
decisions d9 = {({4}, {γ1}), ({5}, {γ1})}, d10 = {({4},{γ1}),
({5},{γ2, γ3})} and d11 = {({4},{γ1}), ({5},{γ4})} defined at
s18. Then, d11 is a locally maximally macrocontrol-decision
among these three. For example, we have d10 < d11 since
γ2⊂γ4 and γ3⊂γ4. Therefore, for the sake of permissiveness,
the IS-mapping synthesis procedure can pick d11 instead of d9
or d10.

We conclude this section by discussing the complexity of
the proposed supervisor synthesis algorithm. To construct the
largest consistent G-BTS T ∗, first, we need to build Ttotal, which
contains at most 22

|X|
Y -states and 22

|X|+|Σc |
Z-states. For each

Y -state, there are at most 2|X|+|Σc| transitions defined and for
each Z-state, there are at most |Σo| transitions defined. Overall,
Ttotal contains, in the worst-case, 22

|X|+|Σc |
+ 22

|X|
states and

22
|X| · 2|X|+|Σc| + |Σo| · 22|X|+|Σc |

transitions. The complexity
of removing all secret-revealing states to obtain G-BTS T0 is
linear in the size of Ttotal. The complexity of removing all
inconsistent states iteratively to obtain T ∗ is quadratic in the
size of Ttotal. Once T ∗ is constructed, we run Algorithm 2 to
synthesize an IS-mapping Θ∗, which is simply a depth-first
search over the space of T ∗ and the complexity is still linear
in the size of T ∗. The resulting IS-mapping contains at most
22

|X|
elements in its domain. In order to execute the supervisor

online, we use Algorithm 1 to decode IS-mapping Θ∗. To this
end, the supervisor needs to store the IS-mapping Θ∗ computed
offline, and during the online execution, record both the current
state estimate m and the current macrostate m. Note that m
contains at most |X| states, while m contains at most 2|X|. By
making a new control decision upon the occurrence of a new
observable event, m and m can be updated, respectively, in
polynomial-time and exponential-time in the size of G. Note
that this online update transition can also be precomputed of-
fline and be stored as transition rules together with the IS-
mapping Θ∗. Overall, the entire complexity of the proposed
synthesis approach is doubly exponential in the size of the
original plant, where the major complexity is spent for the offline
computation.

VI. PROPERTIES OF THE SYNTHESIS PROCEDURE

In this section, we formally prove the correctness of the
synthesis procedure proposed in Section V. Note that in the

formulation of Problem 1, supervisors make control decision
based on the decision histories and can be non-IS-based in
general. However, our algorithm in Section V solves a re-
stricted version of Problem 1 by only considering IS-based
supervisors as formulated in Problem 2. Therefore, to show
the correctness of the proposed synthesis procedure in the con-
text of Problem 1, our arguments consist of the following two
steps:

1) first, we show that our solution to the IS-based
synthesis problem, i.e., Problem 2, is sound and
complete;

2) then we show that restricting Problem 1 to Problem 2 is
without loss of generality, i.e., Problem 1 is solvable if
and only if Problem 2 is solvable.

Throughout this section, we denote by SΘ∗ the IS-based
supervisor synthesized by Algorithm 2.

A. Correctness of the IS-Based Synthesis Algorithm

In this section, we show that Algorithm 2 indeed solves
Problem 2. First, we show that Algorithm 2 is sound in the sense
that the synthesized supervisor SΘ∗ is opacity-enforcing.

Theorem 2: IS-based nondeterministic supervisor SΘ∗

: (ΓΣo)
∗ → 2Γ encoded from Θ∗ enforces opacity.

Proof: Let s = σ1 · · ·σn ∈ P (L(SΘ∗/G)) be any observable
string in closed-loop system SΘ∗/G. Let m+

n be state induced
by s and IS-mapping Θ∗ according to (18). By Corollary 1, we
know that

⋃
M(m+

n) = XI(s). According to Algorithm 2, m+
n

is a reachable Z-state in T ∗ by construction. Furthermore, since
T ∗ is obtained from T0 where allZ-states inQreveal are removed.
Therefore, we conclude that

XI(s) =
⋃

M(m+)
⊆ XS

which means that Θ∗ enforces opacity. �
Note that Algorithim 2 returns “no solution” when y0 is not

included in T ∗. Next, we show that Algorithm 2 is also complete
in the sense that there is indeed no solution to Problem 2 when
y0 is removed by operator F during the construction of T ∗.

Theorem 3: If there exists a nondeterministic IS-based super-
visor that enforces opacity, then y0 must be included in T ∗, i.e.,
Algorithm 2 will not return “no solution” when a solution to
Problem 2 exists.

Proof: Suppose that there exists a reachability-closed IS-
mappingΘ : I → 2Γ such that the encoded nondeterministic su-
pervisor SΘ enforces opacity. We construct a consistent G-BTS
T = (QY , QZ , hYZ , hZY ,Σo, D, y0) as follows: QY = {m :
(m,m) ∈ ISΘ

} and for anyy ∈ QY ,d = {(m,Θ(m, y)) : m ∈
y} is the unique macrocontrol-decision defined at y and QZ =
{�(d) : ∃y ∈ QY s.t. hY Z(y, d)!}. Since SΘ enforces opacity,
we have ∀s ∈ P (L(SΘ/G)) : XI(s)
⊆ XS . Let m+

n be state
induced by s and IS-mapping Θ according to (18). By the
construction of T , we havem+

n ∈ QZ . By Corollary 1, we know
that

⋃
M(m+

n) = XI(s). Therefore, we haveQZ ∩Qreveal = ∅.
Since T is included in T0 and T itself is consistent, no states in
T can be removed when iteratively applying operator F , which
means that all states in T are also included in T ∗. Therefore,

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 19,2022 at 15:02:47 UTC from IEEE Xplore. Restrictions apply.

6580 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 12, DECEMBER 2022

the initial Y -state y0 is included in T ∗ and Algorithm 2 will not
return “no solution”. �

B. From Non-IS-Based Supervisors to IS-Based
Supervisors

So far, we have shown that Algorithm 2 correctly solves
Problem 2, which is a restrictive version of Problem 1. Clearly,
Algorithm 2 is also sound for Problem 1 because an IS-based
solution is also a solution to Problem 1. Then, it remains to show
the completeness of Algorithm 2 in terms of Problem 1. To this
end, it suffices to show that Problem 2 always has a solution when
Problem 1 has one. Here, we provide a constructive procedure
that always construct an IS-based opacity-enforcing supervisor
that solves Problem 2 when a non-IS-based one that solves
Problem 1 exists.

Suppose that there exists a (possibly non-IS-based) nonde-
terministic supervisor SN : (ΓΣo)

∗ → 2Γ that enforces opac-
ity. We construct an IS-mapping Θ according to Algorithm 3.
The idea is similar to the information-flow analysis for IS-
mapping, which expands the IS space from the initial IS.
We still use y to denote state-estimates immediately after an
observable event and use z to denote state-estimates with the
unobservable tail included. However, since the supervisor needs
not to be IS-based, simply remembering the current IS is not
sufficient and we also need to remember the history leading
to each state estimate. Therefore, for each microstate mi in
a Y -state, we add an additional information ρi to track how
this microstate is visited. Note that for each microstate m in a
Y -state, the decision history may not be unique since there may
have multiple ρ associated with the same m. Similarly, each
augmented microstate in a Z-state is also attached with a deci-
sion history information. Then, procedure DoDSF implements
a depth-first search to generate the domain of the IS-mapping.
Note that, since SN is not IS-based in general, it may take
different actions for different histories visiting the same IS. Our
approach is to fix the control decision for each IS as the union
of the decisions for all its visits; the constructed mapping is,
therefore, forced to be IS-based. Algorithm 3 clearly terminates
in a finite number of states since it will stop when all possible
macrostates are visited.

The following result shows that Algorithm 3 indeed converts
a non-IS-based opacity-enforcing supervisor into an IS-based
opacity-enforcing supervisor.

Theorem 4: Let SN : (ΓΣo)
∗ → 2Γ be a nondeterministic

supervisor enforcing opacity and Θ : I → 2Γ be the partial IS-
mapping constructed by Algorithm 3. Then, IS-based supervisor
SΘ also enforces opacity.

Proof: First, by construction, for each macrostate (Y -state
without the extended strings components) visited by IS-mapping
Θ, i.e., m = {m1, . . . ,mk} ∈ VISITED, IS-mapping Θ defines
a nondeterministic control decision for each microstatemi ∈ m
(lines 9–10). Also, for each Z-state reached by SΘ, every
possible observable events are defined (line 14). Therefore,
for every IS (m,m) ∈ REACHΘ(({x0}, {{x0}})), Θ(m,m) is
always well-defined, i.e., IS-mapping Θ is reachability-closed.
Therefore, its decoded IS-based supervisor SΘ is well-defined

and we have

ISΘ
= REACHΘ(ı0) = DOM(Θ)

where ı0 = ({x0}, {{x0}}).
By Corollary 1 and Proposition 1, to show that SΘ enforces

opacity, it suffices to show that

∀(m,m) ∈ DOM(Θ) :
⋃

M(�(dΘ(m)))
⊆ XS .

To this end, we consider how m is added. Suppose y0y1 . . . yn
is the sequence of Y -states in the depth-first search such that
yn contributes m to VISITED, and let s = σ1 . . . σn be the ob-
servable events along this sequence. More clearly, suppose that
yn = {(m1, ρ1), . . . , (mk, ρk)} and we have {m1, . . . ,mk} =
m. We claim that for yn, we have

yn = {(ÊS(ρ), ρ) : ρ ∈ O(Lo
e(SN/G)), ρ|Σ = s}.

This claim can be seen inductively by the length of s. For |s| =
0, we have y0 = {({x0}, ε)}, where ε is the unique string in
O(Lo

e(SN/G)) whose projection is also ε and ÊS(ρ) = {x0}.
Assume that this claim holds for |s| = k, then for the case of
sσk+1, according to lines 11–12 and lines 16–17, we have

yk+1 =

{
(NXσk+1

(URγ(m)), ργσk+1) :
(m, ρ) ∈ yk, γ ∈ SN (ρ), σk+1 ∈ γ

}

=

{ (
ÊS (ρ′) , ρ′

)
:

ρ′ ∈ O (Lo
e (SN/G)) , ρ′|Σ = σ1 . . . σkσk+1

}
.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 19,2022 at 15:02:47 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: OPACITY ENFORCING SUPERVISORY CONTROL USING NONDETERMINISTIC SUPERVISORS 6581

Now, still for the same m and string s leading to it. We have

M(�(dΘ(m)))

= {URγ(m) ∈ 2X : (m,Γ) ∈ dΘ(m), γ ∈ Γ}
= {URγ(ÊS(ρ)) ∈ 2X : ρ∈O(Lo

e(SN/G)),

ρ|Σ=s, γ∈SN (ρ)}
= {ES(ρ) ∈ 2X : ρ ∈ O(Ld

e(SN/G)) s.t. ρ|Σ = s}
= EI(s).

Since SN enforces opacity, we have
⋃ EI(s) = XI(s)
⊆ XS ,

which means that
⋃
M(�(dΘ(m)))
⊆ XS . �

By combining Theorems 3–5, we have the following result
immediately that finally establishes the correctness of the syn-
thesis procedure.

Corollary 2: Algorithm 2 also correctly solves Problem 1,
i.e., it is both sound and complete.

VII. CONCLUSION

In this article, we proposed to use nondeterministic control
mechanism to enforce opacity. The essence is to leverage the
nondeterministic mechanism to enhance the plausible deniabil-
ity of the system. To this end, we formally defined the nondeter-
ministic supervisor and formulated the corresponding opacity
enforcement problem. Effective approach was provided to syn-
thesize a nondeterministic opacity-enforcing supervisor based
on both the information of the supervisor and the information
of the intruder. We showed that the proposed algorithm is both
sound and complete in the sense that it will correctly return a
nondeterministic opacity-enforcing supervisor when one exists.

Although we show that nondeterministic supervisors are
strictly more powerful than deterministic ones, the synthesis
complexity is doubly exponential in the size of the plant, which
is higher than the single-exponential complexity for the deter-
ministic case. Intuitively, this complexity is paid because we
should not only estimate all possible states of the system from
the supervisor’s point of view, but also need to estimate the
supervisor’s estimates from the intruder’s point of view. Re-
cently, some new efficient approaches, such as abstraction-based
approach [17], [29], [30], [34], [53], [55] and compositional
approach [32], [33], [35], have been proposed to reduce the
computational complexity in the verification and synthesis of
opacity. In the future work, we also would like to leverage these
techniques to further mitigate the complexity of the proposed
synthesis algorithm.

REFERENCES

[1] L. An and G.-H. Yang, “Opacity enforcement for confidential robust
control in linear cyber-physical systems,” IEEE Trans. Autom. Control,
vol. 65, no. 3, pp. 1234–1241, Mar. 2020.

[2] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, and P.
Darondeau, “Concurrent secrets,” Discrete Event Dyn. Syst., vol. 17, no. 4,
pp. 425–446, 2007.

[3] R. J. Barcelos and J. C. Basilio, “Enforcing current-state opacity through
shuffle in event observations,” IFAC-PapersOnLine, vol. 51, no. 7,
pp. 100–105, 2018.

[4] B. Behinaein, F. Lin, and K. Rudie, “Optimal information release for mixed
opacity in discrete-event systems,” IEEE Trans. Autom. Sci. Eng., vol. 16
no. 4, pp. 1960–1970, Oct. 2019.

[5] J. W. Bryans, M. Koutny, L. Mazaré, and P. Ryan, “Opacity generalised to
transition systems,” Internationa J. Inf. Secur., vol. 7, no. 6, pp. 421–435,
2008.

[6] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.
2nd ed. Berlin, Germany: Springer, 2008.

[7] F. Cassez, J. Dubreil, and H. Marchand, “Synthesis of opaque systems
with static and dynamic masks,” Formal Methods Syst. Des., vol. 40, no. 1,
pp. 88–115, 2012.

[8] J. Chen, M. Ibrahim, and R. Kumar, “Quantification of secrecy in partially
observed stochastic discrete event systems,” IEEE Trans. Automat. Sci.
Eng., vol. 14, no. 1, pp. 185–195, Jan. 2017.

[9] P. Darondeau, H. Marchand, and L. Ricker, “Enforcing opacity of regular
predicates on modal transition systems,” Discrete Event Dyn. Syst., vol. 25,
no. 1/2, pp. 251–270, 2014.

[10] J. Dubreil, P. Darondeau, and H. Marchand, “Supervisory control for
opacity,” IEEE Trans. Autom. Control, vol. 55, no. 5, pp. 1089–1100,
May 2010.

[11] M. Fabian and B. Lennartson, “On non-deterministic supervisory control,”
in Proc. 35th IEEE Conf. Decis. Control, 1996, pp. 2213–2218.

[12] Y. Falcone and H. Marchand, “Enforcement and validation (at runtime)
of various notions of opacity,” Discrete Event Dyn. Syst., vol. 25, no. 4,
pp. 531–570, 2015.

[13] H. Farhat, “Control of nondeterministic systems for bisimulation equiv-
alence under partial information,” IEEE Trans. Autom. Control, vol. 65,
no. 12, pp. 5437–5443, Dec. 2020, doi: 10.1109/TAC.2020.2970148.

[14] E. Gradel and W. Thomas, Automata, Logics, and Infinite Games: A Guide
to Current Research, vol. 2500. Berlin, Germany: Springer, 2002.

[15] C. N. Hadjicostis, Estimation and Inference in Discrete Event Systems.
Berlin, Germany: Springer, 2020.

[16] Z. He, Z. Ma, and W. Tang, “Performance safety enforcement in
strongly connected timed event graphs,” Automatica, vol. 128, 2021,
Art. no. 109605.

[17] J. Hou, X. Yin, S. Li, and M. Zamani, “Abstraction-based synthesis of
opacity-enforcing controllers using alternating simulation relations,” in
Proc. 58th IEEE Conf. Decis. Control, 2019, pp. 7653–7658.

[18] K. Inan, “Nondeterministic supervision under partial observations,” in
Proc. 11th Int. Conf. Anal. Optim. Syst. Discrete Event Syst., 1994,
pp. 39–48.

[19] R. Jacob, J.-J. Lesage, and J.-M. Faure, “Overview of discrete event sys-
tems opacity: Models, validation, and quantification,” Annu. Rev. Control,
vol. 41, pp. 135–146, 2016.

[20] Y. Ji, Y.-C. Wu, and S. Lafortune, “Enforcement of opacity by public and
private insertion functions,” Automatica, vol. 93, pp. 369–378, 2018.

[21] C. Keroglou and C. N. Hadjicostis, “Probabilistic system opacity in
discrete event systems,” Discrete Event Dyn. Syst., vol. 28, pp. 289–314,
2018.

[22] C. Keroglou, L. Ricker, and S. Lafortune, “Insertion functions with
memory for opacity enforcement,” IFAC-PapersOnLine, vol. 51, no. 7,
pp. 394–399, 2018.

[23] R. Kumar, S. Jiang, C. Zhou, and W. Qiu, “Polynomial synthesis of
supervisor for partially observed discrete-event systems by allowing non-
determinism in control,” IEEE Trans. Autom. Control, vol. 50, no. 4,
pp. 463–475, Apr. 2005.

[24] S. Lafortune, F. Lin, and C. N. Hadjicostis, “On the history of diagnos-
ability and opacity in discrete event systems,” Annu. Rev. Control, vol. 45,
pp. 257–266, 2018.

[25] D. Lefebvre and C. N. Hadjicostis, “Exposure time as a measure of opacity
in timed discrete event systems,” in Proc. 18th Eur. Control Conf., 2019,
pp. 1740–1745.

[26] F. Lin, “Opacity of discrete event systems and its applications,” Automat-
ica, vol. 47, no. 3, pp. 496–503, 2011.

[27] F. Lin, W. Chen, W. Wang, and F. Wang, “Information control in networked
discrete event systems and its application to battery management systems,”
Discrete Event Dyn. Syst., vol. 30, pp. 243–268, 2020.

[28] R. Liu, L. Mei, and J. Lu, “K-memory-embedded insertion mech-
anism for opacity enforcement,” Syst. Control Lett., vol. 145, 2020,
Art. no. 104785.

[29] S. Liu, X. Yin, and M. Zamani, “On a notion of approximate opacity for
discrete-time stochastic control systems,” in Proc. Amer. Control Conf.,
2020, pp. 5413–5418.

[30] S. Liu and M. Zamani, “Verification of approximate opacity via barrier cer-
tificates,” IEEE Control Syst. Lett., vol. 5, no. 4, pp. 1369–1374, Oct. 2020.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 19,2022 at 15:02:47 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TAC.2020.2970148

6582 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 12, DECEMBER 2022

[31] L. Mazaré, “Using unification for opacity properties,” in Proc. Workshop
Issues Theory Secur., 2004, pp. 165–176.

[32] S. Mohajerani, Y. Ji, and S. Lafortune, “Compositional and abstraction-
based approach for synthesis of edit functions for opacity enforcement,”
IEEE Trans. Autom. Control, vol. 65, no. 8, pp. 3349–3364, Aug. 2020.

[33] S. Mohajerani and S. Lafortune, “Transforming opacity verification to non-
blocking verification in modular systems,” IEEE Trans. Autom. Control,
vol. 65, no. 4, pp. 1739–1746, Apr. 2020.

[34] M. Noori-Hosseini, B. Lennartson, and C. Hadjicostis, “Incremental
observer reduction applied to opacity verification and synthesis,” 2018,
arXiv:1812.08083.

[35] M. Noori-Hosseini, B. Lennartson, and C. N. Hadjicostis, “Compositional
visible bisimulation abstraction applied to opacity verification,” IFAC-
PapersOnLine, vol. 51, no. 7, pp. 434–441, 2018.

[36] B. Ramasubramanian, W. R. Cleaveland, and S. Marcus, “Notions of
centralized and decentralized opacity in linear systems,” IEEE Trans.
Autom. Control, vol. 265, no. 4, pp. 1442–1455, Apr. 2020.

[37] I. Saadaoui, Z. Li, and N. Wu, “Current-state opacity modelling and
verification in partially observed petri nets,” Automatica, vol. 116, 2020,
Art. no. 108907.

[38] A. Saboori and C. N. Hadjicostis, “Opacity-enforcing supervisory strate-
gies via state estimator constructions,” IEEE Trans. Autom. Control,
vol. 57, no. 5, pp. 1155–1165, May 2012.

[39] A. Saboori and C. N. Hadjicostis, “Verification of initial-state opacity
in security applications of discrete event systems,” Inf. Sci., vol. 246,
pp. 115–132, 2013.

[40] S. Takai, “Bisimilarity enforcing supervisory control of nondeterministic
discrete event systems with nondeterministic specifications,” Automatica,
vol. 108, 2019, Art. no. 108470.

[41] S. Takai, “Synthesis of maximally permissive supervisors for nonde-
terministic discrete event systems with nondeterministic specifications,”
IEEE Trans. Autom. Control, vol. 66, no. 7, pp. 3197–3204, Jul. 2021,
doi: 10.1109/TAC.2020.3015453.

[42] S. Takai and Y. Oka, “A formula for the supremal controllable and opaque
sublanguage arising in supervisory control,” SICE J. Control, Meas. Syst.
Integration, vol. 1, no. 4, pp. 307–311, 2008.

[43] Y. Tong, Z. Li, C. Seatzu, and A. Giua, “Verification of state-based
opacity using Petri nets,” IEEE Trans. Autom. Control, vol. 62, no. 6,
pp. 2823–2837, Jun. 2017.

[44] Y. Tong, Z. Li, C. Seatzu, and A. Giua, “Current-state opacity enforcement
in discrete event systems under incomparable observations,” Discrete
Event Dyn. Syst., vol. 28, no. 2, pp. 161–182, 2018.

[45] L. Wang, N. Zhan, and J. An, “The opacity of real-time automata,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 37, no. 11,
pp. 2845–2856, Nov. 2018.

[46] B. Wu, J. Dai, and H. Lin, “Synthesis of insertion functions to enforce
decentralized and joint opacity properties of discrete-event systems,” in
Proc. Amer. Control Conf., 2018, pp. 3026–3031.

[47] B. Wu and H. Lin, “Privacy verification and enforcement via belief
abstraction,” IEEE Control Syst. Lett., vol. 2, no. 4, pp. 815–820, Oct. 2018.

[48] Y. Xie, X. Yin, and S. Li, “Opacity enforcing supervisory control using
non-deterministic supervisors,” in Proc. 21st IFAC World Congr., vol. 53,
no. 2, 2020, pp. 1763–1769.

[49] Y. Yao, Y. Tong, and H. Lan, “Initial-state estimation of multi-channel
networked discrete event systems,” IEEE Control Syst. Lett., vol. 4, no. 4,
pp. 1024–1029, Oct. 2020, doi: 10.1109/LCSYS.2020.2998610.

[50] X. Yin and S. Lafortune, “A uniform approach for synthesizing property-
enforcing supervisors for partially-observed discrete-event systems,” IEEE
Trans. Autom. Control, vol. 61, no. 8, pp. 2140–2154, Aug. 2016.

[51] X. Yin and S. Lafortune, “A new approach for the verification of infinite-
step and k-step opacity using two-way observers,” Automatica, vol. 80,
pp. 162–171, 2017.

[52] X. Yin, Z. Li, W. Wang, and S. Li, “Infinite-step opacity andK-step opacity
of stochastic discrete-event systems,” Automatica, vol. 99, pp. 266–274,
2019.

[53] X. Yin, M. Zamani, and S. Liu, “On approximate opacity of cyber-physical
system,” IEEE Trans. Autom. Control, vol. 66, no. 4, pp. 1630–1645,
Apr. 2021.

[54] B. Zhang, S. Shu, and F. Lin, “Maximum information release while
ensuring opacity in discrete event systems,” IEEE Trans. Automat. Sci.
Eng., vol. 12, no. 4, pp. 1067–1079, Jul. 2015.

[55] K. Zhang, X. Yin, and M. Zamani, “Opacity of nondeterministic transi-
tion systems: A. (bi) simulation relation approach,” IEEE Trans. Autom.
Control, vol. 64, no. 12, pp. 5116–5123, Dec. 2019.

[56] C. Zhou, R. Kumar, and S. Jiang, “Control of nondeterministic discrete-
event systems for bisimulation equivalence,” IEEE Trans. Autom. Control,
vol. 51, no. 5, pp. 754–765, May 2006.

[57] G. Zinck, L. Ricker, H. Marchand, and L. Hélouët, “Enforcing opacity
in modular systems,” in Proc. IFAC World Congr., vol. 53, no. 2, 2020,
pp. 2157–2164.

Yifan Xie (Student Member, IEEE) was born in
Hubei, China, in 1999. She received the B.Eng.
degree in automation from Beihang University,
Beijing, China, in 2019. She is currently working
toward the M.S. degree in control engineering
with the Department of Automation, Shanghai
Jiao Tong University, Shanghai, China.

Her current research interests include sys-
tems and control theory, formal methods, and
discrete-event systems.

Xiang Yin (Member, IEEE) was born in Anhui,
China, in 1991. He received the B.Eng. degree
in electrical engineering from Zhejiang Univer-
sity, Hangzhou, China, in 2012, the M.S. and
Ph.D. degrees in electrical engineering from the
University of Michigan, Ann Arbor, MI, USA, in
2013 and 2017, respectively.

Since 2017, he has been with the Department
of Automation, Shanghai Jiao Tong University,
Shanghai, China, where he is currently an As-
sociate Professor. His research interests include

formal methods, discrete-event systems, and cyber-physical systems.
Dr. Yin was the recipient of the IEEE Conference on Decision and

Control Best Student Paper Award Finalist in 2016. He is the Co-Chair
of the IEEE CSS Technical Committee on Discrete Event Systems. He
is also a member of the IEEE CSS Conference Editorial Board.

Shaoyuan Li (Senior Member, IEEE) was born
in Hebei, China, in 1965. He received the B.S.
and M.S. degrees in automation from the Hebei
University of Technology, Tianjin, China, in 1987
and 1992, respectively, and the Ph.D. degree in
control science from Nankai University, Tianjin,
China, in 1997.

Since 1997, he has been with the Depart-
ment of Automation, Shanghai Jiao Tong Uni-
versity, Shanghai, China, where he is currently
a Professor. His current research interests in-

clude model predictive control, dynamic system optimization, and cyber-
physical systems.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 19,2022 at 15:02:47 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TAC.2020.3015453
https://dx.doi.org/10.1109/LCSYS.2020.2998610

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

