
IFAC PapersOnLine 55-28 (2022) 135–141

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2022.10.335

10.1016/j.ifacol.2022.10.335 2405-8963

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

You Don’t Know What I Know:
On Notion of High-Order Opacity in

Discrete-Event Systems �

Bohan Cui ∗ Xiang Yin ∗ Shaoyuan Li ∗ Alessandro Giua ∗∗

∗ Department of Automation, Shanghai Jiao Tong University,
Shanghai, 200240, China

(E-mail: {bohan cui, yinxiang, syli}@sjtu.edu.cn).
∗∗ DIEE, University of Cagliari, Cagliari 09123, Italy.

(E-mail: giua@unica.it).

Abstract: In this paper, we investigate a class of information-flow security properties called
opacity in partial-observed discrete-event systems. Roughly speaking, a system is said to be
opaque if the intruder, which is modeled by a passive observer, can never determine the “secret”
of the system for sure. Most of the existing notions of opacity consider secrets related to the
actual behaviors of the system. In this paper, we consider a new type of secret related to the
knowledge of the system user. Specifically, we assume that the system user also only has partial
observation of the system and has to reason the actual behavior of the system. We say a system
is high-order opaque if the intruder can never determine that the system user knows some
information of importance based on its own incomparable information. We provide the formal
definition of high-order opacity. Two algorithms are provided for the verification of this new
notion: one with doubly-exponential complexity for the worst case and the other with single-
exponential complexity. Illustrative examples are provided for the new notion of high-order
opacity.

Keywords: Opacity, Discrete Event Systems, Partial Observation.

1. INTRODUCTION

With the development of information and network tech-
nologies, smart devices with both computation and com-
munication capabilities have been widely used in cyber-
physical control systems. The large information transmis-
sion between devices, on the one hand, makes control
systems more flexible and intelligent by enabling, for ex-
ample, edge or cloud based control architectures. On the
other hand, however, the large amount of communications
also makes security issue much more severe. Therefore,
security and privacy considerations have been becoming
increasingly more important in the analysis and design of
networked cyber-physical systems (CPS).

In this work, we consider an important class of information-
flow security properties, called opacity, in the context of
discrete-event systems (DES), a widely used formal model
for describing high-level behaviors of CPS (Cassandras and
Lafortune, 2021). Generally speaking, opacity captures
whether or not some secret behaviors of the system can
be revealed to an external intruder that can access partial
information-flow of the system. A system is said to be
opaque if the intruder can never infer the secret behaviors
of the system based on its own observation. It has been
shown that the notions of opacity subsume many existing
security properties in the literature (Bryans et al., 2008).
Due to its importance, verification and enforcement of
� This work was supported by the National Natural Science Foun-
dation of China (62061136004, 62173226, 61803259).

opacity has drawn considerable attention in the past few
years; see, e.g., Lafortune et al. (2018); Behinaein et al.
(2019); Yin and Li (2020); Liu and Zamani (2021); Balun
and Masopust (2021); Yin et al. (2021); Wintenberg et al.
(2022).

Since opacity is an information-flow security property, one
of the key ingredients in its definition is what is the
“secret” the system wants to hide against the intruder.
The most general formulation of opacity is language-based
opacity, where secret is modeled as a set of secret strings;
see, e.g., Lin (2011). In specific applications, however,
secret strings usually have concrete meanings, e.g., visited
a critical location at some instant. Therefore, state-based
secret have been more widely adopted in the verification
and synthesis of opacity. State-based opacity includes, e.g.,
initial-state opacity (Saboori and Hadjicostis, 2013; Lai
et al., 2021), current-state opacity (Tong et al., 2017),
infinite-step opacity (Saboori and Hadjicostis, 2011; Yin
and Lafortune, 2017) and K-step opacity (Yin et al., 2019;
Ma et al., 2021).

All of the aforementioned notions of opacity consider the
secret of system as some actual behaviors of importance,
e.g., is visiting or has visited a secret state. In some
applications, however, the secret of the system may be
the knowledge of the user about the current status of
the system. To motivate the “knowledge security” issue,
let us consider the following scenario. Suppose that there
are two investors in the market. Each of them knows the

You Don’t Know What I Know:
On Notion of High-Order Opacity in

Discrete-Event Systems �

Bohan Cui ∗ Xiang Yin ∗ Shaoyuan Li ∗ Alessandro Giua ∗∗

∗ Department of Automation, Shanghai Jiao Tong University,
Shanghai, 200240, China

(E-mail: {bohan cui, yinxiang, syli}@sjtu.edu.cn).
∗∗ DIEE, University of Cagliari, Cagliari 09123, Italy.

(E-mail: giua@unica.it).

Abstract: In this paper, we investigate a class of information-flow security properties called
opacity in partial-observed discrete-event systems. Roughly speaking, a system is said to be
opaque if the intruder, which is modeled by a passive observer, can never determine the “secret”
of the system for sure. Most of the existing notions of opacity consider secrets related to the
actual behaviors of the system. In this paper, we consider a new type of secret related to the
knowledge of the system user. Specifically, we assume that the system user also only has partial
observation of the system and has to reason the actual behavior of the system. We say a system
is high-order opaque if the intruder can never determine that the system user knows some
information of importance based on its own incomparable information. We provide the formal
definition of high-order opacity. Two algorithms are provided for the verification of this new
notion: one with doubly-exponential complexity for the worst case and the other with single-
exponential complexity. Illustrative examples are provided for the new notion of high-order
opacity.

Keywords: Opacity, Discrete Event Systems, Partial Observation.

1. INTRODUCTION

With the development of information and network tech-
nologies, smart devices with both computation and com-
munication capabilities have been widely used in cyber-
physical control systems. The large information transmis-
sion between devices, on the one hand, makes control
systems more flexible and intelligent by enabling, for ex-
ample, edge or cloud based control architectures. On the
other hand, however, the large amount of communications
also makes security issue much more severe. Therefore,
security and privacy considerations have been becoming
increasingly more important in the analysis and design of
networked cyber-physical systems (CPS).

In this work, we consider an important class of information-
flow security properties, called opacity, in the context of
discrete-event systems (DES), a widely used formal model
for describing high-level behaviors of CPS (Cassandras and
Lafortune, 2021). Generally speaking, opacity captures
whether or not some secret behaviors of the system can
be revealed to an external intruder that can access partial
information-flow of the system. A system is said to be
opaque if the intruder can never infer the secret behaviors
of the system based on its own observation. It has been
shown that the notions of opacity subsume many existing
security properties in the literature (Bryans et al., 2008).
Due to its importance, verification and enforcement of
� This work was supported by the National Natural Science Foun-
dation of China (62061136004, 62173226, 61803259).

opacity has drawn considerable attention in the past few
years; see, e.g., Lafortune et al. (2018); Behinaein et al.
(2019); Yin and Li (2020); Liu and Zamani (2021); Balun
and Masopust (2021); Yin et al. (2021); Wintenberg et al.
(2022).

Since opacity is an information-flow security property, one
of the key ingredients in its definition is what is the
“secret” the system wants to hide against the intruder.
The most general formulation of opacity is language-based
opacity, where secret is modeled as a set of secret strings;
see, e.g., Lin (2011). In specific applications, however,
secret strings usually have concrete meanings, e.g., visited
a critical location at some instant. Therefore, state-based
secret have been more widely adopted in the verification
and synthesis of opacity. State-based opacity includes, e.g.,
initial-state opacity (Saboori and Hadjicostis, 2013; Lai
et al., 2021), current-state opacity (Tong et al., 2017),
infinite-step opacity (Saboori and Hadjicostis, 2011; Yin
and Lafortune, 2017) and K-step opacity (Yin et al., 2019;
Ma et al., 2021).

All of the aforementioned notions of opacity consider the
secret of system as some actual behaviors of importance,
e.g., is visiting or has visited a secret state. In some
applications, however, the secret of the system may be
the knowledge of the user about the current status of
the system. To motivate the “knowledge security” issue,
let us consider the following scenario. Suppose that there
are two investors in the market. Each of them knows the

You Don’t Know What I Know:
On Notion of High-Order Opacity in

Discrete-Event Systems �

Bohan Cui ∗ Xiang Yin ∗ Shaoyuan Li ∗ Alessandro Giua ∗∗

∗ Department of Automation, Shanghai Jiao Tong University,
Shanghai, 200240, China

(E-mail: {bohan cui, yinxiang, syli}@sjtu.edu.cn).
∗∗ DIEE, University of Cagliari, Cagliari 09123, Italy.

(E-mail: giua@unica.it).

Abstract: In this paper, we investigate a class of information-flow security properties called
opacity in partial-observed discrete-event systems. Roughly speaking, a system is said to be
opaque if the intruder, which is modeled by a passive observer, can never determine the “secret”
of the system for sure. Most of the existing notions of opacity consider secrets related to the
actual behaviors of the system. In this paper, we consider a new type of secret related to the
knowledge of the system user. Specifically, we assume that the system user also only has partial
observation of the system and has to reason the actual behavior of the system. We say a system
is high-order opaque if the intruder can never determine that the system user knows some
information of importance based on its own incomparable information. We provide the formal
definition of high-order opacity. Two algorithms are provided for the verification of this new
notion: one with doubly-exponential complexity for the worst case and the other with single-
exponential complexity. Illustrative examples are provided for the new notion of high-order
opacity.

Keywords: Opacity, Discrete Event Systems, Partial Observation.

1. INTRODUCTION

With the development of information and network tech-
nologies, smart devices with both computation and com-
munication capabilities have been widely used in cyber-
physical control systems. The large information transmis-
sion between devices, on the one hand, makes control
systems more flexible and intelligent by enabling, for ex-
ample, edge or cloud based control architectures. On the
other hand, however, the large amount of communications
also makes security issue much more severe. Therefore,
security and privacy considerations have been becoming
increasingly more important in the analysis and design of
networked cyber-physical systems (CPS).

In this work, we consider an important class of information-
flow security properties, called opacity, in the context of
discrete-event systems (DES), a widely used formal model
for describing high-level behaviors of CPS (Cassandras and
Lafortune, 2021). Generally speaking, opacity captures
whether or not some secret behaviors of the system can
be revealed to an external intruder that can access partial
information-flow of the system. A system is said to be
opaque if the intruder can never infer the secret behaviors
of the system based on its own observation. It has been
shown that the notions of opacity subsume many existing
security properties in the literature (Bryans et al., 2008).
Due to its importance, verification and enforcement of
� This work was supported by the National Natural Science Foun-
dation of China (62061136004, 62173226, 61803259).

opacity has drawn considerable attention in the past few
years; see, e.g., Lafortune et al. (2018); Behinaein et al.
(2019); Yin and Li (2020); Liu and Zamani (2021); Balun
and Masopust (2021); Yin et al. (2021); Wintenberg et al.
(2022).

Since opacity is an information-flow security property, one
of the key ingredients in its definition is what is the
“secret” the system wants to hide against the intruder.
The most general formulation of opacity is language-based
opacity, where secret is modeled as a set of secret strings;
see, e.g., Lin (2011). In specific applications, however,
secret strings usually have concrete meanings, e.g., visited
a critical location at some instant. Therefore, state-based
secret have been more widely adopted in the verification
and synthesis of opacity. State-based opacity includes, e.g.,
initial-state opacity (Saboori and Hadjicostis, 2013; Lai
et al., 2021), current-state opacity (Tong et al., 2017),
infinite-step opacity (Saboori and Hadjicostis, 2011; Yin
and Lafortune, 2017) and K-step opacity (Yin et al., 2019;
Ma et al., 2021).

All of the aforementioned notions of opacity consider the
secret of system as some actual behaviors of importance,
e.g., is visiting or has visited a secret state. In some
applications, however, the secret of the system may be
the knowledge of the user about the current status of
the system. To motivate the “knowledge security” issue,
let us consider the following scenario. Suppose that there
are two investors in the market. Each of them knows the

You Don’t Know What I Know:
On Notion of High-Order Opacity in

Discrete-Event Systems �

Bohan Cui ∗ Xiang Yin ∗ Shaoyuan Li ∗ Alessandro Giua ∗∗

∗ Department of Automation, Shanghai Jiao Tong University,
Shanghai, 200240, China

(E-mail: {bohan cui, yinxiang, syli}@sjtu.edu.cn).
∗∗ DIEE, University of Cagliari, Cagliari 09123, Italy.

(E-mail: giua@unica.it).

Abstract: In this paper, we investigate a class of information-flow security properties called
opacity in partial-observed discrete-event systems. Roughly speaking, a system is said to be
opaque if the intruder, which is modeled by a passive observer, can never determine the “secret”
of the system for sure. Most of the existing notions of opacity consider secrets related to the
actual behaviors of the system. In this paper, we consider a new type of secret related to the
knowledge of the system user. Specifically, we assume that the system user also only has partial
observation of the system and has to reason the actual behavior of the system. We say a system
is high-order opaque if the intruder can never determine that the system user knows some
information of importance based on its own incomparable information. We provide the formal
definition of high-order opacity. Two algorithms are provided for the verification of this new
notion: one with doubly-exponential complexity for the worst case and the other with single-
exponential complexity. Illustrative examples are provided for the new notion of high-order
opacity.

Keywords: Opacity, Discrete Event Systems, Partial Observation.

1. INTRODUCTION

With the development of information and network tech-
nologies, smart devices with both computation and com-
munication capabilities have been widely used in cyber-
physical control systems. The large information transmis-
sion between devices, on the one hand, makes control
systems more flexible and intelligent by enabling, for ex-
ample, edge or cloud based control architectures. On the
other hand, however, the large amount of communications
also makes security issue much more severe. Therefore,
security and privacy considerations have been becoming
increasingly more important in the analysis and design of
networked cyber-physical systems (CPS).

In this work, we consider an important class of information-
flow security properties, called opacity, in the context of
discrete-event systems (DES), a widely used formal model
for describing high-level behaviors of CPS (Cassandras and
Lafortune, 2021). Generally speaking, opacity captures
whether or not some secret behaviors of the system can
be revealed to an external intruder that can access partial
information-flow of the system. A system is said to be
opaque if the intruder can never infer the secret behaviors
of the system based on its own observation. It has been
shown that the notions of opacity subsume many existing
security properties in the literature (Bryans et al., 2008).
Due to its importance, verification and enforcement of
� This work was supported by the National Natural Science Foun-
dation of China (62061136004, 62173226, 61803259).

opacity has drawn considerable attention in the past few
years; see, e.g., Lafortune et al. (2018); Behinaein et al.
(2019); Yin and Li (2020); Liu and Zamani (2021); Balun
and Masopust (2021); Yin et al. (2021); Wintenberg et al.
(2022).

Since opacity is an information-flow security property, one
of the key ingredients in its definition is what is the
“secret” the system wants to hide against the intruder.
The most general formulation of opacity is language-based
opacity, where secret is modeled as a set of secret strings;
see, e.g., Lin (2011). In specific applications, however,
secret strings usually have concrete meanings, e.g., visited
a critical location at some instant. Therefore, state-based
secret have been more widely adopted in the verification
and synthesis of opacity. State-based opacity includes, e.g.,
initial-state opacity (Saboori and Hadjicostis, 2013; Lai
et al., 2021), current-state opacity (Tong et al., 2017),
infinite-step opacity (Saboori and Hadjicostis, 2011; Yin
and Lafortune, 2017) and K-step opacity (Yin et al., 2019;
Ma et al., 2021).

All of the aforementioned notions of opacity consider the
secret of system as some actual behaviors of importance,
e.g., is visiting or has visited a secret state. In some
applications, however, the secret of the system may be
the knowledge of the user about the current status of
the system. To motivate the “knowledge security” issue,
let us consider the following scenario. Suppose that there
are two investors in the market. Each of them knows the

You Don’t Know What I Know:
On Notion of High-Order Opacity in

Discrete-Event Systems �

Bohan Cui ∗ Xiang Yin ∗ Shaoyuan Li ∗ Alessandro Giua ∗∗

∗ Department of Automation, Shanghai Jiao Tong University,
Shanghai, 200240, China

(E-mail: {bohan cui, yinxiang, syli}@sjtu.edu.cn).
∗∗ DIEE, University of Cagliari, Cagliari 09123, Italy.

(E-mail: giua@unica.it).

Abstract: In this paper, we investigate a class of information-flow security properties called
opacity in partial-observed discrete-event systems. Roughly speaking, a system is said to be
opaque if the intruder, which is modeled by a passive observer, can never determine the “secret”
of the system for sure. Most of the existing notions of opacity consider secrets related to the
actual behaviors of the system. In this paper, we consider a new type of secret related to the
knowledge of the system user. Specifically, we assume that the system user also only has partial
observation of the system and has to reason the actual behavior of the system. We say a system
is high-order opaque if the intruder can never determine that the system user knows some
information of importance based on its own incomparable information. We provide the formal
definition of high-order opacity. Two algorithms are provided for the verification of this new
notion: one with doubly-exponential complexity for the worst case and the other with single-
exponential complexity. Illustrative examples are provided for the new notion of high-order
opacity.

Keywords: Opacity, Discrete Event Systems, Partial Observation.

1. INTRODUCTION

With the development of information and network tech-
nologies, smart devices with both computation and com-
munication capabilities have been widely used in cyber-
physical control systems. The large information transmis-
sion between devices, on the one hand, makes control
systems more flexible and intelligent by enabling, for ex-
ample, edge or cloud based control architectures. On the
other hand, however, the large amount of communications
also makes security issue much more severe. Therefore,
security and privacy considerations have been becoming
increasingly more important in the analysis and design of
networked cyber-physical systems (CPS).

In this work, we consider an important class of information-
flow security properties, called opacity, in the context of
discrete-event systems (DES), a widely used formal model
for describing high-level behaviors of CPS (Cassandras and
Lafortune, 2021). Generally speaking, opacity captures
whether or not some secret behaviors of the system can
be revealed to an external intruder that can access partial
information-flow of the system. A system is said to be
opaque if the intruder can never infer the secret behaviors
of the system based on its own observation. It has been
shown that the notions of opacity subsume many existing
security properties in the literature (Bryans et al., 2008).
Due to its importance, verification and enforcement of
� This work was supported by the National Natural Science Foun-
dation of China (62061136004, 62173226, 61803259).

opacity has drawn considerable attention in the past few
years; see, e.g., Lafortune et al. (2018); Behinaein et al.
(2019); Yin and Li (2020); Liu and Zamani (2021); Balun
and Masopust (2021); Yin et al. (2021); Wintenberg et al.
(2022).

Since opacity is an information-flow security property, one
of the key ingredients in its definition is what is the
“secret” the system wants to hide against the intruder.
The most general formulation of opacity is language-based
opacity, where secret is modeled as a set of secret strings;
see, e.g., Lin (2011). In specific applications, however,
secret strings usually have concrete meanings, e.g., visited
a critical location at some instant. Therefore, state-based
secret have been more widely adopted in the verification
and synthesis of opacity. State-based opacity includes, e.g.,
initial-state opacity (Saboori and Hadjicostis, 2013; Lai
et al., 2021), current-state opacity (Tong et al., 2017),
infinite-step opacity (Saboori and Hadjicostis, 2011; Yin
and Lafortune, 2017) and K-step opacity (Yin et al., 2019;
Ma et al., 2021).

All of the aforementioned notions of opacity consider the
secret of system as some actual behaviors of importance,
e.g., is visiting or has visited a secret state. In some
applications, however, the secret of the system may be
the knowledge of the user about the current status of
the system. To motivate the “knowledge security” issue,
let us consider the following scenario. Suppose that there
are two investors in the market. Each of them knows the

You Don’t Know What I Know:
On Notion of High-Order Opacity in

Discrete-Event Systems �

Bohan Cui ∗ Xiang Yin ∗ Shaoyuan Li ∗ Alessandro Giua ∗∗

∗ Department of Automation, Shanghai Jiao Tong University,
Shanghai, 200240, China

(E-mail: {bohan cui, yinxiang, syli}@sjtu.edu.cn).
∗∗ DIEE, University of Cagliari, Cagliari 09123, Italy.

(E-mail: giua@unica.it).

Abstract: In this paper, we investigate a class of information-flow security properties called
opacity in partial-observed discrete-event systems. Roughly speaking, a system is said to be
opaque if the intruder, which is modeled by a passive observer, can never determine the “secret”
of the system for sure. Most of the existing notions of opacity consider secrets related to the
actual behaviors of the system. In this paper, we consider a new type of secret related to the
knowledge of the system user. Specifically, we assume that the system user also only has partial
observation of the system and has to reason the actual behavior of the system. We say a system
is high-order opaque if the intruder can never determine that the system user knows some
information of importance based on its own incomparable information. We provide the formal
definition of high-order opacity. Two algorithms are provided for the verification of this new
notion: one with doubly-exponential complexity for the worst case and the other with single-
exponential complexity. Illustrative examples are provided for the new notion of high-order
opacity.

Keywords: Opacity, Discrete Event Systems, Partial Observation.

1. INTRODUCTION

With the development of information and network tech-
nologies, smart devices with both computation and com-
munication capabilities have been widely used in cyber-
physical control systems. The large information transmis-
sion between devices, on the one hand, makes control
systems more flexible and intelligent by enabling, for ex-
ample, edge or cloud based control architectures. On the
other hand, however, the large amount of communications
also makes security issue much more severe. Therefore,
security and privacy considerations have been becoming
increasingly more important in the analysis and design of
networked cyber-physical systems (CPS).

In this work, we consider an important class of information-
flow security properties, called opacity, in the context of
discrete-event systems (DES), a widely used formal model
for describing high-level behaviors of CPS (Cassandras and
Lafortune, 2021). Generally speaking, opacity captures
whether or not some secret behaviors of the system can
be revealed to an external intruder that can access partial
information-flow of the system. A system is said to be
opaque if the intruder can never infer the secret behaviors
of the system based on its own observation. It has been
shown that the notions of opacity subsume many existing
security properties in the literature (Bryans et al., 2008).
Due to its importance, verification and enforcement of
� This work was supported by the National Natural Science Foun-
dation of China (62061136004, 62173226, 61803259).

opacity has drawn considerable attention in the past few
years; see, e.g., Lafortune et al. (2018); Behinaein et al.
(2019); Yin and Li (2020); Liu and Zamani (2021); Balun
and Masopust (2021); Yin et al. (2021); Wintenberg et al.
(2022).

Since opacity is an information-flow security property, one
of the key ingredients in its definition is what is the
“secret” the system wants to hide against the intruder.
The most general formulation of opacity is language-based
opacity, where secret is modeled as a set of secret strings;
see, e.g., Lin (2011). In specific applications, however,
secret strings usually have concrete meanings, e.g., visited
a critical location at some instant. Therefore, state-based
secret have been more widely adopted in the verification
and synthesis of opacity. State-based opacity includes, e.g.,
initial-state opacity (Saboori and Hadjicostis, 2013; Lai
et al., 2021), current-state opacity (Tong et al., 2017),
infinite-step opacity (Saboori and Hadjicostis, 2011; Yin
and Lafortune, 2017) and K-step opacity (Yin et al., 2019;
Ma et al., 2021).

All of the aforementioned notions of opacity consider the
secret of system as some actual behaviors of importance,
e.g., is visiting or has visited a secret state. In some
applications, however, the secret of the system may be
the knowledge of the user about the current status of
the system. To motivate the “knowledge security” issue,
let us consider the following scenario. Suppose that there
are two investors in the market. Each of them knows the

You Don’t Know What I Know:
On Notion of High-Order Opacity in

Discrete-Event Systems �

Bohan Cui ∗ Xiang Yin ∗ Shaoyuan Li ∗ Alessandro Giua ∗∗

∗ Department of Automation, Shanghai Jiao Tong University,
Shanghai, 200240, China

(E-mail: {bohan cui, yinxiang, syli}@sjtu.edu.cn).
∗∗ DIEE, University of Cagliari, Cagliari 09123, Italy.

(E-mail: giua@unica.it).

Abstract: In this paper, we investigate a class of information-flow security properties called
opacity in partial-observed discrete-event systems. Roughly speaking, a system is said to be
opaque if the intruder, which is modeled by a passive observer, can never determine the “secret”
of the system for sure. Most of the existing notions of opacity consider secrets related to the
actual behaviors of the system. In this paper, we consider a new type of secret related to the
knowledge of the system user. Specifically, we assume that the system user also only has partial
observation of the system and has to reason the actual behavior of the system. We say a system
is high-order opaque if the intruder can never determine that the system user knows some
information of importance based on its own incomparable information. We provide the formal
definition of high-order opacity. Two algorithms are provided for the verification of this new
notion: one with doubly-exponential complexity for the worst case and the other with single-
exponential complexity. Illustrative examples are provided for the new notion of high-order
opacity.

Keywords: Opacity, Discrete Event Systems, Partial Observation.

1. INTRODUCTION

With the development of information and network tech-
nologies, smart devices with both computation and com-
munication capabilities have been widely used in cyber-
physical control systems. The large information transmis-
sion between devices, on the one hand, makes control
systems more flexible and intelligent by enabling, for ex-
ample, edge or cloud based control architectures. On the
other hand, however, the large amount of communications
also makes security issue much more severe. Therefore,
security and privacy considerations have been becoming
increasingly more important in the analysis and design of
networked cyber-physical systems (CPS).

In this work, we consider an important class of information-
flow security properties, called opacity, in the context of
discrete-event systems (DES), a widely used formal model
for describing high-level behaviors of CPS (Cassandras and
Lafortune, 2021). Generally speaking, opacity captures
whether or not some secret behaviors of the system can
be revealed to an external intruder that can access partial
information-flow of the system. A system is said to be
opaque if the intruder can never infer the secret behaviors
of the system based on its own observation. It has been
shown that the notions of opacity subsume many existing
security properties in the literature (Bryans et al., 2008).
Due to its importance, verification and enforcement of
� This work was supported by the National Natural Science Foun-
dation of China (62061136004, 62173226, 61803259).

opacity has drawn considerable attention in the past few
years; see, e.g., Lafortune et al. (2018); Behinaein et al.
(2019); Yin and Li (2020); Liu and Zamani (2021); Balun
and Masopust (2021); Yin et al. (2021); Wintenberg et al.
(2022).

Since opacity is an information-flow security property, one
of the key ingredients in its definition is what is the
“secret” the system wants to hide against the intruder.
The most general formulation of opacity is language-based
opacity, where secret is modeled as a set of secret strings;
see, e.g., Lin (2011). In specific applications, however,
secret strings usually have concrete meanings, e.g., visited
a critical location at some instant. Therefore, state-based
secret have been more widely adopted in the verification
and synthesis of opacity. State-based opacity includes, e.g.,
initial-state opacity (Saboori and Hadjicostis, 2013; Lai
et al., 2021), current-state opacity (Tong et al., 2017),
infinite-step opacity (Saboori and Hadjicostis, 2011; Yin
and Lafortune, 2017) and K-step opacity (Yin et al., 2019;
Ma et al., 2021).

All of the aforementioned notions of opacity consider the
secret of system as some actual behaviors of importance,
e.g., is visiting or has visited a secret state. In some
applications, however, the secret of the system may be
the knowledge of the user about the current status of
the system. To motivate the “knowledge security” issue,
let us consider the following scenario. Suppose that there
are two investors in the market. Each of them knows the

You Don’t Know What I Know:
On Notion of High-Order Opacity in

Discrete-Event Systems �

Bohan Cui ∗ Xiang Yin ∗ Shaoyuan Li ∗ Alessandro Giua ∗∗

∗ Department of Automation, Shanghai Jiao Tong University,
Shanghai, 200240, China

(E-mail: {bohan cui, yinxiang, syli}@sjtu.edu.cn).
∗∗ DIEE, University of Cagliari, Cagliari 09123, Italy.

(E-mail: giua@unica.it).

Abstract: In this paper, we investigate a class of information-flow security properties called
opacity in partial-observed discrete-event systems. Roughly speaking, a system is said to be
opaque if the intruder, which is modeled by a passive observer, can never determine the “secret”
of the system for sure. Most of the existing notions of opacity consider secrets related to the
actual behaviors of the system. In this paper, we consider a new type of secret related to the
knowledge of the system user. Specifically, we assume that the system user also only has partial
observation of the system and has to reason the actual behavior of the system. We say a system
is high-order opaque if the intruder can never determine that the system user knows some
information of importance based on its own incomparable information. We provide the formal
definition of high-order opacity. Two algorithms are provided for the verification of this new
notion: one with doubly-exponential complexity for the worst case and the other with single-
exponential complexity. Illustrative examples are provided for the new notion of high-order
opacity.

Keywords: Opacity, Discrete Event Systems, Partial Observation.

1. INTRODUCTION

With the development of information and network tech-
nologies, smart devices with both computation and com-
munication capabilities have been widely used in cyber-
physical control systems. The large information transmis-
sion between devices, on the one hand, makes control
systems more flexible and intelligent by enabling, for ex-
ample, edge or cloud based control architectures. On the
other hand, however, the large amount of communications
also makes security issue much more severe. Therefore,
security and privacy considerations have been becoming
increasingly more important in the analysis and design of
networked cyber-physical systems (CPS).

In this work, we consider an important class of information-
flow security properties, called opacity, in the context of
discrete-event systems (DES), a widely used formal model
for describing high-level behaviors of CPS (Cassandras and
Lafortune, 2021). Generally speaking, opacity captures
whether or not some secret behaviors of the system can
be revealed to an external intruder that can access partial
information-flow of the system. A system is said to be
opaque if the intruder can never infer the secret behaviors
of the system based on its own observation. It has been
shown that the notions of opacity subsume many existing
security properties in the literature (Bryans et al., 2008).
Due to its importance, verification and enforcement of
� This work was supported by the National Natural Science Foun-
dation of China (62061136004, 62173226, 61803259).

opacity has drawn considerable attention in the past few
years; see, e.g., Lafortune et al. (2018); Behinaein et al.
(2019); Yin and Li (2020); Liu and Zamani (2021); Balun
and Masopust (2021); Yin et al. (2021); Wintenberg et al.
(2022).

Since opacity is an information-flow security property, one
of the key ingredients in its definition is what is the
“secret” the system wants to hide against the intruder.
The most general formulation of opacity is language-based
opacity, where secret is modeled as a set of secret strings;
see, e.g., Lin (2011). In specific applications, however,
secret strings usually have concrete meanings, e.g., visited
a critical location at some instant. Therefore, state-based
secret have been more widely adopted in the verification
and synthesis of opacity. State-based opacity includes, e.g.,
initial-state opacity (Saboori and Hadjicostis, 2013; Lai
et al., 2021), current-state opacity (Tong et al., 2017),
infinite-step opacity (Saboori and Hadjicostis, 2011; Yin
and Lafortune, 2017) and K-step opacity (Yin et al., 2019;
Ma et al., 2021).

All of the aforementioned notions of opacity consider the
secret of system as some actual behaviors of importance,
e.g., is visiting or has visited a secret state. In some
applications, however, the secret of the system may be
the knowledge of the user about the current status of
the system. To motivate the “knowledge security” issue,
let us consider the following scenario. Suppose that there
are two investors in the market. Each of them knows the

136 Bohan Cui et al. / IFAC PapersOnLine 55-28 (2022) 135–141

trading strategy of the other but does not the information
available to the other. Suppose that one investor wants
to investigate some undisclosed information about a stock
in order to decide to buy it or not. At the same time,
he does not want the other investor to know the fact
that he has obtained sufficient information for trading;
otherwise, the other investor may take the advantage of
the information that the first investor will buy the stock.
This example suggests that, in some scenarios, knowing
something of importance is also closely related to the
security consideration.

In this paper, we investigate the verification of opacity
from a new perspective by considering the secret of the
system as the knowledge of the system user. Specifically,
we model the user and the intruder as two observers
with different information-flow. The objective of the user
is to gain sufficient knowledge about the system, e.g.,
for the purpose of decision-making. Here we consider a
specific type of knowledge objective, which is to distinguish
certain pairs of states (Wang et al., 2007; Sears and
Rudie, 2014). On the other hand, the intruder may use
its own information to infer whether or not the user has
sufficient knowledge. We formulate the knowledge-security
of the user in terms of the notion of high-order opacity.
Specifically, the system user is said to be high-order opaque
if the intruder can never determine for sure whenever
the user knows something of importance. We present
two algorithms for verifying high-order opacity. The first
algorithm is based on the construction of two successive
observers, which yields a doubly-exponential complexity.
The second algorithm is based on estimating, from the
intruder’s point of view, all state pairs that cannot be
distinguished by the user; the complexity of the second
approach is only single-exponential in the size of the plant.

2. PRELIMINARIES

2.1 System Model

Let Σ be a finite set of events. A string is a finite sequence
of events and Σ∗ denotes the set of all strings over Σ
including the empty string ε. For any string s ∈ Σ∗, |s|
denotes the length of s with |ε| = 0. A language L ⊆ Σ∗

is a set of strings and we denote by L̄ the prefix-closure of
language L, i.e., L̄ = {s ∈ Σ∗ : ∃w ∈ Σ∗ s.t. sw ∈ L}.
We consider a DES modeled by a deterministic finite-state
automaton (DFA)

G = (X,Σ, δ, x0),

where X is a finite set of states, Σ is a finite set of events,
δ : X × Σ → X is the partial transition function, where
for any x, x′ ∈ X, σ ∈ Σ, x′ = δ(x, σ) means that there
exists a transition from state x to state x′ via event σ and
x0 ∈ X is the initial state. The transition function is also
extended to δ : X × Σ∗ → X recursively by: (i) for any
x ∈ X, δ(x, ε) = x and (ii) for any x ∈ X, s ∈ Σ∗, σ ∈ Σ,
we have δ(x, sσ) = δ(δ(x, s), σ). The set of all strings
generated by G starting from state x ∈ X is defined
as L(G, x) = {s ∈ Σ∗ : δ(x, s)!}, where “!” means “is
defined”. The set of all strings generated by G is defined
as L(G) := L(G, x0). For any s ∈ L(G), we write δ(x0, s)
simply as δ(s). For the sake of simplicity, we assume that

system G is live, i.e., for any x ∈ X, there exists σ ∈ Σ
such that δ(x, σ)!.

Remark 2.1. Here we consider DES with deterministic
transitions with a unique initial state. This is without loss
of generality in the partial-observation setting because it
is well-known that one can always use unobservable events
to mimic non-determinism.

Let Σ′ ⊆ Σ be a subset of events. The natural projection
from Σ to Σ′ is a mapping PΣ′ : Σ∗ → Σ′∗ defined
recursively by:

PΣ′(ε) = ε and PΣ′(sσ) =

{
PΣ′(s)σ if σ ∈ Σ′

PΣ′(s) if σ /∈ Σ′ .

The natural projection is also extended to PΣ′ : 2Σ
∗ →

2Σ
′∗
by: for any L ⊆ Σ∗, PΣ′(L) = {PΣ′(s) ∈ Σ′∗ : s ∈ L}.

2.2 Intruder Model and Current-State Opacity

In the context of information-flow security analysis, the
intruder is usually modeled as a passive observer that (i)
knows the model of the system; and (ii) can observe partial
behaviors generated by the system. Formally, we assume
that the event set is partitioned as

Σ = Σa∪̇Σua,

where Σa and Σua are the sets of observable events and
unobservable events of the intruder, respectively. For the
sake of simplicity, we use notation Pa : Σ∗ → Σ∗

a to
denote the natural projection from Σ to Σa. Then upon
the occurrence of string s ∈ L(G), the intruder observes
Pa(s) ∈ Σ∗

a.

For any observation α ∈ Pa(L(G)), the intruder can
estimate the current-state of the system based on α and
the system model G. Formally, the current-state estimate
of the intruder upon the observation of α is defined by

X̂a(α) = {δ(s) ∈ X : ∃s ∈ L(G) s.t. Pa(s) = α} .

In the context of standard state-based opacity analysis, it
is assumed that the system has a “secret” modeled by a
set of secret states XS ⊆ X. We denote by XNS = X \XS

the set of non-secret states. Then the system is said to be
current-state opaque if the intruder can never determine
for sure that the system is currently at a secret state. In
other words, for any string that leads the system to a secret
state, there should exist at least one string that leads the
system to a non-secret state such that they have the same
observation from the intruder’s point of view. We review
the definition of current-state opacity as follows.

Definition 1. (Current-State Opacity). Given system G, a
set of secret states XS and a set of intruder’s observable
events Σa ⊆ Σ, system G is said to be current-state opaque
(w.r.t. Σa and XS) if

(∀s ∈ L(G) : δ(s) ∈ XS) (1)

(∃t ∈ L(G) : δ(t) ∈ XNS)[Pa(s) = Pa(t)]

or equivalently,

(∀s ∈ L(G))[X̂a(Pa(s)) � XS]. (2)

3. NOTION OF HIGH-ORDER OPACITY

In the standard formulation of current-state opacity, the
secret is modeled as the actual behavior of the system.

 Bohan Cui et al. / IFAC PapersOnLine 55-28 (2022) 135–141 137

trading strategy of the other but does not the information
available to the other. Suppose that one investor wants
to investigate some undisclosed information about a stock
in order to decide to buy it or not. At the same time,
he does not want the other investor to know the fact
that he has obtained sufficient information for trading;
otherwise, the other investor may take the advantage of
the information that the first investor will buy the stock.
This example suggests that, in some scenarios, knowing
something of importance is also closely related to the
security consideration.

In this paper, we investigate the verification of opacity
from a new perspective by considering the secret of the
system as the knowledge of the system user. Specifically,
we model the user and the intruder as two observers
with different information-flow. The objective of the user
is to gain sufficient knowledge about the system, e.g.,
for the purpose of decision-making. Here we consider a
specific type of knowledge objective, which is to distinguish
certain pairs of states (Wang et al., 2007; Sears and
Rudie, 2014). On the other hand, the intruder may use
its own information to infer whether or not the user has
sufficient knowledge. We formulate the knowledge-security
of the user in terms of the notion of high-order opacity.
Specifically, the system user is said to be high-order opaque
if the intruder can never determine for sure whenever
the user knows something of importance. We present
two algorithms for verifying high-order opacity. The first
algorithm is based on the construction of two successive
observers, which yields a doubly-exponential complexity.
The second algorithm is based on estimating, from the
intruder’s point of view, all state pairs that cannot be
distinguished by the user; the complexity of the second
approach is only single-exponential in the size of the plant.

2. PRELIMINARIES

2.1 System Model

Let Σ be a finite set of events. A string is a finite sequence
of events and Σ∗ denotes the set of all strings over Σ
including the empty string ε. For any string s ∈ Σ∗, |s|
denotes the length of s with |ε| = 0. A language L ⊆ Σ∗

is a set of strings and we denote by L̄ the prefix-closure of
language L, i.e., L̄ = {s ∈ Σ∗ : ∃w ∈ Σ∗ s.t. sw ∈ L}.
We consider a DES modeled by a deterministic finite-state
automaton (DFA)

G = (X,Σ, δ, x0),

where X is a finite set of states, Σ is a finite set of events,
δ : X × Σ → X is the partial transition function, where
for any x, x′ ∈ X, σ ∈ Σ, x′ = δ(x, σ) means that there
exists a transition from state x to state x′ via event σ and
x0 ∈ X is the initial state. The transition function is also
extended to δ : X × Σ∗ → X recursively by: (i) for any
x ∈ X, δ(x, ε) = x and (ii) for any x ∈ X, s ∈ Σ∗, σ ∈ Σ,
we have δ(x, sσ) = δ(δ(x, s), σ). The set of all strings
generated by G starting from state x ∈ X is defined
as L(G, x) = {s ∈ Σ∗ : δ(x, s)!}, where “!” means “is
defined”. The set of all strings generated by G is defined
as L(G) := L(G, x0). For any s ∈ L(G), we write δ(x0, s)
simply as δ(s). For the sake of simplicity, we assume that

system G is live, i.e., for any x ∈ X, there exists σ ∈ Σ
such that δ(x, σ)!.

Remark 2.1. Here we consider DES with deterministic
transitions with a unique initial state. This is without loss
of generality in the partial-observation setting because it
is well-known that one can always use unobservable events
to mimic non-determinism.

Let Σ′ ⊆ Σ be a subset of events. The natural projection
from Σ to Σ′ is a mapping PΣ′ : Σ∗ → Σ′∗ defined
recursively by:

PΣ′(ε) = ε and PΣ′(sσ) =

{
PΣ′(s)σ if σ ∈ Σ′

PΣ′(s) if σ /∈ Σ′ .

The natural projection is also extended to PΣ′ : 2Σ
∗ →

2Σ
′∗
by: for any L ⊆ Σ∗, PΣ′(L) = {PΣ′(s) ∈ Σ′∗ : s ∈ L}.

2.2 Intruder Model and Current-State Opacity

In the context of information-flow security analysis, the
intruder is usually modeled as a passive observer that (i)
knows the model of the system; and (ii) can observe partial
behaviors generated by the system. Formally, we assume
that the event set is partitioned as

Σ = Σa∪̇Σua,

where Σa and Σua are the sets of observable events and
unobservable events of the intruder, respectively. For the
sake of simplicity, we use notation Pa : Σ∗ → Σ∗

a to
denote the natural projection from Σ to Σa. Then upon
the occurrence of string s ∈ L(G), the intruder observes
Pa(s) ∈ Σ∗

a.

For any observation α ∈ Pa(L(G)), the intruder can
estimate the current-state of the system based on α and
the system model G. Formally, the current-state estimate
of the intruder upon the observation of α is defined by

X̂a(α) = {δ(s) ∈ X : ∃s ∈ L(G) s.t. Pa(s) = α} .

In the context of standard state-based opacity analysis, it
is assumed that the system has a “secret” modeled by a
set of secret states XS ⊆ X. We denote by XNS = X \XS

the set of non-secret states. Then the system is said to be
current-state opaque if the intruder can never determine
for sure that the system is currently at a secret state. In
other words, for any string that leads the system to a secret
state, there should exist at least one string that leads the
system to a non-secret state such that they have the same
observation from the intruder’s point of view. We review
the definition of current-state opacity as follows.

Definition 1. (Current-State Opacity). Given system G, a
set of secret states XS and a set of intruder’s observable
events Σa ⊆ Σ, system G is said to be current-state opaque
(w.r.t. Σa and XS) if

(∀s ∈ L(G) : δ(s) ∈ XS) (1)

(∃t ∈ L(G) : δ(t) ∈ XNS)[Pa(s) = Pa(t)]

or equivalently,

(∀s ∈ L(G))[X̂a(Pa(s)) � XS]. (2)

3. NOTION OF HIGH-ORDER OPACITY

In the standard formulation of current-state opacity, the
secret is modeled as the actual behavior of the system.

In some applications, the user may want to hide its
knowledge about the system. To this end, in this section,
we introduce the notion of high-order opacity. We first
present a motivating example and then provide the formal
definition.

3.1 Motivating Example

System Model: Suppose that there is a robot moving in a
workspace with rivers, bridges and checkpoints as shown
in Figure 1(a). We assume that the robot can cross the
bridges (denoted by black lines) via both directions, but
the checkpoints (denoted by red and blue blocks) are only
one-way whose directions are specified by arrows in the
figure. The mobility of the robot can be modeled as DFA
G shown in Figure 1(a), where states correspond to regions
in the workspace and events b, r and g corresponds to
“passing a blue checkpoint”, “passing a red checkpoint”
and “crossing the bridge”, respectively.

User Model: Suppose that there is a central station that
wants to communicate with the robot, e.g, to send com-
mands. We assume that communication signals are only
available in service regions and the central station cannot
communicate with the robot in no-service regions, which
are marked by yellow in Figure 1(a) and are represented
by red states {0, 2, 3, 6} in the DFA model. Furthermore,
we assume that the central station has sensors placed at
each bridge and each red checkpoint, i.e., it can observe
the occurrences of events r and g. In order to make sure
that each command sent can be received by the robot for
sure, the central station will send command to the robot
only when it knows for sure that the robot is currently at
white regions.

Intruder Model: At the same time, we assume that there
is an intruder having sensors placed at each bridge and
each blue checkpoint, i.e., it can observe the occurrences
of events b and g. By knowing the strategy of the central
station, the intruder may try to hack to the communication
channel between the central station and the robot. There-
fore, it will successfully intercept transmitted command
when it knows for sure that the central station knows for
sure that the robot is at a service region.

Analysis: In order to establish communications with the

central station, the robot may choose path 0
g→ 7, which is

the shortest path to reach a service region. Furthermore,
the central station will observe event g and upon which it
knows for sure that the robot is indeed in a service region.
Hence, it will send a command to the robot. However,
at the same time, the intruder will also observe event g
and upon which it knows for sure that the central station
will send a command. Therefore, the command will be
intercepted by the intruder, which makes the system not
secure.

To establish a secure communication, the robot can choose

path 0
r→ 2

b→ 4
g→ 6

r→ 5 to go to service region 5. Along
this path, the central station will observe rgr and it knows
for sure that the robot is in a service region. However,
the intruder will observe bg and it may think that the

robot may have chosen path 0
b→ 1

r→ 3
g→ 5. If it is the

case, then the central station will observe rg and it cannot
distinguish if the robot is at state 5 or state 6. Therefore,

01 2

3

4

5

6

7

(a) Workspace of the robot.

01 2

3

5 6 4

7

g

g

g

rb

r

r

b

(b) DFA model of the
robot.

Fig. 1. A motivating example with Σo = {r, g} and Σa =
{b, g}.

along this path, the central station will know for sure that
the robot is in a service region, while the intruder does
not know that the central station knows that. This means
that the communication in this scenario is secure. In what
follows, we will formulate such a scenario of “the intruder
does not know that the user knows something” using the
notion of high-order opacity.

3.2 Knowledge of the User

As we discussed in the above motivating example, the
user of the system may also have its own observation and
based on which it can obtain certain knowledge about the
current status of the system. To formalize the issue of
knowledge security, we further assume that the event set
is also partitioned as

Σ = Σo∪̇Σuo,

where Σo is the set of events that can be observed by the
user and Σuo is the set of events that cannot be observed
by the user. Similarly, we denote by Po : Σ∗ → Σ∗

o the
natural projection from Σ to Σo. Also, for any observation
of the user α ∈ Po(L(G)), we denote by X̂o(α) the current-
state estimate of the user upon the observation of α. Note
that, there is no relationship between the observation of
the intruder and the observation of the user, i.e., Σa and
Σo can be incomparable, because the intruder and the user
may have different sensors monitoring the system.

For the purpose of decision-making such as control or
diagnosis, the user usually wants to determine whether
or not it knows some fact based on its partial observation.
In general, the knowledge of the user can be defined as a
predicate on its observations

Know : Po(L(G)) → {true, false}
such that “Know(α) = true” means that the user knows
some fact based on observation α ∈ Po(L(G)).

In general, by observing α ∈ Po(L(G)), the user’s complete
knowledge about the system is P−1

o (α)∩L(G), which is the
set of all possible strings consistent with the observation.
In this work, we consider a more concrete type of knowl-
edge of the user called distinguishability. Specifically, we
assume that the user is interested in distinguishing certain
pairs of states (a.k.a. the disambiguation task)

Tspec ⊆ X ×X.

138 Bohan Cui et al. / IFAC PapersOnLine 55-28 (2022) 135–141

Specifically, the user wants to distinguish between each
pair of states (x, x′) ∈ Tspec and if so, we say that it has
sufficient knowledge w.r.t. the disambiguation task Tspec.

Then using Tspec, we can specify the knowledge predicate
Know : Po(L(G)) → {true, false} by: for any α ∈
Po(L(G)), we have Know(α) = true iff

(∀s, t∈L(G))[Po(s)=Po(t)=α ⇒ (δ(s), δ(t)) /∈Tspec] (3)

or equivalently,

(X̂o(α)× X̂o(α)) ∩ Tspec = ∅. (4)

Intuitively, we have Know(α) = false whenever there are
two different strings both have the same observation α but
lead to two different states whose pair is in Tspec.

Remark 3.1. Although here we consider a specific type of
user knowledge captured by disambiguation task Tspec,
this task is general enough for many practical require-
ments. For example, it can captures “whether or not
the user knows its current location precisely” by setting
Tspec = {(x, x′) ∈ X × X : x �= x′}. In general, how to
define Tspec is problem dependent and in this work, we
will work on the generic knowledge requirement Tspec.

3.3 High-Order Opacity

Before formally introducing the definition of high-order
opacity, we summarize the capabilities of the intruder
considered (a.k.a. intruder model) as follows

A1 It knows the DFA model G of the system;

A2 It can observe the occurrence of each event in Σa

generated online;

A3 It knows that the user can observe the occurrence of
each event in Σo online but itself cannot observe the
occurrences of events Σo \ Σa directly.

The basic idea of high-order opacity still follows the
essence of opacity, which is plausible deniability for the
secret behavior. However, here “secret” is captured by the
knowledge predicate Know rather than secret statesXS . We
require that the intruder should never be able to determine
for sure that the user knows something. This leads to the
following definition.

Definition 2. (High-Order Opacity). Given system G, a
disambiguation task Tspec ⊆ X × X, a set of intruder’s
observable events Σa ⊆ Σ and a set of user’s observable
events Σo ⊆ Σ, system G is said to be high-order opaque
(w.r.t. Tspec, Σa and Σo) if

(∀s ∈ L(G) : Know(Po(s)) = true) (5)

(∃t ∈ L(G) : Know(Po(t)) = false)[Pa(s) = Pa(t)].

The above definition can be understood as follows. Let
s ∈ L(G) be an actual string generated by the system.
Upon the occurrence of s, the user observes Po(s) while
the intruder observes Pa(s). The user’s knowledge is com-
pletely determined by Po(s) but the intruder does not
know the user’s knowledge perfectly. From the intruder’s
point of view, the user may have observed any string in
Po(P

−1
a (Pa(s)) ∩ L(G)), and if for any observation α in

this language, we have Know(α) = true, then the intruder
knows for sure that predicate Know holds true for the
user. Therefore, the condition in Equation (5) can also
be expressed equivalently by

0

1

2

3

4

5

6

7

c b d

a

b b a

d

d

Fig. 2. System G with Σo = {b, d} and Σa = {a, b}.

(∀α ∈ Pa(L(G)))(∃β ∈ Po(P
−1
a (α) ∩ L(G)))

[Know(β) = false]. (6)

Remark 3.2. High-order opacity can also be considered as
an instance of language-based opacity Lin (2011). Specif-
ically, we can define LS = {s ∈ L(G) : Know(Po(s)) =
true} as the secret language. Then high-order opacity
becomes language-based opacity w.r.t. secret language LS

and projection Pa. Therefore, the key in checking high-
order opacity is to identify LS effectively.

We illustrate the notion of high-order opacity by the
following example.

Example 1. Let us consider system G shown in Figure 2,
where the user can observe Σo = {b, d} and the intruder
can observe Σa = {a, b}. The disambiguation task of the
user is simply to determine the current-state of the system,
i.e., Tspec = {(x, x′) ∈ X×X : x �= x′}. Clearly this system
is high-order opaque. To see this, we note that the user can
determine its current state only after it observes the first
occurrence of event d. For string s = abbadn such that
Know(bbdn) = true, the intruder observes Pa(s) = abba
and it may think that what actually happens is string s′ =
abba such that Know(Po(abba)) = false because the user
cannot distinguish between states 5 and 7 by observing bb.
Similarly, for t = cbd2n such that Know(bd2n) = true, the
intruder observes Pa(t) = b and it may think that what
actually happens is string t′ = cb such that Know(Po(cb)) =
false because the user cannot distinguish between states
3 and 4 by observing b. In other word, the intruder can
never know that the observer knows the current state of
the system G.

Remark 3.3. It is worth noting that high-order opacity
only requires that whenever the user has the knowledge
to distinguish Tspec, the intruder does not know this
fact. This definition itself does not require that the user
can always or will eventually have this knowledge. This
is essentially a utility requirement, which is a different
consideration apart from the security consideration. In
other words, it is even possible that the intruder knows
the secret information (distinguishing Tspec), but it does
not know whether or not the user also knows this secret
information. For instance, in Figure 2, if the intruder
observes abba ∈ Pa(L(G)), it can determine for sure
that the system is currently at state 7. However, it can
not determine whether the user knows the current state
because X̂o(Po(abba)) = {5, 7}, X̂o(Po(abbad)) = {7} and
Pa(abba) = Pa(abbad) = abba. This scenario does not
violate the requirement of high-order opacity according to
the definition.

Remark 3.4. The new notion of high-order opacity sub-
sumes the standard current-state opacity as defined in
Definition 1. To see this, we can set Σo = Σ and Tspec =
{(x, x) ∈ X : x ∈ XNS} and then high-order opacity

 Bohan Cui et al. / IFAC PapersOnLine 55-28 (2022) 135–141 139

Specifically, the user wants to distinguish between each
pair of states (x, x′) ∈ Tspec and if so, we say that it has
sufficient knowledge w.r.t. the disambiguation task Tspec.

Then using Tspec, we can specify the knowledge predicate
Know : Po(L(G)) → {true, false} by: for any α ∈
Po(L(G)), we have Know(α) = true iff

(∀s, t∈L(G))[Po(s)=Po(t)=α ⇒ (δ(s), δ(t)) /∈Tspec] (3)

or equivalently,

(X̂o(α)× X̂o(α)) ∩ Tspec = ∅. (4)

Intuitively, we have Know(α) = false whenever there are
two different strings both have the same observation α but
lead to two different states whose pair is in Tspec.

Remark 3.1. Although here we consider a specific type of
user knowledge captured by disambiguation task Tspec,
this task is general enough for many practical require-
ments. For example, it can captures “whether or not
the user knows its current location precisely” by setting
Tspec = {(x, x′) ∈ X × X : x �= x′}. In general, how to
define Tspec is problem dependent and in this work, we
will work on the generic knowledge requirement Tspec.

3.3 High-Order Opacity

Before formally introducing the definition of high-order
opacity, we summarize the capabilities of the intruder
considered (a.k.a. intruder model) as follows

A1 It knows the DFA model G of the system;

A2 It can observe the occurrence of each event in Σa

generated online;

A3 It knows that the user can observe the occurrence of
each event in Σo online but itself cannot observe the
occurrences of events Σo \ Σa directly.

The basic idea of high-order opacity still follows the
essence of opacity, which is plausible deniability for the
secret behavior. However, here “secret” is captured by the
knowledge predicate Know rather than secret statesXS . We
require that the intruder should never be able to determine
for sure that the user knows something. This leads to the
following definition.

Definition 2. (High-Order Opacity). Given system G, a
disambiguation task Tspec ⊆ X × X, a set of intruder’s
observable events Σa ⊆ Σ and a set of user’s observable
events Σo ⊆ Σ, system G is said to be high-order opaque
(w.r.t. Tspec, Σa and Σo) if

(∀s ∈ L(G) : Know(Po(s)) = true) (5)

(∃t ∈ L(G) : Know(Po(t)) = false)[Pa(s) = Pa(t)].

The above definition can be understood as follows. Let
s ∈ L(G) be an actual string generated by the system.
Upon the occurrence of s, the user observes Po(s) while
the intruder observes Pa(s). The user’s knowledge is com-
pletely determined by Po(s) but the intruder does not
know the user’s knowledge perfectly. From the intruder’s
point of view, the user may have observed any string in
Po(P

−1
a (Pa(s)) ∩ L(G)), and if for any observation α in

this language, we have Know(α) = true, then the intruder
knows for sure that predicate Know holds true for the
user. Therefore, the condition in Equation (5) can also
be expressed equivalently by

0

1

2

3

4

5

6

7

c b d

a

b b a

d

d

Fig. 2. System G with Σo = {b, d} and Σa = {a, b}.

(∀α ∈ Pa(L(G)))(∃β ∈ Po(P
−1
a (α) ∩ L(G)))

[Know(β) = false]. (6)

Remark 3.2. High-order opacity can also be considered as
an instance of language-based opacity Lin (2011). Specif-
ically, we can define LS = {s ∈ L(G) : Know(Po(s)) =
true} as the secret language. Then high-order opacity
becomes language-based opacity w.r.t. secret language LS

and projection Pa. Therefore, the key in checking high-
order opacity is to identify LS effectively.

We illustrate the notion of high-order opacity by the
following example.

Example 1. Let us consider system G shown in Figure 2,
where the user can observe Σo = {b, d} and the intruder
can observe Σa = {a, b}. The disambiguation task of the
user is simply to determine the current-state of the system,
i.e., Tspec = {(x, x′) ∈ X×X : x �= x′}. Clearly this system
is high-order opaque. To see this, we note that the user can
determine its current state only after it observes the first
occurrence of event d. For string s = abbadn such that
Know(bbdn) = true, the intruder observes Pa(s) = abba
and it may think that what actually happens is string s′ =
abba such that Know(Po(abba)) = false because the user
cannot distinguish between states 5 and 7 by observing bb.
Similarly, for t = cbd2n such that Know(bd2n) = true, the
intruder observes Pa(t) = b and it may think that what
actually happens is string t′ = cb such that Know(Po(cb)) =
false because the user cannot distinguish between states
3 and 4 by observing b. In other word, the intruder can
never know that the observer knows the current state of
the system G.

Remark 3.3. It is worth noting that high-order opacity
only requires that whenever the user has the knowledge
to distinguish Tspec, the intruder does not know this
fact. This definition itself does not require that the user
can always or will eventually have this knowledge. This
is essentially a utility requirement, which is a different
consideration apart from the security consideration. In
other words, it is even possible that the intruder knows
the secret information (distinguishing Tspec), but it does
not know whether or not the user also knows this secret
information. For instance, in Figure 2, if the intruder
observes abba ∈ Pa(L(G)), it can determine for sure
that the system is currently at state 7. However, it can
not determine whether the user knows the current state
because X̂o(Po(abba)) = {5, 7}, X̂o(Po(abbad)) = {7} and
Pa(abba) = Pa(abbad) = abba. This scenario does not
violate the requirement of high-order opacity according to
the definition.

Remark 3.4. The new notion of high-order opacity sub-
sumes the standard current-state opacity as defined in
Definition 1. To see this, we can set Σo = Σ and Tspec =
{(x, x) ∈ X : x ∈ XNS} and then high-order opacity

becomes current-state opacity. This is because Tspec can
never be distinguished when the system is not at a secret
state. Furthermore, since the user knows the current state
perfectly, Know(α) = true is equivalent to the fact that the
system is currently at a secret state. This reduction implies
that high-order opacity is more general than current-state
opacity. Since it is known that the verification of current-
state opacity is PSPACE-complete (Balun and Masopust,
2020), we can conclude immediately that verifying high-
order opacity is at least PSPACE-hard.

4. VERIFICATION OF HIGH-ORDER OPACITY

In this section, we present two algorithms for the verifi-
cation of the proposed notion of high-order opacity; one
is based on the construction of double-observer and the
other is based on the construction of state-pair-observer.

4.1 Double-Observer Approach

Let G = (X,Σ, δ, x0) be a DFA and Σ′ ⊆ Σ be a subset of
observable event. Then the observer automaton of G w.r.t.
Σ′ is a new DFA

ObsΣ′(G) = (Q,Σ, f, q0),

where Q ⊆ 2X \ ∅ is the set of states, q0 = {δ(w) ∈ X :
w ∈ (Σ \ Σ′)∗} is the initial state, and f : Q × Σ → Q
is the deterministic transition function defined by: for any
q ∈ Q and σ ∈ Σ, we have

• if σ ∈ Σ′, then

f(q, σ) = {δ(x, σw) ∈ X : x ∈ q, w ∈ (Σ \ Σ′)∗}

• if σ ∈ Σ \Σ′ and there exists x ∈ q such that δ(x, σ)!,
then f(q, σ) = q.

Intuitively, the observer automaton tracks all possible
current states of system based on observations in Σ′∗.
Specifically, for any α ∈ PΣ′(L(G)), f(q0, α) is the current-
state estimate of α w.r.t. Σ′. For technical purposes, here
we further add self-loops at each state for those feasible
but unobservable events in Σ \ Σ′, which ensures that
L(G) ⊆ L(ObsΣ′(G)).

Note that the knowledge of the user is described by distin-
guishability which is based on the current-state estimation.
Therefore, we can build the observer automaton w.r.t.
Σo denoted by ObsΣo

(G) = (Qo,Σ, fo, qo,0) to capture
this issue. Specifically, since for any α ∈ Po(L(G)), the
knowledge predicate Know holds true iff (fo(α)× fo(α)) ∩
Tspec = ∅. Therefore, we define the set of observer states
for which the knowledge predicate holds true as

Qo,S = {q ∈ Qo : (q × q) ∩ Tspec = ∅}.

For high-order opacity, we need to further think from the
intruder’s point of view, i.e., how the intruder estimates
the state estimate of the user. Therefore, we need to
further build the observer automaton of ObsΣo

(G) w.r.t.
Σa, which is referred to as the double-observer, as follows

ObsD(G) := ObsΣa(ObsΣo(G)) = (QD,Σ, fD, qD,0)

Intuitively, the double-observer ObsD(G) tracks all the
possible observer states in Obso(G) based on another event
set Σa. Also we can get that for any s, t ∈ L(G), we have

fD(s) = fD(t) if Pa(s) = Pa(t) from the definition of
the transition function of ObsD(G). In other word, the
states of ObsD(G) are actually the current state estimate
of observer Obso(G) from the intruder’s point of view.
Using ObsD(G), we can easily check high-order opacity
by the following theorem.

Theorem 1. System G is high-order opaque (w.r.t. Tspec,
Σa and Σo) iff ∀q ∈ QD : q � Qo,S .

The above theorem immediately suggests Algorithm 1
for verifying high-order opacity. Specifically, we need to
build the doubly-observer and check whether or not it
contains a state such that the knowledge predicate holds
true for each element in it. In the worst-case, the doubly-

observer contains 22
|X|

states and |Σ|22|X|
transitions.

Therefore, the overall complexity of Algorithm 1 is doubly
exponential in the size of G.

Algorithm 1 High-Order-Opa-Dou-Obs

Input: G, Tspec, Σa, Σo

Output: High-order opaque or not

1: Build Obso(G) = (Qo,Σ, fo, qo,0)
2: Build ObsD(G) = (QD,Σ, fD, qD,0)
3: for all p ∈ QD do
4: if p ⊆ Qo,S then
5: return G is not high-order opaque
6: end if
7: end for
8: return G is high-order opaque

Although the worst-case complexity of Algorithm 1 is
doubly-exponential, empirical studies show that, in many
systems, the exponential state-space explosion in the ob-
server construction does not really occur (Clavijo and
Basilio, 2017). This is why we still choose to present this
algorithm. We illustrate Algorithm 1 using the following
example.

Example 2. Again, let us consider system G presented in
Example 1. The observer Obso(G) w.r.t. event set Σo is
shown in Figure 3(a). Since we consider knowledge task
Tspec = {(x, x′) ∈ X × X : x �= x′}, for any string
s ∈ L(G), we have Know(Po(s)) = true iff fo(qo,0, s) is
a singleton. Therefore, we have Qo,S = {{4}, {6}, {7}}.
Based on observer Obso(G), we further build the double-
observer ObsD(G) w.r.t. Σa as shown in Figure 3(b). For
each state q ∈ QD in it, we see that q always contains an
element not in Qo,S . Therefore, by Theorem 1, we conclude
that G is high-order opaque. This conclusion is consistent
with our analysis in Example 1.

4.2 State-Pair-Observer Approach

The double-observer approach uses the subset construc-
tion technique to capture information uncertainties for
both the user and the intruder. However, since we use the
subset construction twice, the double-observer is doubly-
exponential in the size of the plant. Here, we note that,
from the user’s point of view, it is only interested in
whether or not it can distinguish all pairs in Tspec. There-
fore, from the intruder’s point of view, it suffices to esti-
mate the set of all state pairs the user cannot distinguish.
This leads to the state-pair-observer defined as follows.

140 Bohan Cui et al. / IFAC PapersOnLine 55-28 (2022) 135–141

{0, 1, 2}

{3, 4} {6}

{5, 7} {4}

{7}

b

d

b d

d

a, c

a

d

d

(a) Obso(G)

{{0, 1, 2}}

{{3, 4}, {4}, {6}}

{{5, 7}, {7}}

b

b

a, c

d

a, d

(b) ObsD(G)

Fig. 3. Two observer automaton for G.

Definition 3. (State-Pair-Observer). Given DFA G = (X,
Σ, δ, x0), observable events of the user Σo ⊆ Σ and
observable events of the intruder Σa ⊆ Σ, the state-pair-
observer is a new DFA

ObsV (G) = (QV ,Σa, fV , q0,V),

where

• QV ⊆ 2X×X \ ∅ is the set of states;
• Σa is the set of events;
• fV : QV × Σa → QV is the deterministic transition
function defined by: for any q ∈ QV , σ ∈ Σa, we have

fV (q, σ) =

(x′

1, x
′
2) :

∃(x1, x2) ∈ q, ∃w ∈ Ωua(q, σ),
∃w′

1, w
′
2 ∈ Σ∗ s.t.

Po(σw) = Po(w
′
1) = Po(w

′
2) and

(x′
1, x

′
2) = (δ(x1, w

′
1), δ(x2, w

′
2))

,

where Ωua(q, σ) is the set of feasible unobservable
strings defined by:

Ωua(q, σ) = {w∈Σ∗
ua : ∃(x, x)∈q s.t. δ(x, σw)!}.

• q0,V is the unique initial state defined by:

q0,V =
(x

′
1, x

′
2) :

∃w∈Σ∗
ua ∩ L(G), w′

1, w
′
2∈L(G) s.t.

Po(w) = Po(w
′
1) = Po(w

′
2) and

(x′
1, x

′
2) = (δ(w′

1), δ(w
′
2))

Intuitively, the state-pair-observer estimates from the in-
truder’s point of view based on Σa. However, instead of
estimating the state-estimate of the user as the case of
double-observer, it estimates the set of state pairs that can
not be distinguished by the user. Specifically, suppose that
the current estimate of the intruder is q ∈ 2X×X , which
means that it thinks that the user cannot distinguish state
pair (x1, x2) ∈ q. Then by observing a new event σ ∈ Σa,
the intruder needs to update its estimate by considering
all strings with unobservable tail w ∈ Ωua(q, σ), where
state pair (x, x) ∈ q represents a possible actual state
x of the system. Note that, for each actual string σw in
the system, the user has its own observation according to
Σo. Then for strings w1 ∈ L(G, x1) and w2 ∈ L(G, x2), if
Po(w1) = Po(w2) = Po(σw), then the user again cannot
distinguish between state δ(x1, w1) and state δ(x2, w2).

The following result says that the proposed state-pair-
observer indeed captures all pairs of states the user cannot
distinguish based on the observation of the intruder.

Proposition 1. For any s ∈ L(G), the state reached by
Pa(s) in ObsV (G) satisfies the following:

fV (q0,V , Pa(s)) =
(δ(w′

1), δ(w
′
2)) :

∃t, w′
1, w

′
2 ∈ L(G),

s.t. Pa(s) = Pa(t) and
Po(t) = Po(w

′
1) = Po(w

′
2)

Then for any observer state q ∈ 2X×X , we say q is a secret
revealing state if any state pair (x1, x2) ∈ q in it is not in
Tspec, and we define

QV,S = {q ∈ QV : q ∩ Tspec = ∅}

as the set of secret revealing states. Recall that each pair
(x1, x2) ∈ q is a pair of states the user cannot distinguish.
Therefore, a secret revealing state means that the intruder
knows for sure that the user can distinguish task Tspec;
hence, the knowledge secret is revealed. This leads to the
following main theorem.

Theorem 2. System G is high-order opaque (w.r.t. Tspec,
Σa and Σo) iff QV,S = ∅.

The above theorem suggests immediately how to use state-
pair-observer for verifying high-order opacity. The pro-
cedure is summarized in Algorithm 2, which is essen-
tially a reachability search in ObsV (G). Note that there

are at most 2|X|2 states and |Σa|2|X|2 transitions in the
state-pair-observer. Therefore, the worst-case complexity

of Algorithm 2 is O(|Σa|2|X|2), which is single-exponential
in the size of G. As we have discussed in Remark 3.4,
verifying high-order complexity is at least PSPACE-hard
since it subsumes the standard notion of current-state
opacity. Then with this single-exponential upper-bound,
we can further conclude that verifying high-order opacity
is actually PSPACE-complete.

Algorithm 2 High-Order-Opa-Sta-Pai-Obs

Input: G, Tspec, Σa, Σo

Output: High-order opaque or not

1: Build ObsV (G) = (QV ,Σa, fV , q0,V)
2: for all q ∈ QV do
3: if q ∈ QV,S then
4: return G is not high-order opaque
5: end if
6: end for
7: return G is high-order opaque

Example 3. Let us still consider system G shown in Fig-
ure 2 with Tspec = {(x, x′) ∈ X × X : x �= x′}. This
state-pair-observer is shown in Figure 4. Initially, we have
Pa(ε) = Pa(c) = ε. Note that we also have Po(ε) = Po(c) =
ε and P−1

o (ε) ∩ L(G) = {ε, a, c}, i.e., the intruder thinks
that user cannot distinguish states δ(ε) = 0, δ(a) = 1
and δ(c) = 2. Therefore, the 3 × 3 combinations of the
state pairs give the initial-state in ObsV (G). Also, for
example, consider string s = cbdd, where Pa(s) = b. We
have P−1

a (Pa(s))∩L(G) = {cbdn}. For strings cbdn where
n ≥ 1, we have P−1

o (Po(cbd
n)) ∩ L(G) = {cbdn}, i.e., the

user can perfectly determine the state, and corresponding
state pairs the user cannot distinguish are (4, 4) and (6, 6).
For strings cb, we have P−1

o (Po(cb)) ∩ L(G) = {ab, cb}.
Therefore, the state pairs the user cannot distinguish
are (3, 3), (4, 4), (3, 4) and (4, 3). This is why we have

 Bohan Cui et al. / IFAC PapersOnLine 55-28 (2022) 135–141 141

{0, 1, 2}

{3, 4} {6}

{5, 7} {4}

{7}

b

d

b d

d

a, c

a

d

d

(a) Obso(G)

{{0, 1, 2}}

{{3, 4}, {4}, {6}}

{{5, 7}, {7}}

b

b

a, c

d

a, d

(b) ObsD(G)

Fig. 3. Two observer automaton for G.

Definition 3. (State-Pair-Observer). Given DFA G = (X,
Σ, δ, x0), observable events of the user Σo ⊆ Σ and
observable events of the intruder Σa ⊆ Σ, the state-pair-
observer is a new DFA

ObsV (G) = (QV ,Σa, fV , q0,V),

where

• QV ⊆ 2X×X \ ∅ is the set of states;
• Σa is the set of events;
• fV : QV × Σa → QV is the deterministic transition
function defined by: for any q ∈ QV , σ ∈ Σa, we have

fV (q, σ) =

(x′

1, x
′
2) :

∃(x1, x2) ∈ q, ∃w ∈ Ωua(q, σ),
∃w′

1, w
′
2 ∈ Σ∗ s.t.

Po(σw) = Po(w
′
1) = Po(w

′
2) and

(x′
1, x

′
2) = (δ(x1, w

′
1), δ(x2, w

′
2))

,

where Ωua(q, σ) is the set of feasible unobservable
strings defined by:

Ωua(q, σ) = {w∈Σ∗
ua : ∃(x, x)∈q s.t. δ(x, σw)!}.

• q0,V is the unique initial state defined by:

q0,V =
(x

′
1, x

′
2) :

∃w∈Σ∗
ua ∩ L(G), w′

1, w
′
2∈L(G) s.t.

Po(w) = Po(w
′
1) = Po(w

′
2) and

(x′
1, x

′
2) = (δ(w′

1), δ(w
′
2))

Intuitively, the state-pair-observer estimates from the in-
truder’s point of view based on Σa. However, instead of
estimating the state-estimate of the user as the case of
double-observer, it estimates the set of state pairs that can
not be distinguished by the user. Specifically, suppose that
the current estimate of the intruder is q ∈ 2X×X , which
means that it thinks that the user cannot distinguish state
pair (x1, x2) ∈ q. Then by observing a new event σ ∈ Σa,
the intruder needs to update its estimate by considering
all strings with unobservable tail w ∈ Ωua(q, σ), where
state pair (x, x) ∈ q represents a possible actual state
x of the system. Note that, for each actual string σw in
the system, the user has its own observation according to
Σo. Then for strings w1 ∈ L(G, x1) and w2 ∈ L(G, x2), if
Po(w1) = Po(w2) = Po(σw), then the user again cannot
distinguish between state δ(x1, w1) and state δ(x2, w2).

The following result says that the proposed state-pair-
observer indeed captures all pairs of states the user cannot
distinguish based on the observation of the intruder.

Proposition 1. For any s ∈ L(G), the state reached by
Pa(s) in ObsV (G) satisfies the following:

fV (q0,V , Pa(s)) =
(δ(w′

1), δ(w
′
2)) :

∃t, w′
1, w

′
2 ∈ L(G),

s.t. Pa(s) = Pa(t) and
Po(t) = Po(w

′
1) = Po(w

′
2)

Then for any observer state q ∈ 2X×X , we say q is a secret
revealing state if any state pair (x1, x2) ∈ q in it is not in
Tspec, and we define

QV,S = {q ∈ QV : q ∩ Tspec = ∅}

as the set of secret revealing states. Recall that each pair
(x1, x2) ∈ q is a pair of states the user cannot distinguish.
Therefore, a secret revealing state means that the intruder
knows for sure that the user can distinguish task Tspec;
hence, the knowledge secret is revealed. This leads to the
following main theorem.

Theorem 2. System G is high-order opaque (w.r.t. Tspec,
Σa and Σo) iff QV,S = ∅.

The above theorem suggests immediately how to use state-
pair-observer for verifying high-order opacity. The pro-
cedure is summarized in Algorithm 2, which is essen-
tially a reachability search in ObsV (G). Note that there

are at most 2|X|2 states and |Σa|2|X|2 transitions in the
state-pair-observer. Therefore, the worst-case complexity

of Algorithm 2 is O(|Σa|2|X|2), which is single-exponential
in the size of G. As we have discussed in Remark 3.4,
verifying high-order complexity is at least PSPACE-hard
since it subsumes the standard notion of current-state
opacity. Then with this single-exponential upper-bound,
we can further conclude that verifying high-order opacity
is actually PSPACE-complete.

Algorithm 2 High-Order-Opa-Sta-Pai-Obs

Input: G, Tspec, Σa, Σo

Output: High-order opaque or not

1: Build ObsV (G) = (QV ,Σa, fV , q0,V)
2: for all q ∈ QV do
3: if q ∈ QV,S then
4: return G is not high-order opaque
5: end if
6: end for
7: return G is high-order opaque

Example 3. Let us still consider system G shown in Fig-
ure 2 with Tspec = {(x, x′) ∈ X × X : x �= x′}. This
state-pair-observer is shown in Figure 4. Initially, we have
Pa(ε) = Pa(c) = ε. Note that we also have Po(ε) = Po(c) =
ε and P−1

o (ε) ∩ L(G) = {ε, a, c}, i.e., the intruder thinks
that user cannot distinguish states δ(ε) = 0, δ(a) = 1
and δ(c) = 2. Therefore, the 3 × 3 combinations of the
state pairs give the initial-state in ObsV (G). Also, for
example, consider string s = cbdd, where Pa(s) = b. We
have P−1

a (Pa(s))∩L(G) = {cbdn}. For strings cbdn where
n ≥ 1, we have P−1

o (Po(cbd
n)) ∩ L(G) = {cbdn}, i.e., the

user can perfectly determine the state, and corresponding
state pairs the user cannot distinguish are (4, 4) and (6, 6).
For strings cb, we have P−1

o (Po(cb)) ∩ L(G) = {ab, cb}.
Therefore, the state pairs the user cannot distinguish
are (3, 3), (4, 4), (3, 4) and (4, 3). This is why we have

{
(0, 0), (1, 0), (0, 1)
(2, 0), (0, 2), (1, 1)
(2, 1), (1, 2), (2, 2)

}

{
(3, 3), (3, 4), (4, 3)

(4, 4), (6, 6)

}

{
(5, 5), (5, 7)
(7, 5), (7, 7)

}

b

b

a

a

Fig. 4. State-pair-observer ObsV (G) for G.

fV (q0,V , Pa(s)) = {(3, 3), (4, 4), (3, 4), (4, 3), (6, 6)}. Note
that, for each state q ∈ QV , q contains a state pair (x1, x2)
such that x1 �= x2, which means that q ∩ Tspec �= ∅.
Intuitively, this means that the intruder thinks that the
user may not be able to distinguish between different states
x1 and x2. Since QV,S = ∅, according to Theorem 2, we
conclude that the system G is high-order opaque, which is
also consistent with our previous analysis.

5. CONCLUSION

In this paper, we investigated information-flow security
properties of partially-observed DES from a new angle by
considering secret as the user’s knowledge of some fact of
importance. We proposed the new notion of high-order
opacity to capture the knowledge security requirement,
i.e., the intruder can never know that the user knows some-
thing for sure. We showed that the new notion of high-
order opacity subsumes the standard notion of current-
state opacity. Effective algorithms were also provided for
verifying this new notion.

This paper makes the first step towards the framework
of knowledge security and there are several on-going and
future directions. First, in this paper, we essentially con-
sider the current knowledge of the user. In some appli-
cations, however, what the user wants to hide may be
the fact that he knew something at some previous instant.
This is analogous to the difference between current-state
opacity and infinite/K-step opacity. Also, this paper only
considers the verification of high-order opacity. When the
system is verified to be non-opaque, one may further want
to enforce high-order opacity using supervisory control
(Dubreil et al., 2010) or insertion functions (Ji et al., 2019).
These problems are still under investigation.

REFERENCES

Balun, J. and Masopust, T. (2020). On opacity verification
for discrete-event systems. IFAC-PapersOnLine, 53(2),
2075–2080.

Balun, J. and Masopust, T. (2021). Comparing the notions
of opacity for discrete-event systems. Discrete Event
Dynamic Systems, 31(4), 553–582.

Behinaein, B., Lin, F., and Rudie, K. (2019). Optimal
information release for mixed opacity in discrete-event

systems. IEEE Transactions on Automation Science
and Engineering, 16(4), 1960–1970.

Bryans, J.W., Koutny, M., Mazaré, L., and Ryan, P.Y.
(2008). Opacity generalised to transition systems. In-
ternational J. Information Security, 7(6), 421–435.

Cassandras, C.G. and Lafortune, S. (2021). Introduction
to discrete event systems. Springer.

Clavijo, L.B. and Basilio, J.C. (2017). Empirical studies
in the size of diagnosers and verifiers for diagnosability
analysis. Discrete Event Dynamic Sys., 27(4), 701–739.

Dubreil, J., Darondeau, P., and Marchand, H. (2010).
Supervisory control for opacity. IEEE Transactions on
Automatic Control, 55(5), 1089–1100.

Ji, Y., Yin, X., and Lafortune, S. (2019). Enforcing opacity
by insertion functions under multiple energy constraints.
Automatica, 108, 108476.

Lafortune, S., Lin, F., and Hadjicostis, C.N. (2018). On the
history of diagnosability and opacity in discrete event
systems. Annual Reviews in Control, 45, 257–266.

Lai, A., Lahaye, S., and Li, Z. (2021). Initial-state
detectability and initial-state opacity of unambiguous
weighted automata. Automatica, 127, 109490.

Lin, F. (2011). Opacity of discrete event systems and its
applications. Automatica, 47(3), 496–503.

Liu, S. and Zamani, M. (2021). Compositional synthesis of
opacity-preserving finite abstractions for interconnected
systems. Automatica, 131, 109745.

Ma, Z., Yin, X., and Li, Z. (2021). Verification and
enforcement of strong infinite-and k-step opacity using
state recognizers. Automatica, 133, 109838.

Saboori, A. and Hadjicostis, C.N. (2011). Verification
of infinite-step opacity and complexity considerations.
IEEE Trans. Automatic Control, 57(5), 1265–1269.

Saboori, A. and Hadjicostis, C.N. (2013). Verification of
initial-state opacity in security applications of discrete
event systems. Information Sciences, 246, 115–132.

Sears, D. and Rudie, K. (2014). On computing indis-
tinguishable states of nondeterministic finite automata
with partially observable transitions. In 53Rd IEEE
Conference on Decision and Control, 6731–6736. IEEE.

Tong, Y., Li, Z., Seatzu, C., and Giua, A. (2017). Veri-
fication of state-based opacity using petri nets. IEEE
Transactions on Automatic Control, 62(6), 2823–2837.

Wang, W., Lafortune, S., and Lin, F. (2007). An algorithm
for calculating indistinguishable states and clusters in
finite-state automata with partially observable transi-
tions. Systems & Control Letters, 56(9-10), 656–661.

Wintenberg, A., Blischke, M., Lafortune, S., and Ozay,
N. (2022). A general language-based framework for
specifying and verifying notions of opacity. Discrete
Event Dynamic Systems, 1–37.

Yin, X. and Li, S. (2020). Synthesis of dynamic masks for
infinite-step opacity. IEEE Transactions on Automatic
Control, 65(4), 1429–1441.

Yin, X., Zamani, M., and Liu, S. (2021). On approximate
opacity of cyber-physical systems. IEEE Transactions
on Automatic Control, 66(4), 1630–1645.

Yin, X. and Lafortune, S. (2017). A new approach for
the verification of infinite-step and k-step opacity using
two-way observers. Automatica, 80, 162–171.

Yin, X., Li, Z., Wang, W., and Li, S. (2019). Infinite-step
opacity and k-step opacity of stochastic discrete-event
systems. Automatica, 99, 266–274.

