
IFAC PapersOnLine 55-28 (2022) 9–15

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2022.10.317

10.1016/j.ifacol.2022.10.317 2405-8963

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Optimal Multi-Robot Path Planning for
Cyclic Tasks using Petri Nets ⋆

Peng Lv ∗ Guangqing Luo ∗ Xiang Yin ∗ Ziyue Ma ∗∗ Shaoyuan Li ∗

∗ Department of Automation and Key Laboratory of System Control and
Information Processing, Shanghai Jiao Tong University, Shanghai 200240,

China (e-mail: {lv-peng,luogq11,yinxiang,syli}@sjtu.edu.cn).
∗∗ School of Electro-Mechanical Engineering, Xidian University, Xi’an

710071, China (e-mail: maziyue@xidian.edu.cn).

Abstract: In this paper, we investigate the problem of optimal multi-robot path planning for a cyclic
task represented by a particular type of linear-temporal logic (LTL) formulae. Specifically, the team of
robot needs to fulfill a given LTL formula and at the same time, accomplishes some particular tasks
infinitely often. To avoid the state-space explosion when the number of robot increases, we use Petri nets
to model the team of multi-robot. Our goal is to find an optimal infinite sequence in the prefix-suffix
form for each robot such that the average cost per task is minimized. We propose an efficient planning
method based on the notion of basis reachability graph (BRG), which is a compact representation of
the reachability space of the PN. We demonstrate the computational efficiency of our method through
illustrative examples.

Keywords: Petri Nets, Linear Temporal Logic, Multi-Robot Systems, Task Planning

1. INTRODUCTION

Multi-robot systems are widely used in many applications such
that autonomous warehouses, environment surveillance and in-
formation gathering. Traditionally, researches on multi-robot
path planning mainly focus on finding trajectories for each
single robot to meet some low-level requirements such as col-
lision avoidance or reaching some target regions according to
the physic dynamics of robots. In the recent years, considerable
attentions have been paid on multi-robot planning for high-level
tasks described by complex temporal logic formulae Kress-
Gazit et al. (2009); Liu et al. (2022); Shi et al. (2022); Yang
et al. (2020); Yu et al. (2022).

Linear temporal logic (LTL) is a wide used language in ex-
pressing formal requirements. In the past years, considerable
attentions have been paid to robot planning for LTL tasks;
see, e.g., Guo and Dimarogonas (2015); Smith et al. (2011);
Ulusoy et al. (2014). In the context of multi-robot LTL path
planning, the main challenge is the the curse of dimensionality
since the overall state-space grows exponentially fast when
the number of robots increases. To resolve this issue, many
different approaches have been proposed in the literature to
mitigate the computational complexity. For example, in Kan-
taros and Zavlanos (2018), sampling-based approach is used
for LTL planning without constructing the entire state-space.
Distributed coordination algorithms are also developed such
that the overall task can be achieved with or without communi-
cations Schillinger et al. (2018); Yu and Dimarogonas (2021).

The aforementioned works are mainly based on the automata
model of the robots. In contrast, Petri nets (PN) is a more effi-
cient model for representing concurrent systems. In particular,
⋆ This work was supported by the National Natural Science Foundation of
China (62061136004, 62173226, 61803259) and by the National Key Research
and Development Program of China (2018AAA0101700).

it provides a more compact representation of the synchroniza-
tion of a set of sub-systems without enumerating the entire
state. Therefore, PN model is particular suitable for modeling
multi-robot systems. In the context of LTL planning, PN-based
approaches have been investigated in the literature recently,
which provides a promising way to mitigate the computation
complexity He et al. (2022); Mahulea et al. (2020). For exam-
ple, in Mahulea and Kloetzer (2018), the authors investigate
multi-robot path planning for Boolean task using PNs. The ap-
proach was further extended by Kloetzer and Mahulea (2020) to
handle general LTL tasks. However, the result in Kloetzer and
Mahulea (2020) only focuses on the feasibility of the LTL task,
and the optimality of the synthesized plan is not guaranteed.

In this paper, we also investigate the LTL planning problem
for multi-robot systems represented by Petri nets. We focus on
a particular type of LTL formulae, where the robot needs to
accomplish a finite task while achieving a cyclic task infinitely
often. In contrast to existing works, where only qualitative LTL
requirement is considered, here we further consider an optimal
planning problem with quantitative performance. Specifically,
we consider an optimality metric called the average cost per
task, which was proposed in our previous work Lv et al. (2021).
Our objective is to find a plan for the team of robot such that (i)
the LTL task is satisfied; and (ii) the cost for each task cycle is
minimized.

In order to solve the optimal LTL path planning problem, we
use the structure of basis reachability graph (BRG), which
is a compact representation of the reachable space of the PN
without enumerating the entire state space Ma et al. (2016,
2021). Specifically, we use Büchi automaton to represent the
LTL specification and construct a product PN based on the
original PN and the Büchi automaton. Then by constructing
the BRG of the product PN, we show that an optimal path in
the prefix-suffix form can be effectively synthesized. We also

Optimal Multi-Robot Path Planning for
Cyclic Tasks using Petri Nets ⋆

Peng Lv ∗ Guangqing Luo ∗ Xiang Yin ∗ Ziyue Ma ∗∗ Shaoyuan Li ∗

∗ Department of Automation and Key Laboratory of System Control and
Information Processing, Shanghai Jiao Tong University, Shanghai 200240,

China (e-mail: {lv-peng,luogq11,yinxiang,syli}@sjtu.edu.cn).
∗∗ School of Electro-Mechanical Engineering, Xidian University, Xi’an

710071, China (e-mail: maziyue@xidian.edu.cn).

Abstract: In this paper, we investigate the problem of optimal multi-robot path planning for a cyclic
task represented by a particular type of linear-temporal logic (LTL) formulae. Specifically, the team of
robot needs to fulfill a given LTL formula and at the same time, accomplishes some particular tasks
infinitely often. To avoid the state-space explosion when the number of robot increases, we use Petri nets
to model the team of multi-robot. Our goal is to find an optimal infinite sequence in the prefix-suffix
form for each robot such that the average cost per task is minimized. We propose an efficient planning
method based on the notion of basis reachability graph (BRG), which is a compact representation of
the reachability space of the PN. We demonstrate the computational efficiency of our method through
illustrative examples.

Keywords: Petri Nets, Linear Temporal Logic, Multi-Robot Systems, Task Planning

1. INTRODUCTION

Multi-robot systems are widely used in many applications such
that autonomous warehouses, environment surveillance and in-
formation gathering. Traditionally, researches on multi-robot
path planning mainly focus on finding trajectories for each
single robot to meet some low-level requirements such as col-
lision avoidance or reaching some target regions according to
the physic dynamics of robots. In the recent years, considerable
attentions have been paid on multi-robot planning for high-level
tasks described by complex temporal logic formulae Kress-
Gazit et al. (2009); Liu et al. (2022); Shi et al. (2022); Yang
et al. (2020); Yu et al. (2022).

Linear temporal logic (LTL) is a wide used language in ex-
pressing formal requirements. In the past years, considerable
attentions have been paid to robot planning for LTL tasks;
see, e.g., Guo and Dimarogonas (2015); Smith et al. (2011);
Ulusoy et al. (2014). In the context of multi-robot LTL path
planning, the main challenge is the the curse of dimensionality
since the overall state-space grows exponentially fast when
the number of robots increases. To resolve this issue, many
different approaches have been proposed in the literature to
mitigate the computational complexity. For example, in Kan-
taros and Zavlanos (2018), sampling-based approach is used
for LTL planning without constructing the entire state-space.
Distributed coordination algorithms are also developed such
that the overall task can be achieved with or without communi-
cations Schillinger et al. (2018); Yu and Dimarogonas (2021).

The aforementioned works are mainly based on the automata
model of the robots. In contrast, Petri nets (PN) is a more effi-
cient model for representing concurrent systems. In particular,
⋆ This work was supported by the National Natural Science Foundation of
China (62061136004, 62173226, 61803259) and by the National Key Research
and Development Program of China (2018AAA0101700).

it provides a more compact representation of the synchroniza-
tion of a set of sub-systems without enumerating the entire
state. Therefore, PN model is particular suitable for modeling
multi-robot systems. In the context of LTL planning, PN-based
approaches have been investigated in the literature recently,
which provides a promising way to mitigate the computation
complexity He et al. (2022); Mahulea et al. (2020). For exam-
ple, in Mahulea and Kloetzer (2018), the authors investigate
multi-robot path planning for Boolean task using PNs. The ap-
proach was further extended by Kloetzer and Mahulea (2020) to
handle general LTL tasks. However, the result in Kloetzer and
Mahulea (2020) only focuses on the feasibility of the LTL task,
and the optimality of the synthesized plan is not guaranteed.

In this paper, we also investigate the LTL planning problem
for multi-robot systems represented by Petri nets. We focus on
a particular type of LTL formulae, where the robot needs to
accomplish a finite task while achieving a cyclic task infinitely
often. In contrast to existing works, where only qualitative LTL
requirement is considered, here we further consider an optimal
planning problem with quantitative performance. Specifically,
we consider an optimality metric called the average cost per
task, which was proposed in our previous work Lv et al. (2021).
Our objective is to find a plan for the team of robot such that (i)
the LTL task is satisfied; and (ii) the cost for each task cycle is
minimized.

In order to solve the optimal LTL path planning problem, we
use the structure of basis reachability graph (BRG), which
is a compact representation of the reachable space of the PN
without enumerating the entire state space Ma et al. (2016,
2021). Specifically, we use Büchi automaton to represent the
LTL specification and construct a product PN based on the
original PN and the Büchi automaton. Then by constructing
the BRG of the product PN, we show that an optimal path in
the prefix-suffix form can be effectively synthesized. We also

Optimal Multi-Robot Path Planning for
Cyclic Tasks using Petri Nets ⋆

Peng Lv ∗ Guangqing Luo ∗ Xiang Yin ∗ Ziyue Ma ∗∗ Shaoyuan Li ∗

∗ Department of Automation and Key Laboratory of System Control and
Information Processing, Shanghai Jiao Tong University, Shanghai 200240,

China (e-mail: {lv-peng,luogq11,yinxiang,syli}@sjtu.edu.cn).
∗∗ School of Electro-Mechanical Engineering, Xidian University, Xi’an

710071, China (e-mail: maziyue@xidian.edu.cn).

Abstract: In this paper, we investigate the problem of optimal multi-robot path planning for a cyclic
task represented by a particular type of linear-temporal logic (LTL) formulae. Specifically, the team of
robot needs to fulfill a given LTL formula and at the same time, accomplishes some particular tasks
infinitely often. To avoid the state-space explosion when the number of robot increases, we use Petri nets
to model the team of multi-robot. Our goal is to find an optimal infinite sequence in the prefix-suffix
form for each robot such that the average cost per task is minimized. We propose an efficient planning
method based on the notion of basis reachability graph (BRG), which is a compact representation of
the reachability space of the PN. We demonstrate the computational efficiency of our method through
illustrative examples.

Keywords: Petri Nets, Linear Temporal Logic, Multi-Robot Systems, Task Planning

1. INTRODUCTION

Multi-robot systems are widely used in many applications such
that autonomous warehouses, environment surveillance and in-
formation gathering. Traditionally, researches on multi-robot
path planning mainly focus on finding trajectories for each
single robot to meet some low-level requirements such as col-
lision avoidance or reaching some target regions according to
the physic dynamics of robots. In the recent years, considerable
attentions have been paid on multi-robot planning for high-level
tasks described by complex temporal logic formulae Kress-
Gazit et al. (2009); Liu et al. (2022); Shi et al. (2022); Yang
et al. (2020); Yu et al. (2022).

Linear temporal logic (LTL) is a wide used language in ex-
pressing formal requirements. In the past years, considerable
attentions have been paid to robot planning for LTL tasks;
see, e.g., Guo and Dimarogonas (2015); Smith et al. (2011);
Ulusoy et al. (2014). In the context of multi-robot LTL path
planning, the main challenge is the the curse of dimensionality
since the overall state-space grows exponentially fast when
the number of robots increases. To resolve this issue, many
different approaches have been proposed in the literature to
mitigate the computational complexity. For example, in Kan-
taros and Zavlanos (2018), sampling-based approach is used
for LTL planning without constructing the entire state-space.
Distributed coordination algorithms are also developed such
that the overall task can be achieved with or without communi-
cations Schillinger et al. (2018); Yu and Dimarogonas (2021).

The aforementioned works are mainly based on the automata
model of the robots. In contrast, Petri nets (PN) is a more effi-
cient model for representing concurrent systems. In particular,
⋆ This work was supported by the National Natural Science Foundation of
China (62061136004, 62173226, 61803259) and by the National Key Research
and Development Program of China (2018AAA0101700).

it provides a more compact representation of the synchroniza-
tion of a set of sub-systems without enumerating the entire
state. Therefore, PN model is particular suitable for modeling
multi-robot systems. In the context of LTL planning, PN-based
approaches have been investigated in the literature recently,
which provides a promising way to mitigate the computation
complexity He et al. (2022); Mahulea et al. (2020). For exam-
ple, in Mahulea and Kloetzer (2018), the authors investigate
multi-robot path planning for Boolean task using PNs. The ap-
proach was further extended by Kloetzer and Mahulea (2020) to
handle general LTL tasks. However, the result in Kloetzer and
Mahulea (2020) only focuses on the feasibility of the LTL task,
and the optimality of the synthesized plan is not guaranteed.

In this paper, we also investigate the LTL planning problem
for multi-robot systems represented by Petri nets. We focus on
a particular type of LTL formulae, where the robot needs to
accomplish a finite task while achieving a cyclic task infinitely
often. In contrast to existing works, where only qualitative LTL
requirement is considered, here we further consider an optimal
planning problem with quantitative performance. Specifically,
we consider an optimality metric called the average cost per
task, which was proposed in our previous work Lv et al. (2021).
Our objective is to find a plan for the team of robot such that (i)
the LTL task is satisfied; and (ii) the cost for each task cycle is
minimized.

In order to solve the optimal LTL path planning problem, we
use the structure of basis reachability graph (BRG), which
is a compact representation of the reachable space of the PN
without enumerating the entire state space Ma et al. (2016,
2021). Specifically, we use Büchi automaton to represent the
LTL specification and construct a product PN based on the
original PN and the Büchi automaton. Then by constructing
the BRG of the product PN, we show that an optimal path in
the prefix-suffix form can be effectively synthesized. We also

Optimal Multi-Robot Path Planning for
Cyclic Tasks using Petri Nets ⋆

Peng Lv ∗ Guangqing Luo ∗ Xiang Yin ∗ Ziyue Ma ∗∗ Shaoyuan Li ∗

∗ Department of Automation and Key Laboratory of System Control and
Information Processing, Shanghai Jiao Tong University, Shanghai 200240,

China (e-mail: {lv-peng,luogq11,yinxiang,syli}@sjtu.edu.cn).
∗∗ School of Electro-Mechanical Engineering, Xidian University, Xi’an

710071, China (e-mail: maziyue@xidian.edu.cn).

Abstract: In this paper, we investigate the problem of optimal multi-robot path planning for a cyclic
task represented by a particular type of linear-temporal logic (LTL) formulae. Specifically, the team of
robot needs to fulfill a given LTL formula and at the same time, accomplishes some particular tasks
infinitely often. To avoid the state-space explosion when the number of robot increases, we use Petri nets
to model the team of multi-robot. Our goal is to find an optimal infinite sequence in the prefix-suffix
form for each robot such that the average cost per task is minimized. We propose an efficient planning
method based on the notion of basis reachability graph (BRG), which is a compact representation of
the reachability space of the PN. We demonstrate the computational efficiency of our method through
illustrative examples.

Keywords: Petri Nets, Linear Temporal Logic, Multi-Robot Systems, Task Planning

1. INTRODUCTION

Multi-robot systems are widely used in many applications such
that autonomous warehouses, environment surveillance and in-
formation gathering. Traditionally, researches on multi-robot
path planning mainly focus on finding trajectories for each
single robot to meet some low-level requirements such as col-
lision avoidance or reaching some target regions according to
the physic dynamics of robots. In the recent years, considerable
attentions have been paid on multi-robot planning for high-level
tasks described by complex temporal logic formulae Kress-
Gazit et al. (2009); Liu et al. (2022); Shi et al. (2022); Yang
et al. (2020); Yu et al. (2022).

Linear temporal logic (LTL) is a wide used language in ex-
pressing formal requirements. In the past years, considerable
attentions have been paid to robot planning for LTL tasks;
see, e.g., Guo and Dimarogonas (2015); Smith et al. (2011);
Ulusoy et al. (2014). In the context of multi-robot LTL path
planning, the main challenge is the the curse of dimensionality
since the overall state-space grows exponentially fast when
the number of robots increases. To resolve this issue, many
different approaches have been proposed in the literature to
mitigate the computational complexity. For example, in Kan-
taros and Zavlanos (2018), sampling-based approach is used
for LTL planning without constructing the entire state-space.
Distributed coordination algorithms are also developed such
that the overall task can be achieved with or without communi-
cations Schillinger et al. (2018); Yu and Dimarogonas (2021).

The aforementioned works are mainly based on the automata
model of the robots. In contrast, Petri nets (PN) is a more effi-
cient model for representing concurrent systems. In particular,
⋆ This work was supported by the National Natural Science Foundation of
China (62061136004, 62173226, 61803259) and by the National Key Research
and Development Program of China (2018AAA0101700).

it provides a more compact representation of the synchroniza-
tion of a set of sub-systems without enumerating the entire
state. Therefore, PN model is particular suitable for modeling
multi-robot systems. In the context of LTL planning, PN-based
approaches have been investigated in the literature recently,
which provides a promising way to mitigate the computation
complexity He et al. (2022); Mahulea et al. (2020). For exam-
ple, in Mahulea and Kloetzer (2018), the authors investigate
multi-robot path planning for Boolean task using PNs. The ap-
proach was further extended by Kloetzer and Mahulea (2020) to
handle general LTL tasks. However, the result in Kloetzer and
Mahulea (2020) only focuses on the feasibility of the LTL task,
and the optimality of the synthesized plan is not guaranteed.

In this paper, we also investigate the LTL planning problem
for multi-robot systems represented by Petri nets. We focus on
a particular type of LTL formulae, where the robot needs to
accomplish a finite task while achieving a cyclic task infinitely
often. In contrast to existing works, where only qualitative LTL
requirement is considered, here we further consider an optimal
planning problem with quantitative performance. Specifically,
we consider an optimality metric called the average cost per
task, which was proposed in our previous work Lv et al. (2021).
Our objective is to find a plan for the team of robot such that (i)
the LTL task is satisfied; and (ii) the cost for each task cycle is
minimized.

In order to solve the optimal LTL path planning problem, we
use the structure of basis reachability graph (BRG), which
is a compact representation of the reachable space of the PN
without enumerating the entire state space Ma et al. (2016,
2021). Specifically, we use Büchi automaton to represent the
LTL specification and construct a product PN based on the
original PN and the Büchi automaton. Then by constructing
the BRG of the product PN, we show that an optimal path in
the prefix-suffix form can be effectively synthesized. We also

Optimal Multi-Robot Path Planning for
Cyclic Tasks using Petri Nets ⋆

Peng Lv ∗ Guangqing Luo ∗ Xiang Yin ∗ Ziyue Ma ∗∗ Shaoyuan Li ∗

∗ Department of Automation and Key Laboratory of System Control and
Information Processing, Shanghai Jiao Tong University, Shanghai 200240,

China (e-mail: {lv-peng,luogq11,yinxiang,syli}@sjtu.edu.cn).
∗∗ School of Electro-Mechanical Engineering, Xidian University, Xi’an

710071, China (e-mail: maziyue@xidian.edu.cn).

Abstract: In this paper, we investigate the problem of optimal multi-robot path planning for a cyclic
task represented by a particular type of linear-temporal logic (LTL) formulae. Specifically, the team of
robot needs to fulfill a given LTL formula and at the same time, accomplishes some particular tasks
infinitely often. To avoid the state-space explosion when the number of robot increases, we use Petri nets
to model the team of multi-robot. Our goal is to find an optimal infinite sequence in the prefix-suffix
form for each robot such that the average cost per task is minimized. We propose an efficient planning
method based on the notion of basis reachability graph (BRG), which is a compact representation of
the reachability space of the PN. We demonstrate the computational efficiency of our method through
illustrative examples.

Keywords: Petri Nets, Linear Temporal Logic, Multi-Robot Systems, Task Planning

1. INTRODUCTION

Multi-robot systems are widely used in many applications such
that autonomous warehouses, environment surveillance and in-
formation gathering. Traditionally, researches on multi-robot
path planning mainly focus on finding trajectories for each
single robot to meet some low-level requirements such as col-
lision avoidance or reaching some target regions according to
the physic dynamics of robots. In the recent years, considerable
attentions have been paid on multi-robot planning for high-level
tasks described by complex temporal logic formulae Kress-
Gazit et al. (2009); Liu et al. (2022); Shi et al. (2022); Yang
et al. (2020); Yu et al. (2022).

Linear temporal logic (LTL) is a wide used language in ex-
pressing formal requirements. In the past years, considerable
attentions have been paid to robot planning for LTL tasks;
see, e.g., Guo and Dimarogonas (2015); Smith et al. (2011);
Ulusoy et al. (2014). In the context of multi-robot LTL path
planning, the main challenge is the the curse of dimensionality
since the overall state-space grows exponentially fast when
the number of robots increases. To resolve this issue, many
different approaches have been proposed in the literature to
mitigate the computational complexity. For example, in Kan-
taros and Zavlanos (2018), sampling-based approach is used
for LTL planning without constructing the entire state-space.
Distributed coordination algorithms are also developed such
that the overall task can be achieved with or without communi-
cations Schillinger et al. (2018); Yu and Dimarogonas (2021).

The aforementioned works are mainly based on the automata
model of the robots. In contrast, Petri nets (PN) is a more effi-
cient model for representing concurrent systems. In particular,
⋆ This work was supported by the National Natural Science Foundation of
China (62061136004, 62173226, 61803259) and by the National Key Research
and Development Program of China (2018AAA0101700).

it provides a more compact representation of the synchroniza-
tion of a set of sub-systems without enumerating the entire
state. Therefore, PN model is particular suitable for modeling
multi-robot systems. In the context of LTL planning, PN-based
approaches have been investigated in the literature recently,
which provides a promising way to mitigate the computation
complexity He et al. (2022); Mahulea et al. (2020). For exam-
ple, in Mahulea and Kloetzer (2018), the authors investigate
multi-robot path planning for Boolean task using PNs. The ap-
proach was further extended by Kloetzer and Mahulea (2020) to
handle general LTL tasks. However, the result in Kloetzer and
Mahulea (2020) only focuses on the feasibility of the LTL task,
and the optimality of the synthesized plan is not guaranteed.

In this paper, we also investigate the LTL planning problem
for multi-robot systems represented by Petri nets. We focus on
a particular type of LTL formulae, where the robot needs to
accomplish a finite task while achieving a cyclic task infinitely
often. In contrast to existing works, where only qualitative LTL
requirement is considered, here we further consider an optimal
planning problem with quantitative performance. Specifically,
we consider an optimality metric called the average cost per
task, which was proposed in our previous work Lv et al. (2021).
Our objective is to find a plan for the team of robot such that (i)
the LTL task is satisfied; and (ii) the cost for each task cycle is
minimized.

In order to solve the optimal LTL path planning problem, we
use the structure of basis reachability graph (BRG), which
is a compact representation of the reachable space of the PN
without enumerating the entire state space Ma et al. (2016,
2021). Specifically, we use Büchi automaton to represent the
LTL specification and construct a product PN based on the
original PN and the Büchi automaton. Then by constructing
the BRG of the product PN, we show that an optimal path in
the prefix-suffix form can be effectively synthesized. We also

Optimal Multi-Robot Path Planning for
Cyclic Tasks using Petri Nets ⋆

Peng Lv ∗ Guangqing Luo ∗ Xiang Yin ∗ Ziyue Ma ∗∗ Shaoyuan Li ∗

∗ Department of Automation and Key Laboratory of System Control and
Information Processing, Shanghai Jiao Tong University, Shanghai 200240,

China (e-mail: {lv-peng,luogq11,yinxiang,syli}@sjtu.edu.cn).
∗∗ School of Electro-Mechanical Engineering, Xidian University, Xi’an

710071, China (e-mail: maziyue@xidian.edu.cn).

Abstract: In this paper, we investigate the problem of optimal multi-robot path planning for a cyclic
task represented by a particular type of linear-temporal logic (LTL) formulae. Specifically, the team of
robot needs to fulfill a given LTL formula and at the same time, accomplishes some particular tasks
infinitely often. To avoid the state-space explosion when the number of robot increases, we use Petri nets
to model the team of multi-robot. Our goal is to find an optimal infinite sequence in the prefix-suffix
form for each robot such that the average cost per task is minimized. We propose an efficient planning
method based on the notion of basis reachability graph (BRG), which is a compact representation of
the reachability space of the PN. We demonstrate the computational efficiency of our method through
illustrative examples.

Keywords: Petri Nets, Linear Temporal Logic, Multi-Robot Systems, Task Planning

1. INTRODUCTION

Multi-robot systems are widely used in many applications such
that autonomous warehouses, environment surveillance and in-
formation gathering. Traditionally, researches on multi-robot
path planning mainly focus on finding trajectories for each
single robot to meet some low-level requirements such as col-
lision avoidance or reaching some target regions according to
the physic dynamics of robots. In the recent years, considerable
attentions have been paid on multi-robot planning for high-level
tasks described by complex temporal logic formulae Kress-
Gazit et al. (2009); Liu et al. (2022); Shi et al. (2022); Yang
et al. (2020); Yu et al. (2022).

Linear temporal logic (LTL) is a wide used language in ex-
pressing formal requirements. In the past years, considerable
attentions have been paid to robot planning for LTL tasks;
see, e.g., Guo and Dimarogonas (2015); Smith et al. (2011);
Ulusoy et al. (2014). In the context of multi-robot LTL path
planning, the main challenge is the the curse of dimensionality
since the overall state-space grows exponentially fast when
the number of robots increases. To resolve this issue, many
different approaches have been proposed in the literature to
mitigate the computational complexity. For example, in Kan-
taros and Zavlanos (2018), sampling-based approach is used
for LTL planning without constructing the entire state-space.
Distributed coordination algorithms are also developed such
that the overall task can be achieved with or without communi-
cations Schillinger et al. (2018); Yu and Dimarogonas (2021).

The aforementioned works are mainly based on the automata
model of the robots. In contrast, Petri nets (PN) is a more effi-
cient model for representing concurrent systems. In particular,
⋆ This work was supported by the National Natural Science Foundation of
China (62061136004, 62173226, 61803259) and by the National Key Research
and Development Program of China (2018AAA0101700).

it provides a more compact representation of the synchroniza-
tion of a set of sub-systems without enumerating the entire
state. Therefore, PN model is particular suitable for modeling
multi-robot systems. In the context of LTL planning, PN-based
approaches have been investigated in the literature recently,
which provides a promising way to mitigate the computation
complexity He et al. (2022); Mahulea et al. (2020). For exam-
ple, in Mahulea and Kloetzer (2018), the authors investigate
multi-robot path planning for Boolean task using PNs. The ap-
proach was further extended by Kloetzer and Mahulea (2020) to
handle general LTL tasks. However, the result in Kloetzer and
Mahulea (2020) only focuses on the feasibility of the LTL task,
and the optimality of the synthesized plan is not guaranteed.

In this paper, we also investigate the LTL planning problem
for multi-robot systems represented by Petri nets. We focus on
a particular type of LTL formulae, where the robot needs to
accomplish a finite task while achieving a cyclic task infinitely
often. In contrast to existing works, where only qualitative LTL
requirement is considered, here we further consider an optimal
planning problem with quantitative performance. Specifically,
we consider an optimality metric called the average cost per
task, which was proposed in our previous work Lv et al. (2021).
Our objective is to find a plan for the team of robot such that (i)
the LTL task is satisfied; and (ii) the cost for each task cycle is
minimized.

In order to solve the optimal LTL path planning problem, we
use the structure of basis reachability graph (BRG), which
is a compact representation of the reachable space of the PN
without enumerating the entire state space Ma et al. (2016,
2021). Specifically, we use Büchi automaton to represent the
LTL specification and construct a product PN based on the
original PN and the Büchi automaton. Then by constructing
the BRG of the product PN, we show that an optimal path in
the prefix-suffix form can be effectively synthesized. We also

10	 Peng Lv et al. / IFAC PapersOnLine 55-28 (2022) 9–15

discuss how to further mitigate the synthesis complexity using
the structural property of the PN. Our experimental results show
that the proposed PN-based planning algorithm is more scalable
compared with the standard automata-product-based approach
for multi-robot systems.

2. PRELIMINARY AND PROBLEM FORMULATION

2.1 Petri Net Model of Multi-Robot System
We consider a team of identical robots moving in the same
workspace that contains a set of regions with connecitivity
constraints. In this work, the connectivity and properties of the
workspace is modeled as a weighted PN

Q = (P, T, Pre, Post,Π, h, g),

where P is a set of m places; T is a set of n transitions; Pre :
P ×T → {0, 1} and Post : P ×T → {0, 1} are pre- and post-
incidence functions, respectively, which can also be considered
as matrices; Π is a set of atomic propositions; h : T → 2Π is
a labeling function that assigns each transition a set of atomic
propositions; and g : T → N+ is a weight function assigns each
transition an integer. The incidence matrix is defined by C =
Post− Pre ∈ Nm×n. For a transition t ∈ T , we use •t and t•

to denote its input places and output places, respectively. Input
transitions •p and output transition p• are defined analogously.
We say Q is a state machine (SM) if |•t| = |t•| = 1, ∀t ∈ T . In
this paper, the environment is always modeled as a SM.

In robot planning, each place represents a region in the
workspace and each transition represent the action of going to
a region from another. We use Π to denote all basic properties
of interest. Then for each transition t ∈ T , h(t) denotes the
set of atomic propositions that hold at this unique output place.
Therefore, we require that ∀p ∈ P, ∀t1, t2 ∈ T : t1, t2 ∈ •p ⇒
h(t1) = h(t2). We denote by PΠ the set of places with non-
empty propositions. The labeling function is also extended to
sequences by h(σ) = h(t0)h(t1) · · · , where σ = t0t1 · · · .

Each robot in the workspace is represented as a token in the
PN. A marking M : P → N is a vector that represents the
distribution of robots in the workspace. We use M0 to denote
the initial distribution of robots and M(p) is the number of
robots at place p in marking M . A transition t is enabled at
M if M ≥ Pre(·, t) and a new marking M ′ = M + C(·, t)
is reached when firing t. We use M [σ⟩M ′ to denote that M ′

is reachable from M by firing sequence σ = t0t1 · · · tn. We
denote by R(Q) the set of all reachable markings from M0.
Given a sequence σ = t0t1 · · · , we call the resulting marking
sequence ρσ = M0M1 · · · ∈ (R(Q))ω a run of Q, where
Mi+1 = Mi+C(·, ti), ∀i = 0, 1, · · · . Also, given a feasible run
ρ, we use σρ to denote the sequence generating ρ. We denote by
Σ(Q) the set of all feasible sequences in Q. We use yσ ∈ NT

to denote the firing counting vector. We denote by P0 the set of
all places p such that M0(p) > 0. We make the following mild
assumption on the initial disbribution of robots: P0 ∩ PΠ = ∅,
i.e., each robot starts from a region with no property.

2.2 Cyclic Task
Our general objective is to find a plan, which is an infinite
sequence, for the team of robot such that it satisfies an LTL
formula. The syntax of LTL formulae (without next) is given as

ϕ = ⊤ | π | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1Uϕ2 (1)
where π ∈ Π is an atomic proposition, ¬ (negation) and ∧
(conjunction) are standard Boolean operators, and U (until) is

a temporal operator. These operators also induce such as ∨
(disjunction), → (implication), ♢ (eventually) and □ (always).
We say that ϕ is a co-safe LTL (scLTL) formula if negation
is only applied in front of atomic proposition. The semantics
of LTL formula ϕ is defined over infinite words on (2Π)ω; the
reader is referred to Baier and Katoen (2008) for details. Given
a run ρ of Q and ϕ, we denote ρ ⊨ ϕ if h(σρ) satisfies ϕ and
use Σϕ(Q) to denote the set of all sequences satisfying ϕ.

In this work, the objective of the robot is given as an LTL
formula ϕ of the following form

ϕ = φ ∧□♢πsur, (2)
where φ is an scLTL formula over 2Π representing a finite-
horizon task and πsur ∈ Π is a special proposition representing
a cyclic task that should be satisfied infinitely often.

The objective LTL ϕ can be translated into a Büchi automata
(BA) Aϕ = (Q, q0, 2

Π, δ, QF), where Q is a finite set of
states, q0 is the initial state, 2Π is the set of all subsets of Π,
δ : Q × 2Π × Q is the transition function and QF is the set of
all accepting states. In general, the BA can have multiple initial
state. Here we assume that for ϕ, its corresponding BA Aϕ has
only one initial state, which is restrictive but still expressive
enough for most tasks. Then the BA Aϕ exactly accepts all
infinite words satisfying ϕ in the sense that σ ∈ Σϕ(Q) iff there
exists a path from q0 and visits QF infinitely under h(σ) in Aϕ.

2.3 Problem Formulation

Our objective is to find an infinite sequence in the following
prefix-suffix form

σ = σpre(σsur)
ω

in Q that is optimal and satisfies ϕ. Regarding the optimality
condition, we refer each satisfaction of πsur as a task cycle.
Then the cost of the infinite sequence σ = σpre(σsur)

ω ∈
Σ(Q) with ρσ ⊨ ϕ is defined as the average cost per cycle
of σ as follows:

CostAveT
Q (σ) =

gT · yσsur

N(σsur)
(3)

where N(σ) =
∑

t∈Tsur
yσ(t) represents the number of visit-

ing πsur along σ, where Tsur is the πsur input transition set
defined as follows: Tsur = {t ∈ T |πsur ∈ h(t)}. Note that,
since σpre is a finite sequence, it does not affect the infinite
behavior of the system, and we do not consider it in (3). This
leads to the Multi-robot Optimal Path Planning Problem for
Average Cost Per Task (MOTP-AT) we solve in this work:
Problem 1. (MOTP-AT) Given a PN Q which models a team of
identical robots moving in an environment with πsur ∈ Π being
the atomic proposition which indicates some regions need to be
surveilled infinitly often, and a temporal logic specification ϕ
in form (2) for the team, find a optimal sequence σ for the team
such that

• σ⋆ ∈ Σϕ(Q);
• σ⋆ is in prefix-suffix form, namely σ⋆ = σ⋆

pre(σ
⋆
sur)

ω;
• ∀σ ∈ Σϕ(Q) : CostAveT

Q (σ⋆) ≤ CostAveT
Q (σ).

Remark 1. As shown in the above problem, part of our work is
to plan the trajectory for the agent team meeting the specifica-
tion ϕ. In the previous work (Kloetzer and Mahulea (2020)),
this problem has been solved, but they do not consider the
optimal control problem, that means obtaining the optimal tra-
jectory which optimizes the surveillance operation cost.

	 Peng Lv et al. / IFAC PapersOnLine 55-28 (2022) 9–15	 11

discuss how to further mitigate the synthesis complexity using
the structural property of the PN. Our experimental results show
that the proposed PN-based planning algorithm is more scalable
compared with the standard automata-product-based approach
for multi-robot systems.

2. PRELIMINARY AND PROBLEM FORMULATION

2.1 Petri Net Model of Multi-Robot System
We consider a team of identical robots moving in the same
workspace that contains a set of regions with connecitivity
constraints. In this work, the connectivity and properties of the
workspace is modeled as a weighted PN

Q = (P, T, Pre, Post,Π, h, g),

where P is a set of m places; T is a set of n transitions; Pre :
P ×T → {0, 1} and Post : P ×T → {0, 1} are pre- and post-
incidence functions, respectively, which can also be considered
as matrices; Π is a set of atomic propositions; h : T → 2Π is
a labeling function that assigns each transition a set of atomic
propositions; and g : T → N+ is a weight function assigns each
transition an integer. The incidence matrix is defined by C =
Post− Pre ∈ Nm×n. For a transition t ∈ T , we use •t and t•

to denote its input places and output places, respectively. Input
transitions •p and output transition p• are defined analogously.
We say Q is a state machine (SM) if |•t| = |t•| = 1, ∀t ∈ T . In
this paper, the environment is always modeled as a SM.

In robot planning, each place represents a region in the
workspace and each transition represent the action of going to
a region from another. We use Π to denote all basic properties
of interest. Then for each transition t ∈ T , h(t) denotes the
set of atomic propositions that hold at this unique output place.
Therefore, we require that ∀p ∈ P, ∀t1, t2 ∈ T : t1, t2 ∈ •p ⇒
h(t1) = h(t2). We denote by PΠ the set of places with non-
empty propositions. The labeling function is also extended to
sequences by h(σ) = h(t0)h(t1) · · · , where σ = t0t1 · · · .

Each robot in the workspace is represented as a token in the
PN. A marking M : P → N is a vector that represents the
distribution of robots in the workspace. We use M0 to denote
the initial distribution of robots and M(p) is the number of
robots at place p in marking M . A transition t is enabled at
M if M ≥ Pre(·, t) and a new marking M ′ = M + C(·, t)
is reached when firing t. We use M [σ⟩M ′ to denote that M ′

is reachable from M by firing sequence σ = t0t1 · · · tn. We
denote by R(Q) the set of all reachable markings from M0.
Given a sequence σ = t0t1 · · · , we call the resulting marking
sequence ρσ = M0M1 · · · ∈ (R(Q))ω a run of Q, where
Mi+1 = Mi+C(·, ti), ∀i = 0, 1, · · · . Also, given a feasible run
ρ, we use σρ to denote the sequence generating ρ. We denote by
Σ(Q) the set of all feasible sequences in Q. We use yσ ∈ NT

to denote the firing counting vector. We denote by P0 the set of
all places p such that M0(p) > 0. We make the following mild
assumption on the initial disbribution of robots: P0 ∩ PΠ = ∅,
i.e., each robot starts from a region with no property.

2.2 Cyclic Task
Our general objective is to find a plan, which is an infinite
sequence, for the team of robot such that it satisfies an LTL
formula. The syntax of LTL formulae (without next) is given as

ϕ = ⊤ | π | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1Uϕ2 (1)
where π ∈ Π is an atomic proposition, ¬ (negation) and ∧
(conjunction) are standard Boolean operators, and U (until) is

a temporal operator. These operators also induce such as ∨
(disjunction), → (implication), ♢ (eventually) and □ (always).
We say that ϕ is a co-safe LTL (scLTL) formula if negation
is only applied in front of atomic proposition. The semantics
of LTL formula ϕ is defined over infinite words on (2Π)ω; the
reader is referred to Baier and Katoen (2008) for details. Given
a run ρ of Q and ϕ, we denote ρ ⊨ ϕ if h(σρ) satisfies ϕ and
use Σϕ(Q) to denote the set of all sequences satisfying ϕ.

In this work, the objective of the robot is given as an LTL
formula ϕ of the following form

ϕ = φ ∧□♢πsur, (2)
where φ is an scLTL formula over 2Π representing a finite-
horizon task and πsur ∈ Π is a special proposition representing
a cyclic task that should be satisfied infinitely often.

The objective LTL ϕ can be translated into a Büchi automata
(BA) Aϕ = (Q, q0, 2

Π, δ, QF), where Q is a finite set of
states, q0 is the initial state, 2Π is the set of all subsets of Π,
δ : Q × 2Π × Q is the transition function and QF is the set of
all accepting states. In general, the BA can have multiple initial
state. Here we assume that for ϕ, its corresponding BA Aϕ has
only one initial state, which is restrictive but still expressive
enough for most tasks. Then the BA Aϕ exactly accepts all
infinite words satisfying ϕ in the sense that σ ∈ Σϕ(Q) iff there
exists a path from q0 and visits QF infinitely under h(σ) in Aϕ.

2.3 Problem Formulation

Our objective is to find an infinite sequence in the following
prefix-suffix form

σ = σpre(σsur)
ω

in Q that is optimal and satisfies ϕ. Regarding the optimality
condition, we refer each satisfaction of πsur as a task cycle.
Then the cost of the infinite sequence σ = σpre(σsur)

ω ∈
Σ(Q) with ρσ ⊨ ϕ is defined as the average cost per cycle
of σ as follows:

CostAveT
Q (σ) =

gT · yσsur

N(σsur)
(3)

where N(σ) =
∑

t∈Tsur
yσ(t) represents the number of visit-

ing πsur along σ, where Tsur is the πsur input transition set
defined as follows: Tsur = {t ∈ T |πsur ∈ h(t)}. Note that,
since σpre is a finite sequence, it does not affect the infinite
behavior of the system, and we do not consider it in (3). This
leads to the Multi-robot Optimal Path Planning Problem for
Average Cost Per Task (MOTP-AT) we solve in this work:
Problem 1. (MOTP-AT) Given a PN Q which models a team of
identical robots moving in an environment with πsur ∈ Π being
the atomic proposition which indicates some regions need to be
surveilled infinitly often, and a temporal logic specification ϕ
in form (2) for the team, find a optimal sequence σ for the team
such that

• σ⋆ ∈ Σϕ(Q);
• σ⋆ is in prefix-suffix form, namely σ⋆ = σ⋆

pre(σ
⋆
sur)

ω;
• ∀σ ∈ Σϕ(Q) : CostAveT

Q (σ⋆) ≤ CostAveT
Q (σ).

Remark 1. As shown in the above problem, part of our work is
to plan the trajectory for the agent team meeting the specifica-
tion ϕ. In the previous work (Kloetzer and Mahulea (2020)),
this problem has been solved, but they do not consider the
optimal control problem, that means obtaining the optimal tra-
jectory which optimizes the surveillance operation cost.

3. SOLUTION

As we consider a bounded and conservative PN model, we can
construct its reachability graph to search the optimal sequence.
However, the state space is extremely large, which makes the
method having no advantages on planning complexity com-
pared with traditional product automaton based method. There-
fore, we take an alternative method here based on a compact
representation of the reachability graph called basic reachabil-
ity graph to do the search.

Our solution can be mainly divided into four parts. In IV-A,
we first create a product PN Q′ between Q and BA Aϕ. As
Q is a SM, we simplify Q by abstracting those transitions
with non-empty propositions, and acquire abstracted PN Q,
which has less places compared to Q and can also be used
to construct the product PN Q′. Next, based on the product
PN Q′, we reformulate problem 1 as problem 2 and show the
equivalence between these two problems in IV-B. In section IV-
C, we briefly introduce the theory related to BRG and construct
the BRG B′ to represent the reachability set of Q′ and prove
that the deduction of σ⋆

Q′ can be simplified to a prefix-suffix
form trajectory planning problem between these basic markings
in B′. And in section IV-D, we propose the whole planning
algorithm for the above three parts to get the solution.

3.1 Construction of product PN Q′ between Q and Aϕ

First, we need to recall some basic concepts about graph theory,
which will be used later.

Recall that a path l in a directed multi-graph G = (V,E) is a
sequence of vertices and edges l = v1e1v2e2 · · · en−1vn such
that vi ∈ V, ei ∈ ⟨vi, vi+1⟩ ⊆ E, ∀i ≥ 1, where ⟨vi, vi+1⟩
is the set containing all edges from vi to vi+1. For a vertex
v ∈ V , we define SuccG(v) = {v′ ∈ V |⟨v, v′⟩ ⊆ E} as the
set of successor vertices of v. A path is said to be a cycle if
v1 = vn. For a cycle, if ∀1 < i < j < n, vi ̸= vj , vi ̸= v1 and
vj ̸= v1, we call it a simple cycle. Otherwise, it is a compound
cycle. We use LG , cycG , ScycG and CcycG to denote the set
containing all paths, cycles, simple cycles and compound cycles
in G respectively. G is called a finite graph if |V | ≠ ∞ and
|E| ̸= ∞.

Besides, when

• ∀vi, vj ∈ V, [⟨vi, vi+1⟩ ⊆ E] ⇒ [|⟨vi, vi+1⟩| = 1],

G is called a directed simple graph and we use l = e1e2 · · · en
to denote a path for simplicity.

When given a temporal logic formula ϕ, in order to find those
marking sequences in Q satisfying ϕ, we first define the product
PN between the Q and Aϕ.
Definition 1. Given Q = (P, T, Pre, Post,Π, h, g) with the
initial marking M0 and BA A = (Q, q0, 2

Π, δ, QF), we define
the product of Q and A as a new PN Q′ = (P ′, T ′, P re′, Post′,
M ′

0,Π, h
′, g′), where

• P ′ = P ∪Q is a finite set containing all places;
• T ′ ⊆ {T × δ} ∪ T is a finite set containing all transitions;
• Pre′ (resp.,Post′) : P ′ × T ′ → {0, 1} is the pre (resp.,

post)-incidence functions defined by •t and t• as follows:
∀t ∈ T ′, ∃o(t) ∈ T,

· h(o(t)) = ∅,
* •t ∩ P ′ = •o(t) ∩ P, t• ∩ P ′ = o(t)• ∩ P ;

· h(o(t)) ̸= ∅,

* |•t ∩Q| = |t• ∩Q| = 1;
* •t ∩ P ′ = •o(t) ∩ P, t• ∩ P ′ = o(t)• ∩ P ;
* [q1 = (•t∩Q), q2 = (t•∩Q)] ⇒ [∃o(t) ∈ T]∧

[δ(q1, h(o(t))) = q2],
where o : T ′ → T is the projection function from T ′ to T ;

• M ′
0 is the initial marking defined by:
· ∀p ∈ P,M ′

0(p) = M0(p);
· M ′

0(q0) = 1;
· ∀q ∈ Q/q0,M

′
0(q) = 0;

• Π is a finite set containing all the atomic propositions;
• h′ : T ′ → 2Π is a function that specifies a subset of atomic

propositions Π′ ⊆ Π for every transition t ∈ T ′ defined
by: ∀t ∈ T ′, h′(t) = h(o(t));

• g′ : T ′ → N+ is a function specifying the weight of each
transition t ∈ T ′ defined by: ∀t ∈ T ′, g′(t) = g(o(t)).

As Q is bounded and conservative, from definition 1, we know
that Q′ is also bounded and conservative. Besides, we know that
∀M ∈ R(Q′),Σp′∈P ′M(p′) = Σp∈PM0(p) + 1. Compared
with Q, there is one more token in Q′. This token will be used
to track the completion of the temporal logic task.

Next, we define the projection function P : Σ(Q′) →
Σ(Q) as follows: ∀σ = t0t1t2 · · · ∈ Σ(Q′), P(σ) =
o(t0)o(t1)o(t2) · · · ∈ Σ(Q).
Remark 2. Actually, given a temporal logic formula ϕ, the se-
quence satisfying ϕ can be divided into infinite stages according
to atomic proposition, and we usually do not pay attention to the
transfer behavior on those transitions with empty proposition.
In some cases, the atomic propositions in Q is sparse, which
means that |PΠ| < |P |. Besides, as we only consider Q as a
SM, we can simplify Q by abstracting the transitions with non-
empty propositions to reduce |P |, which will also reduce |P ′|.
Besides, as we will see later in section IV-C, the BRG B′ is a
compact representation of the reachability graph of Q′, whose
scale is polynomial with |P ′|. And we will use B′ to search
optimal sequence. Therefore, reducing |P ′| can also reduce
the scale of B′, which can reduce the complexity of searching
optimal sequence.

As Q is a SM, it can also be considered as a simple graph
with P as the vertex set and T as the edge set, which we
make some simplification on to acquire a simpler SM model.
Given a sequence in Q satisfying the ϕ, it can be divided
into infinite stages according to atomic propositions. To op-
timize the sequence cost, given any p1, p2 ∈ PΠ, we are
only interested in the shortest sequence, which do not pass
any place in PΠ, starting from p1 to p2. Such an issue is
captured by the shortest path planning problem in the single
stage planning simple graph (SSPG) defined as follows. Given
Q = (P, T, Pre, Post,Π, h, g) and r ∈ P0 ∪PΠ being a target
vertex, the single stage planning simple graph (SSPG) rooted at
r is a six-tuple Tr = (PT , TT ,Π, hT , gT , r̂), where

• r̂ is a new copy vertex of r ∈ P0 ∪ PΠ;
• PT = P ∪ {r̂} is the vertex set;
• Π is a set containing all the atomic propositions;
• TT ⊆ T ∪(r̂×P) is a set of edges satisfying the following

constraints:
· ∀p ∈ PΠ, |SuccT (p)| = 0;
· ∀p ∈ P \ PΠ, |SuccT (p)| = |SuccQ(p)|;
· |SuccT (r̂)| = |SuccQ(r)|;

12	 Peng Lv et al. / IFAC PapersOnLine 55-28 (2022) 9–15

· ∀t̂ = ⟨p1, p2⟩ ∈ TT : t = ⟨H(p1), p2⟩ ∈ T , where
H : PT → P simply removes ”hat” for each vertex,
i.e., it maps r̂ to r and does nothing to other vertices;

• hT : TT → 2Π is a function that specifies a subset of
atomic propositions Π′ ⊆ Π for every edge t ∈ TT
defined by: ∀t̂ ∈ TT , hT (t̂) = h(t);

• gT : TT → N+ is a function that specifies a weight for
every edge e defined by: ∀t̂ ∈ TT , gT (t̂) = g(t).

Note that a SSPG starts from r̂ and terminates at vertices PΠ.
Therefore, PΠ are also referred to the termination vertices
of Tr. Intuitively, a SSPG represents all the choices that we
can make when staring from r before arriving PΠ and all the
vertices in P \ (PΠ ∪ {r̂}) are places with empty proposition
(When r is in P0, r̂ is also with empty proposition).

Given p ∈ PΠ, we use LT (p) = {l = t1 · · · tn|•t1 = r̂, t
•

n =
p, t•i = •ti+1, ti ∈ TT , ∀1 ≤ i ≤ n − 1} to denote the set
containing all the paths in Tr from r̂ to p. In order to abstract the
transition behaviors from r to p, we first solve the shortest path
lrp in Tr from r̂ to place p ∈ PΠ, which is defined according to
the cumulative weight grp of edges as follows:

grp = min
l=t1···tn∈LT (p)

n∑
m=1

gT (tm).

It is known that grp is easy to calculate by the Dijkstra’s
algorithm, and if p ∈ PΠ is not reachable from r, we define
grp = ∞. Therefore, we use lrp to represent the transition
relationship from r to p and for all p′ ∈ PΠ, we can solve
lrp′ and all the transition behaviors starting from r can be
summarized by these paths. Let T be the set containing all the
SSPGs constructed from Q. Based on T, we use L to denote the
set containing all the shortest sequence in Q from P0 ∪ PΠ to
PΠ such that

• L = {t1t2 · · · tn ∈ Σ(Q) | ∃Tp0
∈ T, lp0pn

=

t̂1t1 · · · tn, gp0pn
̸= ∞}.

Remark 3. Although we only care about the transition relation-
ship between places in PΠ, we still need to acquire those tran-
sition behaviors from P0 to PΠ to integrate the initial position
information of the robots. Besides, when r ∈ PΠ, although we
are interested in the transition behaviors from r to PΠ, the graph
is actually rooted at its copy r̂ because it may go back to r in
one stage. Therefore, we use a copy r̂ to distinguish the possible
vertex from which the next stage starts. For formal unification,
we also copy r when r ∈ P0.

Then, given a SM Q, based on L, we obtain the abstracted SM
Q, which is a simplification model of Q.
Definition 2. Given a SM Q = (P, T, Pre, Post,M0,Π, h, g),
and the set L, the abstracted general SM is defined as a eight-
tuple Q = (P a, T a, P rea, Posta,Ma

0 ,Π, ha, ga), where

• P a = P0 ∪ PΠ is a finite set containing all places;
• T a is a finite set containing all transitions;
• Prea (resp.,Posta): P a × T a → {0, 1} is the pre (resp.,

post)-incidence function defined by •t and t• as follows:
∀t ∈ T a,

· |•t| = |t•| = 1;
· [(p1 = •t) ∧ (p2 = t•)] ⇒ [∃lp1p2

∈ L, oa(t) =
lp1p2

];
where oa : T a → L is the projection function from T a to
L;

• Ma
0 is the initial marking defined as follows:
· ∀p ∈ P0,M

a
0 (p) = M0(p);

· ∀p ∈ PΠ,M
a
0 (p) = 0;

• Π is a finite set containing all the atomic propositions;
• ha : T a → 2Π is a function that specifies a subset of

atomic propositions Π′ ⊆ Π for every transition t ∈ T a

defined by: ∀t ∈ T a, [ha(t) = hT (σ|σ|)] ∧ [σ = oa(t)],
where σ[i] denotes the ith transition in σ.

• ga : T a → N+ is a function that specifies a weight for
every transition t ∈ T a defined by: ∀t ∈ T a, [ga(t) =
gp1p2] ∧ [p1 = •t] ∧ [p2 = t•].

Then, we define the projection function P ′ : Σ(Q) →
Σ(Q) as follows: ∀σ = t0t1t2 · · · ∈ Σ(Q), P ′(σ) =
oa(t0)o

a(t1)o
a(t2) · · · ∈ ΣQ.

From the definition above, we can see that ∄t ∈ T a, ha(t) = ∅
and Q is also a SM. However, compared to Q, Q only needs
|P0|+ |PΠ| places to model the same system, which is apparent
from def 2, and in general case, we always have |P0|+ |PΠ| <
|P |. Therefore, we can use Q to construct the product PN
Q′ with A by def 1, which allows Q′ to have fewer places
compared with Q′, thus leading to a smaller reachability graph.

3.2 Prefix-suffix form solution in Q′

When given a product PN Q′, for a prefix-suffix sequence
σ = σpre(σsur)

ω ∈ Σ(Q′), we define the average cost per
cycle of σ as follows:

CostAveT
Q′ (σ) =

gT · yσsur

N ′(σsur)
(4)

where N ′(σsur) =
∑

t∈T′
sur

yσsur
(t) represents the number

of visiting πsur along σsur, where T′
sur is the πsur input

transition set in Q′ defined as follows: T′
sur = {t ∈ T ′|πsur ∈

h′(t)}.

Besides, we define TF as the QF input transition set: TF =
{t ∈ T ′|t• ∩ QF ̸= ∅}. We call σ an accepting sequence
if

∑
t∈TF

yσsur
(t) ̸= 0, and use Σϕ(Q′) to denote the set

containing all the feasible accepting sequences in Q′.

The following lemma relates the prefix-suffix accepting transi-
tion sequences in Q and Q′.
Lemma 1. Given a BA Aϕ, a PN Q and their product PN Q′,
we have

• ∀σ = σpre(σsur)
ω ∈ Σϕ(Q′), [P(σ) = σ′

pre(σ
′
sur)

ω ∈
Σϕ(Q)] ∧ [CostAveT

Q′ (σ) = CostAveT
Q (P(σ))];

• ∀σ = σpre(σsur)
ω ∈ Σϕ(Q), ∃σ′ = σ′

pre(σ
′
sur)

ω ∈
Σϕ(Q′), [P(σ′) = σ] ∧ [CostAveT

Q (σ) = CostAveT
Q′ (σ′)]

The following lemma shows that a minimum average cost per
cycle sequence σ⋆

Q′ can be found by searching over finite-
memory sequences of the prefix-suffix form in Q′.
Lemma 2. There exists at least one accepting feasible transition
sequence σ⋆

Q′ in Q′ satisfying

• ∀σ ∈ Σϕ(Q′),CostAveT
Q′ (σ⋆

Q′) ≤ CostAveT
Q′ (σ);

• σ⋆
Q′ is in prefix-suffix form, i.e., σ⋆

Q′ = σ⋆
pre′(σ

⋆
suf ′)ω .

Besides, it is trivial that, when Q is a SM, and we use Q to
construct the product PN Q′, the above three lemmas are also
valid. This leads to the following lemma 3.
Lemma 3. When Q is a SM, there exists at least one accepting
feasible transition sequence σ⋆

Q′ of Q′ satisfying

• ∀σ ∈ Σϕ(Q
′),CostAveT

Q′ (σ⋆
Q′) ≤ CostAveT

Q′ (σ);

	 Peng Lv et al. / IFAC PapersOnLine 55-28 (2022) 9–15	 13

· ∀t̂ = ⟨p1, p2⟩ ∈ TT : t = ⟨H(p1), p2⟩ ∈ T , where
H : PT → P simply removes ”hat” for each vertex,
i.e., it maps r̂ to r and does nothing to other vertices;

• hT : TT → 2Π is a function that specifies a subset of
atomic propositions Π′ ⊆ Π for every edge t ∈ TT
defined by: ∀t̂ ∈ TT , hT (t̂) = h(t);

• gT : TT → N+ is a function that specifies a weight for
every edge e defined by: ∀t̂ ∈ TT , gT (t̂) = g(t).

Note that a SSPG starts from r̂ and terminates at vertices PΠ.
Therefore, PΠ are also referred to the termination vertices
of Tr. Intuitively, a SSPG represents all the choices that we
can make when staring from r before arriving PΠ and all the
vertices in P \ (PΠ ∪ {r̂}) are places with empty proposition
(When r is in P0, r̂ is also with empty proposition).

Given p ∈ PΠ, we use LT (p) = {l = t1 · · · tn|•t1 = r̂, t
•

n =
p, t•i = •ti+1, ti ∈ TT , ∀1 ≤ i ≤ n − 1} to denote the set
containing all the paths in Tr from r̂ to p. In order to abstract the
transition behaviors from r to p, we first solve the shortest path
lrp in Tr from r̂ to place p ∈ PΠ, which is defined according to
the cumulative weight grp of edges as follows:

grp = min
l=t1···tn∈LT (p)

n∑
m=1

gT (tm).

It is known that grp is easy to calculate by the Dijkstra’s
algorithm, and if p ∈ PΠ is not reachable from r, we define
grp = ∞. Therefore, we use lrp to represent the transition
relationship from r to p and for all p′ ∈ PΠ, we can solve
lrp′ and all the transition behaviors starting from r can be
summarized by these paths. Let T be the set containing all the
SSPGs constructed from Q. Based on T, we use L to denote the
set containing all the shortest sequence in Q from P0 ∪ PΠ to
PΠ such that

• L = {t1t2 · · · tn ∈ Σ(Q) | ∃Tp0
∈ T, lp0pn

=

t̂1t1 · · · tn, gp0pn
̸= ∞}.

Remark 3. Although we only care about the transition relation-
ship between places in PΠ, we still need to acquire those tran-
sition behaviors from P0 to PΠ to integrate the initial position
information of the robots. Besides, when r ∈ PΠ, although we
are interested in the transition behaviors from r to PΠ, the graph
is actually rooted at its copy r̂ because it may go back to r in
one stage. Therefore, we use a copy r̂ to distinguish the possible
vertex from which the next stage starts. For formal unification,
we also copy r when r ∈ P0.

Then, given a SM Q, based on L, we obtain the abstracted SM
Q, which is a simplification model of Q.
Definition 2. Given a SM Q = (P, T, Pre, Post,M0,Π, h, g),
and the set L, the abstracted general SM is defined as a eight-
tuple Q = (P a, T a, P rea, Posta,Ma

0 ,Π, ha, ga), where

• P a = P0 ∪ PΠ is a finite set containing all places;
• T a is a finite set containing all transitions;
• Prea (resp.,Posta): P a × T a → {0, 1} is the pre (resp.,

post)-incidence function defined by •t and t• as follows:
∀t ∈ T a,

· |•t| = |t•| = 1;
· [(p1 = •t) ∧ (p2 = t•)] ⇒ [∃lp1p2

∈ L, oa(t) =
lp1p2

];
where oa : T a → L is the projection function from T a to
L;

• Ma
0 is the initial marking defined as follows:
· ∀p ∈ P0,M

a
0 (p) = M0(p);

· ∀p ∈ PΠ,M
a
0 (p) = 0;

• Π is a finite set containing all the atomic propositions;
• ha : T a → 2Π is a function that specifies a subset of

atomic propositions Π′ ⊆ Π for every transition t ∈ T a

defined by: ∀t ∈ T a, [ha(t) = hT (σ|σ|)] ∧ [σ = oa(t)],
where σ[i] denotes the ith transition in σ.

• ga : T a → N+ is a function that specifies a weight for
every transition t ∈ T a defined by: ∀t ∈ T a, [ga(t) =
gp1p2] ∧ [p1 = •t] ∧ [p2 = t•].

Then, we define the projection function P ′ : Σ(Q) →
Σ(Q) as follows: ∀σ = t0t1t2 · · · ∈ Σ(Q), P ′(σ) =
oa(t0)o

a(t1)o
a(t2) · · · ∈ ΣQ.

From the definition above, we can see that ∄t ∈ T a, ha(t) = ∅
and Q is also a SM. However, compared to Q, Q only needs
|P0|+ |PΠ| places to model the same system, which is apparent
from def 2, and in general case, we always have |P0|+ |PΠ| <
|P |. Therefore, we can use Q to construct the product PN
Q′ with A by def 1, which allows Q′ to have fewer places
compared with Q′, thus leading to a smaller reachability graph.

3.2 Prefix-suffix form solution in Q′

When given a product PN Q′, for a prefix-suffix sequence
σ = σpre(σsur)

ω ∈ Σ(Q′), we define the average cost per
cycle of σ as follows:

CostAveT
Q′ (σ) =

gT · yσsur

N ′(σsur)
(4)

where N ′(σsur) =
∑

t∈T′
sur

yσsur
(t) represents the number

of visiting πsur along σsur, where T′
sur is the πsur input

transition set in Q′ defined as follows: T′
sur = {t ∈ T ′|πsur ∈

h′(t)}.

Besides, we define TF as the QF input transition set: TF =
{t ∈ T ′|t• ∩ QF ̸= ∅}. We call σ an accepting sequence
if

∑
t∈TF

yσsur
(t) ̸= 0, and use Σϕ(Q′) to denote the set

containing all the feasible accepting sequences in Q′.

The following lemma relates the prefix-suffix accepting transi-
tion sequences in Q and Q′.
Lemma 1. Given a BA Aϕ, a PN Q and their product PN Q′,
we have

• ∀σ = σpre(σsur)
ω ∈ Σϕ(Q′), [P(σ) = σ′

pre(σ
′
sur)

ω ∈
Σϕ(Q)] ∧ [CostAveT

Q′ (σ) = CostAveT
Q (P(σ))];

• ∀σ = σpre(σsur)
ω ∈ Σϕ(Q), ∃σ′ = σ′

pre(σ
′
sur)

ω ∈
Σϕ(Q′), [P(σ′) = σ] ∧ [CostAveT

Q (σ) = CostAveT
Q′ (σ′)]

The following lemma shows that a minimum average cost per
cycle sequence σ⋆

Q′ can be found by searching over finite-
memory sequences of the prefix-suffix form in Q′.
Lemma 2. There exists at least one accepting feasible transition
sequence σ⋆

Q′ in Q′ satisfying

• ∀σ ∈ Σϕ(Q′),CostAveT
Q′ (σ⋆

Q′) ≤ CostAveT
Q′ (σ);

• σ⋆
Q′ is in prefix-suffix form, i.e., σ⋆

Q′ = σ⋆
pre′(σ

⋆
suf ′)ω .

Besides, it is trivial that, when Q is a SM, and we use Q to
construct the product PN Q′, the above three lemmas are also
valid. This leads to the following lemma 3.
Lemma 3. When Q is a SM, there exists at least one accepting
feasible transition sequence σ⋆

Q′ of Q′ satisfying

• ∀σ ∈ Σϕ(Q
′),CostAveT

Q′ (σ⋆
Q′) ≤ CostAveT

Q′ (σ);

• σ⋆
Q′ is in prefix-suffix form, i.e., σ⋆

Q′ = σ⋆
pre⋆(σ

⋆
suf⋆)ω;

• CostAveT
Q′ (σ⋆

Q′) = CostAveT
Q′ (σ⋆

Q′).

Lemma 3 shows us the equivalence of the results when we
use Q or Q to solve problem 1 when Q is a SM. Therefore,
from now on, we will not distinguish Q and Q unless otherwise
specified and we will use Q to represent the two models for the
convenience of narration. This leads to the formulation of the
problem MOTP-AT in Q′.
Problem 2. (MOTP-AT-Q′) Given a BA Aϕ, a PN Q and their
product PN Q′, find a optimal sequence σ⋆

Q′ for Q′ such that

• σ⋆
Q′ ∈ Σϕ(Q′);

• σ⋆
Q′ is in prefix-suffix form;

• ∀σ ∈ Σϕ(Q′) : CostAveT
Q′ (σ⋆

Q′) ≤ CostAveT
Q′ (σ).

Proposition 1. Let σ⋆
Q′ be a solution to problem 2, then

Pro(σ⋆
Q′) is a solution to problem 1.

3.3 Prefix-suffix form solution in BRG representation of Q′

In (Ma et al. (2016)), a compact way, called basis reachabil-
ity graph (BRG), to represent the reachability graph of a PN
is proposed to solve the finite sequence reachability problem.
However, in this paper, we use BRG to reduce planning com-
plexity in the infinite sequence cyclic task planning problem.
Before we give the definition of BRG, we recall some basic
concepts from (Ma et al. (2016)).

Given a PN Q = (P, T, Pre, Post,Π, h, g), the pair ϖ =
(TE , TI) is called a basis partition of T if

• TI ⊆ T, TE = T \ TI ;
• the TI -induced subnet is acyclic

where the sets TE and TI are called the explicit transition set
and the implicit transition set, respectively.
Definition 3. (Ma et al. (2016)) Given a bounded PN Q and
a basis partition ϖ = (TE , TI), its basis reachability graph
(BRG) is a four-tuple B = (M, T r,∆,M0), where

• M is the set of basis markings;
• Tr is the set of pairs (t, y) ∈ TE × NnI ;
• ∆ : M × Tr → M is a transition relation such that
∆[(M1, (t, y)] = M2 if (i) t ∈ TE ; (ii) y ∈ Ymin(M1, t);
and (iii) M2 = M1 + CI · y + C(·, t).

• M0 is the initial marking.

From definition 3, we know that B is a finite directed multi-
graph with M being the vertex set and ∆ being the edge set.
Given a basis partition ϖ = (TE , TI) and a basis marking
Mb ∈ M, we define RI(Mb) as the implicit reach of Mb by
RI(Mb) = {M ∈ Nm|∃σ ∈ T ∗

I ,M = Mb + C · yσ}.
Proposition 2. (Ma et al. (2016)) Given a PN Q, a basis par-
tition ϖ = (TE , TI) and a marking M ∈ R(Q), let B =
(M, T r,∆,M0) be the corresponding BRG. Then the follow-
ing two statements are equivalent:

• (∃σ = σ1t1 · · ·σntnσn+1 ∈ Σ(Q)) M0[σ⟩M , where
σj ∈ T ∗

I , tj ∈ TE , ∀1 ≤ j ≤ n+ 1;
• (∃l ∈ LB,Mb,n ∈ M) M ∈ RI(Mb,n), where

l = M0
t1,y1−−−→ Mb,1

t2,y2−−−→ · · · tn,yn−−−→ Mb,n

and yi ∈ NTI , ∀1 ≤ i ≤ n.

Given product PN Q′ and a basis partition ϖ = (TE , TI), we
construct the BRG B′ = (M′, T r′,∆′,M ′

0). As B′ is also a

graph, we use cycB′ and ScycB′ to denote the set containing all
cycles and simple cycles in B′ respectively.

Let σ⋆
Q′ = σ⋆

pre′(σ
⋆
sur′)

ω be the prefix-suffix form solution
that solves problem 2. As Q′ is bounded and conservative,
if M ′

0[σ
⋆
pre′⟩M ′

n+1, we have M ′
0[σ

⋆
pre′(σ

⋆
sur′)

ω⟩M ′
n+1. From

proposition 2, we know that there is a path l′ in B′ in the
following form:

M ′
0

t1,y1−−−→ Mb,1
t2,y2−−−→ · · · tω,yω−−−→ Mb,ω

such that M ′
n+1 ∈ RI(Mb,ω). Let Mb,ω[σ

′
ω⟩M ′

n+1, where
σ′
ω ∈ T ∗

I , then we have the following lemma for σ′
ω:

Lemma 4. Given σ′
ω , we have 1T · yσ′

ω
< ∞, where yσ′

ω
∈ NTI

and 1 ∈ NTI is a full 1 vector.

As M′ is a finite set and l′ is a infinite sequence which contains
infinite basis markings, at least one basis marking appears
infinitely in l′. Let Ξ(l′) be the set containing all the basis
markings which appears infinitely in l′. For any Mi ∈ Ξ(l′),
we can divide l′ into infinite continuous cycles which start and
end in Mi. Certainly, there might be a finite transition sequence
σ0−i from M0 to Mi and a finite sequence σi−ω from Mi to
Mb,ω .

Given a cycle l ∈ cycB′ , let l be the following form:

M0
t1,y1−−−→ M1

t2,y2−−−→ · · · tn,yn−−−→ Mn,

where M0 = Mn. We use σl to denote the transition sequence
including both explicit transitions and implicit transitions such
as: M0[σl⟩Mn and l[i] to denote the ith basis marking. Besides,
we use Tl to denote the set containing all the transitions
appearing in the cycle which is defined as follows: Tl = {t ∈
T ′|t ∈ T1 ∪ T2}, where T1 = {t ∈ TE |t ∈

⋃n
j=1{tj}} and

T2 = {t ∈ TI |
∑n

i=1 yi(t) ̸= 0}.

Then, for ScycB′ , we have the following lemma:
Lemma 5. ∃l ∈ ScycB′ ,Tl ∩ TF ̸= ∅.

Based on lemma 5, we denote ScycFB′ as the QF -simple cy-
cle set in B′, which is defined as follows: ScycFB′ = {l ∈
Scyc′B|Tl ∩ TF ̸= ∅}. Then, for any l ∈ ScycFB′ , we define
its average cost per cycle of l in B′ as follows:

CostAveT
B′ (σl) =

gT · yσl

N ′(σl)
. (5)

From lemma 5, we know that if there exists a solution for
problem 2, there exists at least one simple cycle l in ScycFB′

such that CostAveT
B′ (σl) ̸= ∞.

For the simplification of narration, we make the following mild
assumption, whose absence will not influence the conclusion:
∀l1, l2 ∈ ScycFB′ , [CostAveT

B′ (σl1) ̸= ∞,CostAveT
B′ (σl2) ̸=

∞] ⇒ [CostAveT
B′ (σl1) ̸= CostAveT

B′ (σl2)].

Based on the above assumption, we know that there exists a
simple cycle l⋆ ∈ ScycFB′ such that:

• ∀l ∈ ScycFB′ ,CostAveT
B′ (σl⋆) ≤ CostAveT

B′ (σl).

Besides, it follows from (5) that in the worst case, CostAveT
B′ (σl⋆)

can be computed in O((|M′|+NB′)3 ·2|M′|+NB′) operations at
most, where NB′ is the number of multi edges of B′. However,
in most cases, the actual complexity is much lower than the
upper bound.

14	 Peng Lv et al. / IFAC PapersOnLine 55-28 (2022) 9–15

Finally, we can get the following proposition:
Proposition 3. There is a solution σ⋆

Q′ to problem 2, if and only
if CostAveT

B′ (σl⋆) ̸= ∞ and

• σ⋆
Q′ = σ⋆

pre′(σl⋆)
ω;

• CostAveT
Q′ (σ⋆

Q′) = CostAveT
B′ (σl⋆).

where σ′
pre is any sequence from M ′

0 to l⋆.

3.4 Computation of Solution to Problem 1

In this part, we propose the overall algorithm for problem 1 as
shown in algorithm 1.

Algorithm 1 Algorithm for MOTP-AT
Input: The weighted SM Q and a temporal logic formula ϕ in

form (2)
Output: The prefix-suffix form solution σ⋆ to problem 1

1: Construct the Büchi automata Aϕ;
2: if |P0|+ |PΠ| < |P | then
3: Construct Q based on Q;
4: Construct the Product PN Q′ based on Q and Aϕ;
5: else
6: Construct the Product PN Q′ based on Q and Aϕ;
7: Construct BRG B′ based on Q′;
8: Let CostAveT

B′ (σl⋆) = ∞ and l⋆ = l, where l ∈ ScycFB′ ;
9: for lk ∈ ScycFB′ , k = 1, 2, · · · , |ScycFB′ | do

10: if [CostAveT
B′ (σlk) < CostAveT

B′ (σl⋆)] then
11: l⋆ = lk;
12: CostAveT

B′ (σl⋆) = CostAveT
B′ (σlk);

13: elsel⋆ = l⋆;
CostAveT

B′ (σl⋆) = CostAveT
B′ (σl⋆);

14: σ⋆
sur′ = σl⋆ ;

15: if CostAveT
B′ (σl⋆) = ∞ then

16: Go to line 24;
17: else
18: Let σ⋆

pre′ be a feasible sequence from M ′
0 to σl⋆ ;

19: if Q′ is constructed based on Q and A then
20: σ⋆

pre = P(σ⋆
pre′), σ

⋆
sur = P(σ⋆

sur′);
21: else
22: σ⋆

pre = P ′(P(σ⋆
pre′)), σ

⋆
sur = P ′(P(σ⋆

sur′));

23: Go to line 25;
24: return There is no solution to problem 1;
25: return The solution to problem 1 is σ⋆ = σ⋆

pre(σ
⋆
sur)

ω;

This algorithm works as follows. Firstly, it constructs the Büchi
automata Aϕ and judges whether the original PN Q can be
simplified. If it can be simplified, it constructs the product PN
Q′ based on the simplified PN Q. Otherwise, it constructs Q′

based on Q. Then based on the BRG B′ constructed from the
product PN Q′ (line 10), it computes the smallest average cost
per cycle simple cycle l⋆ which visits QF to be the candidate
suffix part of the solution to problem 2. Finally, it verifies
whether there is a solution to problem 1 and computes it by
projecting the prefix and suffix part we compute for problem 2
back to the original PN Q if the solution indeed exists.

4. NUMERICAL EXAMPLES

The algorithmic framework developed in this paper is imple-
mented in MATLAB and Python 3.7, and here we describe a

P

P

P

A

B

two-way
door

one-way doors (The
traffic direction of
the four doors from
left to right are →
←↑↓ respectively.)

wall

Fig. 1. PN model Q for the workspace.

motion planning case for a team of identical robots to illustrate
the advantages of our algorithm.

We consider a 4 × 4 space as shown in Fig 1. We use red dot
to denote the starting region of the robots. We assume that the
robot can move from one region to another region by passing
through a door. There are two kinds of door in the space: the
two-way door and the one-way door which are marked at the
bottom of Fig 1. Besides, there may be a wall between different
regions and around the space which cannot be passed through.
Suppose the cost of passing any door is identical and let it be
1. Consider the atomic proposition set Π = {A,B,D, P} and
some regions are marked with atomic proposition, while the
other regions are with empty proposition. We consider P as the
atomic proposition that we should visit infinitely and give the
following temporal logic specification:

ϕ1 = (¬BUA) ∧ ♢B ∧□♢P.

which requests that we should visit P infinite often and visit
region A and B in order. The temporal logic specification
corresponds to a BA with 4 states, 1 accepting state and 9
transitions. The robots start from the region in the lower left
corner. Therefore, p1 is the starting place filled with red.

Let n = 2, which means two robots participate in the planning.
As Q is a SM and |P0| + |PΠ| < |P |, we construct the
BRG Ba = (Ma, T ra,∆a,Ma

0) from the abstract PN Q with
|Ma| = 24, |∆a| = 235 and NBa = 46 only, where NBa is the
number of multi edges of Ba. Then, we get one of the feasible
optimal transition sequence for Q starting from M0 as follows:

• σ⋆ = t1t3t5t9t16t26(t1t3t8t11t14t23t28t22t13t6)
ω

with CostAveT
Q (σ⋆) = 10

3 . This sequence corresponds to two
paths as shown in Fig 1 with solid line and dotted line for the
two robots respectively.

We can also solve this problem by the baseline method of
product automaton Wolff et al. (2012). We also use two robots
and construct the product automaton P with |S| = 134 states
and |E| = 400 edges. In P , we need to search all cycles
starting and ending at the accepting vertices to get the cycle
with minimum average cost, which can be done in O(|S|3 ·2|S|)
operations. However, the search process in Ba can be finished
in O((|Ma|+NBa)3 · 2|Ma|+NBa) operations at most.

Finally, as we can see, in this example, two robots are already
enough to complete the specification and adding more robots
can not reduce the cost further. However, to illustrate the adapt-
ability of our method to the number of robots, we gradually

	 Peng Lv et al. / IFAC PapersOnLine 55-28 (2022) 9–15	 15

Finally, we can get the following proposition:
Proposition 3. There is a solution σ⋆

Q′ to problem 2, if and only
if CostAveT

B′ (σl⋆) ̸= ∞ and

• σ⋆
Q′ = σ⋆

pre′(σl⋆)
ω;

• CostAveT
Q′ (σ⋆

Q′) = CostAveT
B′ (σl⋆).

where σ′
pre is any sequence from M ′

0 to l⋆.

3.4 Computation of Solution to Problem 1

In this part, we propose the overall algorithm for problem 1 as
shown in algorithm 1.

Algorithm 1 Algorithm for MOTP-AT
Input: The weighted SM Q and a temporal logic formula ϕ in

form (2)
Output: The prefix-suffix form solution σ⋆ to problem 1

1: Construct the Büchi automata Aϕ;
2: if |P0|+ |PΠ| < |P | then
3: Construct Q based on Q;
4: Construct the Product PN Q′ based on Q and Aϕ;
5: else
6: Construct the Product PN Q′ based on Q and Aϕ;
7: Construct BRG B′ based on Q′;
8: Let CostAveT

B′ (σl⋆) = ∞ and l⋆ = l, where l ∈ ScycFB′ ;
9: for lk ∈ ScycFB′ , k = 1, 2, · · · , |ScycFB′ | do

10: if [CostAveT
B′ (σlk) < CostAveT

B′ (σl⋆)] then
11: l⋆ = lk;
12: CostAveT

B′ (σl⋆) = CostAveT
B′ (σlk);

13: elsel⋆ = l⋆;
CostAveT

B′ (σl⋆) = CostAveT
B′ (σl⋆);

14: σ⋆
sur′ = σl⋆ ;

15: if CostAveT
B′ (σl⋆) = ∞ then

16: Go to line 24;
17: else
18: Let σ⋆

pre′ be a feasible sequence from M ′
0 to σl⋆ ;

19: if Q′ is constructed based on Q and A then
20: σ⋆

pre = P(σ⋆
pre′), σ

⋆
sur = P(σ⋆

sur′);
21: else
22: σ⋆

pre = P ′(P(σ⋆
pre′)), σ

⋆
sur = P ′(P(σ⋆

sur′));

23: Go to line 25;
24: return There is no solution to problem 1;
25: return The solution to problem 1 is σ⋆ = σ⋆

pre(σ
⋆
sur)

ω;

This algorithm works as follows. Firstly, it constructs the Büchi
automata Aϕ and judges whether the original PN Q can be
simplified. If it can be simplified, it constructs the product PN
Q′ based on the simplified PN Q. Otherwise, it constructs Q′

based on Q. Then based on the BRG B′ constructed from the
product PN Q′ (line 10), it computes the smallest average cost
per cycle simple cycle l⋆ which visits QF to be the candidate
suffix part of the solution to problem 2. Finally, it verifies
whether there is a solution to problem 1 and computes it by
projecting the prefix and suffix part we compute for problem 2
back to the original PN Q if the solution indeed exists.

4. NUMERICAL EXAMPLES

The algorithmic framework developed in this paper is imple-
mented in MATLAB and Python 3.7, and here we describe a

P

P

P

A

B

two-way
door

one-way doors (The
traffic direction of
the four doors from
left to right are →
←↑↓ respectively.)

wall

Fig. 1. PN model Q for the workspace.

motion planning case for a team of identical robots to illustrate
the advantages of our algorithm.

We consider a 4 × 4 space as shown in Fig 1. We use red dot
to denote the starting region of the robots. We assume that the
robot can move from one region to another region by passing
through a door. There are two kinds of door in the space: the
two-way door and the one-way door which are marked at the
bottom of Fig 1. Besides, there may be a wall between different
regions and around the space which cannot be passed through.
Suppose the cost of passing any door is identical and let it be
1. Consider the atomic proposition set Π = {A,B,D, P} and
some regions are marked with atomic proposition, while the
other regions are with empty proposition. We consider P as the
atomic proposition that we should visit infinitely and give the
following temporal logic specification:

ϕ1 = (¬BUA) ∧ ♢B ∧□♢P.

which requests that we should visit P infinite often and visit
region A and B in order. The temporal logic specification
corresponds to a BA with 4 states, 1 accepting state and 9
transitions. The robots start from the region in the lower left
corner. Therefore, p1 is the starting place filled with red.

Let n = 2, which means two robots participate in the planning.
As Q is a SM and |P0| + |PΠ| < |P |, we construct the
BRG Ba = (Ma, T ra,∆a,Ma

0) from the abstract PN Q with
|Ma| = 24, |∆a| = 235 and NBa = 46 only, where NBa is the
number of multi edges of Ba. Then, we get one of the feasible
optimal transition sequence for Q starting from M0 as follows:

• σ⋆ = t1t3t5t9t16t26(t1t3t8t11t14t23t28t22t13t6)
ω

with CostAveT
Q (σ⋆) = 10

3 . This sequence corresponds to two
paths as shown in Fig 1 with solid line and dotted line for the
two robots respectively.

We can also solve this problem by the baseline method of
product automaton Wolff et al. (2012). We also use two robots
and construct the product automaton P with |S| = 134 states
and |E| = 400 edges. In P , we need to search all cycles
starting and ending at the accepting vertices to get the cycle
with minimum average cost, which can be done in O(|S|3 ·2|S|)
operations. However, the search process in Ba can be finished
in O((|Ma|+NBa)3 · 2|Ma|+NBa) operations at most.

Finally, as we can see, in this example, two robots are already
enough to complete the specification and adding more robots
can not reduce the cost further. However, to illustrate the adapt-
ability of our method to the number of robots, we gradually

p1 p2 p3 p4

p5 p6 p7

p8

p9 p10 p11

p12

p13 p14 p15 p16

t1

t2

t3

t4 t5

t6 t7 t8 t9 t10

t11 t12

t13 t14 t15 t16

t17

t18

t19

t20

t21

t22

t23

t24

t25 t26

t27

t28
t29

t30

Fig. 2. PN model Q for the workspace.

Table 1. Numerical Results

N
P Ba

|S| |E| T1(sec) |Ma| |∆a| NBa T2(sec)
2 182 533 0.095 24 235 46 0.0011
3 1574 8475 2.85 71 1305 243 0.28
4 13202 133217 1752.7 172 4579 780 7.31
5 108590 2076603 - 363 12608 1955 105.3
6 881762 32179433 - 693 29671 4211 1052.2
7 - - - 1226 62435 8170 7740.9

increase the number of robots from two to seven and use the
above two methods to find the solution. The numerical results
are shown in Tab 1. N is the number of robots. We compare the
number of vertices and edges in P with Ba . It is easy to see that
with N increasing, the BRG Ba is significantly smaller than the
product automaton P no matter on the number of vertices or
edges, and the size of these graphs is also a direct indicator of
the memory requirement of the two algorithms. Furthermore,
the growth rate of the number of vertices and edges of Ba is
also significantly lower than that of P . Besides, we also list
down the computation times T1 and T2 of solution by these two
methods. It can be seen that there is no significant difference
in the computation time of solution between these two methods
when the number of robots is less than 4. However, when N is
larger than 3, these two methods are not comparable in terms
of computational efficiency, as we observe significant speed up
that our method achieves over the baseline method. We use “−”
to denote the case, where we fail to compute due to insufficient
RAM (32GB) or very high computation time (> 10000 sec).

5. CONCLUSION

In this paper, we proposed a new approach for optimal multi-
robot path planning with cyclic tasks. Our approach is based on
the basis reachability graph of Petri nets without enumerating
the entire concurrent state-space of the team of robots. We
demonstrated the efficiency of the proposed approach by com-
paring with the standard product-automata-based approach. We
showed that our method has better scalability on the number of
robots. In our future work, we plan to extend our algorithm to
deal with more general fragment of LTL specifications. Also,
we plan to consider the concurrent execution of transitions in
PN to deal with synchronous operations between robots.

REFERENCES

Baier, C. and Katoen, J. (2008). Principles of Model Checking.
Guo, M. and Dimarogonas, D.V. (2015). Multi-agent plan re-

configuration under local ltl specifications. The International
Journal of Robotics Research, 34(2), 218–235.

He, Z., Zhang, R., Ran, N., and Gu, C. (2022). Path planning of
multi-type robot systems with time windows based on timed
colored Petri nets. Applied Sciences, 12(14), 6878.

Kantaros, Y. and Zavlanos, M.M. (2018). Sampling-based op-
timal control synthesis for multirobot systems under global
temporal tasks. IEEE Trans. Aut. Control, 64(5), 1916–1931.

Kloetzer, M. and Mahulea, C. (2020). Path planning for
robotic teams based on ltl specifications and petri net models.
Discrete Event Dynamic Systems, 30(1), 55–79.

Kress-Gazit, H., Fainekos, G.E., and Pappas, G.J. (2009).
Temporal-logic-based reactive mission and motion planning.
IEEE Trans. Robotics, 25(6), 1370–1381.

Liu, S., Trivedi, A., Yin, X., and Zamani, M. (2022). Secure-
by-construction synthesis of cyber-physical systems. Annual
Reviews in Control, 53, 30–50.

Lv, P., Yin, X., Ji, Y., and Li, S. (2021). A game-theoretical
approach for optimal supervisory control of discrete event
systems for cyclic tasks. In 60th IEEE CDC, 324–330.

Ma, Z., Tong, Y., Li, Z., and Giua, A. (2016). Basis marking
representation of petri net reachability spaces and its appli-
cation to the reachability problem. IEEE Trans. Automatic
Control, 62(3), 1078–1093.

Ma, Z., Yin, X., and Li, Z. (2021). Marking diagnosability
verification in labeled petri nets. Automatica, 131, 109713.

Mahulea, C. and Kloetzer, M. (2018). Robot planning based on
boolean specifications using petri net models. IEEE Trans.
Automatic Control, 63(7), 2218–2225.

Mahulea, C., Kloetzer, M., and González, R. (2020). Path Plan-
ning of Cooperative Mobile Robots Using Discrete Event
Models. John Wiley & Sons.

Schillinger, P., Bürger, M., and Dimarogonas, D.V. (2018). Si-
multaneous task allocation and planning for temporal logic
goals in heterogeneous multi-robot systems. The interna-
tional journal of robotics research, 37(7), 818–838.

Shi, W., He, Z., Tang, W., Liu, W., and Ma, Z. (2022). Path
planning of multi-robot systems with boolean specifications
based on simulated annealing. IEEE Robotics and Automa-
tion Letters, 7(3), 6091–6098.

Smith, S.L., Tmová, J., Belta, C., and Rus, D. (2011). Opti-
mal path planning for surveillance with temporal-logic con-
straints. The International Journal of Robotics Research,
30(14), 1695–1708.

Ulusoy, A., Smith, S.L., and Belta, C. (2014). Optimal multi-
robot path planning with ltl constraints: guaranteeing correct-
ness through synchronization. In Distributed Autonomous
Robotic Systems, 337–351. Springer.

Wolff, E.M., Topcu, U., and Murray, R.M. (2012). Optimal
control with weighted average costs and temporal logic spec-
ifications. Proc. of Robotics: Science and Systems, (2012).

Yang, S., Yin, X., Li, S., and Zamani, M. (2020). Secure-by-
construction optimal path planning for linear temporal logic
tasks. In 59th IEEE CDC, 4460–4466.

Yu, P. and Dimarogonas, D.V. (2021). Distributed motion
coordination for multirobot systems under ltl specifications.
IEEE Trans. Robotics.

Yu, X., Yin, X., Li, S., and Li, Z. (2022). Security-preserving
multi-agent coordination for complex temporal logic tasks.
Control Engineering Practice, 123, 105130.

