
Synthesis of Failure-Robust Plans for Multi-Robot Systems under
Temporal Logic Specifications

Feifei Huang, Shaoyuan Li and Xiang Yin

Abstract— In this study, we address the multi-robot path
planning problem for tasks specified by linear temporal logic
(LTL) formulae. Unlike existing studies, we take into account
the possibility of robot failures, where a failed robot can no
longer contribute to the completion of the LTL task. Our
objective is to find a failure-robust path, which ensures that the
LTL task can always be fulfilled, even if a maximum number
of robots fail at any point during execution. To achieve this, we
extend the mixed-integer linear programming (MILP) approach
to the failure-robust setting. To overcome the computational
complexity, we identify a fragment of LTL formulae called
the free-union-closed LTL, which allows for more scalable
synthesis without considering the global combinatorial issue. We
present case studies to demonstrate our findings. Our approach
provides a novel solution to the problem of multi-robot path
planning under robot failures, offering a practical and efficient
way to achieve robustness in the face of unforeseen events.

I. INTRODUCTION

Multi-robot systems (MRSs) have been widely used in
many different engineering cyber-physical systems such as
persistent surveillance [1], [2], underwater and space ex-
ploration [3] and multitarget tracking [4]. In the study of
MRSs, one of the most fundamental problems is the path
planning problem that seeks to generate an executable path
for each robot in the team [5]. Existing works have focused
on finding paths for MRSs to enable reach-avoid navigation
[6] or collision avoidance [7], [8]. However, there has been
a growing interest in the MRS literature for path planning
for high-level specifications [9]–[12].

Formal method provides a promising approach for au-
tomatically synthesizing such plans with correctness guar-
antees. In particular, linear temporal logic (LTL) provides
a well-structured and user-friendly manner for specifying
the temporal behaviors of the robots [13], [14]. In [15],
authors propose a sampling-based algorithm to synthesize
optimal plans for MRS. Authors in [16] provide a framework
for generating optimal action-level behavior under resource
constraints. In [17], task specifications which involve large
numbers of discrete locations are considered and an iterator-
based planning method is proposed. In [18], the authors
develop joint policies for MRS that are robust to potential
losses in communication. In [19], LTL path planning under
unknown environments is investigated.

This work was supported by the National Natural Science Foundation of
China (62061136004, 62173226, 61833012) and the National Key Research
and Development Program of China (2018AAA0101700).

Feifei Huang, Shaoyuan Li and Xiang Yin are with Department of
Automation and Key Laboratory of System Control and Information
Processing, Shanghai Jiao Tong University, Shanghai 200240, China.
{huangfeifei,syli,yinxiang}@sjtu.edu.cn.

Most of the existing research on LTL path planning as-
sumes an ideal scenario where each robot operates flawlessly.
However, in practical applications, robot failures are non-
negligible in severe working conditions. For instance, a
robot may suffer from permanent damage to its mechanical
components or lack of power, rendering it useless in accom-
plishing the task. In such cases, the LTL task depends on the
collaboration of all robots, and a critical robot’s failure could
potentially jeopardize the entire mission. Therefore, it is
crucial to account for the impact of potential failures during
the design phase to ensure robustness of the synthesized
plans.

In this paper, our objective is to synthesize a set of paths
that enable each robot to execute its own plan in a fully
distributed manner. However, we consider a scenario where
some robots may fail and can no longer contribute to the
satisfaction of the overall task. Our goal is to synthesize
a failure-robust plan for the team of robots, meaning that
even in the event of a bounded number of robot failures, the
remaining normal robots can still successfully accomplish
the LTL task by following the pre-designed plans.

Our approach is to use mixed-integer linear programming
(MILP) to encode the path of each robot, as well as the
satisfaction of the LTL task. We introduce the concept of
an enable sequence, which captures the working status of
each robot. However, this basic approach can quickly become
computationally intractable, as it requires consideration of all
possible combinations of failed robots and failure instants.
To mitigate this complexity, we identify a new fragment of
LTL formula called free-union-closed LTL. Specifically, we
show that for LTL tasks with this property, the corresponding
planning problem can be solved more efficiently by restrict-
ing to the simple case that a robot will fail if and only
if it fails initially. This approach significantly reduces the
computational complexity of the problem.

There are several related works in the literature that
address the issue of robot failures in path planning. For
example, [20], [21] considers the target tracking problem
for multi-robot systems and assumes that the sensors of the
robots may fail due to attacks. The authors in [22] introduce
the notion of counting temporal logic, which requires that
one task be satisfied by multiple robots, addressing the issue
of failure robustness to some extent. In [23], the authors
provided a self-diagnositic LTL planning framework such
that any failure can be detected within a finite delay. In our
previous work [24], we considered a failure-robust reactive
synthesis problem for LTL tasks. In this approach, each
robot can adjust its plan online depending on the failure

status of other robots. However, this approach essentially
requires a global controller or fully communication between
each robot, which may not be practical or feasible in some
applications. Our current work differs from previous works
in that we focus on synthesizing a failure-robust plan for a
team of robots that is executed in a fully distributed “open-
loop” manner, without relying on a global controller or
communication between robots. This approach may be more
practical and cost-effective, making it more suitable for real-
world applications.

II. PRELIMINARIES

A. System Model

We consider a group of n mobile robots that operate within
the same workspace. We denote by I = {1, . . . , n} the
index set for robots. The workspace is represented as a finite
collection of distinct regions or states, which we denote as
S. The connectivity between these states is captured by a
symmetric neighborhood relation, denoted as N ⊆ S × S.
In particular, if (s, s′) ∈ N , we say that states s and s′

are neighborhoods. This neighborhood relation dictates that
a robot can only move to a neighboring state at any given
time instant.

We also assume that each state in the workspace may have
certain properties of interest to the user. These properties
could be any relevant characteristics, such as resource avail-
ability, environmental conditions, or task requirements. Each
state may have a unique combination of these properties,
making them potentially more or less desirable for the
robots to visit or occupy. Let AP be a finite set of atomic
propositions. The properties of each state is represented by
a labeling function L : S → 2AP , i.e., for each state
s ∈ S, L(s) denotes the set of atomic propositions hold
at state s. For a set of states S′ ⊆ S, we also denote
L(S′) = ∪s∈S′L(s).

B. Paths and Traces

For each robot i ∈ I, a path is an infinite sequence over
the state space satisfying the transition relation. Formally, we
say pi = p0

ip
1
ip

2
i · · · ∈ Sω is path if

p0
i = sinti and (pt

i,p
t+1
i) ∈ N ,∀t ∈ N, (1)

where sinti denotes the initial state of the ith robot. The set
of all possible paths of the ith robot is denoted as Pi.

We assume that the movement of each robot are fully
synchronized, e.g., with a global time clock. Then the
collective behavior of the team of n robots is a joint path,
p = (p1,p2, . . . ,pn), where each pi ∈ Pi is a path for the
ith robot. The set of all possible joint paths of the n-robot
system satisfying the above conditions is denote by P.

Given that the robots are collaborating to achieve a com-
mon task, we define the set of atomic propositions that
hold at each instant as the union of all atomic propositions
satisfied by each robot. Then given a joint path p, its trace
is an infinite sequence of atomic propositions defined by
L(p) = L(∪i∈Ip

0
i)L(∪i∈Ip

1
i) · · · ∈ (2AP)ω .

C. Linear Temporal Logic Task

The desired cooperative task for the team of robots is de-
scribed by a linear temporal logic (LTL) formula. Formally,
the syntax of LTL is defined as follow:

φ ::= true | a ∈ AP | φ1 ∧ φ2 | ¬φ | ⃝φ | φ1Uφ2,

where ¬ and ∧ are Boolean operators “negation” and “con-
junction”, respectively, and ⃝ and U are temporal operators
“next” and “until”, respectively.

Specifically, an LTL formula belongs to the class of co-
safe LTL (scLTL) formulas if it exclusively utilizes the
temporal operators ⃝, U, F, and the negation operator ¬
occurs only in front of an atomic proposition [25].

The satisfaction of scLTL formulas is guaranteed in finite
time. For any infinite word σ = σ0σ1σ2 · · · ∈ (2AP)ω ,
it satisfies a scLTL formula φ if it contains a finite good
“prefix” that satisfies φ. We denote by (σ, t) |= φ if σ
satisfies the LTL formula φ at time t. When t = 0, we omit
instant t and write it as σ |= φ. To provide further details on
the semantics of LTL, we refer the reader to the book [26].

III. FAILURE-ROBUST LTL PLANNING

In practice, robot failures may occur, and failed robots
cannot contribute to the overall task accomplishment. To
address this issue, we present our model for the failure-robust
planning problem in this section. Specifically, our model is
developed based on the following assumptions:

A1 Each robot may experience a failure at any point during
its execution;

A2 The failure is considered permanent, meaning that the
robot cannot recover from the failure;

A3 A failed robot is unable to contribute to the satisfaction
of atomic propositions for the global task;

A4 There can be at most k < n robot failures during the
entire execution.

To formalize the above setting, for each robot i ∈ I, we
introduce a binary sequence of the following form

ei = e0i e
1
i e

2
i · · · ∈ {0, 1}ω,

which is referred to as the enable sequence, to capture
the failure status of each robot. Specifically, for each time
instant t ∈ N, eti = 1 means that the ith robot is working
normally at instant t and eti = 0 means that the ith robot has
failed at instant t. Furthermore, due to the permanent failure
assumption A2, we require that

∀t ∈ N,∀∆ ∈ N : eti = 0 ⇒ et+∆
i = 0,

i.e., whenever robot i fails, it will stay failure from then on.
According to assumption A3, once a robot fails, it can

no longer contribute to the overall task. To this end, we use
symbol b to represent that a robot is at a “failure state”, and
we extend the labeling function to domain S∪{b} by adding
L(b) = ∅. Therefore, for any path pi of robot i, an enable

sequence ei induces a new failure-enabled path over S∪{b}
denote by pi ⊗ ei, where

(pi ⊗ ei)
t =

{
pt
i if eti = 1

b if eti = 0
, ∀t ∈ N. (2)

Similarly, the trace of pi ⊗ ei is L(pi ⊗ ei), where

L(pi ⊗ ei)
t =

{
L(pt

i) if eti = 1

∅ if eti = 0
, ∀t ∈ N. (3)

For the entire team of n robots, a joint enable sequence
is a n-tuple of form

e = (e1, e2, · · · , en),

where each ei is an enable sequence. Furthermore, by the
assumption of bounded number of failure robots in A4, we
further require that∑

i∈I
eti ≥ n− k, ∀t ∈ N.

We denote by Ek the set of all possible joint enable se-
quences, where k is the the maximum number of allowed
failure robots. Then given a joint path p ∈ P and a joint
enable sequence e ∈ Ek, the joint failure-enabled path is
p⊗ e = (p1 ⊗ e1, . . . ,pn ⊗ en) with trace L(p⊗ e).

Now, we formulate the failure-robust LTL path planning
problem as follows.

Problem 1 (Failure-Robust LTL Planning Problem): For
a team of n robots system in a workspace with states S
and neighborhood relation N , given an LTL formula φ, a
maximum number k of allowed failure robots, find a joint
path p ∈ P such that ∀e ∈ Ek : L(p⊗ e) |= φ.

We make the following remarks regarding our setting.
Remark 1: The integer k here represents the maximum

number of failures that the team can tolerate. This value can
be determined beforehand based on worst-case scenarios or
chosen to ensure the team’s ability to complete the task under
possible failures. It is important to note that k is typically
much smaller than the total number n of robots in the team.
If k is set to a value that is too large, it may indicate that
the hardware of the robots needs to be improved to increase
their overall robustness. In such a scenario, it would be more
appropriate to focus on improving the hardware rather than
relying on robust planning to compensate for a large number
of potential failures.

Remark 2: In our previous work [24], a reactive strategy
was obtained through a centralized approach, where each
robot needed to inquire about the global information of all
robots to be aware of their potential failures online. However,
in the current work, although the problem still needs to
be solved in a global manner, the implementation of the
joint plans is fully distributed in nature. This means that
each robot will only execute its own path in an open-loop
fashion without exchanging any information. This distributed
approach is more realistic for severe environments where
online communication is either costly or not possible at all.

IV. MILP-BASED FAILURE-ROBUST SOLUTION

In the field of LTL path planning, an efficient approach
is to use mixed-integer linear programming (MILP). This
approach was first proposed by [27] for the standard LTL
planning problem. The main concept behind this approach is
to introduce a set of variables that encode the states of the
robots and the satisfaction of the task. In this section, we
extend the use of MILP to the failure-robust LTL planning
problem.

A. MILP-Based Standard LTL Planning

Encoding Paths: As the task is specified by scLTL, we
restrict our attention to paths in finite form

p = p0p1 · · ·ph−1.

To solve the programming problem, we fix h and refer to
it as the planning horizon. In general, h can be an arbitrary
integer.

Then we introduce the following variables:
• state variables: p0,p1, . . . ,ph−1 ∈ Sn representing

the joint state of the team of robots within the planning
horizon;

State variables should satisfy the dynamic constraint in
Equation (1).

Encoding LTL Tasks: To encode the LTL task φ, let Φ
be the set of all sub-formulae in φ including the atomic
propositions. Then for each ϕ ∈ Φ, we introduce a set of

• LTL variables: z0ϕ, z
1
ϕ, . . . , z

h−1
ϕ ∈ {0, 1} representing

the satisfaction of each sub-formula at each instant;
The LTL variables should satisfy the LTL constraints
defined as follows: for each t ∈ {0, 1, . . . , h− 1}, we have

• atomic propositions: if ϕ = a ∈ AP , then

zta = 1 iff a ∈ L(pt) (4)

• negation: if ϕ = ¬ϕ′, then

ztϕ = 1 iff ztϕ′ = 0 (5)

• conjunction: if ϕ =
∧m

i=1 ϕi, then

ztϕ = 1 iff ∀i ∈ {1, 2, · · ·m} : ztϕi
= 1 (6)

• next: if ϕ = ⃝ϕ′, then

ztϕ = 1 iff zt+1
ϕ′ = 1 (7)

• until: if ϕ = ϕ1Uϕ2, then

ztϕ = 1 iff ztϕ2
= 1 or ztϕ1

= 1, zt+1
ϕ = 1 (8)

The authors are referred to [27] for more details on how to
expressed the aforementioned constraints in MILP formula-
tion. It should be noted that due to the finite planning horizon
in our study, certain temporal operators that require future
LTL variables, such as ⃝ and U, may not have meaningful
interpretations. However, we emphasize that as long as the
value of h is set to a sufficiently large value, the individual
variable losses will not affect the solution of the problem.

B. Robust constraint

In order to synthesize a failure-robust plan, we need to
take into account the effect of enable sequences. It should be
noted that the original definition of joint enable sequences
is infinite, while in the MILP formulation we restrict our
attention to a finite horizon of length h. Therefore, the
definition of joint enable sequences also needs to be modified
accordingly.

Specifically, for each robot i ∈ I, we introduce a set of
• failure-enable variables: e0i , e

1
i , . . . , e

h−1
i ∈ {0, 1}

representing the failure status of robot i.
Clearly, the failure-enable variables should satisfy the fol-
lowing permanent failure constraint

if eti = 0 then eji = 0,∀t ≤ j ≤ h, (9)

and the maximum failure constraint that ∀t ∈
{0, 1, . . . , h− 1} ∑

i∈I
eti ≥ n− k. (10)

Note that Equations (9) and (10) are constraints on the
finite joint enable sequences, and these constraints are related
with the planning horizon h and the maximum allowed
number of failure robots k. Therefore, we define Ek,h as
the set of all finite joint enable sequences satisfying the
aforementioned constraints.

Finally, by considering the failure-enable variables, the
atomic proposition variables should further been restricted by
considering both the labeling function and the enable vari-
able. Therefore, we need to replace the constraint on atomic
propositions (4) by the following label-enable constraint

zta = 1 iff a ∈ L(pt ⊗ et) (11)

Given an instance of Problem 1, the following robust-
feasibility problem can be formed:

Find p ∈ P

s.t. dynamic constraint (1) on p

label-enable constraint(11) on ∀a ∈ AP
LTL constraints (5− 8) on ∀ϕ ∈ Φ

satisfaction constraint z0φ = 1,

for ∀e ∈ Ek,h

V. SCALABLE SYNTHESIS FOR INITIAL ROBUSTNESS

In the failure-robust planning problem, we require the
planned path p ∈ P to satisfy

∀e ∈ Ek : L(p⊗ e) |= φ.

Hereafter, we refer the above condition to as global robust-
ness since the enable sequence set Ek consider possible
failures globally.

Here, we further restrict our attention to a special case
where robots are only allowed to fail initially. Furthermore,
for the worst-case analysis, we require that there are exactly

k failure robots initially. To this end, we define the set of all
possible initial-failure enable sequences by

Eint
k =

{
e ∈ Ek |

∑
e0i = n− k

}
.

Then we say that a planned path p ∈ P is initially-robust
if the LTL task is still fulfilled whenever there are exactly
k robots that fail initially, but all remaining robots operate
correctly for the entire planning horizon. This means that
the planned path is robust to initial robot failures, and we
only need to consider all possible initial failure scenarios to
ensure robustness.

Definition 5.1 (Initial Robustness): Given an LTL for-
mula φ, a maximum number k of failures, a joint path p
is said to be initially robust if ∀e ∈ Eint

k : L(p⊗ e) |= φ.
Based on the above definition, we define a new failure-

robust planning problem as follows.
Problem 2: For a team of n robots system in a workspace

with states S and neighborhood relation N , given an LTL
formula φ, a the maximum number k of allowed failure
robots, find a joint path p ∈ P such that ∀e ∈ Eint

k :
L(p⊗ e) |= φ}.

Note that initial robustness still does not specify which
robots are broken, so the planning path should still satisfy
the LTL task when any k robots are broken from the start.

Analogously, we can solve a MILP problem to get a
initially-robust joint path.

Find p ∈ P

s.t. dynamic constraint (1) on p

label-enable constraint(11) on ∀a ∈ AP
LTL constraints (5− 8) on ∀ϕ ∈ Φ

satisfaction constraint z0φ = 1,

for ∀e ∈ Eint
k,h

Here, Eint
k,h ⊆ Ek,h is the set of finite initial-failure enable

sequences that
∑

e0i = n− k.
The above MILP for initial robustness improves the origi-

nal MILP for global robustness in twofold. Firstly, the MILP
for initial robustness considers exact k failures of robots,
rather than any subset of k robots. Secondly, and more
importantly, the MILP for initial robustness only considers
robot failures that occur initially, which effectively avoids
the exponential growth of variables that would occur if robot
failures were considered over an extended planning horizon
h. By limiting the consideration of robot failures to the initial
state, the MILP for initial robustness is able to significantly
reduce the complexity of the problem and provide a more
efficient and manageable solution.

Due to the computational efficiency, our general idea is
to solve Problem 2 to find an initially-robust solution rather
than solving Problem 1. However, our objective is still to
require that the synthesized plan is globally-robust. Clearly,
if a planning is globally-robust, then it is initially-robust.
However, the converse direction is not true in general as
shown by the following counter examples.

Example 1: Suppose we have a team of two robots and
consider the case of k = 1. The global LTL task for the team
of robots is given by

φ = F(a ∧ ¬b) ∨ F(¬a ∧ b),

where a and b represent two different types of regions. The
task requires the robots to eventually visit either region a
or region b, but these two regions cannot be visited both.
If we only consider initial robustness, then we can design a
plan where a and b are visited simultaneously by two robots.
However, this plan is not globally-robust since if neither
robot fails, the entire task will fail as regions a and b may
be visited simultaneously and we can’t find a moment that
exactly one region is visited.

The above example illustrates why initial robustness does
not necessarily imply global robustness. To identify frag-
ments of LTL formulae where initial robustness and global
robustness are equivalent, we identify and exclude those
scenarios where initial robustness may lead to plans that do
not remain robust in the face of potential failures over an
extended planning horizon.

A. Free-Union LTL formulae

Although initial robustness and global robustness are not
equivalent in general, as we discussed earlier, there are
certain fragments of LTL formulae where they are equivalent.
In our work, we identify such a fragment of LTL formulae
called the free-union-closed LTL.

Definition 5.2: Let w = w0w1w2 · · · ,v = v0v1v2 · · · ∈
(2AP)ω be two infinite words. We say word w′ =
w′

0w
′
1w

′
2 · · · ∈ (2AP)ω is a free-union of w and v if for

some j ∈ N, we have

w′
i =

{
wi ∪ vi if i < j

wi if i ≥ j
(14)

We denote by w
⊎
v the set of all free-unions of w and v.

Intuitively, we can consider j ∈ N as the point in time
from which the word v becomes ineffective. Thus, v can
only contribute to the atomic propositions union of w up to
instant j − 1. It is important to note that the free-union of
w and v is not unique, as we are free to choose the instant
j to be any value from 0 to infinity.

Based on the free-union operator of two words, we intro-
duce the fragment of free-union-closed LTL. This fragment
ensures that any two words satisfying the LTL formula will
have any of their free-unions satisfy the same LTL formula.

Definition 5.3 (Free-Union-Closed LTL): Given an LTL
formula φ and let word(φ) = {σ ∈ (2AP)ω | σ |= φ}
be the set of all words satisfying φ. Formula φ is said to
be free-union-closed if for any w,v ∈ word(φ), we have
w

⊎
v ⊆ word(φ).

The main result of this section is that if an LTL formula
is closed under the free-union operator, then its initial ro-
bustness and global robustness are equivalent. Therefore, in
order to solve Problem 1, we can solve Problem 2 instead.
Due to space constraint, all proofs in this paper are omitted.

Theorem 1: For free-union-closed LTL formula φ, initial
robustness of joint path p is equivalent to global robustness,
i.e., ∀e′ ∈ Eint

k , L(p⊗ e′) |= φ ⇔ ∀e ∈ Ek, L(p⊗ e) |= φ.

B. Instances of Free-Union-Closed LTL

In this paper, we do not discuss how to systematically
check whether or not a given LTL formula is free-union-
closed. Instead, we identify a class of scLTL formulae that is
free-union-closed by construction. To the end, we start from
Boolean expressions and introduce the following definitions.

Definition 5.4: Let ϕ be a Boolean expression over AP .
We say that formula ϕ is

• monotone if for any X1, X2 ∈ 2AP , we have X1 |=
ϕ ∧X1 ⊆ X2 ⇒ X2 |= ϕ;

• closed if for any X1, X2 ∈ 2AP , we have X1 |= ϕ ∧
X2 |= ϕ ⇒ X1 ∪X2 |= ϕ.

The followings are some immediate observations for
monotonicity and closedness of Boolean expressions.

• First, we observe that if ϕ is monotone, then it is
also closed. But the converse direction is not true in
general. For example, for ϕ = ¬a, it is closed but is
not monotone;

• Second, we observe that, if ϕ1 and ϕ2 are monotone,
their conjunction ϕ1 ∧ ϕ2 and disjunction ϕ1 ∨ ϕ2 are
also monotone. However, the negation ¬ϕ1 may not be
monotone.

Based on the monotonicity and closedness of Boolean
expressions, now we show that two commonly used patterns
of scLTL formula are free-union-closed, and therefore, the
corresponding plan can be efficiently synthesized based on
initial robustness.

Proposition 1: Let ϕ be a Boolean expression over AP .
Then we have

• if ϕ is monotone, then LTL formulae Fϕ is free-union-
closed;

• if ϕ1 is closed and ϕ2 is monotone, then LTL formulae
ϕ1Uϕ2 is free-union-closed.

The above provided two patterns of LTL formulae are
widely used in describing the behavior of team of robots.
For example, Fϕ is a reachability requirement, while ϕ1Uϕ2

can present a priority requirement.

VI. CASE STUDY

In this section, we present an inspection maintenance task
as case study to illustrate the proposed failure-robust LTL
planning problem.

We consider a workspace illustrated in Figure 1
and define the set of atomic propositions as AP =
{c1, c2, c3, c4, c5, c6, c7, stat}. The yellow grids represent
seven checkpoints that the team of robots need to inspect,
and they are labeled as ci for i = 1, 2, . . . , 7. The green grids
denote maintenance stations of the robots and are represented
by the common proposition stat. Each robot start from the
maintenance stations and the overall task of the robots is to
inspect all checkpoints, which can be formally expressed by

Fig. 1. A failure-robust plan for a 4-robot system to inspect all the seven
checkpoints (represented as yellow grids) and return to the maintenance
stations (represented as green grids).

the following LTL formula

φ =
∧

i=1,...,7

Fci

By applying the MILP-based approach, we can synthesize
a failure-robust plan for k = 1 in the workspace shown
in Figure 1. The plan, illustrated in the figure, ensures that
each checkpoint is inspected by two different robots, thereby
ensuring robustness in the case of one possible robot failure
during the execution.

VII. CONCLUSIONS

This paper presented an approach for synthesizing joint
plans for teams of robots based on temporal logic specifi-
cations, ensuring robustness against a maximum of k robot
failures. We also identified a scalable fragment to improve
the scalability of the synthesis procedure. Our work is a
first step towards the synthesis of failure-robust plans for
LTL tasks. Several future directions can be explored to
extend our approach. First, we aim to provide a systematic
procedure for verifying whether an arbitrary LTL formula is
free-union-closed or not. Second, we plan to identify broader
fragments of free-union-closed LTL formulas to increase the
applicability of our approach. Finally, we aim to investigate
the performance optimization problem in addition to the
failure-robustness requirement.

REFERENCES

[1] Sepehr Seyedi, Yasin Yazicioğlu, and Derya Aksaray. Persistent
surveillance with energy-constrained uavs and mobile charging sta-
tions. IFAC-PapersOnLine, 52(20):193–198, 2019.

[2] Peng Lv, Guangqing Luo, Ziyue Ma, Shaoyuan Li, and Xiang Yin.
Optimal multi-robot path planning for cyclic tasks using Petri nets.
Control Engineering Practice, 2023.

[3] Wolfram Burgard, Mark Moors, Cyrill Stachniss, and Frank E Schnei-
der. Coordinated multi-robot exploration. IEEE Transactions on
robotics, 21(3):376–386, 2005.

[4] Anton Milan, Stefan Roth, and Konrad Schindler. Continuous energy
minimization for multitarget tracking. IEEE transactions on pattern
analysis and machine intelligence, 36(1):58–72, 2013.

[5] Alessandro Gasparetto, Paolo Boscariol, Albano Lanzutti, and Renato
Vidoni. Path planning and trajectory planning algorithms: A general
overview. Motion and Operation Planning of Robotic Systems:
Background and Practical Approaches, pages 3–27, 2015.

[6] Rupak Majumdar, Kaushik Mallik, Mahmoud Salamati, Sadegh Soud-
jani, and Mehrdad Zareian. Symbolic reach-avoid control of multi-
agent systems. In Proceedings of the ACM/IEEE 12th International
Conference on Cyber-Physical Systems, pages 209–220, 2021.

[7] Suiyi He, Jun Zeng, Bike Zhang, and Koushil Sreenath. Rule-
based safety-critical control design using control barrier functions with
application to autonomous lane change. In 2021 American Control
Conference, pages 178–185. IEEE, 2021.

[8] Chengyang Peng, Octavian Donca, and Ayonga Hereid. Safe path
planning for polynomial shape obstacles via control barrier functions
and logistic regression. arXiv preprint arXiv:2210.03704, 2022.

[9] Zhiyu Liu, Jin Dai, Bo Wu, and Hai Lin. Communication-aware
motion planning for multi-agent systems from signal temporal logic
specifications. In 2017 American Control Conference, pages 2516–
2521. IEEE, 2017.

[10] Xinyi Yu, Xiang Yin, Shaoyuan Li, and Zhaojian Li. Security-
preserving multi-agent coordination for complex temporal logic tasks.
Control Engineering Practice, 123:105130, 2022.

[11] Dhaval Gujarathi and Indranil Saha. Mt*: Multi-robot path planning
for temporal logic specifications. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 13692–13699.
IEEE, 2022.

[12] Weijie Shi, Zhou He, Ziyue Ma, Ning Rang, and Xiang Yin. Security-
preserving multi-robot path planning for Boolean specification tasks
using labeled Petri nets. IEEE Control Systems Letters, 2023.

[13] Shuo Yang, Xiang Yin, Shaoyuan Li, and Majid Zamani. Secure-by-
construction optimal path planning for linear temporal logic tasks. In
59th IEEE Conference on Decision and Control, pages 4460–4466,
2020.

[14] Bohan Cui, Keyi Zhu, Shaoyuan Li, and Xiang Yin. Security-aware
reinforcement learning under linear temporal logic specifications. In
IEEE International Conference on Robotics and Automation, pages
12367–12373, 2023.

[15] Yiannis Kantaros and Michael M Zavlanos. Sampling-based optimal
control synthesis for multirobot systems under global temporal tasks.
IEEE Transactions on Automatic Control, 64(5):1916–1931, 2018.

[16] Philipp Schillinger, Mathias Bürger, and Dimos V Dimarogonas.
Simultaneous task allocation and planning for temporal logic goals
in heterogeneous multi-robot systems. The international journal of
robotics research, 37(7):818–838, 2018.

[17] Sebastián A Zudaire, Martin Garrett, and Sebastián Uchite. Iterator-
based temporal logic task planning. In 2020 IEEE International
Conference on Robotics and Automation, pages 11472–11478. IEEE,
2020.

[18] Mustafa O Karabag, Cyrus Neary, and Ufuk Topcu. Planning not to
talk: Multiagent systems that are robust to communication loss. arXiv
preprint arXiv:2201.06619, 2022.

[19] Jianing Zhao, Keyi Zhu, Shaoyuan Li, and Xiang Yin. To explore
or not to explore: Regret-based LTL planning in partially-known
environments. In 22nd IFAC World Congress, 2023.

[20] Lifeng Zhou, Vasileios Tzoumas, George J Pappas, and Pratap
Tokekar. Resilient active target tracking with multiple robots. IEEE
Robotics and Automation Letters, 4(1):129–136, 2018.

[21] Lifeng Zhou, Vasileios Tzoumas, George J Pappas, and Pratap
Tokekar. Distributed attack-robust submodular maximization for
multirobot planning. IEEE Transactions on Robotics, 38(5):3097–
3112, 2022.

[22] Yunus Emre Sahin, Petter Nilsson, and Necmiye Ozay. Multirobot
coordination with counting temporal logics. IEEE Transactions on
Robotics, 36(4):1189–1206, 2019.

[23] Jianing Zhao, Shuqi Wang, and Xiang Yin. Failure-aware self-
diagnostic task planning under temporal logic specifications. In 22nd
IFAC World Congress, 2023.

[24] Feifei Huang, Xiang Yin, and Shaoyuan Li. Failure-robust multi-robot
tasks planning under linear temporal logic specifications. In 2022 13th
Asian Control Conference, pages 1052–1059. IEEE, 2022.

[25] Calin Belta, Boyan Yordanov, and Ebru Aydin Gol. Formal methods
for discrete-time dynamical systems, volume 15. Springer, 2017.

[26] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT press, 2008.

[27] Yunus Emre Sahin, Petter Nilsson, and Necmiye Ozay. Provably-
correct coordination of large collections of agents with counting
temporal logic constraints. In Proceedings of the 8th International
Conference on Cyber-Physical Systems, pages 249–258, 2017.

