
Diagnosis of Time-Sensitive Failures in Timed Discrete-Event Systems
with Metric Interval Temporal Logics

Weijie Dong, Shaoyuan Li and Xiang Yin

Abstract— In this paper, we address the problem of failure
diagnosis in timed discrete-event systems modeled by timed
automata. While existing works on this topic typically focus on
failures modeled as particular events, many complex applica-
tions, especially time-critical systems, require the ability to iden-
tify time-sensitive failures associated with real-time information
rather than just the occurrence of events at any time. To address
this challenge, we propose the use of metric interval temporal
logic (MITL) with continuous semantics on Boolean signals to
formally describe time-sensitive failures. We introduce a novel
concept called time-sensitive diagnosability (TS-diagnosability)
to characterize whether or not any violation of the MITL task
(i.e., failure) can be determined within a finite time elapsing.
Furthermore, we provide a necessary and sufficient condition
for verifying TS-diagnosability. Our results offer a more general
framework for failure diagnosis of timed discrete-event systems.

I. INTRODUCTION

Engineering cyber-physical systems (CPS), such as man-
ufacturing systems and intelligent transportation systems,
are critical infrastructures of modern society. These sys-
tems, which rely on complex connections among millions
of components and modules, require high-levels of safety.
However, their intricate operation logic make CPS vulnerable
to malfunction. As a result, failure diagnosis and detection
are crucial but challenging tasks to ensure the safety and
reliability of CPS. In this paper, we investigate failure
diagnosis problem in the context of discrete-event systems
(DES); see, e.g., some recent works [5], [7], [13]–[16], [19]–
[22] and survey paper [11].

Real-world engineering systems often have strict time
constraints that must be followed for proper behavior ex-
ecution. This real-time information is crucial for effective
fault diagnosis in these systems. The fault diagnosis problem
for timed systems has been extensively studied, as seen in
works such as [3], [4], [18], [23]. In [18], the concept of
diagnosability was introduced for timed systems modeled
by timed automata [1], and a diagnoser was developed as
an online algorithm that tracks all possible states and zones.
In [4], the diagnoser was realized as a deterministic timed
automaton. In [23], the authors explicitly modeled the tick
of a global clock by an event and investigated fault diagnosis
for automata containing the tick event. In [3], diagnosability
was analyzed for labeled time Petri net systems.

This work was supported by the National Natural Science Foundation of
China (62061136004, 62173226, 61803259).

W. Dong, S. Li and X. Yin are with Department of Automa-
tion and Key Laboratory of System Control and Information Process-
ing, Shanghai Jiao Tong University, Shanghai 200240, China. E-mail:
{wjd dollar,syli,yinxiang}@sjtu.edu.cn.

The aforementioned works on diagnosis of DES have only
considered faults modeled by a single event or state. How-
ever, in practice, many engineering systems have real-time
and temporal constraints that are necessary for achieving
their tasks. Such systems are referred to as time-critical
systems because any violation of the desired real-time con-
straint can lead to failures. Unfortunately, these complex
time-sensitive failures cannot be captured using a single fault
event in existing frameworks.

To address the above mentioned limitations, we propose
a novel approach that utilizes metric interval temporal logic
(MITL) [2] to formally describe time-sensitive failures in
timed DES modeled by a timed automaton. In this approach,
any violation of the given MITL specification is considered
a failure. We introduce a new concept called time-sensitive
diagnosability (TS-diagnosability) to determine whether any
time-sensitive failure can be diagnosed within a finite time.
Furthermore, we provide a necessary and sufficient condition
for verifying TS-diagnosability by leveraging the effective
translation from MITL formulae to timed transducers. To the
best of our knowledge, MITL has not been used to describe
failures in the context of timed DES before.

It is worth noting that, there are several methods in
the literature for representing system failures. For instance,
supervision patterns were utilized in [9], [10] to model
complex faulty behaviors. In [6], authors adopted Linear
Temporal Logic (LTL) formulae to define system failures
and studied the diagnosability verification problem. However,
these approaches were limited to untimed systems, and
they cannot capture the concept of time-sensitive failures
that arise when behaviors of timed systems violate strict
time constraints. Therefore, our new approach provides a
more expressive framework for the diagnosis of time-critical
systems, which has not been explored in the literature on
DES so far.

II. PRELIMINARIES

A. System Model

A time interval ∆ is a convex subset of R+ in the fol-
lowing forms: [0, a], [0, a), (0, a], (0, a), (0,∞) and [0,∞),
where a ∈ R+ \ {0}. In particular, we define the singular
time interval as ∆ = [0, 0]. The length of time interval ∆ is
exactly the right-end point, denoted by |∆|, e.g., |[0, a)| = a.
Two time intervals ∆1 and ∆2 are adjacent if either ∆1 is
right open and ∆2 is left closed, or ∆1 is right closed and
∆2 is left open. A time interval sequence ∆0∆1∆2 · · · is
well-defined if for any i ≥ 0, the time intervals ∆i and

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 6821

∆i+1 are adjacent. In this paper, we only consider well-
defined time interval sequences. Let Σ be a finite alphabet.
We define a signal over Σ by s = (p0,∆0)(p1,∆1) · · · ,
where ∆0∆1 · · · is a time interval sequence and pi is a
subset of Σ, for any i ≥ 0. We denote by Sig(Σ) the set
of all signals over Σ. The time length of signal s is denoted
by time(s) =

∑
i∈{0,1,··· } |∆i|. A signal is infinite if its time

length is infinite; otherwise it is finite. For finite set Σ, we
denote by |Σ| its cardinality. A sequence s = q1q2 · · · qn(· · ·)
is a finite (or infinite) sequence over Σ if qi ∈ Σ for all
i ≥ 0. We denote by Σ∗ and Σω the set of all finite and
infinite sequence over Σ, respectively.

Let X denotes the set of clock variables whose codomain
is R+. Clock valuation v is a function assigning each clock
variable a non-negative real number, i.e., v : X → R+. We
denote by VX the set of all clock valuations over clock set
X , and by 0X the valuation that assigns 0 to every clock.
Given a clock valuation v ∈ VX and a real number t ∈ R+,
we define the valuation v+t by (v+t)(c) = v(c)+t, for any
c ∈ X . For a subset of clock variables Y ⊆ X , we denote
by v[Y←0] the valuation that resets clock variables in Y to 0
and reserves values of other clocks. Given a clock valuation
v : X → R+ and a subset X ′ ⊆ X , we say vX ′ : X ′ → R+

is a reduced valuation if ∀c ∈ X ′ : vX ′(c) = v(c).
An atomic clock constraint of a clock variable c ∈ X

is of the form c ∼ a, where a ∈ N+ is a constant and
∼∈ {<,≤,=,≥, >}. A valuation v ∈ VX satisfies an atomic
clock constraint c ∼ a whenever v(c) ∼ a. A clock constraint
g is a Boolean combination of atomic clock constraints. We
denote by C(X) the set of all clock constraints over clock set
X . Given a clock constraint g ∈ C(X), a valuation v ∈ VX
satisfies g is denoted by v |= g.

In this paper, we consider a timed system modeled by a
variant of timed automaton, called interval automaton (IA)
[1], which is a seven-tuple

G = (Q,Q0,X , inv, E,AP, L), (1)

where Q is a finite set of discrete states, Q0 ⊆ Q is the
set of initial discrete states, X is a finite set of clocks,
inv : Q → C(X) is invariant function which assigns each
state q ∈ Q a clock constraint inv(q) specifying the length
of time the system can stay at q, E ⊆ Q×C(X)× 2X ×Q
is the transition relation such that transition (q, g,Y, q′) ∈ E
indicates a transition from q to q′ satisfying the guard g and
resetting all clocks in set Y ⊆ X to zero after this transition,
AP is a finite set of atomic propositions and L : Q → 2AP

is a labeling function assigning a set of atomic propositions
to each discrete state. To formalize the semantics of an IA
G, we define the time state (or simply state) of G as a
pair s = (q, v) where q ∈ Q and v ∈ VX . We denote
by S(G) ⊆ Q × VX the set of all states in G. The set of
initial states are denoted by S0(G) = {(q0, 0X) : q0 ∈ Q0}.
There are two types of state transitions in an IA G, discrete
transition and time transition, which are defined by: for any
states (q, v), (q′, v′) ∈ S(G) and a time interval ∆,

• time transition: there is a transition (q, v)
∆−→ (q, v +

|∆|) whenever for any t ∈ ∆, v + t |= inv(q);

• discrete transition: there is a discrete transition (q, v)
σ−→

(q′, v′) whenever there exists a transition (q, g,Y, q′) ∈
E such that v |= g and v′ = v[Y←0].

In particular, we denote by (q, v)
ε−→ (q, v) the empty

transition. For simplicity, we consider mixed transition

(q, v)
(∆,δ)−−−→ (q′, v′) which represents that there is another

state (q′′, v′′) such that (q, v) ∆−→ (q′′, v′′) is a time transition
and (q′′, v′′)

δ−→ (q′, v′) is a discrete transition or empty
transition, where δ ∈ {σ, ε}.

The executions of an IA is modeled by runs. A run of G
starting from state s = (q, v) ∈ S(G) is a sequence

π =
δ0−→
v0

(q0,∆0)
δ1−→
v1

(q1,∆1)
δ2−→
v2

(q2,∆2) · · ·

satisfying following conditions: (i) initial condition: q0 =
q, v0 = v; (ii) time condition: ∆ = ∆0∆1 · · · is a time
interval sequence; (iii) transition condition: for any i ≥ 0,
δi ∈ {σ, ε} and the transition (qi, vi)

(|∆i|,δi+1)−−−−−−−→ (qi+1, vi+1)
holds. Given a run π, we define time(π) =

∑
i∈{0,1,··· } |∆i|

as the total time elapsing of π. Run π is said to be infinite
if time(π) = ∞; otherwise π is finite. Given an IA G, we
assume each run π ∈ Run∗(G) obeys finite-variability [2],
that is, during finite time elapsing, there are finite discrete
transitions. A state (q, v) ∈ S(G) is said to be a timelock
[17] if there are no infinite runs starting from it and G is
timelock-free if all of its reachable states are not timelock.
We assume that the IA is timelock-free in this paper.

For a finite run π =
δ0−→
v0

(q0,∆0)
δ1−→
v1

· · · δn−→
vn

(qn,∆n), we

denote by last(π) = (qn, vn+|∆n|) the last state in π, and by
lastd(π) = qn its last discrete sate. Let S1 ⊆ S(G) be a state
set in G. The set of finite runs and infinite runs starting from
states in S1 are denoted by Run∗(G,S1) and Runω(G,S1),
respectively; we denote the set of all runs starting from
S1 by Run(G,S1) = Run∗(G,S1) ∪ Runω(G,S1). For
simplicity, we write Run∗(G) and Runω(G) to denote
Run∗(G,S0(G)) and Runω(G,S0(G)), respectively. The
set of all runs generated by G is denoted by Run(G) =
Run∗(G)∪Runω(G). The concatenation of two runs π, π′ ∈
Run(G,S(G)) is denoted by ππ′ ∈ Run(G,S(G)). Given
a set of runs Π ⊆ Run(G), we define the prefix-closure
of Π by Pre(Π) = {π′ ∈ Run∗(G) : ∃π ∈ Π,∃π′′ ∈
Run(G,S(G)) s.t. π′π′′ = π}. For any run π ∈ Run(G),
we write Pre({π}) as Pre(π) for the sake of simplicity.

Given a run π, we denote by sπ = (q0,∆0)(q1,∆1) · · ·
the timed state sequence of π and denote by Path(G) ={sπ :
π ∈ Run(G)} all timed state sequences of G. Using labeling
function, we obtain timed trace trace(π) ∈ Sig(AP) of run
π by replacing each discrete state qi in sπ with L(qi), for i ≥
0, i.e., trace(π) = (L(q0),∆0)(L(q1),∆1)(L(q2),∆2) · · · .
We denote by L(G) all timed traces generated by system
G. For an IA G with clock set X , we denote by cX ′(G) the
largest integer a such that c ∼ a ∈ C(X ′) is a subformula of
some clock constraint in G, where X ′ ⊆ X and ∼∈ {≤, <
,≥, >,=}. Then, we define the untimed state sequence of a
run π ∈ Run(G) by a mapping unt : Run∗(G) → Q∗ such
that the mapping only keeps discrete states the run visits.

6822

1

{c≤1}

∅\o1
2

∅\o2
3

{p}\o3

4{p}\o2

5 ∅\o2

6 ∅\o3

(T,{c}) (c≥1,{c})

(c<1,{c})

(T,∅)

(T,∅)
(T,∅)

Fig. 1: Interval automaton G. For each guard, T is the
abbreviation of true. The conjunction of elements in the
set next to discrete state is invariant of the discrete state,
and if the invariant is true, we omit it.

Formally, given π ∈ Run∗(G), unt is defined recursively
by: (i) for π =

δ−→
v

(q,∆), we have unt(π) = q; (ii) for π =

π′
δ−→
v

(q,∆), we have unt(π)=unt(π′) if δ=ε, and unt(π)=
unt(π′)q, if δ=σ.

In the context of failure diagnosis, the observation is not
perfect. Given an IA G = (Q,Q0,X , inv, E,AP, L), we de-
fine by O the set of output symbols. Furthermore, we assume
the external observer can measure the global time. Then we
define the output function as H : Q → O. Given a run
π =

δ0−→
v0

(q0,∆0)
δ1−→
v1

(q1,∆1) · · · , the observation of π is

denoted by ρπ = (H(q0),∆0)(H(q1),∆1)(H(q2),∆2) · · · .
Example 1: Let us consider IA G, depicted in Figure 1,

where we have AP = {p} and O = {o1, o2, o3}. The
labeling function L and output function H are specified
by the label next to each state, where the LHS of “\”
represents the set of atomic propositions assigned to this
state modeling the internal behaviors of the system, and
the RHS of “\” represents output label generated by this
state. For example, {p}\o3 above state 3 means that the
atomic proposition p is true at state 3 and we observe
label o3 at this point. Then, we can obtain a run π =

ε−−→
0X

(1, [0, 1])
σ−→
v1

(2, (0, 1]))
ε−→
v2

(2, (0, 0.5]))
σ−→
v3

(3, (0, 0.5]).

The time elapsing of π is time(π) = 3. Then, we can obtain
its timed state sequence sπ = (1, [0, 1])(2, (0, 1])(2, (0, 0.5])
(3, (0, 0.5]) and the untimed state sequence of π is
unt(π) = 123. The timed trace and observation of π
are trace(π)=(∅, [0, 1])(∅, (0, 1])(∅, (0, 0.5])(p, (0, 0.5]) and
ρπ = (o1, [0, 1])(o2, (0, 1.5])(o3, (0, 0.5]), respectively.

B. Region Automata

We briefly review the region automata [1]. We first define
the clock regions of IA G. A clock region is a class of
equivalent valuations and we denote by R(G) the set of all
clock regions of G. For a valuation v ∈ VX , the unique clock
region corresponding to v in R(G) is denoted by [v]G. Given
two clock region r, r′ ∈ R(G), r′ is the successor region of
r if r′ can be obtained by time elapsing. For a clock region
r ∈ R(G) and a clock subset X ′ ⊆ X , we define reduced
clock region by r(X ′) = {vX ′ : v ∈ r}. Specifically, the
region automaton of G is a 4-tuple

RA(G) = (QR, QR
0 ,Σ

R, ER),

where QR = Q × R(G) is a finite set of states, QR
0 =

{(q0, [0X]G) : q0 ∈ Q0} is the set of initial states, ΣR =

{τ, σ} is a set of events and ER : QR × ΣR → 2Q
R

is the

transition function, which is defined by: for (q, r), (q′, r′) ∈
QR and λ ∈ ΣR, we have transition (q′, r′) ∈ ER((q, r), λ)
if (i) λ = σ and there is a discrete transition (q, v)

σ−→ (q′, v′)
for v ∈ r and v′ ∈ r′; or (ii) λ = τ and there is a time
transition (q, v)

∆−→ (q′, v′) for v ∈ r and v′ ∈ r′, where r′

is a time successor of r.
A run in RA(G) is a finite (or infinite) sequence π =

qR0
λ0−→ qR1

λ1−→ · · · qRn (· · ·), where qRi ∈ QR, λi ∈ ΣR and
qRi+1 ∈ ER(qRi , λi), for i = 0, 1, · · · , n(· · ·). We denote
by RunR(G) all runs generated by RA(G). Given a finite
run π = qR0

λ0−→ · · · qRn , we denote the last state of π by
lastR(π) = qRn and we say π is a cycle if qRn = qR0 . The
region automaton abstracts time transitions of the original
system and preserves the discrete transitions. Specifically, we
define a mapping untR(πR) : RunR(G) → Q∗ for run πR ∈
RunR(G) such that the mapping only reserves discrete state
component in states that are visited by πR. Formally, untR is
defined recursively by: (i) for πR = (q, r) ∈ RunR(G), we
have untR(πR) = q; (ii) for πR = π′

λ−→ (q, r) ∈ RunR(G)
we have untR(πR) = untR(π′)q if λ = σ, and untR(πR) =
untR(π′) if λ = τ . It is known that region automaton
RA(G) generates the same untimed runs with the original
IA G [1]. Specifically, there exists a run π ∈ Run∗(G) and
last(π) = (q, v) iff there is a run πR ∈ RunR(G) such that
untR(πR) = unt(π) and lastR(πR) = (q, [v]G).

C. Metric Interval Linear Temporal Logic

Let AP be a finite set of atomic propositions. A Metric
Interval Linear Temporal Logic (MITL) formula φ is con-
structed based on the following syntax [2]:

φ ::= ⊤ | p | ¬φ | φ1 ∧ φ2 | φ1UIφ2,

where UI denotes the “until” temporal operator. Here I ⊆
Q≥0 is an interval of non-negative rational numbers with
integer end-points, and we restrict that I is not a singleton.
Based on the fundamental syntax, we can derive other
Boolean operators, e.g., φ1 → φ2 = ¬φ1 ∨ φ2. Similarly,
we can induce temporal operators ♢I “eventually” by ♢Iφ =
⊤UIφ and □I “always” by □Iφ = ¬♢I¬φ.

MITL formulae are evaluated on infinite signals over
atomic proposition set. The reader is referred to [8] for
more details on the continuous-time semantics of MITL. We
denote by s |= φ if a signal s ∈ Sig(Σ) satisfies formula
φ. We denote by signal(φ) the set of all signals satisfying
the formula φ. We say that a run π ∈ Runω(G) satisfies
specification φ if its timed trace satisfies φ, i.e., trace(π) |=
φ. For simplicity, with a slight abuse of notations, we write
π |= φ whenever trace(π) |= φ. To capture all signals
satisfying MITL specification φ, we introduce a variant of
IA, called timed transducer [8], [12].

Definition 1 (Timed Transducer): A timed transducer is
an 8-tuple B = (X,xB

0 ,ΣB ,XB , invB , ξ, η,Xm), where X
is a finite set of states, xB

0 is the initial state and xB
0 ̸∈ X ,

ΣB is an alphabet, XB is a finite set of clocks, invB :
X → C(XB) is an invariant function, ξ ⊆ X ∪ {xB

0 } ×
C(XB) × 2XB × X is the transition relation, η : X ∪ ξ →

6823

x1
{p, T}

x3
{¬p, c < 2}

x2
{¬p, c < 2}

x4
{¬p, T}

(⊤, T, ∅) (⊤, T, {c})

(⊤, T, {c})

(⊤, c < 2, ∅)

(
⊤,
T,
{c}

) (
⊤,

c=2,
∅

)

(¬p, T, {c})

(p, c = 2, ∅)

(
p,

c<2,
∅

)
(⊤,T,∅)

(p,c<2,{c})

(p,c=2,{c})

(¬p, T, ∅) (p, c < 2, {c})

Fig. 2: Timed transducer Bφ of specification φ = ♢(0,2)p
with AP = {p}. All states and transitions are accepting.

BC(ΣB) is the labeling function, where BC(ΣB) denotes
the Boolean combinations over ΣB , and Xm ⊆ X ∪ ξ is a
set of accepting states and transitions.

Similar to classical IA in Equation (1), there are two
types of transitions in timed transducer: time transition and
discrete transition, while the discrete transition consumes a
time instant in timed transducer. Specifically, a run of timed
transducer B over a signal s ∈ Sig(ΣB) is an alternation
of discrete and time transitions stating from the initial state
(xB

0 , v0), i.e., π = (xB
0 , v0)

e0−→ (x1, v1)
t1−→ (x1, v1+t1)

e1−→
(x2, v2) · · · , where v0 = 0X , e0 = (xB

0 , g0,Y0, x1) ∈ ξ
such that v0 |= g0, v1 = v0[Y0←0] and s(0) |= η(e1), and
for any i = 1, 2, · · · , we have ti ∈ R+ \ {0} and (i)
ei = (xi, g,Y, xi+1) ∈ ξ, vi + ti |= g, vi+1 = vi[Y←0] and
s(
∑i

k=1 tk) |= η(ei); (ii) for any t′ ∈ (0, ti), vi + t′ |=
invB(xi) and s(t′ +

∑i−1
k=1 tk) |= η(xi). An infinite signal

s ∈ Sig(ΣB) is accepted by timed transducer B if the
run π over s visits the state in Xm for unbounded time
duration or the transition in Xm for infinite times, i.e.,
inf(π) ∩ Xm ̸= ∅, where inf(π) contains all states in X
visited by π for unbounded time duration and all transitions
enabled in π for infinite number of times. We denote by
Lω
m(B) the set of all signals accepted by B.
Given an MITL formula φ, we can translate φ into a timed

transducer Bφ with alphabet ΣB = AP such that Lω
m(Bφ) =

signal(φ) [8], [12]; we say such Bφ is associated with φ.

III. TIME SENSITIVE DIAGNOSABILITY

In the failure diagnosis problem, system is assumed to be
subject to faults. In this paper, we use an MITL formula φ
to model the time-sensitive specifications for a timed system
and define faults by runs violating φ. Specifically, we denote
by Runω

F (G) = {π ∈ Runω(G) : π ̸|= φ} the set of infinite
faulty runs in an IA G. Then we say a finite run is faulty if
any of its infinite extension is faulty and the set of finite
faulty runs is denoted by Run∗F (G) = {π ∈ Run∗(G) :
∀ππ′ ∈ Runω(G) s.t. ππ′ ̸|= φ}. Similarly, an infinite run
π is normal if it satisfies φ, and the set of infinite normal
runs is Runω

N (G) = {π ∈ Runω(G) : π |= φ} . A finite run
is normal if it is a prefix of some infinite normal run and the
set of finite normal runs is Run∗N (G) = Pre(Runω

N (G)) =
{π ∈ Run∗(G) : ∃ππ′ ∈ Runω(G) s.t. ππ′ |= φ}. It is
obvious that the set of finite normal runs is the complement
of the set of finite faulty runs, i.e., Run∗N (G) = Run∗(G) \
Run∗F (G). Then we define Time-Sensitive Diagnosability
(TS-diagnosability) as follows:

Definition 2 (Time Sensitive Diagnosability): Let G =
(Q,Q0,X , inv, E,AP, L) be an IA with output labels O, ob-
servation function H , and φ be an MITL formula describing
the normal behaviors. We say system G is time-sensitively
diagnosable (TS-diagnosable) if

(∀π1 ∈ RunωF (G))(∃π′1 ∈ Pre(π1))[TS-Diag],

where the diagnosis condition TS-Diag is

(∀π2 ∈ Run∗(G))[ρπ2
= ρπ′

1
⇒ π2 ∈ Run∗F (G)].

TS-diagnosability says that for any infinite faulty run π1, it
has a finite prefix π′1 such that for any finite run π2, if it has
the same observation with π′1, then π2 is a finite faulty run.

Example 2: Again, we consider IA G in Figure 1. We
assume that the specification of G is given by MITL formula
φ = ♢(0,2)p. Note that there exists an infinite faulty run

πf =
ε−−→

0X
(1, [0, 1])

δ1−→
v1

(2, (0, 1.5])
δ2−→
v2

(3, (0, 0.5])

δ3−→
v3

(5, (0,∞)) (2)

such that trace(πf) = (∅, [0, 2.5])(p, (0, 0.5])(∅, (0,∞)) ̸|=
φ, i.e., πf ∈ Runω

F (G). However, there exists another run

πn =
ε−−→

0X
(1, [0, 1])

δ1−→
v1

(2, (0, 0.5])
δ2−→
v2

(4, (0, 1])

δ3−→
v3

(6, (0, 0.5])
δ4−→
v4

(5, (0,∞)), (3)

whose timed trace is trace(πn) = (∅, [0, 1.5])(p, (0, 1])
(∅, (0,∞)) |= φ, i.e., πn ∈ Runω

N (G), such that the
observations of πf and πn are the same, i.e, ρπf

= ρπn
=

(o1, [0, 1])(o2, (0, 1.5])(o3, (0, 0.5])(o2, (0,∞)). Therefore,
for any prefix π′f ∈ Pre(πf), there exists a finite normal
run π′n ∈ Pre(πn) such that ρπ′

f
= ρπ′

n
. By Definition 2,

system G is not TS-diagnosable.

IV. VERIFICATION OF TIME SENSITIVE DIAGNOSABILITY

A. Constrained System

Given an IA G and a specification φ, to verify TS-
diagnosability, we first recognize all normal runs and faulty
runs, respectively. Recall that for any MITL formula φ, we
can obtain a timed transducer Bφ such that Lω

m(Bφ) =
signal(φ). To capture all normal runs, we construct the
positive constrained system.

Definition 3 (Positive Constrained System): Given an IA
G = (Q,Q0,X , inv, E,AP, L) and a timed transducer
Bφ = (Xp, xp

0,AP,X p
B , invpB , ξ

p, ηp, Xp
m), the positive con-

strained system is defined as a new-tuple

Tp = (Qp, Qp,0,Xp, invp, Ep, Qp,m),

where

• Qp = QY ∪ QZ is the set of discrete states, where
QY = Q×Xp and QZ = Q× ξp;

• Qp,0 = {(q0, (xp
0, gB ,YB , x1)) ∈ Q0 × ξp : L(q0) |=

ηp((xp
0, gB ,YB , x1))} is the set of initial discrete states;

• Xp = X∪X p
B∪{cz} is a finite set of clocks, where cz /∈

X∪X p
B is a new clock;

6824

• invp : Qp → C(Xp) is the invariant function defined
by: for any state qp = (q, x) ∈ Qp, we have

invp(qp) =
{

inv(q) ∧ invpB(x), if qp ∈ QY

inv(q) ∧ cz = 0, if qp ∈ QZ
;

• Ep ⊆ Qp×C(Xp)× 2Xp ×Qp is the transition relation
defined by:

– for any (q, x′), (q′, x′) ∈ QY and (q, (x, gB ,YB ,
x′)) ∈ QZ , we have

L(q) |= ηp(x′) ⇒
((q, (x, gB ,YB , x

′)), inv(q),YB , (q, x
′)) ∈ Ep,

L(q′) |= ηp(x′) ∧ (q, g,Y, q′) ∈ E ⇒
((q, (x, gB ,YB , x

′)), g,Y ∪ YB , (q
′, x′)) ∈ Ep;

– for any (q, x), (q′, x) ∈ QY , we have

L(q′) |= ηp(x) ∧ (q, g,Y, q′) ∈ E ⇒
((q, x), g ∧ invpB(x),Y, (q′, x)) ∈ Ep;

– for any (q, x) ∈ QY and (q, (x, gB ,YB , x
′)),

(q′, (x, gB ,YB , x
′)) ∈ QZ , we have

L(q) |= ηp((x, gB ,YB , x
′)) ⇒ ((q, x), inv(q)∧

gB , {cz}, (q, (x, gB ,YB , x
′))) ∈ Ep,

L(q′) |=ηp((x,gB ,YB , x
′))∧(q, g,Y, q′) ∈ E⇒

((q, x),g∧gB ,Y∪{cz},(q′,(x,gB ,YB ,x
′)))∈Ep;

• Qp,m= {(q, x) ∈ Qp : x ∈ Xp
m} is accepting states set.

Intuitively, the positive constrained system is constructed
by synchronizing the original system G with the timed
transducer Bφ according to internal behaviors. Specifically,
each state (q, x) ∈ QY is a pair of state in system G and
state in Bφ matching the time interval when the label of q
satisfies the label of x, while state (q, e) ∈ QZ is a pair of
state in system G and transition in Bφ representing the time
instant such that the label of q satisfies the label of e. Each
transition in Bφ consumes one time instant. To match the
time elapsing, we actually regard each transition in Bφ as a
new discrete state with invariant cz = 0.

A discrete state (q, x) ∈ Qp is accepting if its second com-
ponent is accepting in Bφ. Let πp =

δ0−→
v0

((q0, x0),∆0)
δ1−→
v1

((q1, x1),∆1)
δ2−→
v2

· · · be an infinite run of Tp. We say that

π is accepted by Tp if it visits discrete state (q, x) ∈ Qp,m

for infinite number of times. We denote by Runm(Tp) all
infinite runs accepted by Tp. Given a timed sequence s =
((ql0, q

r
0),∆0)((q

l
1, q

r
1),∆1), · · · , we denote the left and right

timed state sequence of it by sl = (ql0,∆0)(q
l
1,∆1) · · · and

sr = (qr0,∆0)(q
r
1,∆1) · · · , respectively. By construction of

Tp, an infinite run πp ∈ Runω(Tp) is accepted by Tp if there
exists an infinite normal run π ∈ Runω(G) such that slπp

=
sπ and trace(π) |= φ. For any discrete state (q, x) ∈ Qp,
we define the observation of it as Hp((q, x)) = H(q). Then,
we have the following equivalence

∃π ∈ Runω
N (G)⇔

∃πp ∈ Runm(Tp), s
l
πp

= sπ ∧ ρπp
= ρπ. (4)

1, xp
0→x3

{
c1≤1
cz =0

}
1, x3

{
c1≤1
c2<2

}
2, x3

{c2<2}

4, x1→x4{cz =0} 4, x1 2, x3→x1{
c2<2
cz =0

}
6, x4 5, x4

({c1≤1},{c2}) ({c2<2},{c1})

({c2<2},{cz})
({c1<1},{c1})(T,{cz})

(T,∅)
(T,∅)

(a) Part of positive constrained system Tp.

1, xn
0 →x4

{
c1≤1
cz =0

}
1, x4

{c1≤1}

1, x4→x2

{
c1≤1
cz =0

}

2, x2→x1{cz =0} 2, x2

{c2<2}

1, x2{
c1≤2
c2<2

}
3, x1 5, x1→x4

{cz =0}

5, x4

({c1≤1},∅) ({c1≤1},{cz})

({c1≤1},{c2})
({c2<2},{c1})({c2=2},{cz})

({c1≥1},∅)

(T,{cz}) (T,∅)

(b) Part of negative constrained system Tn.

Fig. 3: Constrained system Tp and Tn in (a) and (b), respec-
tively. We represent each state (q, (x, gB ,YB , x

′)) ∈ QZ by
(q, x → x′).

On the other hand, to recognize all faulty runs, we can
obtain the negative constrained system Tn = (Qn, Qn,0,Xn,
invn, En, Qn,m) based on the time transducer B¬φ = (Xn,
xn
0 ,AP,Xn

B , invnB , ξn, ηn, Xn
m) in the similar way.

To recognize finite normal runs, we first translate Tp

into its region automaton TR
p = (QR

p , Q
R
p,0,Σ

R
p , E

R
p , QR

p,m),
where QR

p,m ⊆ QR
p is the set of accepting states defined

by QR
p,m = {(q, r) ∈ QR

p : q ∈ Qp,m}. An infinite run in
TR
p is accepted if it visits states in QR

p,m infinitely and we
denote by RunR

m(Tp) the set of all infinite runs accepted by
TR
p . By Equation (4), we know that finite run π ∈ Run∗(G)

is normal iff there exists a finite run πp ∈ Run∗(Tp) such
that slπp

= sπ and πp can be extended to an infinite run
visiting states in Qp,m infinitely, i.e., πp ∈ Pre(Runm(Tp)).
To recognize all runs in Pre(Runm(Tp)), we say a state
qp = (q, r) ∈ QR

p is normal feasible if RunR
m(TR

p (qp)) ̸= ∅,
where TR

p (qp) = (QR
p , {qp},ΣR

p , E
R
p , QR

p,m) is equivalent to
TR
p except that the initial state is set to qp. Then, we denote

by QR
feas ⊆ QR

p the set of all normal feasible states in TR
p .

We have the following equivalence

(π ∈ Pre(Runm(Tp))) ⇔ (∃πR ∈ RunR(TR
p))

(unt(π) = untR(πR) ∧ lastR(πR) ∈ QR
feas). (5)

Based on the normal feasible state set QR
feas, we say a state

(q, v) ∈ Qp × VXp
is normal feasible if there exists a state

(q, r) in QR
feas such that v ∈ r. We denote by Qfeas =

{(q, v) ∈ Qp × VXp : ∃(q, r) ∈ QR
feas, v ∈ r} the set of all

feasible states in Tp. Then, for any run π ∈ Run∗(Tp), we
have the following equivalence

π ∈ Pre(Runm(Tp)) ⇔ last(π) ∈ Qfeas. (6)

Example 3: Still, we consider IA G in Figure 1 with
specification φ=♢(0,2)p. We translate φ to timed transducer
Bφ as shown in Figure 2, where we omit the initial state
xp
0 and all states and transitions are accepting. The timed

6825

1, x
p
0 →x3

{c1=c2
=cz=0}

1, x3
{c1=c2
=cz=0}

1, x3
{0<c1=c2
=cz<1}

1, x3
{c1=c2
=cz=1}

4, x1
{c1=cz=0,
1<c2<2}

2, x3→x1
{0<c1<1,
1<c2<2,
cz=0}

2, x3
{1<c2=cz<2,

0<c1<1}

2, x3
{c2=cz=1,

c1=0}

4, x1
{0<c1=cz<1,

1<c2<2}

4, x1
{0<c1=cz<1,

c2=2}

4, x1
{0<c1=cz<1,

c2>2}

4, x1
{c1=cz=1,

c2>2}

5, x4
{1<c1<2,
0<cz<1,
c2>2}

6, x4
{1<c1<2,
0<cz<1,
c2>2}

6, x4
{c1=1,c2 >2,

cz=0}

4, x1→x4
{c1=1,c2 >2,

cz=0}

5, x4
{c1=2,c2 >2,

cz=1}

5, x4
{c2>c1>2,
1<cz<2}

5, x4
{c2>c1>2,

cz=2}

5, x4
{c2>c1>

cz>2}

σ τ τ

σ

τσσ

τ

τ τ τ

σ

στσ

τ
τ τ τ

τ

Fig. 4: Part of region automaton of positive constrained
system TR

p , where all states are normal feasible.

transducer B¬φ is exactly same as Bφ except that we replace
edge (⊤,T, ∅) from xp

0 to x1 and edge (⊤,T, {c}) from xp
0

to x3 in Bφ with edge (⊤,T, {c}) from xp
0 to x2 and edge

(⊤,T, ∅) from xp
0 to x4, respectively, which are omitted.

Based on Bφ and B¬φ, we construct positive constrained
system Tp and negative positive constrained system Tn,
which are partially shown in Figure 3(a) and Figure 3(b),
respectively, with all states accepting. The part of Tp depicted
in Figure 3(a) contains the normal run πn in Equation (3)
and the faulty run πf in Equation (2) is embedded in the
part of Tn shown in Figure 3(b). Then, we construct the
region automaton TR

p and the part that abstracts the part Tp

in Figure 3(a) is depicted in Figure 4, where all states are
accepting. Since, starting from each state in Figure 4, there
is an infinite run that can reach the final state ((5, x4), {c1>
2, c2>2, cz>2}) as highlighted by red color and can repeat
the self loop infinitely, all states are normal feasible.

B. Verification System

Given IA G and MITL specification φ, we can obtain Tp=
(Qp, Qp,0,Xp, invp, Ep, Qp,m) and Tn = (Qn, Qn,0,Xn,
invn, En, Qn,m). Then we construct the verification system

V = (QV , QV,0,XV , invV , EV)

where
• QV = {(qn, qp) ∈ Qn×Qp : Hn(qn) = Hp(qp)} is the

set of discrete states;
• QV,0 = {(qn, qp) ∈ Qn,0 × Qp,0 : Hn(qn) = Hp(qp)}

is the set of initial discrete states;
• XV = Xn ∪ Xp is a finite set of clocks;
• invV : QV → C(XV) is the invariant function defined

by: for any state qV = (qn, qp) ∈ QV , invV (qV) =
invn(qn) ∧ invp(qp);

• EV ⊆ QV × C(XV) × 2XV × QV is the transition
relation, defined by:

- (qn,gn,Yn,q
′
n)∈En⇒((qn, qp),gn,Yn,(q

′
n, qp))∈EV

- (qp,gp,Yp, q
′
p)∈Ep⇒((qn, qp), gp,Yp, (qn, q

′
p))∈EV

- (qn, gn,Yn, q
′
n) ∈ En ∧ (qp, gp,Yp, q

′
p) ∈ Ep ⇒

((qn, qp), gn ∧ gp,Yn ∪ Yp, (q
′
n, q
′
p))∈EV .

Essentially, verification system V tracks every pair of runs
in Tn and Tp that have the same observation. For any state

(1,xn
0 →x4),

(1,x
p
0 →x3)

{
cn1≤1,c

p
1≤1,

cnz=0,cnz=0

}
(1,x4),

(1,x3)

{
cn1≤1,c

p
1≤1,

c
p
2<2

}
(1,x4→x2),

(1,x3)

{
cn1≤1,c

p
1≤1,

cnz=0,c
p
2<2

}

(1,x2),

(1,x3){
cn1≤1,c

p
1≤1,

cn2<2,c
p
2<2

}
(2,x2),

(2,x3)

{
cn2<2,

c
p
2<2

}
(2,x2),

(2,x3→x1)

{
cn2<2,c

p
2<2,

cz2=0

}

(2,x2),

(4,x1)

{cn2<2}

(2,x2→x1),

(4,x1→x4)

{
xn
z=0,

cpz=0

}
(3,x1),

(6,x4)

(5,x1→x4),

(5,x4)

{cnz=0}

(5,x4),

(5,x4)

({cn1≤1

c2≤1

}
,{cp2}

) (
{cn1≤1},{cnz}

)

(
{cn1≤1},{cn2}

)
({

cn2<2

c
p
2<2

}
,

{
cn1
c
p
1

})(
{cp2<2},{cpz}

)

(
{cp1<1},{cp1}

)
(
{cn2=2},

{cnz
cpz

}) (
{cn1≥1},∅

)

(
T, {cnz}

)
(

T, ∅
)

Fig. 5: Part of verification system V .

(qn, qp) ∈ QV , we denote by HV ((qn, qp)) = Hn(qn) =
Hp(qp) the output of this state. Then the verification system
has the following properties: (i) For any π in V with last
state last(π) = ((qn, qp), v), there exist two runs πn in Tn

and πp in Tp such that sπn
= slπ, sπp

= srπ, ρπn
= ρπp

=
ρπ , and the last states of πn and πp satisfy last(πn) =
(qn, vn), last(πp) = (qp, vp), vn = vXn

and vp = vXp
; (ii)

For any f πn ∈ Run(Tn) and πp ∈ Run(Tp) with last states
last(πn) = (qn, vn) and last(πp) = (qp, vp), if they have the
same observation, there exists a run π ∈ Run(V) such that
sπn

= slπ, sπp
= srπ, ρπn

= ρπp
= ρπ and the last state of π

is last(π) = ((qn, qp), v) satisfying vXn
= vn and vXp

= vp.

C. Checking TS-Diagnosability

Now, we present how to verify TS-diagnosability using
the verification system. For a verification system V =
(QV , QV,0,XV , invV , EV), we first translate it into region
automaton V R = (QR

V , Q
R
0,V ,Σ

R
V , E

R
V , QR

m), where QR
m ⊆

QR
V is the set of accepting states defined by:

QR
m ={((qn, qp), r) ∈ QR

V : qn ∈ Qn,m∧
(∃(qp, r′) ∈ QR

feas)(r(Xp) = r′)}. (7)

Intuitively, a state qRV = ((qn, qp), r) ∈ QR
m is accepting if

(i) qn is an accepting state in negative constrained system;
and (ii) the second component of discrete state qp and the
clock region r can be reduced to a normal feasible state
(qp, r(Xp)) ∈ QR

feas. We are now ready to present the the
necessary and sufficient conditions for TS-diagnosability.

Theorem 1: System G is not TS-diagnosable w.r.t. obser-
vation function H and MITL specification φ, if and only if,
in the region automaton V R of verification system V , there
exists a reachable cycle

π = qR1
λ1−→ qR2

λ2−→ · · · λn−1−−−→ qRn

such that qRi ∈ QR
m and λj = τ , for some i ∈ {1, . . . , n}

and j ∈ {1, . . . , n− 1}.
Intuitively, since π is a reachable cycle, we can find an

infinite run π′ ∈ RunR(V R) starting from some initial state
in QR

0,V and going through cycle π infinitely. Then, the
condition λj = τ ensures that there exists an infinite run
πV ∈ Run(V) embedded in π′; and the condition qRi ∈ QR

m

ensures that (i) there is an infinite run πn ∈ Runm(Tn)

6826

(1,xn
0 →x4)

(1,x
p
0 →x3)

{cn1=cn2=cnz=

c
p
1=c

p
2=cpz=0}

(1,x4)

(1,x3)

{cn1=cn2=cnz=

c
p
1=c

p
2=cpz=0}

(1,x4)

(1,x3)

{0<cn1=cn2=cnz=

c
p
1=c

p
2=cpz<1}

(1,x4→x2)

(1,x3)

{0<cn1=cn2=c
p
1=

c
p
2=cpz<1,cnz=0}

(1,x2)

(1,x3)

{0<cn1=c
p
1=c

p
2=

cpz<1,cn2=cnz=0}

(1,x2)

(1,x3)

{0<cn1=c
p
1=c

p
2=

cpz<1,0<cn2=cnz<1}

(1,x2)

(1,x3)

{cn1=c
p
1=c

p
2=cpz=1

0<cn2=cnz<1}

(2,x2)

(2,x3)

{cn1=c
p
1=0,c

p
2=cpz

=1,0<cn2=cnz<1}

(2,x2)

(2,x3)

{0<cn1=c
p
1<cn2=cnz

<1,1<c
p
2=cpz<2}

(2,x2)

(2,x3)

{0<cn1=c
p
1<1,cn2=cnz

=1,1<c
p
2=cpz<2}

(2,x2)

(2,x3→x1)

{0<cn1=c
p
1<1,cn2=cnz

=1,1<c
p
2<2,cpz=0}

(2,x2)

(4,x1)

{0<cn1<1,cn2=cnz=1,

c
p
1=cpz=0,1<c

p
2<2}

(2,x2)

(4,x1)

{1<cnz=cn2<c
p
2<2,

0<c
p
1=cpz<cn1<1}

(2,x2)

(4,x1)

{1<cnz=cn2<c
p
2=2,

0<c
p
1=cpz<cn1=1}

(2,x2)

(4,x1)

{1<cn1<cn2=cnz<2,

c
p
2>2,0<c

p
1=cpz<1}

(2,x2)

(4,x1)

{1<cn1<2,cn2=cnz=2,

c
p
2>2,c

p
1=cpz=1}

(2,x2→x1)

(4,x1→x4)

{1<cn1<cn2=2<c
p
2,

c
p
1=1,cnz=cpz=0}

(3,x1)

(6,x4)

{1<cn1<cn2=2<c
p
2,

c
p
1=1,cnz=cpz=0}

(3,x1)

(6,x4)

{1<c
p
1<cn1<2<cn2

<c
p
2,0<cnz=cpz<1}

(5,x1→x4)

(5,x4)

{1<c
p
1<cn1<2<cn2

<c
p
2,0<cpz<1,cnz=0}

(5,x4)

(5,x4)

{1<c
p
1<cn1<2<cn2

<c
p
2,0<cpz<1,cnz=0}

(5,x4)

(5,x4)

{1<c
p
1<cn1<2<cn2

<c
p
2,0<cnz<cpz<1}

(5,x4)

(5,x4)

{cp2>cn2>cn1>

c
p
1>cpz>cnz>2} · · · · · ·

σ τ σ σ τ τ

σ

ττσσττ

τ

τ σ σ τ σ σ

τ

ττ
τ

Fig. 6: Part of region automaton of verification system V R. The cycle highlighted in red contains event τ and an accepting
state (((5, x4), (5, x4)), {cp2>cn2 >cn1 >cp1>cpz>cnz >2}).
such that slπV

= sπn
; and (ii) there is an infinite run

πp ∈ Runω(Tp) such that srπV
= sπp

and any prefix
π′p ∈ Pre(πp) can be extended to an accepting run in Tp,
i.e., π′p ∈ Pre(Runm(Tp)). Moreover, the construction of
V ensures πn and πp have the same output. Therefore, the
existence of such a cycle falsifies TS-diagnosability.

Example 4: Still consider G in Figure 1 with the same
setting in Example 2, which is not TS-diagnosable subject
to specification φ = ♢(0,2)p. Based on Tp and Tn, we
construct the verification structure V . We partially depict V
in Figure 5, which tracks part of Tp in Figure 3(a) and Tn

Figure 3(b). Then, we obtain the region automaton V R, par-
tially shown in Figure 6, where all states are accepting. Here
we can find a run reaching state (((5, x4), (5, x4)), {cp2 >
cn2 > cn1 > cp1 > cpz > cnz > 2}) that has a self-loop
enabled by event τ , as highlighted by red color. Note that
(5, x4) is an accepting state in Tn, i.e., (5, x4) ∈ Qn,m.
Let r = {cp2 > cn2 > cn1 > cp1 > cpz > cnz > 2} and
r′ = r(Xp) = {cp2 > cp1 > cpz > 2}. There is a state
((5, x4), r

′) ∈ QR
feas as highlighted by red color in Figure 4.

That is, there exists a reachable cycle satisfying all conditions
in Theorem 1 and the system G is not TS-diagnosable.

V. CONCLUSION

In this paper, we investigated the failure diagnosis problem
for timed discrete-event system with MITL specification. In
contrast to existing works, we considered time-sensitive fail-
ures for timed systems formalized by MITL formulae under
continuous semantics. We proposed a new notion called TS-
diagnosability to capture the capability of determine failures
in finite time. We also provided necessary and sufficient
conditions for the verification of TS-diagnosability.

REFERENCES

[1] R. Alur and D. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[2] R. Alur, T. Feder, and T. Henzinger. The benefits of relaxing
punctuality. Journal of the ACM, 43(1):116–146, 1996.

[3] F. Basile, M. Cabasino, and C. Seatzu. Diagnosability analysis of
labeled time Petri net systems. IEEE Trans. Automatic Control,
62(3):1384–1396, 2016.

[4] P. Bouyer, F. Chevalier, and D. D’Souza. Fault diagnosis using timed
automata. In 8th International Conference on Foundations of Software
Science and Computation Structures, pages 219–233, 2005.

[5] L. Carvalho, M. Moreira, and J. Basilio. Comparative analysis of
related notions of robust diagnosability of discrete-event systems.
Annual Reviews in Control, 51:23–36, 2021.

[6] J. Chen and R. Kumar. Fault detection of discrete-time stochastic
systems subject to temporal logic correctness requirements. IEEE
Trans. Automation Science and Engineering, 12(4):1369–1379, 2015.

[7] W. Dong, X. Yin, and S. Li. A uniform framework for diagnosis of
discrete-event systems with unreliable sensors using linear temporal
logic. IEEE Transactions on Automatic Control, 2023.

[8] T. Ferrere, O. Maler, D. Ničković, and A. Pnueli. From real-time logic
to timed automata. Journal of the ACM, 66(3):1–31, 2019.

[9] H. Gougam, Y. Pencolé, and A. Subias. Diagnosability analysis of
patterns on bounded labeled prioritized Petri nets. Discrete Event
Dynamic Systems, 27:143–180, 2017.

[10] T. Jéron, H. Marchand, S. Pinchinat, and M. Cordier. Supervision
patterns in discrete event systems diagnosis. In 8th International
Workshop on Discrete Event Systems, pages 262–268, 2006.

[11] S. Lafortune, F. Lin, and C. Hadjicostis. On the history of diagnosabil-
ity and opacity in discrete event systems. Annual Reviews in Control,
45:257–266, 2018.

[12] L. Lindemann, G. Pappas, and D. Dimarogonas. Reactive and risk-
aware control for signal temporal logic. IEEE Trans. Automatic
Control, 67(10):5262–5277, 2021.

[13] Z. Ma, X. Yin, and Z. Li. Marking diagnosability verification in
labeled petri nets. Automatica, 131:109713, 2021.

[14] N. Ran, T. Li, Z. He, and C. Seatzu. Codiagnosability enforcement in
labeled Petri nets. IEEE TAC, 68(4):2436–2443, 2023.

[15] N. Ran, H. Su, A. Giua, and C. Seatzu. Codiagnosability analysis of
bounded Petri nets. IEEE TAC, 63(4):1192–1199, 2018.

[16] S. Takai. A general framework for diagnosis of discrete event systems
subject to sensor failures. Automatica, 129:109669, 2021.

[17] S. Tripakis. Verifying progress in timed systems. In ARTS, volume
1601, pages 299–314, 1999.

[18] S. Tripakis. Fault diagnosis for timed automata. In International
Symposium on Formal Techniques in Real-Time and Fault-Tolerant
Systems, pages 205–221. Springer, 2002.

[19] G. Viana, M. Alves, and J. Basilio. Codiagnosability of networked
discrete event systems with timing structure. IEEE Trans. Automatic
Control, 67(8):3933–3948, 2022.

[20] X. Yin, J. Chen, Z. Li, and S. Li. Robust fault diagnosis of stochastic
discrete event systems. IEEE Trans. Automatic Control, 64(10):4237–
4244, 2019.

[21] X. Yin and S. Lafortune. Codiagnosability and coobservability under
dynamic observations: Transformation and verification. Automatica,
61:241–252, 2015.

[22] X. Yin and S. Lafortune. On the decidability and complexity of
diagnosability for labeled Petri nets. IEEE Trans. Automatic Control,
62(11):5931–5938, 2017.

[23] S. Zad, R. Kwong, and W. Wonham. Fault diagnosis in discrete-event
systems: Incorporating timing information. IEEE Trans. Automatic
Control, 50(7):1010–1015, 2005.

6827

