
Model Predictive Control for Signal Temporal Logic Specifications
with Time Interval Decomposition

Xinyi Yu, Chuwei Wang, Dingran Yuan, Shaoyuan Li, Xiang Yin

Abstract— In this paper, we investigate the problem of
Model Predictive Control (MPC) of dynamic systems for high-
level specifications described by Signal Temporal Logic (STL)
formulae. Recent works show that MPC has the great potential
in handling logical tasks in reactive environments. However,
existing approaches suffer from the heavy computational bur-
den, especially for tasks with large horizons. In this work, we
propose a computationally more efficient MPC framework for
STL tasks based on time interval decomposition. Specifically,
we still use the standard shrink horizon MPC framework with
Mixed Integer Linear Programming (MILP) techniques for
open-loop optimization problems. However, instead of applying
MPC directly for the entire task horizon, we decompose the
STL formula into several sub-tasks with disjoint time horizons,
and shrinking horizon MPC is applied for each short-horizon
sub-task iteratively. To guarantee the satisfaction of the entire
STL formula and to ensure the recursive feasibility of the
iterative process, we introduce new terminal constraints to
connect each sub-task. We show how these terminal constraints
can be computed by an effective inner-approximation approach.
The computational efficiency of our approach is illustrated by
a case study.

I. INTRODUCTION

Decision-making under dynamic environment is one of
the central problems in control of Cyber-Physical Systems
(CPS). In the past years, there has been growing interest
in controller synthesis for high-level complex tasks [1], [2].
Specifically, temporal logic, such as Linear Temporal Logic
(LTL) and Signal Temporal Logic (STL), provide expressive
and user-friendly tools for formal description and automated
design of complex tasks involving both continuous vari-
ables and discrete logics. Signal temporal logic was firstly
developed in [3] for the purpose of behavior monitoring.
STL formulae are evaluated over continuous time signals.
Compared with LTL, STL semantics are quantitative, and
therefore, provide a measure for the degree of the satisfaction
or violation in addition to the Boolean satisfaction. Recently,
STL has been successfully applied to the analysis and control
of many engineering CPSs [4]–[6].

In the context of control synthesis for STL specifications,
one of the most widely used approaches is to encode the

This work was supported by the national natural Science Foundation of
China (62061136004, 62173226, 61833012).

Xinyi Yu is with Thomas Lord Department of Computer Science,
University of Southern California, Los Angeles, CA 90089, USA. e-mail:
xinyi.yu12@usc.edu

Chuwei Wang, Dingran Yuan, Shaoyuan Li and Xiang Yin are
with Department of Automation and Key Laboratory of System Con-
trol and Information Processing, Shanghai Jiao Tong University, Shang-
hai 200240, China. e-mail: {wangchuwei, geniustintin,
syli, yinxiang}@sjtu.edu.cn

satisfaction of STL formulae as mixed-integer constraints
[7]. Then the STL control problem can be solved by apply-
ing Mixed Integer Linear Programming (MILP) techniques
together with Model Predictive Control (MPC) framework.
The encoding-based approach has also been adopted in [8]–
[10]. The main advantage of this approach is that the solution
is complete and globally optimal. However, since one needs
to introduce decision variables for each time instant, the
encoding-based approach suffers from the heavy computa-
tional burden, especially for tasks with large horizons.

To mitigate the high complexity in STL control synthesis
problem, several computationally efficient methods have
been developed recently in the literature. The techniques
include, e.g., gradient-based optimizations [11], [12], con-
trol barrier functions [13], prescribed performance control
[14], [15], referenced way-points [16] and computation-
ally tractable robustness [17]. However, compared with the
encoding-based MPC approach, the above mentioned meth-
ods are usually not complete and cannot provide formal
guarantees for the existence of a solution when facing
complex formula. In the context of encoding-based methods,
[18] proposed a more efficient encoding approach where
disjunction can be encoded using a logarithmic number of
binary variables and conjunction can be encoded without
binary variables. In [19], the authors showed that binary
variables can be further reduced by writing formulae in
positive normal forms. However, these improved encoding
methods still suffer from the huge computational complexity
when the task horizon increases. It is worth mentioning
[19] used MPC with shorter prediction horizon to solve
the unbounded STL formulae and then the complexity is
reduced, but for long-horizon bounded formulae such a
efficient mechanism is not applicable and high complexity
is still inevitable.

In this paper, we also focus on STL control synthesis using
shrinking horizon MPC together with variable encoding tech-
niques. Compared with existing MPC approach that applies
directly to the entire task horizon, the contributions of this
paper are as follows: (i) We decompose the STL formula into
several sub-tasks with disjoint time horizons. Then shrinking
horizon MPC is applied for each sub-task iteratively with
short-horizons, which significantly reduces computational
complexity of the entire synthesis process; (ii) Note that, by
focusing on each sub-task only, the subsequent sub-tasks may
become infeasible. In order to ensure the recursive feasibility
of the entire process, we introduce terminal constraint sets
between connected sub-tasks. This guarantees the satisfaction
of the global STL task. Also, we provided an effective

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 7843

method for offline computation of the inner-approximation
the terminal constraint sets. The computational complexity
does not increase exponentially as the horizon increases; (iii)
Finally, we present a case study of robot motion planning to
demonstrate the efficiency of the proposed framework. We
show that, compared with the full horizon MPC approach,
our approach is more scalable for STL formula with long
task horizon.

II. PRELIMINARY

A. System Model

We consider a discrete-time control system of form

xk+1 = f(xk, uk) + wk, (1)

where xk ∈X ⊂ Rn is the state at instant k, uk ∈U ⊂ Rm

is the control input at instant k, wk ∈ W ⊂ Rn is the
external input or disturbance at instant k and f : X ×
U × W → X is a function describing the dynamic of the
system. We assume that the disturbances are unknown but
belong to a given compact set W . Also, we assume that the
dynamic function f is Lipschitz continuous on x, i.e., for all
x, x′ ∈ X , u ∈ U , there exists positive constant L such that
|f(x′, u)− f(x, u)| ≤ L|x′ − x|.

Suppose that the system is in state xk ∈ X at instant
k∈Z≥0. Then given a sequence of control inputs uk:T−1 =
ukuk+1 · · ·uT−1 ∈ UT−k and a sequence of disturbances
wk:T−1 = wkwk+1 · · ·wT−1 ∈ WT−k, the solution of the
system is a sequence of states ξf (xk,uk:T−1,wk:T−1) =
xk+1 · · ·xT ∈X T−k such that xi+1 = f(xi, ui) + wi,∀i =
k, · · · , T − 1, and the solution of nominal system is de-
noted by ξf (xk,uk:T−1) similarly. Also, we denote by
ξTf (xk,uk:T−1,wk:T−1) = xT the last state in the sequence.

B. Signal Temporal Logic

Given a finite sequence of states x, we use signal temporal
logic (STL) formulae [3] with bounded-time temporal oper-
ators to describe whether or not the trajectory of the system
satisfies some high-level properties. Formally, the syntax of
STL formulae is Φ ::= ⊤ | πµ | ¬Φ | Φ1 ∧Φ2 | Φ1U[a,b]Φ2,
where ⊤ is the true predicate, πµ is a predicate whose truth
value is determined by the sign of its underlying predicate
function µ : Rn → R and it is true if µ(xk) ≥ 0; otherwise
it is false. Notations ¬ and ∧ are the standard Boolean
operators “negation” and “conjunction”, respectively, which
can further induce “disjunction” ∨ and “implication” →.
U[a,b] is the temporal operator “until”, where a, b ∈ R.

STL formulae are evaluated on state sequences. We use
notation (x, k) |= Φ to denote that sequence x satisfies STL
formula Φ at instant k. The reader is referred to [3] for
more details on the semantics of STL formulae. We can also
further induce temporal operators “eventually” F[a,b]Φ :=
⊤U[a,b]Φ and “always” G[a,b]Φ := ¬F[a,b]¬Φ. We write
x |= Φ whenever (x, 0) |= Φ.

Given an STL formula Φ, it is well-known that the
satisfaction of Φ can be completely determined only by those
states within its horizon. Hereafter, we use notation Φ[SΦ,TΦ]

to emphasize that formula Φ only depends on time horizon

[SΦ, TΦ]. With a slight abuse of notation, we also use a
broader interval as its superscript, e.g., Φ[S′

Φ,T ′
Φ] with S′

Φ ≤
SΦ and T ′

Φ ≥ TΦ. In addition to the Boolean satisfaction, we
can also evaluate an STL formula quantitatively by space-
robustness function ρΦx,k [8].

In this paper, we consider the following restrict but ex-
pressive enough fragment of STL formulae:

φ ::= ⊤ | πµ | ¬φ | φ1 ∧ φ2, (2a)
Φ ::= F[a,b]φ | G[a,b]φ | φ1U[a,b]φ2 | Φ1 ∧ Φ2, (2b)

where φ1, φ2 are formulae of class φ, and Φ1,Φ2 are
formulae of class Φ.

C. Feasible Set of Signal Temporal Logic

In our previous works [20], [21], we propose a method
to compute the so called feasible set of STL formula for a
dynamic system without considering disturbances. Here we
briefly review this concept and interested readers are referred
to [21] for details.

We first rewrite Boolean formula φ in Eq. (2a) in terms
of the region of states satisfying the formula. Specifically,
we denote πµ by Hµ = {x ∈ X | µ(x) ≥ 0}, and we
also have H¬φ = X \ Hφ and Hφ1∧φ2 = Hφ1 ∩ Hφ2 .
Hereafter, instead of using φ, we will write it as x∈Hφ or
simply x∈H. Also, we introduce a new temporal operator
U′ defined by (x, k) |= Φ1U

′
[a,b]Φ2 iff ∃k′ ∈ [k + a, k + b]

such that (x, k′) |= Φ2 and ∀k′′ ∈ [k + a, k′] (x, k′′) |=
Φ1. Compared with U, U′ only requires that Φ1 holds from
instant a before Φ2 holds. Note that, our setting is without
loss of generality since we have (x, k) |= Φ1U[a,b]Φ2 ⇔
(x, k) |=(Φ1U

′
[a,b]Φ2)∧(G[0,a]Φ1). We observe that formula

Φ of form (2) can be written as

Φ =

N∧
i=1

Φ
[ai,bi]
i , (3)

where N denotes the total number of sub-formulae, and for
each sub-formula Φ

[ai,bi]
i , it is effective within time interval

[ai, bi] and is in the form of G[ai,bi]x ∈Hi, F[ai,bi]x ∈Hi

or x ∈ H1
iU

′
[ai,bi]

x ∈ H2
i . We denote by I = {1, · · · , N}

the index set of all sub-formula and by Oi∈{G,F,U′} the
unique temporal operator in Φi. Also, we denote by Ik =
{i∈I | ai ≤ k ≤ bi} the index set of sub-formulae that are
effective at instant k. Similarly, we denote by I<k = {i∈I |
bi < k} and I>k = {i∈I | k < ai} the index sets of sub-
formulae that are effective strictly before and after instant k
respectively.

Let I ⊆ I be a set of indices representing sub-formulae
that have not yet been satisfied. We say I is a remaining set
at instant k if (i) I<k ∩ I = ∅; and (ii) I>k ⊆ I; and (iii)
{i∈Ik | [Oi = G] ∨ [Oi = U′ ∧ k = ai]} ⊆ I . We denote
by Ik the set of all possible remaining sets at instant k. Then
given a remaining set I at instant k, we call formula Φ̂I

k =∧
i∈I∩Ik

Φ
[k,bi]
i ∧

∧
i∈I>k

Φ
[ai,bi]
i the I-remaining formula

representing the entire task remained. The set of states from
which the remaining formula can be fulfilled is called the
I-remaining feasible sets.

7844

Definition 1 (I-Remaining Feasible Sets): Given an
STL formula Φ of form (3), a subset of indices I ⊆ I at
time instant k, the I-remaining feasible set at instant k,
denoted by XI

k ⊆ X , is the set of states from which there
exists a solution that satisfies the I-remaining sub-formula
at k, i.e.,

XI
k =

{
xk ∈ X

∣∣∣∣ ∃ uk:TΦ−1 ∈ UTΦ−k

s.t. xkξf (xk,uk:TΦ−1) |= Φ̂I
k

}
. (4)

Suppose that I is a remaining set at instant k, we denote
by succ(I, k) = {I ′ ⊂ I | I ′ ∈ Ik+1} the set of all
possible successor sets of I . Intuitively, a transition from
I to I ′ means that sub-formulae in I \ I ′ have been satisfied
currently. This means that at instant k the system should be
in the region Hk(I, I

′) =
⋂

i∈I∩Ik
Hi, with

Hi =

 H1
i ∩H2

i if i∈satU(I, I ′)
H1

i \ H2
i if Oi=U′ ∧ i /∈satU(I, I ′)

Hi if Oi=G,

where satU(I, I ′) = {i ∈ I : Oi = U′ ∧ i /∈ I ′}. Then I-
remaining feasible set can be computed by Theorem 1 [21].

Theorem 1: I-remaining feasible set XI
k defined in Def-

inition 1 for the time instant k can be computed as follows

XI
k =

⋃
I′∈succ(I,k)

(
Hk(I, I

′) ∩Υ(XI′

k+1)
)
, (5)

where Υ(·) is the one-step set defined by: for any S ⊆ X ,
Υ(S) = {x ∈ X | ∃u ∈ U s.t. f(x, u) ∈ S}.

III. MODEL PREDICTION CONTROL FOR STL

Our objective is to synthesize a feedback control strategy
such that the sequence generated by the closed-loop system
satisfies the desired STL formula under all possible distur-
bances. Furthermore, we want to minimize control effort
while maximizing the control performance.

Formally, given state xk at instant k and input sequence
uk:T−1 = ukuk+1 · · ·uT−1, we consider a generic cost
function J : X × UT−k → R. For example, J can be
defined as the nominal satisfaction degree of the STL formula
without disturbance or the total energy of the control inputs.

Our approach for solving the STL control synthesis prob-
lem follows the basic framework of model predictive control.
Specifically, at each instant, we solve a finite-horizon opti-
mization problem to compute a finite open-loop sequence
of inputs such that the cost function is minimized subject
to the constraints on both the system’s dynamic and the
STL formula. Note that we only apply the first input in
the computed sequence to the system. Then at the next
instant, we recompute the input sequence based on the
actually measured current-state and repeat until the terminal
instant. Formally, the optimization problem for each instant
is formulated as follows.

Problem 1 (Robust STL Optimization Problem):
Given system in the form of Equation (1), an STL formula
Φ, a cost function J , the current state xk ∈ X at instant
k, previous state sequence x0:k−1 and some constant T ,
find an optimal input sequence u∗

k:T−1 that minimizes the
cost function subject to constraints on the system’s dynamic

and the temporal logic requirement. Formally, we have the
following optimization problem

minimize
uk:T−1

J(xk,uk:T−1) (6a)

subject to

∀wk:T−1∈WT9k : x0:kξf (xk,uk:T91,wk:T91) |= Φ, (6b)
uk, uk+1, · · · , uT−1 ∈ U (6c)

Remark 1: Effective approaches have been proposed in
the literature for solving the above optimization problem.
To handle the STL satisfaction constraint, a basic approach
is proposed in [7] by encoding state sequence as well as
the satisfaction of the formula using binary variables. Then
the logical-constrained optimization problem is converted
to a Mixed Integer Linear Program (MILP). For the pur-
pose of robust satisfaction under disturbances, based on
the MILP-based approach in [7], [22] further purposes a
counterexample-guided inductive synthesis (CEGIS) scheme
that finds a robust optimal solution iteratively. There are
also some other methods to solve this robust optimization
problem, e.g., [9], [23]. In this work, we will adopt the
CEGIS-based approach in [22] for solving Problem 1 and
its variant. Note that other approaches aforementioned can
also be adopted in principle.

In the MPC framework, only the first control input u∗
k

in the optimal input sequence u∗
k:T91 computed will be

applied to the system. Depending on the actual disturbance
wk occurs, the controller will measure the new state xk+1

at the next instant and recompute the optimal sequence
based on Problem 1. This procedure is formally provided in
Algorithm 1, which is referred to as the shrinking horizon
MPC because the optimization horizon of Problem 1 is
shrinking from TΦ to 1 as time instant k increases. Here,
we assume that Problem 1 is feasible at the initial instant
k = 0 for the initial state x0; otherwise, the set of feasible
initial states can be calculated by the method that will be
introduced in Section V.

Algorithm 1: Shrinking Horizon MPC for STL
Input: STL formula Φ of form (7), dynamic system

model of form (1) and cost function J
Output: Control input uk at each instant k.

1 T ← TΦ and k ← 0
2 while k < T do
3 measure current state xk

4 solve Problem 1 based on x0:k, T and Φ and
obtain optimal inputs u∗

k:T91 = u∗
ku

∗
k+1 · · ·u∗

T91
5 apply control input u∗

k

6 k ← k + 1

The shrinking horizon MPC provides an effective frame-
work for solving the reactive control synthesis problem
for both STL specification and performance optimization.
However, the complexity for solving Problem 1 at each in-
stant grow exponentially as the prediction horizon increases.
Therefore, the main computational challenging for shrinking
horizon MPC is in the first few instants since we need to

7845

predict almost the entire horizon the formula, which may
make this approach computationally infeasible for STL tasks
with large horizons.

IV. TIME INTERVAL DECOMPOSITION FRAMEWORK

A. Time Interval Decomposition

As we discussed above, the main computational challeng-
ing in shrinking horizon MPC is the predication horizon of
the task. In this paper, we still use shrinking horizon MPC as
the basis. However, we propose a new time interval decom-
position framework, which leverages structural properties of
STL formulae in terms of time interval decomposition to
further reduce the computational complexity. Specifically,
we assume that the STL formula of interest can be further
divided into a set of disjoint time intervals. Then we solve
the shrinking horizon MPC problem for each sub-task with
smaller time horizon. Finally, by putting each time intervals
together “correctly”, we solve the entire STL control synthe-
sis problem.

To motivate our approach, let us consider the STL formula
Φ = (G[0,100]π

µ1) ∧ (F[21,50]π
µ2) ∧ (F[81,100]π

µ3). For the
above formula, the time horizon is TΦ = 100. Therefore,
using the standard shrinking horizon MPC, we need to
compute an optimization problem with predication horizon
100 initially, which is computationally very challenging.
However, we also note that the above formula can be written
equivalently as a conjunction of four sub-tasks with disjoint
time intervals Φ = Φ

[0,20]
1 ∧ Φ

[21,50]
2 ∧ Φ

[51,80]
3 ∧ Φ

[81,100]
4 ,

where Φ1 = G[0,20]π
µ1 , Φ2 = (G[21,50]π

µ1)∧ (F[21,50]π
µ2),

Φ3 = G[51,80]π
µ1 and Φ4 = (G[81,100]π

µ1) ∧ (F[81,100]π
µ3).

As an alternative, we can enforce the satisfaction of the entire
STL formula Φ by enforcing the satisfaction of each sub-task
Φi. For example, initially, we enforce Φ1 using shrinking
horizon MPC by setting the state terminal instant to TΦ1

=
20 (control input terminal instant is 19). Then at instant
k = 20, we start to enforce Φ2 using shrinking horizon
MPC by setting the state terminal instant to TΦ2

= 50,
and so forth. Therefore, we solve four MPC problems with
prediction horizons at most 30 instants, which is much more
easier than solving a single MPC problem with predication
horizon at most 100.

To formalize the above motivation, we assume that the
STL formula considered can be written as the conjunction
of a set of sub-tasks whose effective horizons are disjoint,
i.e., Φ is of the following form

Φ[SΦ,TΦ] = Φ
[S1,T1]
1 ∧ Φ

[S2,T2]
2 ∧ · · · ∧ Φ

[SN ,TN]
N (7)

where S1 = SΦ, TN = TΦ and for each i = 1, · · · , N−1, we
have Ti ≤ Si+1. To distinguish with the index in equation
(3), we say the decomposed part Φ

[Si,Ti]
i here as sub-task

and say Φ
[ai,bi]
i in equation (3) as sub-formula.

Remark 2: The above assumption of time interval de-
composition is without loss of generality since we can always
take N = 1. But no computational reduction will be gained
for this case. However, in many practical examples, different
requirements in the global task are natural time disjoint. For

this scenario, one can decompose the whole task into more
than one sub-task.

B. Robust Optimizations with Terminal Constraints

As we mentioned above, at each instant k, suppose that k∈
[Ti−1, Ti−1], our approach is to enforce the ith sub-task Φi

by solving the robust optimization problem with predication
horizon from k to Ti as Problem 1. Since each sub-task Φi

is satisfied within its effective horizon and the entire formula
is their conjunction, then the global task Φ is satisfied.

However, the main issue of this approach is that how
we can guarantee the recursive feasibility during the entire
control process. More specifically, for k∈ [Ti−1, Ti − 1], we
consider the optimization problem for Φi only up to Ti. This,
however, may lead to an optimal solution ending up with a
state from which some subsequent sub-tasks Φj , j > i cannot
be satisfied. Therefore, for each sub-task period, in addition
to the constraints in Problem 1, we also need to take the
feasibility of all subsequent sub-tasks into consideration.

To this end, we define Ti as the set of states from which
the subsequent sub-tasks

∧
i<j≤N Φj are feasible in the

sense that no matter what the disturbance sequence is, there
exists at least one control input sequence such that all the
subsequent STL sub-tasks can be satisfied. Formally, for
i = 1, · · · , N − 1, we define

Ti = (8){
xTi
∈X

∣∣∣∣ ∃uTi:TΦ91∈UTΦ9Ti ,∀wTi:TΦ91∈WTΦ9Ti ,
s.t. ξf (xTi

,uTi:TΦ91,wTi:TΦ91) |=
∧

i<j≤N Φj

}
.

Also, we define TN = X . Later in Section V, we will
discuss in detail how to compute terminal sets Ti. Now, in the
context of shrinking horizon MPC, set Ti can be considered
as the terminal constraint in the optimization problem for
sub-task Φi. Therefore, Problem 1 is further modified as
the following optimization problem with terminal constraint.

Problem 2: (Robust STL Optimization Problem with
Terminal Constraint). Given system in the form of Equa-
tion (1), an STL formula Φ, a cost function J , the current
state xk∈X at instant k, time horizon [S, T], previously state
sequence xS:k−1, and a terminal set T , find an optimal input
sequence u∗

k:T−1 that minimizes the cost function subject
to constraints on the system’s dynamic, the temporal logic
requirement and the terminal constraint. Formally, we have
the following optimization problem

minimize
uk:T−1

J(xk,uk:T−1) (9a)

subject to

∀wk:T−1∈WT9k : xS:kξf (xk,uk:T91,wk:T91) |= Φ, (9b)

∀wk:T−1∈WT9k : ξTf (xk,uk:T91,wk:T91) ∈ T , (9c)

uk, uk+1, · · · , uT−1 ∈ U . (9d)
Remark 3: Similar to Problem 1, the CEGIS-based ap-

proach can be also applied to solve Problem 2 with the
terminal constraint. Basically, CEGIS uses inductive coun-
terexamples of the disturbance sequence to deal with forall
constraint to compute the optimal solution. Therefore, the

7846

terminal constraint (9c) added does affect the solution pro-
cess. In our algorithm implementation, we still adopt the
CEGIS-based method.

C. Overall Framework

Algorithm 2: Shrinking Horizon MPC for STL with
Time Interval Decomposition

Input: STL formula Φ of form (7), dynamic system
model of form (1) and cost function J

Output: control input uk at each instant k.
1 for each i = 1, · · · , N − 1, compute Ti
2 i← 1, k ← 0 and T0 = 0
3 while i ≤ N do
4 Φ← Φi, S ← Ti−1, T ← Ti

5 while k < T do
6 measure current state xk

7 solve Problem 2 based on xS:k, T , Φ and Ti
and obtain optimal inputs
u∗
k:T91 = u∗

ku
∗
k+1 · · ·u∗

T91
8 apply control input u∗

k

9 k ← k + 1

10 i← i+ 1

The overall time interval decomposition framework is
formalized by Algorithm 2. Specifically, line 1 constructs
the terminal constraints in an offline manner for each online
optimization stage. The computation will be detailed in the
next section. Lines 2-10 aim at synthesizing control strategy
for each sub-task iteratively. For each specific sub-task (lines
5-9), we use the shrinking horizon model predictive control
and apply the first element of the control input sequence
to the system which is similar to Algorithm 1. Note that
line 1 is executed offline and the remaining procedures are
computed online to resist uncertain disturbances.

The following result shows that the completeness and
correctness of Algorithm 2.

Theorem 2: Given dynamic system model (1), STL for-
mula Φ, cost function J and initial state x0, if we can
obtain a control input sequence u∗

0:T1−1 at instant k = 0 by
Algorithm 2, then Algorithm 2 is feasible for all the time
instants and the solution with returned u∗ = [u∗

0, · · · , u∗
TΦ−1]

satisfies the STL formula Φ.
Proof: The existence of an initial control input sequence

u∗
0:T1−1 = u∗

0u
∗
1 · · ·u∗

T1−1 implies that for all possible distur-
bance sequences w0:T1−1, the optimization problem is feasi-
ble. At the next time step k = 1, there exists at least one sub-
optimal input sequence u1:T1−1 = u∗

1|0 · · ·u
∗
T1−1|0 obtained

last time step that can resist all possible disturbances, i.e.,
the robust problem at instant k = 1 is feasible. Then we can
prove it recursively in the first stage. For the second stage,
we have that, from state xT1

, there exists a control sequence,
e.g., ūT1:TΦ−1 ∈ UTΦ−T1 , such that xT1+1:TΦ

|=
∧

1<i≤N Φi

by the definition of terminal constraint (8) since state xT1 is
in the terminal set T1 by constraint (9c) at the first stage. As
a result, at time T1, the first time in the second stage, when
solving the optimization problem (9), we can at least find

a feasible control input sequence ū∗
T1:T2−1 to satisfy (9b),

(9c) and (9d). Then, the same as stage 1, the problem is
feasible in the second stage. Analogously, we can prove the
recursive feasibility in the remaining stages. Furthermore, at
the last time step of each stage, constraint (9b) ensures that
the state sequence xTi−1+1:Ti of the current stage i meets
the requirements of sub-task Φi, i ∈ {1, · · · , N}. Therefore,
STL formula Φ = Φ1 ∧ · · · ∧ ΦN is also satisfied.

Remark 4: Let us discuss the computational advantage
for the proposed algorithm. First of all, the complexity
for computing terminal constraints in (9c) largely depends
on the system model and STL formula. Nevertheless, this
computation is preformed fully offline and will not be the
bottleneck of the online computations. Regarding the online
computation, in general, solving Problem 2 is exponential
in the length of the prediction horizon. Here, since the time
horizon is decomposed, the complexity for online optimiza-
tion is significantly reduced. The finer the formula can be
decomposed, the more complex reduction one can obtain.

Remark 5: Finally, we remark that, if terminal sets Ti, i∈
{1, · · · , N} can be computed precisely, then our framework
is both sound and as complete as classic MILP method with
the consideration of disturbance. In practice, one may need
to compute the inner-approximations of terminal sets. In this
case, our framework is sound but not complete since the
terminal sets are smaller than what are needed.

V. COMPUTATION OF TERMINAL CONSTRAINTS

In this section, we provide details for the computations of
terminal sets as defined in Equation (8), which are essentially
feasible set of subsequent sub-tasks taking disturbances into
account. A direct approach to compute this set is to use a
branch-and-bound algorithm to search for the terminal set as
the framework in [24]. However, using this method, at each
branch, we need to determine if there exists control input
sequence uTi:TΦ−1 such that for all disturbance sequence
wTi:TΦ−1 the subsequent sub-tasks can be satisfied, which
is very computational challenging.

Here, instead of computing Ti explicitly, we seek to
compute its inner-approximation T̂i ⊆ Ti. In terms of the
MPC problem, the satisfaction of T̂i implies the satisfaction
of Ti. Although considering the inner-approximations of the
terminal sets is a bit more conservative, the computation can
be done much more efficiently.

Specifically, we define the following set T̂i to approximate
terminal set Ti

T̂i = (10)xTi ∈X

∣∣∣∣∣∣
∃uTi
∀wTi

∈W ∃uTi+1∀wTi+1∈
⊕1

i=0 L
iW

· · · ∃uTΦ91∀wTΦ91∈
⊕TΦ−Ti−1

i=0 LiW
s.t. ξf (xTi

,uTi:TΦ91,wTi:TΦ91) |=
∧

i<j≤N Φj

 .

The above defined set T̂i differs from the original terminal
set Ti in two folds: (i) in the definition of Ti, we require the
existence of an open-loop control input sequence robust to all
possible disturbance sequences. However, in the definition of
T̂i, the control inputs can be determined after observing each

7847

specific states (or disturbances). Therefore, there are alterna-
tions between the existential quantifiers and the universal
quantifiers. This allows us to compute the set inductively in
a backward manner; (ii) Second, the disturbance set grows
at each instant according to the Lipschitz constant. Specif-
ically, set

⊕k
i=0 L

iW upper bounds possible disturbances
of the system at instant Ti + k. Clearly, this set is easy to
compute but larger than the actual disturbance to the system.
Therefore, the corresponding terminal set is smaller than the
actual one.

The following result formally shows that T̂i is indeed an
inner-approximation of Ti.

Proposition 1: For each terminal set Ti, we have T̂i ⊆ Ti.
Proof: The proof can be found in Appendix A in [25].

Then, we present the computation methods of T̂i for each
i∈{1, · · · , N − 1} as follows with the help of I-remaining
robust feasible sets whose notion is similar to I-remaining
feasible sets in Definition 1.

Definition 2 (I-Remaining Robust Feasible Sets):
Given an STL formula Φ of form (3), a subset of indices
I ⊆ I, a starting instant s and current instant k with s ≤ k,
then starting from instant s, I-remaining robust feasible set
at k, denoted by X̂I

s,k ⊆ X , is the set of states as follows,

X̂I
s,k=

xk∈X

∣∣∣∣∣∣∣
∃uk∀wk∈

⊕k9s
i=0 L

iW · · ·
∃uTΦ91∀wTΦ91∈

⊕TΦ919s
i=0 LiW

s.t. xkξf (xk,uk:TΦ−1,wk:TΦ91) |=Φ̂I
k

. (11)

In this above definition, parameter s represents the time
instant when a sub-task starts. This information is used
in order to determine how many times the disturbance set
should be magnified. Then parameter k is still the current
instant from which the control sequence is applied. Then by
definition, when s = k = Ti, the I-remaining robust feasible
set is indeed the inner-approximation of terminal set that we
want, i.e.,

T̂i = X̂I
Ti,Ti

,

where I is the set of sub-formulae index corresponding to the
set of sub-task index {i+1, · · · , N}. For the computation of
X̂I

s,k, we can apply a similar approach for computing XI
k in

Equation (5). Specifically, for each fixed s, we use X̂I′

s,k+1

to compute X̂I
s,k in a backwards manner until k = s. The

computation is summarized by the following theorem.
Theorem 3: For each time instant s, the I-remaining

robust feasible set X̂I
s,k defined in Definition 2 for time

instant k can be computed as follows

X̂I
s,k=

⋃
I′∈succ(I,k)

(
Hk(I, I

′)∩Υr(X̂
I′

s,k+1, h(W, s))
)
, (12)

where h(W, s) =
⊕k−s

i=0 LiW and Υr(·, ·) is the robust one-
step set defined by: for any S ⊆ X , we have Υr(S,W) =
{x ∈ X | ∃u ∈ U ∀w ∈W s.t. f(x, u) + w ∈ S}.

Proof: The proof can be found in Appendix B in [25].
More implementation details of Theorem 3 can be found

in Section 5.4 in [21] which is omitted here.

VI. CASE STUDY

In this section, we apply the proposed time interval
decomposition framework to a case study of planar motion
of a single robot with double integrator dynamics. Online
simulations are conducted in Python 3 and we use Gurobi
[26] to solve the optimization problem. The terminal con-
straints are computed offline in Julia with the help of existing
packages JuliaReach [27], [28]. All simulations are carried
out by a laptop computer with i7-10510U CPU and 16 GB
of RAM. Our codes are available at https://github.
com/Xinyi-Yu/MPC4STL-TID, where more details can
be found.

System Model: The model with a sampling period
of 0.5 seconds is xk+1 = Axk + Buk + wk, where

A =

[
1 0.5 0 0
0 1 0 0
0 0 1 0.5
0 0 0 1

]
, B =

[
0.125 0
0.5 0
0 0.125
0 0.5

]
and state xk =

[x vx y vy]
T denotes x-position, x-velocity, y-position and

y-velocity, and control input uk = [ux uy]
T denotes x-

acceleration and y-acceleration respectively. The physical
constraints are x ∈ X = [0, 10] × [−2.5, 2.5] × [0, 10] ×
[−2.5, 2.5], and u ∈ U = [−3, 3]2. The disturbance wk =
[wx wvx wy wvy]

T is assumed to be bounded by a compact
set [−0.01, 0.01]4.

Planning Objectives: We assume that the initial state of
the robot is x0 = [3, 0, 8, 0] shown as the red point in Fig. 1.
The control objective of the robot is to visit region A1 at least
once between instants 0 to 6 (from 0s to 3s), always stay at
region A2 between instants 14 to 15 (from 7s to 7.5s) and
finally reach region A3 at least once between instants 22 to
25 (from 11s to 12.5s). Such an objective can be specified
by STL formula, Φ = F[0,6]A1 ∧ G[14,15]A2 ∧ F[22,25]A3,
where A1 = (x ∈ [7.5, 10]) ∧ (y ∈ [7.5, 10]), A2 = (x ∈
[0, 3])∧(y ∈ [0, 3]) and A3 = (x ∈ [7.5, 10])∧(y ∈ [0, 2.5]).

Simulation Results: In our framework, we can decom-
pose the formula Φ into Φ

[0,12]
1 and Φ

[13,25]
2 as Φ

[0,12]
1 =

F[0,6]A1,Φ
[13,25]
2 = G[14,15]A2 ∧ F[22,25]A3. For this case,

there is only one terminal set at instant 12 needs to be
computed, whose inner approximation is shown as the red
shaded part in Fig. 1. The online executed trajectory is also
shown in Fig. 1. Specifically, the simulation result of the
first stage is represented by blue dots and solid line; the
simulation result of the second stage is printed by black dots
and dashed line. Clearly, the black rectangle dot x12 falls into
the approximated terminal set X̂{2,3}

12,12 in order to ensure the
continuation of the task. Note that the offline results shown in
the figure is the projection to the first and third dimensions
but the terminal set is still constrained in the complete 4-
dimensional state space.

TABLE I
COMPARISON OF SIMULATION RESULTS

Algorithms Computation time Cost
k=0 (s) k=1 (s) ... total (s)

Our method 0.2741 0.0625 ... 1.487 -1.2476
General method 3.4345 5.1492 ... 21.911 -1.2499

In terms of computation time and performance, we com-
pared our method with the standard MILP method in [7].

7848

Fig. 1. The result of simulation trace.

The comparison result is shown in Table 1, where the cost
function we used is J(xk,uk:T−1) = −ρΦx0:kξf (xk,uk:T−1),k

+

0.67×10−7×ΣT−1
i=k (u2

x+u2
y). Note that all results in Table 1

are averaged results among 50 simulations.1 Compared with
the standard MILP approach, one can see that the cost of
the trajectory using our approach is slightly higher. This is
because we do not solve the optimization problem globally.
However, using our approach, the computation time for the
online optimization problem is significantly smaller than that
of the MILP approach, especially for the initial stages. In
particular, the MILP approach cannot keep pace with the
sampling time 0.5s of the system. However, our approach
can ensure online control for this system.

VII. CONCLUSION

In this work, we proposed a new framework for model
predictive control of STL specifications. We showed that, by
effectively computing the terminal set of each subsequent
sub-task, the long horizon MPC problem can be decomposed
into a set of MPC problems with shorter horizon. In this
work, we assume that the STL formula can be naturally de-
composed into several sub-tasks with disjoint time intervals.
In the future, we aim to relax this assumption by tackling
the case with any receding prediction horizon.

REFERENCES

[1] X. Yu, X. Yin, S. Li, and Z. Li, “Security-preserving multi-agent
coordination for complex temporal logic tasks,” Control Engineering
Practice, vol. 123, p. 105130, 2022.

[2] S. Liu, A. Trivedi, X. Yin, and M. Zamani, “Secure-by-construction
synthesis of cyber-physical systems,” Annual Reviews in Control,
vol. 53, pp. 30–50, 2022.

[3] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems, pp. 152–166, 2004.

[4] L. Lindemann and D. Dimarogonas, “Robust motion planning employ-
ing signal temporal logic,” in American Control Conference, pp. 2950–
2955, 2017.

[5] N. Mehr, D. Sadigh, R. Horowitz, S. Sastry, and S. Seshia, “Stochastic
predictive freeway ramp metering from signal temporal logic specifi-
cations,” in American Control Conference, pp. 4884–4889, 2017.

[6] M. Ma, E. Bartocci, E. Lifland, J. Stankovic, and L. Feng, “SaSTL:
Spatial aggregation signal temporal logic for runtime monitoring in
smart cities,” in ACM/IEEE 11th International Conference on Cyber-
Physical Systems, pp. 51–62, 2020.

1Here, we use CEGIS to find a control input sequence which can resist
all possible disturbances. The efficiency of this method relies on the given
initial disturbance sequences. Therefore, we use average time of multiple
simulations to better justify the computation time and performance.

[7] V. Raman, A. Donzé, M. Maasoumy, R. Murray, A. Sangiovanni-
Vincentelli, and S. Seshia, “Model predictive control with signal
temporal logic specifications,” in IEEE Conference on Decision and
Control, pp. 81–87, 2014.

[8] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in Formal Modeling and Analysis of Timed
Systems, pp. 92–106, 2010.

[9] S. Sadraddini and C. Belta, “Robust temporal logic model predictive
control,” in Annual Allerton Conference on Communication, Control,
and Computing, pp. 772–779, 2015.

[10] S. Farahani, R. Majumdar, V. Prabhu, and S. Soudjani, “Shrinking
horizon model predictive control with chance-constrained signal tem-
poral logic specifications,” in American Control Conference, pp. 1740–
1746, 2017.

[11] N. Mehdipour, C. Vasile, and C. Belta, “Arithmetic-geometric mean
robustness for control from signal temporal logic specifications,” in
American Control Conference, pp. 1690–1695, 2019.

[12] Y. Gilpin, V. Kurtz, and H. Lin, “A smooth robustness measure of
signal temporal logic for symbolic control,” IEEE Control Systems
Letters, vol. 5, no. 1, pp. 241–246, 2020.

[13] L. Lindemann and D. Dimarogonas, “Control barrier functions for
signal temporal logic tasks,” IEEE control systems letters, vol. 3, no. 1,
pp. 96–101, 2018.

[14] L. Lindemann, C. Verginis, and D. Dimarogonas, “Prescribed per-
formance control for signal temporal logic specifications,” in IEEE
Conference on Decision and Control, pp. 2997–3002, 2017.

[15] P. Varnai and D. Dimarogonas, “Prescribed performance control
guided policy improvement for satisfying signal temporal logic tasks,”
in American Control Conference, pp. 286–291, 2019.

[16] D. Sun, J. Chen, S. Mitra, and C. Fan, “Multi-agent motion plan-
ning from signal temporal logic specifications,” IEEE Robotics and
Automation Letters, vol. 7, no. 2, pp. 3451–3458, 2022.

[17] L. Lindemann and D. Dimarogonas, “Robust control for signal tem-
poral logic specifications using discrete average space robustness,”
Automatica, vol. 101, pp. 377–387, 2019.

[18] V. Kurtz and H. Lin, “Mixed-integer programming for signal temporal
logic with fewer binary variables,” IEEE Control Systems Letters,
vol. 6, pp. 2635–2640, 2022.

[19] S. Sadraddini and C. Belta, “Formal synthesis of control strategies for
positive monotone systems,” IEEE Transactions on Automatic Control,
vol. 64, no. 2, pp. 480–495, 2018.

[20] X. Yu, W. Dong, X. Yin, and S. Li, “Online monitoring of dynamic
systems for signal temporal logic specifications with model informa-
tion,” in IEEE Conference on Decision and Control, pp. 1553–1559,
2022.

[21] X. Yu, W. Dong, X. Yin, and S. Li, “Model predictive monitoring
of dynamic systems for signal temporal logic specifications,” arXiv
preprint arXiv:2209.12493, 2022.

[22] V. Raman, A. Donzé, D. Sadigh, R. Murray, and S. Seshia, “Reactive
synthesis from signal temporal logic specifications,” in International
conference on hybrid systems: Computation and control, pp. 239–248,
2015.

[23] S. Farahani, V. Raman, and R. Murray, “Robust model predictive
control for signal temporal logic synthesis,” IFAC-PapersOnLine,
vol. 48, no. 27, pp. 323–328, 2015.

[24] J. Bravo, D. Limón, T. Alamo, and E. Camacho, “On the computation
of invariant sets for constrained nonlinear systems: An interval arith-
metic approach,” Automatica, vol. 41, no. 9, pp. 1583–1589, 2005.

[25] X. Yu, C. Wang, D. Yuan, S. Li, and X. Yin, “Model predictive
control for signal temporal logic specifications with time interval
decomposition,” arXiv preprint arXiv:2211.08031, 2022.

[26] I. G. Optimization et al., “Gurobi optimizer reference manual, 2018,”
URL http://www. gurobi. com, 2018.

[27] M. Forets and C. Schilling, “LazySets.jl: Scalable Symbolic-Numeric
Set Computations,” Proceedings of the JuliaCon Conferences, vol. 1,
no. 1, p. 11, 2021.

[28] S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling,
“JuliaReach: a toolbox for set-based reachability,” in ACM Inter-
national Conference on Hybrid Systems: Computation and Control,
pp. 39–44, 2019.

7849

